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Abstract: In this paper, we investigate evolution systems in two components, characterized by higher-
order spatial derivatives and the presence of two arbitrary functions. Our study begins with an analysis
of a fourth-order system. We perform a detailed group classification and identify specific forms of the
constitutive functions that allow the system to exhibit additional symmetries in addition to spatial and
temporal translations. We extend these results to nth-order systems. Moreover, we derive invariant
solutions for these systems. Finally, for each order n, we are able to find non-negative solutions.

Keywords: higher-order evolution systems; Lie symmetries; exact solutions

1. Introduction

In a recent paper [1], the following class of reaction diffusion systems is studied, in the
framework of the symmetry groups,

ut = D0uxx + γ1u(γ2 − u) + g(v),

vt = h(u, v),
(1)

where D0, γ1, and γ2 are positive constants, while g(v) and h(u, v) are analytical functions
of their arguments. As usual, the subscripts t or x denote partial differentiations.

Systems (1) are a special class of the following widely studied second-order diffusion
equations in two-components

ut = Dx[D1(u, v)ux] + f (u, v),

vt = Dx[D2(u, v)vx] + h(u, v),
(2)

where the operator Dx denotes the total derivative with respect to x. Later, we will use the
operator Dt to represent the total derivative with respect to t.

Diffusive systems model many real phenomena, such as those in the physical, biolog-
ical, and life sciences fields. For instance, semiconductor devices provide a vast area of
research in the field of two-component evolution systems (see e.g., [2,3]). These devices,
fundamental to modern electronics, exhibit complex interactions between charge carriers,
electric fields, and material properties. To cite just a few more examples, these systems
can describe the diffusion in magnetized plasma (see, e.g., [4]) or model the dynamics of
predator–prey populations (in the class (2) falls the well-known diffusive Lotka–Voltera
system, see, e.g., [5–7]).

However, the majority of studies concern systems in which there is diffusion in both
equations (in the framework of the symmetry groups, see, e.g., [8,9]). Subclasses in which
a component does not suffer diffusion is quite often considered when describing the
evolution of some bacterial colonies (see for instance [10,11] and the references given there).

In the first equation of System (1) D0 is the constant diffusion coefficient. The reaction
term is given by γ1u(γ2 − u) + g(v). The term γ1u(γ2 − u) (corresponding to the inhomo-
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geneous term in the Fisher equation [12]) implies that the growth of u is influenced by itself
and a threshold value γ2.

In the second equation of System (1), the function h(u, v) determines how the variable
v evolves over time, influenced by u, assuming that v is unaffected by diffusion.

Here, continuing the study carried out in [1], in the framework of the symmetry
groups, we examine the following class of evolution systems

ut = D0uxxxx + γ1u(γ2 − u) + g(v),

vt = h(u, v).
(3)

In physics, diffusion is typically modeled with the second spatial derivative (uxx),
but nonlinear reaction–diffusion equations involving the fourth derivative (uxxxx) appear
in many fields (see, e.g., [13–15] and references therein).

Lie symmetry analysis provides a powerful tool for studying partial differential equa-
tions (PDEs) and has numerous applications. For instance, it can be used to reduce the
number of independent variables, and for PDEs with two independent variables, the reduc-
tion process converts any PDE into an ordinary differential equation (ODE). The order of
an ODE can be lowered by using Lie symmetries, and for a first-order ODE the reduction
can lead to complete integration of the equation. Classical symmetries of a PDE map solu-
tions to solutions, so from a known solution, it is possible to obtain new solutions. Many
generalizations of the classical Lie method have been developed to achieve reductions in
PDEs. For example, the non-classical symmetry method [16] or the potential symmetry
method [17–19].

In this paper, we apply Lie symmetries to search for exact solutions. This technique
allows us to derive exact solutions in a methodological way. After determining the Lie sym-
metries (using the well-known Lie invariance criterion [20]), the first step is to transform the
variables u(t, x) and v(t, x) into u(t, x, U(s)), v(t, x, V(s)), where s = s(t, x), such that the
transformed equations are ordinary differential equations in U(s) and V(s). Consequently,
this method leads to finding solutions to ODEs.

Motivated by the analogy between the results obtained in [1] for System (1) and those
for System (3), here, we also study the following more general system

ut = D0uxn + γ1u(γ2 − u) + g(v),

vt = h(u, v),
(4)

with uxn the n-th derivative of u with respect to x, where n is an integer such that n ≥ 2.
While reaction–diffusion systems with second-order diffusion terms are well-studied,

systems involving higher-order diffusion terms, such as uxxxx or even more generally uxn

with n ≥ 2, are less explored. These higher-order terms are crucial in modeling complex
physical processes where classical diffusion models are insufficient.

Systems (1), (3) and (4) are characterized not only by a component that does not
suffer diffusion, but also, in the evolution equation for u, by a reaction term of the type
f (u) +g(v). This suggests that the effects of u and v on the growth of u are separate and
cumulative. This situation is realistic when the two effects act independently and additively,
for example, in the growth of a population or in enzyme kinetics (see, e.g., [21–23]). In
the growth of a population, u represents a population with an intrinsic rate f (u) and
the term g(v) could represent a nutrient supply from a source v. In enzyme kinetics, u
represents the concentration of a substrate and v the concentration of an enzyme, and g(v)
could represent the rate of a reaction catalyzed by the enzyme. A reaction term of the
type f (u)g(v) is usually used in predator–prey models. This form can represent situations
where the influence of v on u depends on the presence or concentration of u. For example,
the growth of u might be amplified or reduced based on the presence of v.

In this paper, wishing to extend the analysis initiated in [1], we study a more gen-
eral class of reaction–diffusion systems characterized by higher-order derivatives in the
evolution equation for u. We apply Lie symmetry methods to derive exact solutions
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for these generalized systems. This approach provides concrete analytical tools to study
these types of equations. The obtained exact solutions will serve as valuable benchmarks
for future research and practical applications in fields such as population dynamics and
enzyme kinetics.

The order of this paper is as follows. In Section 2, we look for infinitesimal symmetry
generators of System (3). We obtain a group classification of System (3) with respect to the
functions g(v) and h(u, v) (assuming that the equations of System (3) are not decoupled),
that is we identify the special forms of the functions g(v) and h(u, v) such that the system
admits symmetries beyond spatial and temporal translations. In Sections 3, we extend
these results to System (4) for n ≥ 2. In Sections 4 and 5, we use the results obtained in
the previous sections to find invariant solutions. By using the property of invariance with
respect to translations in t and x of System (4), in Section 6, we construct non-negative exact
solutions. Finally, we present the conclusion in Section 7.

2. Symmetries of Fourth-Order Evolution Systems

In this section, we look for symmetries of the system described by the fourth-order
evolution equations (3), and we apply the well-known method (see, e.g., [17,20,24–26]). A
symmetry infinitesimal operator for System (3) takes the form

X = ξ1(x, t, u, v)∂x + ξ2(x, t, u, v)∂t + η1(x, t, u, v)∂u + η2(x, t, u, v)∂v. (5)

To compute the infinitesimal coordinates ξ1, ξ2, η1, and η2, we need the fourth exten-
sion of operator (5)

X(4) = X + ζ1
t

∂

∂ut

+ ζ1
xxxx

∂

∂uxxxx

+ ζ2
t

∂

∂vt

. (6)

As usual, the expressions for the coordinates ζ1
t , ζ1

xxxx, ζ2
t are given by

ζ1
t = Dt(η

1)− utDt(ξ
1)− uxDt(ξ

2),

ζ1
x = Dx(η

1)− utDx(ξ
1)− uxDx(ξ

2),

.... ... .........

ζ1
xxxx = Dx(ζ

1
xxx)− uxxxtDx(ξ

1)− uxxxxDx(ξ
2),

ζ2
t = Dt(η

2)− vtDt(ξ
1)− vxDt(ξ

2).

Applying operator (6) to System (3), we obtain the following invariance conditions
−ζ1

t + D0ζ1
xxxx + (γ1γ2 − 2uγ1)η

1 + gvη2 = 0,

−ζ2
t + huη1 + hvη2 = 0,

(7)

under the constraint that u and v are solutions of System (3). That is, we need to substitute

uxxxx =
1

D0
(ut − γ1u(γ2 − u)− g(v)), (8)

vt = h(u, v), (9)

and all their differential consequences in (7). Following the well-known procedure, we
collect the obtained equations with respect to the derivatives of u and v. By requiring that
the corresponding coefficients are zero, we obtain the determining system in the unknowns
coordinates ξ1, ξ2, η1, and η2, involving the constitutive parameters g(v) and h(u, v).

For arbitrary forms of the functions g(v) and h(u, v), we obtain

ξ1 = c1, ξ2 = c2, η1 = 0, η2 = 0. (10)

Then, the Principal Lie Algebra (that is, the algebra admitted for every system of
class (3)) is spanned by the generators

X1 = ∂t, X2 = ∂x. (11)



Symmetry 2024, 16, 1023 4 of 14

This means, as expected, that System (3) is invariant under translations in t and x.
We look for special forms of the constitutive functions g(v) and h(u, v) such that

System (3) admits additional generators. This corresponds to solving the problem of Lie
symmetry classification for System (3). To achieve this, we first solve the determining
equations that are independent of the forms of the arbitrary elements g and h, and we
obtain the following specializations for the coordinates ξ1, ξ2, η1, and η2

ξ1 = 4c1t + c2, ξ2 = c1x + c3, η1 = 2c1(γ2 − 2u), η2 = ψ(t, x, v), (12)

where ci, i = 1, 2, 3 are arbitrary constants and ψ(t, x, v) is an arbitrary function. Substitut-
ing these expressions for ξ1, ξ2, η1, and η2 into the remaining determining equations yields
only one equation involving the function g(v)

2c1(γ1γ2
2 + 4g) + gvψ = 0, (13)

and one equation involving the function h(u, v)

2c1(2u − γ2)hu − ψhv + (ψv − 4c1)h + ψt = 0. (14)

From Condition (13), if gv ̸= 0, we can find ψ(t, x, v) and substitute it into (14). If gv = 0,

we need to distinguish whether the constant function g takes the specific value −γ1γ2
2

4 or not.
In the latter case, to satisfy Condition (13), it must be c1 = 0. Therefore, we need to distinguish

between gv ̸= 0, g(v) = γ0 ̸= −γ1γ2
2

4 and g(v) = −γ1γ2
2

4 . When the function g is constant, the
variable v does not appear in the first equation of System (3). Therefore, if hu = 0, it implies
that System (3) consists of two independent equations that can be solved separately. We do
not consider this case. In this way, from (13), we consider the following cases.

1. gv ̸= 0;

2. g(v) = γ0 ̸= − γ1γ2
2

4 , hu ̸= 0;

3. g(v) = − γ1γ2
2

4 , hu ̸= 0.

We will analyze them in different subsections.

2.1. gv ̸= 0

We observe that in the case gv ̸= 0, the transformation

w = g(v) (15)
maps System (3) to the system

ut = D0uxxxx + γ1u(γ2 − u) + w,

wt = h̄(u, w),
(16)

where the new function h̄ is related to the original function h by the following relation

h̄(u, w) = h(u, v)gv |v=g−1(w), (17)

where g−1 denotes the inverse function of g. Then, without loss of generality, in this case,
we can assume

g(v) = v. (18)

From Condition (13), we obtain

ψ(t, x, v) = −2c1(γ1γ2
2 + 4v). (19)

Consequently, Condition (14) for the function h takes the form

c1

(
(γ1γ2

2 + 4v)hv + (2u − γ2)hu − 6h
)
= 0. (20)

By examining Expression (12) with (19), to extend the principal Lie algebra, it is
necessary that c1 ̸= 0. Then, from (20), we obtain the following special form for function h
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h(u, v) = (2u − γ2)
3h1(ω), with ω =

4v + γ1γ2
2

(2u − γ2)2 . (21)

Then, we can affirm that in this case, System (3) is also invariant with respect the
symmetry generator

X3 = 4t∂t + x∂x + 2(γ2 − 2u)∂u − 2(γ1γ2
2 + 4v)∂v. (22)

2.2. g(v) = γ0 ̸= − γ1γ2
2

4 , hu ̸= 0.

In this case, from Condition (13), we obtain c1 = 0, and (14) becomes

−ψhv + ψvh + ψt = 0. (23)

In order to extend the principal Lie algebra, it must be

h(u, v) =
(

h1(u) + h0

∫
e−h2(v)dv

)
eh2(v), (24)

where h0 is constant, and h1, h2 are functions of u and v, respectively, h1u ̸= 0. The
corresponding system admits the following generator

X3 = eh0t+h2(v)ψ(x)∂v. (25)

2.3. g(v) = − γ1γ2
2

4 , hu ̸= 0.

In this case, by differentiating Condition (14) with respect to t and u, and with respect
to x and u, we have

ψthuv − huψtv = ψxhuv − huψxv = 0. (26)

Since hu ̸= 0, we can write

ψt
huv

hu
− ψtv = ψx

huv

hu
− ψxv = 0. (27)

Then, it must be

ψt

(
huv

hu

)
u
= ψx

(
huv

hu

)
u
= 0. (28)

We have the following possibility: h(u, v) = h1(v) + h3(u)eh2(v) or ψ(t, x, V) = ψ(V).
We will analyze them separately.

1. If h(u, v) = h1(v) + h3(u)eh2(v), by differentiating Condition (14) with respect to u,
we have

h3u(h2vψ − ψv) + 2c1h3uu(γ2 − 2u) = 0. (29)

Since h3u ̸= 0, we can write

h2vψ − ψv + 2c1
h3uu
h3u

(γ2 − 2u) = 0. (30)

It must be
(

c1
h3uu
h3u

(γ2 − 2u)
)

u
= 0. (31)

We obtain extensions of the principal Lie algebra in the following cases, where we specify
the forms of the function h and the corresponding additional generators.

(a)

h(u, v) =
(

h0 + (2u − γ2)
kh1

)
eh2(v), (32)

with h0, k ̸= 0 and h1 ̸= 0 as constants.
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X3 = 4t∂t + x∂x + 2(γ2 − 2u)∂u + 4
(

kh0t + (1 − k)
∫

e−h2(v)dv
)

eh2(v)∂v, (33)

X4 = eh2(v)ψ(x)∂v. (34)

(b)
h(u, v) = (h0 + h1 ln(2u − γ2))eh2(v), (35)

with h0 and h1 ̸= 0 as constants.

X3 = 4t∂t + x∂x + 2(γ2 − 2u)∂u + 4
(∫

e−h2(v)dv − h1t
)

eh2(v)∂v, (36)

X4 = eh2(v)ψ(x)∂v. (37)

(c)

h(u, v) =
(

h1(u) + h0

∫
e−h2(v) dv

)
eh2(v), (38)

with h0 constant, and h1u ̸= 0.

X3 = eh0t+h2(v)ψ(x)∂v. (39)

2. If ψ(t, x, V) = ψ(V), Condition (14) becomes

2c1(2u − γ2)hu − ψhv + (ψv − 4c1)h = 0. (40)

To obtain extensions of the principal Lie algebra, it must me c1ψ ̸= 0. We need to
distinguish the cases ψv ̸= 0 and ψv = 0. We obtain extensions of the principal
Lie algebra in the following cases, where we write the forms of function h and the
corresponding additional generators.

(a)

h(u, v) =
e−2h2(v)

h′2(v)
h1(ω), with ω = (2u − γ2)e2h2(v), and h′2(v) ̸= 0. (41)

X3 = 4t∂t + x∂x + 2(γ2 − 2u)∂u +
2

h′2(v)
∂v. (42)

(b)
h(u, v) = (2u − γ2)h1(ω), with ω = h0 ln(2u − γ2) + v, (43)

with h0 constant.

X3 = 4t∂t + x∂x + 2(γ2 − 2u)∂u + 4h0∂v. (44)

We observe that in the case h(u, v) =
(

h1(u) + h0
∫

e−h2(v)dv
)

eh2(v) and g(v) = γ0,

that is constant, we obtain the additional generator X3 = eh0t+h2(v)ψ(x)∂v in both cases

γ0 = −γ1γ2

4
, γ0 ̸= −γ1γ2

4
(45)

Then, in Section 2.2 we can remove γ0 ̸= − γ1γ2
4 .

3. Symmetries of nth-Order Evolution Systems

In this section, we generalize the results obtained in Section 2 for System (3) to System (4).
For System (4), we need the following extension of operator (5)

X(n) = X + ζ1
t

∂

∂ut

+ ζ1
xn

∂

∂uxn
+ ζ2

t
∂

∂vt

, (46)

where
ζ1

xn = Dx(ζ
1
xn−1)− uxn−1tDx(ξ

1)− uxn Dx(ξ
2). (47)
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Applying the generator (46) to (4), we obtain the following invariance conditions

− ζ1
t + D0ζ1

xn + (γ1γ2 − 2uγ1)η
1 + gvη2 = 0, (48)

− ζ2
t + huη1 + hvη2 = 0, (49)

subject to the constraint that u and v are solutions of System (4).
In Condition (48), the highest-order derivatives of u and v only appear in ζ1

xn . From
the coefficients of utxn−1 and vxn , we obtain, respectively,

ξ1
x + uxξ1

u + vxξ1
v = 0, and η1

v − utξ
1
v − uxξ2

v = 0. (50)

So we obtain the following restrictions for ξ1, ξ2, and η1

ξ1 = α(t), ξ2 = β(t, x, u), η1 = ϕ(t, x, u). (51)

Substituting in (49), from coefficients of vx and ut we obtain, respectively,

βuut + βt = 0, βuvx − η2
u = 0. (52)

Then
ξ1 = α(t), ξ2 = β(x), η1 = ϕ(t, x, u), η2 = ψ(t, x, v), (53)

and substituting in (48), from the coefficient of uxn−1 ux we have

ϕuu = 0, (54)

which implies
ϕ = uϕ1(t, x) + ϕ2(t, x). (55)

In this way, from the coefficient of ut in (48), we have

αt − nβx = 0, (56)

which implies
α = c2 + nc1t, β = c3 + c1x. (57)

These results imply that from coefficient of uxn−1 in (48), we have

ϕ1x = 0. (58)

To summarize, until now, we have the following results

ξ1 = c2 + nc1t, ξ2 = c3 + c1x, η1 = uϕ1(t) + ϕ2(t, x), η2 = ψ(t, x, v). (59)

Considering that no coordinate depends on u in (48), we can also collect terms with
respect to u. From the coefficient of u2, we obtain

ϕ1 + nc1 = 0 =⇒ ϕ1 = −nc1, (60)

and from the coefficient of u we have

nc1γ2 − 2ϕ0 = 0 =⇒ ϕ0 =
n
2

c1γ2. (61)

Finally, we obtain

ξ1 = c2 + nc1t, ξ2 = c3 + c1x, η1 =
n
2

c1(γ2 − 2u), η2 = ψ(t, x, v), (62)

with the conditions
n
2

c1(γ1γ2
2 + 4g) + gvψ = 0, (63)

n
2

c1(2u − γ2)hu − ψhv + (ψv − nc1)h + ψt = 0. (64)



Symmetry 2024, 16, 1023 8 of 14

For arbitrary forms of the functions g(v) and h(u, v), System (4) is invariant under
translations in t and x. The Principal Lie Algebra is spanned by generator (11).

We look for special forms of the constitutive functions g(v) and h(u, v) such that
System (4) admits additional generators. This corresponds to solving the problem of
Lie symmetry classification for System (4). The classifying Equations (63) and (64) are
very similar to those of System (3). Therefore, by following the same procedure as in
Section 2, we can affirm that System (4) admits extensions of the principal Lie algebra in
the following cases.

1.

g(v) = v, h(u, v) = (2u − γ2)
3h1(ω), with ω =

4v + γ1γ2
2

(2u − γ2)2 . (65)

X3 = nt∂t + x∂x +
n
2
(γ2 − 2u)∂u −

n
2
(γ1γ2

2 + 4v)∂v. (66)

2.

g(v) = γ0, h(u, v) =
(

h1(u) +
∫

h0eh2(v)dv
)

eh2(v), (67)

where γ0, and h0 are constants and h1u ̸= 0.

X3 = eh0t+h2(v)ψ(x)∂v. (68)
3.

g(v) = −
γ1γ2

2
4

, h(u, v) =
(

h0 + (2u − γ2)
kh1

)
eh2(v), (69)

with h0, k ̸= 0 and h1 ̸= 0 as constants.

X3 = nt∂t + x∂x +
n
2
(γ2 − 2u)∂u + n

(
kh0t + (1 − k)

∫
e−h2(v)dv

)
eh2(v)∂v, (70)

X4 = eh2(v)ψ(x)∂v. (71)

4.

g(v) = −
γ1γ2

2
4

, h(u, v) = (h0 + h1 ln(2u − γ2))eh2(v), (72)

with h0 and h1 ̸= 0 as constants.

X3 = nt∂t + x∂x +
n
2
(γ2 − 2u)∂u + n

(∫
e−h2(v)dv − h1t

)
eh2(v)∂v, (73)

X4 = eh2(v)ψ(x)∂v. (74)

5.

g(v) = −
γ1γ2

2
4

, h(u, v) =
e−2h2(v)

h′2(v)
h1(ω), (75)

with ω = (2u − γ2)e2h2(v), and h′2(v) ̸= 0.

X3 = nt∂t + x∂x +
n
2
(γ2 − 2u)∂u +

n
2h′2(v)

∂v. (76)

6.

g(v) = −
γ1γ2

2
4

, h(u, v) = (2u − γ2)h1(ω), (77)

with ω = h0 ln(2u − γ2) + v, and h0 constant.

X3 = nt∂t + x∂x +
n
2
(γ2 − 2u)∂u + nh0∂v. (78)

4. Exact Solutions of a Fourth-Order Evolution System

In this section, we consider the system of equations from class (3) with
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g(v) = v and h(u, v) = (2u − γ2)
3

(
γ4

γ1γ2
2 + 4v

(2u − γ2)2 + γ5

)
, (79)

where γ4 and γ5 are arbitrary constants, that is the system
ut = D0uxxxx + γ1u(γ2 − u) + v,

vt = (2u − γ2)
3
(

γ4
γ1γ2

2+4v
(2u−γ2)2 + γ5

)
.

(80)

This system belongs to the class obtained in Section 2.1. Therefore, this system is invariant
not only with respect to the generators (11), but also with respect to the generator (22).

By using infinitesimal symmetries, for PDEs with two independent variables, the re-
duction process converts any PDE into an ordinary differential equation (ODE).

This reduction procedure can be performed taking into account the characteristic system

dt
ξ1 =

dx
ξ2 =

du
η1 =

dv
η2 . (81)

The solutions of this characteristic system transform the variables u(t, x) and v(t, x)
into u(t, x, U(s)), v(t, x, V(s)), with similarity variable s = s(t, x).

By using the generator (22)

X3 = 4t∂t + x∂x + 2(γ2 − 2u)∂u − 2(γ1γ2
2 + 4v)∂v, (82)

the characteristic system is
dt
4t

=
dx
x

=
du

2(γ2 − 2u)
=

dv
−2(γ1γ2

2 + 4v)
. (83)

From this system we obtain the invariant solutions

u(t, x) =
1
2

γ2 +
U(s)

t
, v(t, x) = −1

4
γ1γ2

2 +
V(s)

x8 , where s =
x4

t
. (84)

By substituting (84) into the System (80), we obtain the reduced system
256D0s5Ussss + 1152D0s4Usss + 816D0Usss3 + (24D0 + s)s2Us − γ1s2U2 + s2U + V = 0,

8γ4UV + 8γ5s2U3 + sVs = 0.
(85)

By setting
γ4 =

γ1

4
, and γ5 = −

γ2
1

4
, (86)

we obtain a specific solution to the reduced System (85)

U(s) = − s
8D0γ1

− 3
2γ1

,

V(s) =
s4

64D2
0γ1

+
5s3

8D0γ1
+

27s2

4γ1
.

(87)

Returning to (84), we obtain

u(t, x) =
γ2

2
− x4

8D0γ1t2 − 3
2γ1t

,

v(t, x) = −
γ1γ2

2
4

+
x8

64(D2
0γ1t4)

+
5x4

8(D0γ1t3)
+

27
4γ1t2 ,

(88)

as solutions of system 
ut = D0uxxxx + γ1u(γ2 − u) + v,

vt = (2u − γ2)
3
(

γ1
4

γ1γ2
2+4v

(2u−γ2)2 − γ1
4

)
.

(89)
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5. Exact Solutions of a nth-Order Evolution System

Given the analogy between the results obtained in Sections 2 and 3, here we consider
the system from class (4) with

g(v) = v and h(u, v) = (2u − γ2)
3

(
γ1

4
γ1γ2

2 + 4v
(2u − γ2)2 − γ1

4

)
, (90)

which is analogous to the system discussed in Section 4, but of order n with n ≥ 2
ut = D0uxn + γ1u(γ2 − u) + v,

vt = (2u − γ2)
3
(

γ1
4

γ1γ2
2+4v

(2u−γ2)2 − γ1
4

)
.

(91)

We recall that this system is invariant with respect to the generators (11) and (66). By
using the generator (66)

X3 = nt∂t + x∂x +
n
2
(γ2 − 2u)∂u −

n
2
(γ1γ2

2 + 4v)∂v, (92)

we look for invariant solutions

u(t, x) =
1
2

γ2 +
U(s)

t
, v(t, x) = −1

4
γ1γ2

2 +
V(s)
x2n , where s =

xn

t
. (93)

If we restrict our attention to functions U(s) that are linear in s, we observe that
Uss = · · ·Usn = 0, and in the first equation we can neglect the derivatives of U from the
second order. Then, the reduced system for each n becomes

(n!D0 + s)s2Us − γ1s2U2 + s2U + V = 0,

2γ1UV − 2γ2
1s2U3 + sVs = 0,

(94)

with U(s) = a0 + a1s. That is,

(n!D0 + s)s2a1 − γ1s2(a0 + a1s)2 + s2(a0 + a1s) + V = 0,

2γ1(a0 + a1s)V − 2γ2
1s2(a0 + a1s)3 + sVs = 0,

(95)

and we obtain the following solution

U(s) = − 3s
n!D0γ1

− 3
2γ1

,

V(s) =
9s4

(n!)2D2
0γ1

+
15s3

n!D0γ1
+

27s2

4γ1
.

(96)

Returning to (93), we obtain a solution for System (91)

u(t, x) =
1
2

γ2 −
1
t

(
3xn

n!D0γ1t
+

3
2γ1

)
,

v(t, x) =
9x2n

(n!)2D2
0γ1t4

+
15xn

n!D0γ1t3 +
27

4γ1t2 − 1
4

γ1γ2
2.

(97)

Of course, for n = 4 we obtain the solution given by (88).

6. Positivity of Solutions

Since all systems (4) are invariant with respect to translations in t and x, from (97) we
can also affirm that System (91) admits the following solutions

u(t, x) =
1
2

γ2 −
1

t − t0

(
3(x − x0)

n

n!D0γ1(t − t0)
+

3
2γ1

)
,

v(t, x) =
9(x − x0)

2n

(n!)2D2
0γ1(t − t0)4

+
15(x − x0)

n

n!D0γ1(t − t0)3 +
27

4γ1(t − t0)2 − 1
4

γ1γ2
2,

(98)
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with t0, x0 as constants, obtained from solutions (97) by applying the transformation

x → x − x0, t → t − t0. (99)

This can be useful when, as often happens, it is required that the solution be positive
or non-negative. For example, in the biological context, u(t, x) and v(t, x) can represent
densities and should be non-negative within a suitable domain [t1; t2] × [x1; x2], where
t1 < t2 and x1 < x2.

Writing the solution of System (91) in the form (98), it is possible to select t0 and x0
such that u(t, x) ≥ 0 and v(t, x) ≥ 0 in [t1; t2]× [x1; x2], for each D0 > 0, γ1 > 0, γ2 > 0
and for each integer n ≥ 2. In order to demonstrate this, we consider two distinct cases.

1. Case n odd
In this case, in order to have u(t, x) ≥ 0 and v(t, x) ≥ 0 in [t1; t2] × [x1; x2], it is
sufficient to choose t0 and x0 such that

t0 ≥ t2, and x0 ≥ x2 +

(
D0γ2

1γ2
2n!

60
(t0 − t1)

3

) 1
n

. (100)

If (100) are satisfied, for all (t, x) ∈ [t1; t2]× [x1; x2], it holds that

t1 − t0 ≤ t − t0 ≤ t2 − t0 ≤ 0; x1 − x0 ≤ x − x0 ≤ x2 − x0 ≤ 0, (101)

and we immediately obtain that u(t, x), given by (98), is non-negative on [t1; t2] ×
[x1; x2]. Regarding v(t, x) we observe that the quantity

9(x − x0)
2n

(n!)2D2
0γ1(t − t0)4

+
27

4γ1(t − t0)2 (102)

is non-negative, while we can write

15(x − x0)
n

n!D0γ1(t − t0)3 − 1
4

γ1γ2
2 =

15
n!D0γ1(t0 − t)3

[
(x0 − x)n −

D0γ2
1γ2

2n!
60

(t0 − t)3

]
≥

≥ 15
n!D0γ1(t0 − t)3

[
(x0 − x2)

n −
D0γ2

1γ2
2n!

60
(t0 − t)3

]
≥

≥ 15
n!D0γ1(t0 − t)3

[
(x0 − x2)

n −
D0γ2

1γ2
2n!

60
(t0 − t1)

3

]
.

(103)

If the conditions (100) are satisfied, we can affirm that this quantity is non-negative.Therefore,
we can conclude that v(t, x), defined by (98), is non-negative on [t1; t2]× [x1; x2].

2. Case n even
In this case, if we choose

t0 ≤ t1 −
3

D0γ1γ2n!

(
D0n! +

√
D2

0(n!)2 +
2
3

D0γ1γ2n!(x2 − x0)n

)
, (104)

it holds that
0 ≤ t1 − t0 ≤ t − t0 ≤ t2 − t0. (105)

And if we choose

x0 ≤ x1 −
(

D0γ2
1γ2

2n!
60

(t2 − t0)
3

) 1
n

, (106)

it will be that
0 ≤ x1 − x0 ≤ x − x0 ≤ x2 − x0. (107)

Regarding u(t, x), given by (98), we obtain
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u(t, x) =
1
2

γ2 −
1

t − t0

(
3(x − x0)

n

n!D0γ1(t − t0)
+

3
2γ1

)
=

3
D0γ1n!(t − t0)2

[
D0γ1γ2n!

6
(t − t0)

2 − D0n!(t − t0)

2
− (x − x0)

n
]
≥

3
D0γ1n!(t − t0)2

[
D0γ1γ2n!

6
(t − t0)

2 − D0n!(t − t0)

2
− (x2 − x0)

n
]

.

(108)

Clearly,
3

D0γ1n!(t − t0)2 ≥ 0. (109)

Taking into account that t − t0 ≥ 0, the second factor[
D0γ1γ2n!

6
(t − t0)

2 − D0n!(t − t0)− (x2 − x0)
n
]

(110)

will be non-negative if

t − t0 ≥ 3
D0γ1γ2n!

(
D0n! +

√
D2

0(n!)2 +
2
3

D0γ1γ2n!(x2 − x0)n

)
. (111)

But, from (104) and (105),

t − t0 ≥ t1 − t0 ≥ 3
D0γ1γ2n!

(
D0n! +

√
D2

0(n!)2 +
2
3

D0γ1γ2n!(x2 − x0)n

)
, (112)

then (111) is satisfied and u(t, x), given by (98), is non-negative in [t1; t2] × [x1; x2]
when (104) and (106) are satisfied.
Regarding v(t, x), we observe that

9(x − x0)
2n

(n!)2D2
0γ1(t − t0)4

+
27

4γ1(t − t0)2 (113)

is non-negative, while we can write

15(x − x0)
n

n!D0γ1(t − t0)3 − 1
4

γ1γ2
2 =

15
n!D0γ1(t − t0)3

[
(x − x0)

n −
D0γ2

1γ2
2n!

60
(t − t0)

3

]
≥

≥ 15
n!D0γ1(t − t0)3

[
(x1 − x0)

n −
D0γ2

1γ2
2n!

60
(t − t0)

3

]
≥

≥ 15
n!D0γ1(t − t0)3

[
(x1 − x0)

n −
D0γ2

1γ2
2n!

60
(t2 − t0)

3

]
.

(114)

From hypothesis (106), we obtain

x1 − x0 ≥
(

D0γ2
1γ2

2n!
60

(t2 − t0)
3

) 1
n

, (115)

then
15

n!D0γ1(t − t0)3

[
(x1 − x0)

n −
D0γ2

1γ2
2n!

60
(t2 − t0)

3

]
≥ 0. (116)

We can conclude that v(t, x), given by (98), is non-negative in [t1; t2]× [x1; x2] when
(104) and (106) are satisfied.

It is a simple matter that if we use strict inequalities in the conditions (100) for the odd
cases and in (104) and (106) for the even cases, we can conclude that u(t, x) and v(t, x) are
positive in [t1; t2]× [x1; x2].
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For the sake of clarity, in the odd case, conditions (100) have been obtained
to ensure (101) and [

(x0 − x2)
n −

D0γ2
1γ2

2n!
60

(t0 − t1)
3

]
≥ 0. (117)

A similar approach was taken in the even case.

7. Conclusions

In this paper, we considered System (3) and its generalization (4). The difference
between these two systems lies in the highest order of the spatial derivative, which can
have various biological implications, such as increased dispersion or smoothing of spatial
profiles of the variable u. We obtained a group classification of Systems (3) and (4) with
respect to the functions g(v) and h(u, v) (assuming that the equations of systems are not
decoupled), that is, we identified the special forms of the constitutive functions g(v) and
h(u, v) such that the systems admit symmetries other than spatial and temporal translations.
After that, we computed exact solutions. For special forms of g and h, we were able to
obtain exact solutions for Systems (3) and (4) for any n ≥ 2. Finally, considering the system
in a biological context and using the property of invariance with respect to translations
in t and x of System (4), we obtained non-negative exact solutions that are relevant to
real-world scenarios.

The results of this work encourage further research by extending the symmetry anal-
ysis to other types of nonlinearities in the reaction term f (u) + g(v), as well as to more
complex multi-component systems that better model biological processes, such as interact-
ing species or enzyme–substrate reactions.
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