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Abstract: The vehicle routing problem with time windows (VRPTW) is a widely studied combinatorial
optimization problem in supply chains and logistics within the last decade. Recent research has
explored the potential of deep reinforcement learning (DRL) as a promising solution for the VRPTW.
However, the challenge of addressing the VRPTW with many conflicting objectives (MOVRPTW) still
remains for DRL. The MOVRPTW considers five conflicting objectives simultaneously: minimizing
the number of vehicles required, the total travel distance, the travel time of the longest route, the total
waiting time for early arrivals, and the total delay time for late arrivals. To tackle the MOVRPTW, this
study introduces the MTMO/DRP-AT, a multi-task multi-objective evolutionary search algorithm, by
making full use of both DRL and the multitasking mechanism. In the MTMO/DRL-AT, a two-objective
MOVRPTW is constructed as an assisted task, with the objectives being to minimize the total travel
distance and the travel time of the longest route. Both the main task and the assisted task are
simultaneously solved in a multitasking scenario. Each task is decomposed into scalar optimization
subproblems, which are then solved by an attention model trained using DRL. The outputs of these
trained models serve as the initial solutions for the MTMO/DRL-AT. Subsequently, the proposed
algorithm incorporates knowledge transfer and multiple local search operators to further enhance
the quality of these promising solutions. The simulation results on real-world benchmarks highlight
the superior performance of the MTMO/DRL-AT compared to several other algorithms in solving
the MOVRPTW.

Keywords: multiobjective vehicle routing problem with time windows; deep reinforcement learning;
evolutionary multi-task optimization; knowledge transfer

1. Introduction

The vehicle routing problem with time windows (VRPTW) is a widely studied com-
binatorial optimization problem in logistics, encompassing areas such as supply chain
management, production planning, waste collection, home healthcare, and so on [1–5].
As a crucial variant of the vehicle routing problem (VRP), the VRPTW involves servicing
a set of customers with specific time windows and known demands using a fleet of vehi-
cles [1]. The primary goal of the VRPTW is to minimize delivery costs by optimizing routes
while adhering to all constraints. However, the VRPTW is computationally NP-hard [2],
making it challenging to solve effectively.

Due to its practical significance in various applications in the real world, the VRPTW
has emerged as a prominent research problem in the field of operations research [2,3].
Consequently, numerous optimization approaches have been developed to tackle this chal-
lenge [6–8]. Broadly, optimization approaches for the VRPTW are categorized into exact
methods [6], suitable for small-scale problems, and meta-heuristic methods [7,8], preferred
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for large-scale problems. Meta-heuristic methods, known for their capability and potential
in tackling the VRPTW, encompass various search mechanisms [3,7,8]. These methods
address both the single-objective VRPTW and the multi-objective VRPTW. Previous stud-
ies [9,10] have discussed the VRPTW as an inherently multi-objective optimization problem
with many conflicting objectives relevant to real-world applications. As a result, research
on the multi-objective VRPTW (MOVRPTW) problem has gained significant attention and
is now considered a prominent area in the field of computational intelligence [3].

However, because of the high complexity of the MOVRPTW, most existing meta-
heuristic methods still face significant challenges in effectively solving it [11]. These
methods often require a significant number of iterations to update the population or
conduct search, especially for optimization problems with many conflicting objectives. This
will lead to lengthy computational times for optimization. Furthermore, meta-heuristic
methods necessitate problem-specific experience and knowledge, requiring adjustments
to yield favorable results when encountering new problems or even new instances of
similar problems [12]. Therefore, there yet remains much room for proposing more efficient
approaches to address the challenges brought by the MOVRPTW.

With the rapid advancement of artificial intelligence technology, deep reinforcement
learning (DRL) has become increasingly prevalent and successful across various fields.
Notably, it has made significant contributions in areas such as computer vision [13,14] and
natural language processing [15]. In the realms of operations research and combinatorial
optimization, DRL has also proven its advantages in terms of autonomous feature discovery,
effective accumulation of problem information, and efficient decision optimization [16–19].
However, as discussed in [20], directly applying the trained model on unseen problem
instances may be considered unreliable. Furthermore, the majority of DRL-based method-
ologies concentrate on resolving a single MOVRPTW problem by initiating the search from
scratch, disregarding the similarities between disparate tasks. Consequently, the useful
knowledge gained by addressing one problem cannot be fully leveraged for optimizing
other similar problems. Therefore, it is crucial to explore ways to further enhance the
quality of the output results obtained by the trained model, especially in the context of
DRL-based approaches.

Recently, a new paradigm called evolutionary multitask optimization (EMTO) has
emerged in the field of evolutionary algorithms. EMTO aims to optimize multiple tasks
simultaneously using a shared search space [21]. By leveraging the latent synergies among
those tasks, EMTO has been shown to outperform single-task optimization methods, yielding
superior performance in both continuous and combinatorial optimization problems [21,22].
Furthermore, the efficacy of EMTO has been demonstrated in successfully solving a wide
range of combinatorial optimization problems [23,24]. It can, thus, be seen that the integration
of the EMTO framework with DRL-based approaches presents a compelling proposition for
addressing complex combinatorial optimization problems.

Building upon the aforementioned findings, this study introduces the MTMO/DRL-
AT, a multi-task multi-objective evolutionary search algorithm for solving the MOVRPTW
with five conflicting objectives. The proposed algorithm combines DRL and the multi-
tasking mechanism. In the MTMO/DRL-AT, a two-objective VPRTW is constructed as
an assisted task based on the characteristics of the main MOVRPTW task. Both the main
task and the assisted task are decomposed into scalar optimization subproblems, each
addressed by an attention model trained using DRL. The output results of these trained
models serve as the initial solutions for the MTMO/DRL-AT. Subsequently, the proposed
algorithm optimizes both tasks simultaneously under a multitasking framework. To fur-
ther improve the quality of the solutions, multiple local search operators are employed.
Experimental studies on 45 real-world instances are conducted to validate the effectiveness
of the proposed algorithm. The simulation results clearly demonstrate the superiority of
the MTMO/DRL-AT over other compared approaches in solving MOVRPTWs.

In summary, the main contributions of this study are as follows:
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• A novel evolutionary optimization algorithm, termed the MTMO/DRL-AT, is pre-
sented for solving MOVRPTWs involving five conflicting objectives. The MTMO/DRL-
AT conducts a multitasking search over both the main task and an assisted task,
utilizing an attention model trained through DRL.

• The synergy between DRL-based model training and the multitasking-based search
mechanism is built up. Attention models are trained using DRL for subproblems
in both the main and assisted tasks, serving as the starting point for the algorithm.
Knowledge transfer strategies and objectivewise local search operators are then em-
ployed to further refine the optimization of both tasks, ultimately improving the
quality of solutions derived from the trained models.

The remainder of this paper is structured as follows: Section 2 describes the formula-
tion of the MOVRPTW. Section 3 reviews related work. Section 4 shows the DRL-based
modeling and training for the MOVRPTW. Section 5 presents the details of the MTMO/DRL-
AT. Then, the experimental results and analysis are provided in Section 6. Finally, Section 7
gives the conclusions and future work.

2. Problem Formulation of MOVRPTW

The MOVRPTW is a complex multi-objective optimization problem with practical
applications and multiple constraints. It can be mathematically represented by a complete
undirected graph, denoted as G = {V, E}, where V represents the node set and E represents
the edge set. The node set V = {vi|i = 0, 1, . . ., N}, consists of a depot, denoted as v0, and
other customer nodes, v1, v2, . . . , vN . The edge set E = {ei,j|i, j ∈ V, i ̸= j}, where each
edge ei,j is linked to a travel time ti,j and a travel distance di,j. Similarly, each customer is
assigned to a demand qi, a service time window [bi, ei], and a service time si.

In the MOVRPTW, each vehicle is assigned a route, rk = (ck
0, ck

1, . . . , ck
Nk

, ck
Nk+1

), that

consists of a sequence of Nk customers to be visited, denoted as rk and ck
0 = ck

Nk+1 = 0,
where ck

j represents the jth customer to be visited in rk and ck
0 = ck

Nk+1 = 0 (depot). Each
customer is exclusively serviced by a single vehicle. Moreover, it is essential to ensure
that the cumulative demand of customers assigned to each vehicle does not exceed its
maximum capacity, denoted as Q. Additionally, all vehicles are obligated to depart from
and return to the depot within the time window specified as [0, e0]. To allow for some
flexibility, a soft time window constraint is implemented, permitting a vehicle to arrive at a
customer’s location after the specified latest service time, ei, within a maximum allowed
delay time, denoted as md. The delay time experienced by vehicle k at the jth customer is
defined as dtck

j
= max{0, ack

j
− eck

j
}, where ack

j
represents the arrival time at customer ck

j .

In case a vehicle arrives prior to the earliest service time (bi), it is required to wait until
bi to initiate service, resulting in a waiting time. The waiting time for vehicle k at the jth
customer is determined by wck

j
= max{0, bck

j
− ack

j
}.

Figure 1 provides an example of the solution representation for the MOVRPTW.
As illustrated in Figure 1, the MOVRPTW consists of one depot (i.e., 0) and nine customers
to be serviced (i.e., 1 to 9). A solution comprising three routes is denoted as x = (r1, r2, r3),
where r1 = (0, 5, 7, 1, 0), r2 = (0, 9, 6, 3, 0), and r3 = (0, 8, 4, 2, 0).
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Figure 1. Solution representation for the MOVRPTW. (a) A solution for the MOVRTPW. (b) The
solution representation.
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To provide a clear mathematical model of the MOVRPTW, the basic notations used in
this study are summarized in Table 1.

Table 1. Notations for MOVRPTW.

Notation Description

Property sets:
C The set of customers: C = {1, 2, 3, . . ., N};
V The set of vertices: V = C ∪ {0};
E The set of edges between vertices: E = {eij|i, j ∈ V};
D The set of distances between customers: D = {dij|i, j ∈ C};
T The set of travel times between customers: T = {tij|i, j ∈ C}.;

Problem parameters:
Q The maximum capacity of the vehicle;
qi The demand of customer i;

md The maximum allowable delay time at each customer;
[bi, ei] The time window of customer i;

bi The earliest service time for customer i;
ei The latest service time for customer i;
si The service time for customer i.

Problem variables:
xk

ij eij is traversed by the kth vehicle (i.e., xk
ij = 1)

or not (i.e., xk
ij = 0);

K The number of routes in x;
rk The kth route consisting of a sequence of Nk customers

rk = {ck
0, ck

1, . . ., ck
Nk

, ck
Nk+1
};

ck
j The jth customer visited in the kth route;

ai The time the vehicle arrives at customer i;
wi The waiting time incurred by the vehicle at customer i;
dti The delay time generated by the vehicle at customer i.

In general, the mathematical model of the MOVRPTW, which includes five objectives,
is defined as follows [9,10]:

minF(x) = ( f1, f2, f3, f4, f5) (1)

f1 = K (2)

f2 =
N

∑
i=1

N

∑
j=0,j ̸=i

K

∑
k=1

dijxk
ij (3)

f3 = max
k=1,...,K

{
N

∑
i=1

N

∑
j=0,j ̸=i

xk
ij(tij + wi + si)} (4)

f4 =
N

∑
i=1

N

∑
j=0,j ̸=i

K

∑
k=1

wixk
ij (5)

f5 =
N

∑
i=1

N

∑
j=0,j ̸=i

K

∑
k=1

dtixk
ij (6)

The MOVRPTW mathematical model, described by Equation (1), is a multi-objective
problem that encompassed five objectives. These objectives are defined as follows: In
Equation (2), the first objective aims to minimize the number of vehicles required. In
Equation (3), the second objective focuses on minimizing the total travel distance. In
Equation (4), the third objective aims to minimize the travel time of the longest route. In
Equation (5), the fourth objective seeks to minimize the total waiting time for early arrivals.
In Equation (6), the fifth objective aims to minimize the total delay time for late arrivals.
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The constraints of the MOVRPTW are defined as follows:

N

∑
i=1

xk
i0 =

N

∑
j=1

xk
0j = 1, k = 1, . . . , K (7)

N

∑
j=0,j ̸=i

xk
ij =

N

∑
j=0,j ̸=i

xk
ji ≤ 1, i ∈ C, k = 1, . . . , K (8)

N

∑
i=0,i ̸=j

K

∑
k=1

xk
ij =

N

∑
j=0,j ̸=i

K

∑
k=1

xk
ij = 1, i ∈ C, j ∈ C (9)

N

∑
i=0

qi

N

∑
j=0,j ̸=i

xk
ij ≤ Q, k = 1, . . . , K (10)

N

∑
j=0,j ̸=i

dtixk
ij ≤ md, i ∈ C, k = 1, . . . , K (11)

(ti0 + ai + wi + si)xk
i0 ≤ e0, i ∈ C, k = 1, . . . , K (12)

xk
ij ∈ {0, 1}, i ∈ C, j ∈ C, k = 1, . . . , K (13)

Constraints (7) and (8) ensure that each vehicle starts from the depot and then returns
to the depot. Constraint (9) guarantees that each customer is served only once by one
vehicle. Constraint (10) ensures that the total demand served by a vehicle does not exceed its
maximum capacity Q. Constraint (11) limits the delay time for each customer to the specified
value md. Constraint (12) states that each vehicle must return to the depot before it closes.
Constraint (13) defines the range of the decision variable.

3. Literature Review

This section begins by providing an overview of the existing studies conducted on the
VRPTW. Subsequently, it briefly examines recent DRL approaches applied to combinatorial
optimization problems (COPs), with a specific focus on the VRP and its variants. Lastly, it
reviews the applications of EMTO to the VRP.

3.1. Meta-Heuristic Approaches for VRPTW

Broadly, optimization approaches for the VRPTW are categorized into exact meth-
ods [6], suitable for small-scale problems, and meta-heuristic methods [7,8], preferred for
large-scale problems. Meta-heuristic methods, known for their capability and potential in
tackling the VRPTW, encompass various search mechanisms [3,7,8]. These methods address
both the single-objective VRPTW and the multi-objective VRPTW. Previous studies [9,10]
have discussed the VRPTW as an inherently multi-objective optimization problem with
many conflicting objectives relevant to real-world applications. Therefore, this subsection
provides only a brief overview of the related work on the MOVRPTW, which is summarized
in Table 2. Other related work on the VRP and its variants can be found in [2,3,6–8].

Researchers have proposed various multi-objective optimization algorithms with var-
ious optimization frameworks and local search strategies to address the MOVRPTW. For
example, Qi et al. [25] introduced a decomposition-based multi-objective evolutionary al-
gorithm, which included a specially designed selection operator and three local searches.
Moradi [26] proposed a discrete learnable evolution model for multi-objective optimization
that integrated machine learning and a new priority-based representation scheme. In addi-
tion to the above evolutionary optimization methods, DRL-based methods are also used
to solve the MOVRPTW. In [19], Zhang et al. introduced the MODRL/D-EL, an approach
that combines the decomposition technique with attention models. They also employed
evolutionary learning to further fine-tune the parameters of the trained model.
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Table 2. Summary of the methods for solving the MOVRPTW.

Reference Authors Problem Approach

MOVRPTW with two objectives
[25] Qi et al. MOVRPTW with f1 and f2 Decomposition-based EA

Specially designed selection operator
Three novel local searches

[26] Moradi MOVRPTW with f1 and f2 The strength Pareto evolutionary algorithm (SPEA)
Discrete learnable evolution model
A priority-based representation scheme

[19] Zhang et al. MOVRPTW with f2 and f3 Multiobjective DRL with evolutionary learning (MODRL/D-EL)
Decomposition technique
Attention models
Evolutionary learning to further fine-tune the model’s parameters

MOVRPTW with many objectives
[9] Gutiérrez et al. MOVRPTW with f1– f5 Nondominated sorting genetic algorithm (NSGA-II)

New instances from real-world data

[10] Zhou and Wang MOVRPTW with f1– f5
Local-search-based multiobjective optimization
algorithm (LSMOVRPTW)
Objectivewise local searches

[27] Zhang et al. MOVRPTW with f1– f5
Multi-objective memetic algorithm based on adaptive local search
chains (MMA-ALSC)
Enhanced local search chain techniques
Multi-directional local search strategy

[28] Cai et al. MOVRPTW with f1– f5 Hybrid evolutionary multitasking algorithm (HEMT)
Simultaneously optimize multiple distinct instances
Knowledge transfer and knowledge reuse strategies

Efforts have also been made to tackle the VRPTW with more than three objectives
(also called the many-objective VRPTW [29]). To address this problem, Gutiérrez et al. [9]
proposed a nondominated sorting genetic algorithm (NSGA-II) and developed new in-
stances from real-world data to address weak dependence relationships among objectives.
Followed that, Zhou and Wang [10] designed multiple objectivewise local searches for
distinct objectives of the VRPTW, thereby proposing a local search-based multiobjective
optimization algorithm (LSMOVRPTW). Recently, Zhang et al. [27] presented a multi-
objective memetic algorithm based on adaptive local search chains (MMA-ALSC). This
approach combined enhanced local search chain techniques with a multi-directional local
search strategy to guide the search process. By exploiting the similarity between differ-
ent MOVRPTWs, Cai et al. [28] proposed a hybrid evolutionary multitasking algorithm
(HEMT). Their approach involved solving multiple different MOVRPTWs concurrently,
employing an exploration stage that incorporated knowledge transfer and an exploitation
stage that used a knowledge reuse strategy.

3.2. The DRL-Based Approaches for the COPs

In recent years, DRL has proven successful in addressing complex COPs across various
fields. For single-objective optimization, Vinyals et al. [30] proposed a Pointer network (Ptr-
Net) model based on the sequence-to-sequence (Seq2Seq) model, achieving good results
on the Traveling Salesman Problem (TSP). Bello et al. [16] trained a Ptr-Net model to solve
TSPs using reinforcement learning and a critic network as a baseline. Nazari et al. [31]
used Ptr-Net to solve dynamic VRPs by dividing the instances into dynamic and static
parts and then trained the model with reinforcement learning algorithms. Nowak et al. [32]
proposed a Graph Neural Network (GNN) using supervised training and beam search.
Deudon et al. [33] improved the traditional Pointer network based on a Transformer with
MHA and reinforcement learning.

Kool et al. [34] introduced an attention-based approach for solving various COPs,
outperforming Ptr-Net on the TSP, CVRP, PCTSP, and others. Zhao et al. [17] designed an
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adaptive discriminator to optimize the parameters of DRL models and a routing simulator
to aid in training and evaluating the effectiveness of DRL models. Peng et al. [35] proposed
a dynamic attention model for the VRP using a dynamic encoding–decoding structure with
reinforcement learning. Wang et al. [18] proposed a feedback mechanism integrating an
iterative greedy algorithm for flow shop scheduling problems based on DRL.

Furthermore, DRL has been applied to solve multi-objective COPs. Li et al. [12] devel-
oped the DRL-MOA, a framework using decomposition and Ptr-Net for a multi-objective
TSP. Wu et al. [36] extended the DRL-MOA with the MODRL/DAM, constructing an atten-
tion model for each subproblem and training them with reinforcement learning. Similarly,
Zhang et al. [19] presented the MODRL/D-EL, combining decomposition, attention models,
and evolutionary algorithms for parameter fine-tuning.

3.3. The EMTO Approaches for VRP

In contrast with traditional optimization approaches that focus solely on a single
optimization problem, EMTO aims to address multiple optimization tasks concurrently
within a unified representation space [21,22]. By leveraging the underlying synergies among
different optimization tasks, EMTO has demonstrated its potential in achieving superior
performance for both continuous and combinatorial optimization problems when compared
to its single-task counterparts [21,22]. The effectiveness and promising capabilities of EMTO
in addressing multiple related optimization tasks have garnered significant interest from
researchers, resulting in the development of various EMTO algorithms in the fields of
science and engineering [22]. In the literature, EMTO has been successfully applied to solve
the VRP and its variants.

In [37], a permutation-based multifactorial evolutionary algorithm (P-MFEA) was pro-
posed to address multiple capacitated VRPs simultaneously. In the P-MFEA, a permutation-
based unified representation was introduced as a replacement for the random key unified
representation. Additionally, a split-based decoding operator was utilized to translate the
solutions from the unified space to the problem-specific space.

In [24], an explicit EMTO (EEMTO) approach was presented to solve the capacitated
VRP. EEMTO incorporates a weighted l1-norm regularized learning process to capture
the transfer mapping and uses a solution-based knowledge transfer process across differ-
ent VRPs.

In [23], an EMTO was applied to address a novel variant of the VRP, called the
VRP with heterogeneous capacity, time window, and occasional driver (VRPHTO). The
proposed EMTO algorithm optimizes multiple VRPHTOs simultaneously and employs four
operators: permutation-based common representation, split procedure, routing information
exchange, and chromosome evaluation.

In [28], a hybrid evolutionary multitask algorithm (HEMT) was proposed to solve
multiple MOVRPTWs in a multitasking scenario. The HEMT incorporates an exploration
stage for global search with knowledge transfer, an exploitation stage for local search with
knowledge reuse, and a tradeoff mechanism to balance these search processes.

The aforementioned related works highlight the advantages of using the EMTO frame-
work in solving VRPs. However, it is worth noting that most existing EMTO approaches
primarily focus on addressing VRPs with a single objective or two objectives. The applica-
tion of EMTO in the context of the VRP with many objectives (more than three) is relatively
limited, which motives our interest to further investigate its potential.

4. DRL-Based Modeling and Training

As reviewed above, DRL has shown its advantages in solving VRPs [36,38]. However,
most of the works only focus on the extraction of node features, ignoring the fact that the
distances and traveling times between customers in the real world are asymmetric. To
efficiently solve the real-world MOVRPTW considered in this study, a multiobjective DRL
method [36] is employed. This method uses the decomposition strategy and the attention
model to enhance the optimization process.
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In this section, the decomposition and parameter-transfer strategies for the MOVRPTW
are firstly introduced. Then, the encoder and decoder of the attention model for each
subproblem are presented. Finally, the training process for the models through DRL
is given.

4.1. Decomposition and Parameter-Transfer Strategies

In this study, the MOVRPTW is decomposed into M subproblems using the weighted
sum approach [39]. Specifically, a set of weight vectors W is generated for the MOVRPTW
using Das and Dennis’s method [40]. These weight vectors are then used to define the
objective function of the jth subproblem by the weighted sum approach, as follows:

min gws(π|λi) =
m

∑
j=1

λij f̄ j(π) (14)

where λi = (λi1, . . . , λiM) represents the weight vector of the ith subproblem, with the
constraints that ∑M

j=1 λij = 1.
After the decomposition, each scalar optimization subproblem is modeled by a neural

network, which is then solved using DRL methods. Additionally, to expedite model
training, a neighborhood-based parameter-transfer strategy [12] is utilized, as depicted in
Figure 2. This strategy involves transferring the parameters from the model of a solved
subproblem to the model of its neighboring subproblem. The neighboring subproblem’s
model is then trained using these transferred parameters as the initial starting point. More
details of the parameter-transfer strategy can be found in [12].

Figure 2. The neighborhood-based parameter-transfer strategy.

4.2. Encoder of Model

The encoder comprises three components. The first component uses a fully connected
layer to transform the feature vectors. These vectors consist of the coordinates (xi, yi),
time windows [bi, ei], demands qi, service duration wi, travel time tij, and travel distance
dij between customers, the initial embedding being h0

i and h0
ij. The second component

incorporates a multi-head attention mechanism to aggregate the information features
from both node and edge embeddings. The processed data are then further updated and
transformed in the last component through a combination of a residual network and a fully
connected feedforward layer. This results in the generation of the final embedding hN

i and
hN

ij . The structure of the encoder can be visualized in Figure 3.
As shown in Figure 3, the input data are split into two parts: node embeddings

(i.e., ci = [(xi, yi), qi, (bi, ei), si]), which contain node-specific information, and edge embed-
dings (i.e., eij = (dij, tij)), which include distance and time information between customers.
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In the encoder of the model, the feature vector is transformed into the initial node embedded
in the network by linear transformation as follows:

h0
i = WNci + bN (15)

h0
ij = WEeij + bE (16)

where i, j ∈ N, N is the No. of customers, and WN and bN are trainable network parameters.

Figure 3. The structure of the encoder in the model.

Then, the node embeddings hl
0, . . ., hl

N and edge embeddings hl
0,1, . . ., hl

N−1,N are ag-
gregated using the multi-head attention operator, as follows:

h̃l
i = BN(hl−1

i + MHAl(W l
Nhl−1

i )) (17)

h̃l
ij = BN(MHAl(W l

Ehl−1
ij )) (18)

where BN(·) represents the batch normalized layer and MHA(·) refers to the multi-head
attention layers. Note that the MHA is related to the three vectors ql

i , kl
i , and vl

i . These
vectors can be calculated as follows: ql

i = W l
qhl−1

i , kl
i = W l

k[h
l−1
i ; hl−1

ij ], vl
i = W l

v[h
l−1
i ; hl−1

ij ].

Here, the trainable parameters W l
q, W l

k, and W l
v are used to map the embeddings to the

query, key, and value vectors, respectively.
After that, the embeddings of nodes and edges are combined by the residual network

layer (add and norm) to update the embeddings of each node, as follows:

hl
i = ReLu(hl−1

i + FFl(ĥl
i)) (19)

hl
ij = ReLu(hl−1

ij + FFl(ĥl
ij)) (20)

where FF(·) (feedforward) is a fully connected feedforward layer, which can further im-
prove the expression capability of the network.
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Finally, the final embedding vector of each node is obtained through N attention
layers, as follows:

h
N
o =

1
n

n

∑
i=0

hN
i (21)

h
N
e =

1
n

n

∑
i=0

hN
ij (22)

where h
N
o and h

N
e are the final embedding vectors of the node feature and edge feature,

respectively. The node feature, the edge feature, and the final embedded vector will be
output from the encoder to the decoder.

4.3. Decoder of Model

The primary function of the decoder is to estimate the probability distribution of the
remaining nodes being selected based on the embedding vector of the nodes and edges
that are output from the encoder. This process is repeated iteratively until all customers
are served. More specifically, at each time step t ∈ N, the decoder determines the optimal
decision on πt by considering the partial tour π1:t−1 and the embedding vector of the nodes
and edges. Figure 4 shows the structure of the decoder.

First, a context embedding representing the relationships between contexts is needed.
The initial context (i.e., t = 1) includes the node features (hN′

o ) and the embedding vectors of
the edge features (hN′

e ), both obtained from the encoder. Additionally, the current vehicle’s
remaining capacity (Qt) and the last customer served by the vehicle (hN

πt−1
) are incorporated

into the initial context. The description of the initial context is as follows:

hN′
c =

[h
N
o , h

N
e , Qt, h0], t = 1

[h
N
o , h

N
e , Qt, hπN

t−1
], t > 1

(23)

where [. . . ] denotes the vector connection operator.
Then, a new context vector hN′

c is calculated using the MHA network layer. For each
node, its key vector (qc) and the value vector (vc) are derived from the embedding vectors
of the encoder. The transformation process is as follows:

qc = WQhN′
c ,

ki = WK[hi; hij] + qc, (24)

vi = WV [hi; hij] + qc

where WQ, WK, and WV are the trainable parameters. Subsequently, the compatibility of
each node is computed by masking the nodes that have been visited. The compatibility
values are within the range of [−1, 1] and are determined as follows:

u(c)i =


qT

c ki√
dk

, i ̸∈ πt

−∞, otherwise
(25)

where i denotes the node index and dk is the dimension of qc/ki. Then, based on Equation (13),
the compatibility of each node is recalculated by transforming the context vector and the
embedding vectors of nodes and edges into the corresponding q, k, and v, with the range
of [−C, C], as follows:

u(c)i =

C · tanh( qT
c ki√

dk
), i ̸∈ πt

−∞, otherwise
(26)
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Finally, the probability of selecting node xi as the next node to be visited is calculated
as follows:

pi = pθ(πt = i|π1:t−1, s) =
eu(c)i

∑j eu(c)j
(27)

The decoder repeats the steps mentioned above, where each time, the selected node is
masked. This process continues until all customers are selected.

Figure 4. The structure of the decoder in the model.

4.4. Training Driven by DRL

In this section, we adopt the well-known actor–critic method [41] to train the model
of each subproblem. The training process, employing the actor–critic method, is outlined
in Algorithm 1. To train both the actor and critic networks, the Adam optimizer [42] is
employed in this study.

In the algorithm, the actor network, which is an attention model, is responsible for
learning the strategy gradient and selecting actions based on the probability distributions of
nodes generated by the decoder. On the other hand, the critic network acts as a baseline to
predict an estimation of the objective function for the subproblem and evaluate the results
obtained from the actor network’s strategy. This evaluation assists the actor in making
action selections. Therefore, the training parameters of each subproblem (Wλi ) include an
actor network parameterized by θ and a critic network parameterized by ϕ.

Suppose that the processing sequence π generated by the actor network obeys the
distribution π ∼ pθ(·|X), where pθ(·|X) is the policy given by the actor network for an
instance X. The objective ℓ(θ|X) is the expected gws(π|λ, X):

ℓ(θ|X) = Eπ∼pθ(·|X)g
ws(π|λ, X) (28)

where gws(π|λ, X) represents the min value calculated through the sequence π for X.
Then, the gradients of the parameters θ are calculated as follows:

∇θℓ(θ|X) =
1
B

B

∑
j=1

[(gws(πi|λj, Xj)− bϕ(Xj))∇θ logpθ(πj|Xj)] (29)

Here, B represents the batch size, which is the number of samples for each training
iteration. Xj is a randomly selected instance of the subproblem, and πj represents the
solution for Xj obtained from the actor network. In addition, bϕ(Xj) refers to a baseline
function, which is computed by the critic network. Its purpose is to estimate the expected
objective value, which helps to reduce the variance of the gradients.
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For the critic network, its goal is to learn how to estimate the expected objective value
for a given instance Xj. Therefore, the objective function of the critic network can be defined
as a mean-squared error function between the actual objective function generated by the
actor network for Xj and the predicted objective value bϕ(Xj) from the critic network. This
can be expressed as follows:

Lϕ =
1
B

B

∑
j=1

(bϕ(Xj)− gws
min(πj|λi, Xj))

2 (30)

Algorithm 1 Actor–critic training method [41]
Input: Number of problem instances T, number of iterations E, parameters of actor

network θ and critic network ϕ. Output: Trained parameter θ, ϕ

1: θ, ϕ← initialized parameter as Ref. [12];
2: For iteration = 1 to E
3: For k = 1 to T
4: For j = 1 to B
5: πj ← pθ(Xj);
6: bj ← bϕ(Xj);
7: End
8: dθ = 1

B ∑B
j=1[g

ws(πj|λi, Xj)− bj∇θ logpθ(πj|Xj)];

9: Lϕ = 1
B ∑B

j=1(bj − gws(πj|λi, Xj))
2;

10: θ ← ADAM(θ, dθ);
11: ϕ← ADAM(ϕ,∇ϕLϕ);
12: End
13: End

5. MTMO/DRL-AT

In this section, a multi-task multi-objective evolutionary search algorithm based on DRL
(MTMO/DRL-AT) is presented. Specifically, the general framework of the proposed algorithm
is firstly outlined. Then, three main components of the MTMO/DRL-AT, i.e., the construction
of the assisted task, knowledge transfer across tasks, and local search, are elaborated.

5.1. General Framework of MTMO/DRL-AT

The MTMO/DRL-AT framework is outlined in Algorithm 2. As can be seen, the
MTMO/DRL-AT consists of three main phases: the initialization phase, the transfer re-
production phase, and the local search phase. In the initialization phase (Lines 3–6), the
populations of the main task and the constructed assisted task are initialized using the
trained DRL-based models, as described in Section 3. Specifically, n models are selected
from the trained models for the main task, and thus, the population with n solutions is
directly obtained by these models. Similarly, for the assisted task, its population with n
solutions is produced using the selected trained models of the assisted task. In the transfer
reproduction phase (Line 8), the knowledge transfer process is applied to update the solu-
tions in the external archive A by leveraging the knowledge from both the main task and
the assisted task. In the local search phase (Line 9), the objectivewise local searches [10]
are employed to further refine the solutions in the archive A. Finally, when the stopping
condition is met, the external archive A is returned as the approximate Pareto set for
the MOVRPTW.
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Algorithm 2 MTMO/DRL-AT
Input: Maximum running time of the target task T, population size popsize, training batch

size batch, number of transferred solutions N f , number of subproblems for main task Nm,
number of subproblems for assisted task Na, the trained models for the main task Modelm,
the trained models for the assisted task Modela.
Output: The external archive A.
1: A = ∅; //Define the external archive for the main task
2: n = popsize/batch; // Calculate the number of submodels from M
3: SetIdx1← Randomn(1, Nm); // Randomly select n values from [1, Nm] as the indexes

of the models for the main task;
4: SetIdx2← Randomn(1, Na); // Randomly select n values from [1, Na] as the indexes

of the models for the assisted task;
5: Popm ← Modelm(SetIdx1, popsize); // Initialize Popm with the selected models for the

main task
6: Popa ← Modela(SetIdx2, popsize); // Initialize Popa with the selected models for the

assisted task
7: While t < T Do
8: Trans f er_reproduction(Popm, Popa, A, N f ); // see Algorithm 3
9: Local_search(Popm, A); // see Algorithm 4

10: End while

5.2. Construction of the Assisted Task

When solving an MOVRPTW with many objectives, most multi-objective evolutionary
algorithms perform poorly due to a significant proportion of incomparable and mutually
nondominated solutions [29]. To address this issue, an assisted task is constructed in a
simpler search space for the MOVRPTW. This enables efficient assistance in optimizing the
original problem through knowledge transfer. By leveraging the simpler task, the search
process for the main task becomes more effective in finding high-quality solutions.

In the MOVRPTW, optimizing the objectives related to the total travel distance and
the travel time of the longest route greatly impacts the optimization of other objectives.
Therefore, the construction of the assisted task focuses on these two objectives. By selecting
them as the optimization objectives for the assisted task, the aim is to effectively optimize
these crucial factors, which in turn can positively influence the optimization of other related
objectives in the MOVRPTW problem.

Therefore, the mathematical model of the assisted task is defined below:

min H = (h1, h2) (31)

h1 =
|R|

∑
k=1

Nk

∑
i=0

dck
i ,ck

i+1
(32)

h2 = max{tNk |k=1,2,...,|R|} (33)

where h1 and h2 correspond to the f2 and f3, respectively, of the main task (i.e., Equation (1)).
Additionally, the constraints of the assisted task are identical to those of the main task, as
shown in Equation (7).

Furthermore, due to that the assisted task having a similar structure and characteristics
as the main task, the DRL-based modeling and training methods described in Section 3 are
also adopted for the assisted task.

5.3. Transfer Reproduction Operator

To effectively exploit the useful search experiences obtained from the constructed
assisted task, a transfer reproduction operator is employed to transfer knowledge between
the main and assisted tasks. The procedure of the transfer reproduction operator is shown
in Algorithm 3.
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Algorithm 3 Transfer reproduction
Input: Population of the main task Popm, population of the assisted task Popa, number of

transferred solutions N f , the external archive A.
Output: The updated A.
1: C ← ∅;
2: O← ∅;
3: Use the fast nondominated sorting method [43] for the solutions in Popm and Popa,

respectively;
4: C ← the best N f solutions in Popa;
5: C ← C

⋃
the worst popsize− N f solutions in Popm;

6: Re-evaluate all solutions in C with the main task;
7: For xi ∈ C, i = 1, . . . , popsize
8: oi ← Genetic_operator(xi);
9: Evaluate oi with the main task;

10: O← O
⋃

oi;
11: End
12: Update Popm with C

⋃
O;

13: Update A with C
⋃

O.

As shown in Algorithm 3, in Line 3, all solutions in Popm and Popa are ranked,
respectively, using the fast nondominated sorting approach [43]. Subsequently, as shown
in Lines 4 and 5, the best N f solutions in Popa and the worst popsize− N f solutions in
Popm are selected to form the set C. Next, in Line 6, each solution in C is re-evaluated
under the main task environment. Note that the duplicate solutions are removed from the
set. Afterwards, Line 8 employs the genetic operators on the solutions in C to generate
offspring. In this study, the mutation strategy and the crossover operator of differential
evolution (DE) [44] are adopted as the Genetic_operator(·). Specifically, for each solution
xi ∈ C, a mutant vector (vi) is first generated through the “DE/rand/1” mutation strategy,
as follows:

vi = xr1 + F× (xr2 − xr3) (34)

where F is the mutation factor and r1, r2, and r3 ∈ {1, 2, . . . , |C|} \ {i} are randomly
selected indices. Following that, a trial vector (ui) is generated by using the binomial
crossover operator for the pair of xi and vi, as follows:

ui,j =

{
vi,j, if rand(0, 1) ≤ Cr or j = jrand
xi,j, otherwise.

(35)

Here, Cr ∈ [0, 1] represents the crossover rate, rand(0, 1) ∈ (0, 1) denotes a randomly
generated variable, and jrand ∈ [1, Dmax] indicates a randomly selected integer. Additionally,
a random initialization will be performed if ui exceeds the range of [0, 1]. It is worth noting
that the solution to the problem is a customer sequence vector, whereas the solution
obtained by the genetic operator is a continuous vector. To convert a continuous vector into
a customer sequence, a ranked order value (ROV) mapping method [45] is employed.

Once each solution in O has been evaluated with the main task, Popm is updated with
the solutions of C

⋃
O using the nondominated sorting and crowding distance, as described

in Line 12, following the approach in [43]. As for updating A, the ϵ-dominance relation
suggested in [10] is adopted.

5.4. Local Search Operator

To further refine the solutions in A and achieve better performance for the main task,
we used the objectivewise local searches [10] in the MTMO/DRL-AT, which is presented in
Algorithm 4.

First, in Line 2, an initial solution x is randomly selected from A for the subsequent
local searches. After that, in Line 4, the objectivewise local searches are conducted on
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x. Following the approach in [10], the local search is independently performed for each
objective, denoted as LS fi

(x) (i = 1, . . . , 5), to enhance the quality of x with respect to the
corresponding objective ( fi). Additionally, three neighborhood operators are integrated into
the local searches for f2(x)− f5(x). Specifically, in each search step, a random neighborhood
operator is conducted on x to produce a new solution x′. If fi(x′) is superior to fi(x), x
is substituted by x′. Concurrently, x′ is immediately used to update A through the ϵ-
dominance relation in Line 5. For more details of the objectivewise local searches, please
refer to [10]. Finally, in Line 8, the solutions in C are used to update Popm by directly
replacing its inferior solutions.

Algorithm 4 Local search
Input: Population of the main task Popm, the external archive A.
Output: The updated A, the updated Popm.
1: C ← ∅;
2: x ← Rndselect(A);
3: For i = 1 to 5
4: Perform LS fi

(x);
5: Update A with the obtained solutions;
6: Add the best solution in LS fi

to C;
7: End
8: Replace the worst five solutions in Popm with the solutions in C.

6. Experiment

To assess the effectiveness of the MTMO/DRL-AT, a series of experiments was per-
formed on a set of 45 real-world MOVRPTW instances. This section begins with a brief
description of the MOVRPTW instances. Subsequently, the experimental setup is outlined,
detailing the procedures and methodologies employed. Following that, a comprehensive
comparison between the MTMO/DRL-AT and the representative algorithms is conducted.
Finally, an in-depth analysis is presented to examine the influence of the main components
of the MTMO/DRL-AT on its overall performance.

6.1. MOVRPTW Instances

To evaluate the effectiveness of the proposed algorithm, a set of 45 real-world instances
of the MOVRPTW was adopted in this study. These instances, as described in [9], were
derived from data obtained from an actual distribution company. Consequently, they reflect
the complex and challenging nature of real-world MOVRPTW scenarios.

Table 3 provides an overview of the properties of these 45 MOVRPTW instances. As the
table shows, these instances were generated by combining various features, including the
number of customers (CN), the profile of time windows (PT), and the capacity of each
vehicle (Q). The number of customers can be set to 50, 150, or 250, while the time window
profile can range from 1 to 5. The capacity of each vehicle is determined using a formula
that incorporates the lower and upper bounds (D and D) and a modulation factor δ. Each
MOVRPTW instance is labeled as “a − b − c”, where a represents NC, b represents the
index of the δ type, and c represents the index of the TW profile. For further details, please
refer to [9,10].

Table 3. The real-world MOVRPTW instances.

Instance CN Q PT Instance CN Q PT Instance CN Q PT

50-0-0 50 690 1 150-0-0 150 1854 1 250-0-0 250 3078 1
50-0-1 50 690 2 150-0-1 150 1854 2 250-0-1 250 3078 2
50-0-2 50 690 3 150-0-2 150 1854 3 250-0-2 250 3078 3
50-0-3 50 690 4 150-0-3 150 1854 4 250-0-3 250 3078 4
50-0-4 50 690 5 150-0-4 150 1854 5 250-0-4 250 3078 5



Symmetry 2024, 16, 1030 16 of 25

Table 3. Cont.

Instance CN Q PT Instance CN Q PT Instance CN Q PT

50-1-0 50 250 1 150-1-0 150 638 1 250-1-0 250 1046 1
50-1-1 50 250 2 150-1-1 150 638 2 250-1-1 250 1046 2
50-1-2 50 250 3 150-1-2 150 638 3 250-1-2 250 1046 3
50-1-3 50 250 4 150-1-3 150 638 4 250-1-3 250 1046 4
50-1-4 50 250 5 150-1-4 150 638 5 250-1-4 250 1046 5

50-2-0 50 85 1 150-2-0 150 182 1 250-2-0 250 284 1
50-2-1 50 85 2 150-2-1 150 182 2 250-2-1 250 284 2
50-2-2 50 85 3 150-2-2 150 182 3 250-2-2 250 284 3
50-2-3 50 85 4 150-2-3 150 182 4 250-2-3 250 284 4
50-2-4 50 85 5 150-2-4 150 182 5 250-2-4 250 284 5

6.2. Experimental Setup

To train the models of the MTMO/DRL-AT, training instances of different sizes for
the MOVRPTW were generated using a data simulator. The process involves randomly
generating the coordinates of the depot and customer within the range [0, 1]× [0, 1]. The
distance and time matrices for travel between customers were randomly generated within
the range of [0, 1]. For each customer, the demand was randomly generated within the
range of [1, 9], the time window was randomly set as bi ∈ [0, 5] and ei ∈ [0, 5], and the
service time was randomly selected from the set {1, 5, 2}. In addition, the maximum
capacity of vehicles (Q) was set as follows: Q = 20 if CN = 10, Q = 30 if CN = 20,
and Q = 50 if CN = 40. During the model-training process, problem instances with
40 nodes were used, and the dataset was generated based on the aforementioned process,
with asymmetric distance and time matrices.

The parameter settings for the model and training were mostly similar to those de-
scribed in [12,36], which are shown in Table 4. In addition, the parameter settings for the
evolutionary search are also summarized in Table 4.

It is important to acknowledge that these parameter settings may not be optimal for the
proposed algorithm, as finding the optimal settings can be challenging and often problem-
specific. However, the effectiveness of these parameter settings has been demonstrated in the
following experiments. In future work, the impact of these parameters on the performance
of the MTMO/DRL-AT will be further investigated.

In the experiments, all the algorithms were implemented using Python, and the
maximum running times of different instances were set according to the suggestions
in [10]. Additionally, all the test experiments were conducted in the same configuration
environment, as outlined in Table 5.

To evaluate the performance of the compared algorithms, two measures were em-
ployed: the inverted generational distance (IGD) [46] and hypervolume (HV) [47]. The IGD
metric assesses both the convergence and diversity of the obtained nondominated solutions,
while the HV metric evaluates the volume of the union of hypercubes determined by each
nondominated solution and the reference point. A smaller value of the IGD or a larger
value of the HV suggests better performance achieved by the corresponding algorithm in
the approximation of the true Pareto front. For more detailed information on the IGD and
HV metrics, please refer to [46,47].

To further demonstrate the significant differences between the compared algorithms,
the KEEL software [48] was employed to conduct single-problem and multiple-problem
analysis using the Wilcoxon test [49,50]. The results of single-problem analysis are sum-
marized as “w/t/l”, indicating that the considered algorithm is significantly better and
performs equally to or performs worse than the competitor on the w, t, and l instances,
respectively, at the 0.05 significance level. In the multiple-problem analysis, R+ and R−
represent the sum of ranks where the considered algorithm is significantly better than
and worse than the competitor for all the instances, respectively. Additionally, the aver-
age ranking values of the considered algorithms for all instances were analyzed using
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Friedman’s test [49,50]. For brevity, this paper only presents the statistical results of the
comparisons. For those interested in the detailed numerical values, please contact the
corresponding author.

Table 4. Parameter settings.

Parameter Value

For the model and training
Input dimension 7
Node-embedding dimension 128
Batch size during training 500
Size of problem instances 5× 106

Number of epochs for training the 5model for the first subproblem
Number of epochs for training the 1model for each remaining subproblem

Critic network architecture

four 1D convolutional layers
with the following channels
(7, 128), (128, 20), (20, 20),
and (20, 1)
kernelsize = 1, stride = 1

Number of attention layers 1
Number of heads 8
Dimension of the query vector and 16value vector
Learning rate for the Adam optimizer 0.0001
Number of decomposed subproblems 100for the main task
Number of decomposed subproblems 70for the assisted task

For the evolutionary search
Population size (popsize) 50 for each task
Number of transferred solutions (TN) 15
Crossover rate (Cr) 0.9
Mutation factor (F) 0.5
Number of independent runs 30for each instance

Table 5. Experimental configuration.

Operating Environment Version

Server
System Ubuntu 7.5.0

CPU Intel Xeon Processor
GPU GeForce RTX 2080 (8 G)

Memory 12 GB
CUDA 11.0

Local host
System Windows 10

CPU Intel Xeon W-2223 (3.60 GHz)
Memory 16 GB

6.3. Performance Comparison
6.3.1. Comparison with LSMOVRPTW

In this section, we aim to demonstrate the effectiveness of the MTMO/DRL-AT for
solving the MOVRPTW by comparing it with the LSMOVRPTW [10]. To provide a compre-
hensive overview of the performance comparisons, Table 6 presents the statistics summa-
rizing these comparisons on all the instances.
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As depicted in Table 6, the MTMO/DRL-AT demonstrates a significant improve-
ment over the LSMOVRPTW in terms of both the IGD and HV. Specifically, based on the
single-problem analysis conducted using the Wilcoxon test, the MTMO/DRL-AT signif-
icantly outperforms the LSMOVRPTW on 41 instances in terms of the IGD and on all
45 instances in terms of the HV. In the multiple-problem analysis carried out with the
Wilcoxon test, the MTMO/DRL-AT achieves a higher R+ than R− for both the IGD and
HV. Additionally, based on the p-value, significant differences between the MTMO/DRL-
AT and LSMOVRPTW are observed at both α = 0.05 and α = 0.1, indicating that the
MTMO/DRL-AT outperforms the LSMOVRPTW overall.

Moreover, to visually illustrate the distinct characteristics of the competing algorithms,
the approximate Pareto fronts of several representative instances obtained by the MTMO/
DRL-AT and LSMOVRPTW are projected at the f1 − f3 and f2 − f3 planes, as shown in
Figure 5. As the figure shows, the superiority of the MTMO/DRL-AT in achieving better
Pareto fronts than the LSMOVRPTW for the selected instances is evident. The solutions
generated by the MTMO/DRL-AT more accurately approximate the Pareto front and
demonstrate a wider distribution along it. This further validates the superior convergence
and diversity properties of the MTMO/DRL-AT in comparison to the LSMOVRPTW.

Table 6. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and LSMOVRPTW.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 41/4/0 1035.0 0.0 0.0 Yes Yes
vs. LSMOVRPTW HV 45/0/0 1035.0 0.0 0.0 Yes Yes

Based on the aforementioned results, it is evident that the MTMO/DRL-AT outper-
forms the LSMOVRPTW on the majority of instances. This performance difference can
be attributed to several factors that contribute to their varying performances: (1) The
MTMO/DRL-AT incorporates attention models specifically designed for the subprob-
lems of the MOVRPTW using DRL. These attention models are capable of adapting to
MOVRPTW instances of varying scales. By leveraging the advantages of DRL, the attention
models can learn to focus on critical aspects of the MOVRPTW and make more informed de-
cisions during the optimization process. Furthermore, the output of the attention models in
the MTMO/DRL-AT serves as high-quality initial solutions for the subsequent evolutionary
process. These initial solutions provide a strong starting point for the algorithm, which can
lead to faster convergence and better overall performance. (2) Unlike the MSMOVRPTW,
which focuses solely on solving a single MOVRPTW formulation, the MTMO/DRL-AT
introduces multitasking optimization. This means that the MTMO/DRL-AT can simul-
taneously solve multiple related optimization tasks, including the assisted task of the
MOVRPTW. By incorporating multitasking optimization, valuable knowledge and insights
gained from solving one task can be shared and utilized to improve the performance on
other related tasks. This knowledge transfer and sharing contribute to the enhanced perfor-
mance of the MTMO/DRL-AT compared to the LSMOVRPTW. (3) By combining attention
models through DRL and multitasking optimization, the MTMO/DRL-AT offers a more
robust and adaptive approach to solving the MOVRPTW. The attention models provide a
finer grained focus on problem-specific details, while the multitasking optimization allows
for the utilization of shared knowledge and insights across related tasks.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Distributions of the approximate Pareto fronts obtained by the MTMO/DRL-AT and
LSMOVRPTW on the representative real-world instances: (a) 50-1-2 at f1-f3 plane; (b) 150-1-1 at
f1-f3 plane; (c) 250-2-2 at f1-f3 plane; (d) 50-1-2 at f2-f3 plane; (e) 150-1-1 at f2-f3 plane; (f) 250-2-2 at
f2-f3 plane.

6.3.2. Comparison with MMA-ALSC and HEMT

Two advanced approaches have recently been proposed to address the challenges
of the MOVRPTW: the multiobjective memetic algorithm based on adaptive local search
chains (MMA-ALSC) [27] and the hybrid evolutionary multitask algorithm (HEMT) [28].
The MMA-ALSC combines a multi-directional local search strategy with an enhanced local
search chain technique. This allows for the search to be conducted in multiple directions in
a chain-based way [27]. On the other hand, the HEMT takes a different approach by simul-
taneously considering multiple distinct MOVRPTWs within an evolutionary multitasking
framework [28]. For this experiment, only the HEMT-hm5t variant is considered due to its
promising performance. The comparisons between the MTMO/DRL-AT and MMA-ALSC
(or HEMT) were conducted, and the results of the statistical tests are shown in Table 7.

Table 7. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and two recently proposed algorithms.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 35/9/1 1014.0 21.0 0.0 Yes Yes
vs. MMA-ALSC HV 45/0/0 1035.0 0.0 0.0 Yes Yes

MTMO/DRL-AT IGD 40/5/0 990.0 0.0 0.0 Yes Yes
vs. HEMT HV 45/0/0 1035.0 0.0 0.0 Yes Yes

According to the results presented in Table 7, the MTMO/DRL-AT demonstrates
superior performance compared to both the MMA-ALSC and HEMT across all instances.
These findings provide a deeper understanding of the comparative performance of the
algorithms: (1) In terms of the IGD, the MTMO/DRL-AT outperforms the MMA-ALSC on
35 instances and performs worse on only 1 instance. This indicates that the MTMO/DRL-AT
consistently achieves better convergence and diversity in the obtained Pareto front solutions
compared to the MMA-ALSC. The superior performance on the majority of instances
suggests the effectiveness of the MTMO/DRL-AT in capturing a more diverse and high-
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quality set of solutions. (2) In terms of the HV, the MTMO/DRL-AT significantly surpasses
the MMA-ALSC on all 45 instances. The consistent superiority of the MTMO/DRL-AT
over the MMA-ALSC in the HV demonstrates that the MTMO/DRL-AT can generate
solutions that are both close to the true Pareto front and well-distributed across the problem
space. (3) The results of the Wilcoxon test in the multiple-problem analysis indicate that
the MTMO/DRL-AT outperforms the MMA-ALSC significantly in terms of both the IGD
and HV. This statistical analysis strengthens the claim of the superior performance of the
MTMO/DRL-AT compared to the MMA-ALSC. The significance of the difference further
reinforces the effectiveness of the MTMO/DRL-AT in solving the MOVRPTW. (4) When
compared to the HEMT, the MTMO/DRL-AT consistently exhibits strong performance on
the majority of instances. The consistent strong performance suggests that the MTMO/DRL-
AT outperforms the HEMT in terms of both the IGD and HV. This indicates that the
MTMO/DRL-AT can generate a more diverse set of high-quality solutions compared to
the HEMT.

Overall, the observations from these comparisons provide strong evidence that the
MTMO/DRL-AT is a highly effective approach for solving the MOVRPTW. The superior
performance over the MMA-ALSC and HEMT, as indicated by both the quantitative metrics
and statistical analysis, highlights the advantage of the MTMO/DRL-AT in achieving better
convergence, diversity, and solution quality.

6.3.3. Overall Comparisons

To assess the overall performance of the proposed algorithm, a comparison was
conducted between the MTMO/DRl-AT and the above competing algorithms. The results
of Friedman’s test are summarized in Table 8.

Based on the results in Table 8, the MTMO/DRl-AT emerges as the top algorithm
for both the IGD and HV, outperforming all other algorithms. The HEMT achieves the
second-best ranking for the IGD, followed by the MMA-ALSC. In terms of the HV, the
LSMOVRPTW achieves the second-best ranking, followed by the MMA-ALSC.

Moreover, when considering the characteristics of various MOVRPTW instances,
several observations can be derived from the detailed numerical values presented in
the Supplementary File. Firstly, it is evident that the MTMO/DRL-AT outperforms its
competitors in terms of both the HV and IGD values for the instances with different
customer sizes. This showcases the algorithm’s strengths in terms of convergence and
diversity. Secondly, the performance improvement achieved by the proposed algorithm
is more significant in large-scale instances compared to small-scale ones. This can be
attributed to the favorable initial solution provided by DRL.

In general, these results emphasize the competitive and exceptional performance of the
proposed algorithm when compared to other state-of-the-art algorithms for the MOVRPTW.

Table 8. Average ranking values of the compared algorithms on all the instances.

IGD HV

Algorithm Average Ranking Final Ranking Average Ranking Final Ranking

MTMO/DRL-AT 1.00 1 1.09 1
LSMOVRPTW 3.49 4 2.63 2
MMA-ALSC 2.81 3 3.00 3

HEMT 2.70 2 3.28 4

6.4. Impact of Main Components in MTMO/DRL-AT

In this section, we conducted additional experiments to address the following issues:

• Are the solutions generated by the trained models as initial solutions better for solving
the MOVRPTW compared to randomly generated initial solutions?

• Can the knowledge transfer between the main and assisted tasks effectively enhance
the performance of the MTMO/DRL-AT for the MOVRPTW?
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• Can the local search phase further improve the performance of the MTMO/DRL-AT?

Each of the above issues will be explored and discussed in the subsequent subsections.

6.4.1. Effect Analysis of Initializing Population Using the Trained Models

To verify the effectiveness of initializing the population with the trained models, a
variant of the MTMO/DRL-AT with a random initial population, denoted as the MTMO-AT,
was considered for comparison. In the MTMO-AT, the population for both the main task
and assisted task is initialized in a random manner, replacing the generated solutions by
the trained models. The statistical comparison results between the MTMO/DRL-AT and
MTMO-AT are given in Table 9.

From Table 9, we can find that the MTMO/DRL-AT outperforms the MTMO-AT
significantly overall. Specifically, the MTMO/DRL-AT shows significant improvements
over the MTMO-AT on 40 and 31 instances in terms of the IGD and HV, respectively,
based on single-problem analysis using the Wilcoxon test. Moreover, the results of the
multiple-problem analysis reveal that the MTMO/DRL-AT achieves a higher R+ than R−
with the p-values below 0.05 in both cases, indicating significant differences between the
MTMO/DRL-AT and MTMO-AT for all the instances.

In general, the superior performance of the MTMO/DRL-AT compared to the MTMO-
AT highlights the promising potential of DRL-based approaches in addressing multi-
objective optimization problems. The results clearly indicate that leveraging deep rein-
forcement learning techniques can lead to significant improvements in solving complex
multi-objective optimization tasks.

Table 9. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and MTMO-AT.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 40/5/0 1035.0 0.0 0.0 Yes Yes
vs. MTMO-AT HV 31/5/9 923.0 112.0 5.0 × 10−5 Yes Yes

6.4.2. Effect Analysis of Knowledge-Transfer Strategy

To evaluate the influence of the knowledge-transfer strategy on the performance of the
MTMO/DRL-AT, a comparison was made between the MTMO/DRL-AT and its variant,
the MTMO/DRL-AT_ST, which does not include the knowledge-transfer strategy. Unlike
the proposed algorithm, the MTMO/DRL-AT_ST does not generate an assisted task for
the main task, and there is no knowledge sharing between the main and assisted tasks
during the transfer reproduction phase. Table 10 provides a statistical summary of the
performance comparisons between the MTMO/DRL-AT and MTMO/DRL-AT_ST.

According to the results shown in Table 10, the MTMO/DRL-AT consistently exhibits
better performance than the MTMO/DRL-AT_ST in terms of both the IGD and HV. To be
specific, in terms of the IGD, the MTMO/DRL-AT achieves significant improvement over
the MTMO/DRL-AT_ST on 17 instances, while it performs worse on 13 instances. In terms
of the HV, the MTMO/DRL-AT outperforms the MTMO/DRL-AT_ST on 24 instances,
but is outperformed by it on 7 instances. Additionally, the multiple-problem analysis
reveals that the MTMO/DRL-AT obtains a higher R+ value than the R− value in both the
IGD and HV measures. Notably, the p-values indicate that the MTMO/DRL-AT performs
significantly better than the MTMO/DRL-AT_ST in terms of the HV, at both α levels of 0.05
and 0.1.

Overall, these findings clearly demonstrate the efficacy of the knowledge-transfer strat-
egy in improving the performance of the MTMO/DRL-AT. Additionally, the advantages
of constructing an assisted task with a simpler search space are also validated. In general,
these results highlight the benefits and effectiveness of integrating a knowledge-transfer
strategy and utilizing a simplified search space in the MTMO/DRL-AT.
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Table 10. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and MTMO/DRL-AT_ST.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 17/15/13 705.0 330.0 3.38 × 10−2 No Yes
vs. MTMO/DRL-AT_ST HV 24/14/7 745.0 155.0 4.20 × 10−5 Yes Yes

6.4.3. Effect Analysis of Local Search Operators

To further evaluate the effectiveness of local searches for the proposed algorithm, a
comparison was conducted between the MTMO/DRL-AT and its variant without local
search phase, referred to as the MTMO/DRL-ATw/oLS. Unlike the proposed algorithm, the
MTMO/DRL-ATw/oLS does not utilize the local search for additional optimization after
the transfer reproduction phase. The comparison results between the MTMO/DRL-AT and
its variant are presented in Table 11.

Table 11 clearly indicates that the MTMO/DRL-AT exhibits a significant advan-
tage over the MTMO/DRL-ATw/oLS in overall performance. Specifically, based on the
single-problem statistical analysis, the MTMO/DRL-AT significantly outperforms the
MTMO/DRL-ATw/oLS on 27 instances for the IGD and 45 instances for the HV. The
multiple-problem statistical analysis also reveals that the MTMO/DRL-AT obtains a higher
R+ value than the R− value compared to its variant. Furthermore, significant differ-
ences between these two variants are observed at both α = 0.05 and α = 0.1. Therefore,
these results convincingly demonstrate the positive impact of the local searches in further
enhancing the performance of the MTMO/DRL-AT when tackling the MOVRPTW.

Table 11. Results of the single- and multiple-problem analysis by the Wilcoxon test between the
MTMO/DRL-AT and MTMO/DRL-ATw/oLS.

Algorithm Metric w/t/l R+ R− p-Value α = 0.05 α = 0.1

MTMO/DRL-AT IGD 27/7/11 903.0 232.0 1.25 × 10−3 Yes Yes
vs. MTMO/DRL-ATw/oLS HV 45/0/0 1035.0 0.0 0.0 Yes Yes

7. Conclusions and Future Work

In this study, we have proposed the MTMO/DRL-AT, a multi-task multi-objective
evolutionary search algorithm based on deep reinforcement learning (DRL), for solving the
MOVRPTW. Unlike traditional evolutionary algorithms, the MTMO/DRL-AT constructs
an assisted task for the MOVRPTW with a simpler search space and simultaneously opti-
mizes both the main and assisted tasks in a multitasking scenario. Additionally, attention
models specifically designed for the subproblems of the MOVRPTW are incorporated,
allowing for adaptation to instances of varying scales and providing high-quality initial
solutions. Experimental studies on 45 real-world MOVRPTW instances have demonstrated
the outstanding and competitive performance of the proposed algorithm.

In future work, our main focus will be on enhancing the DRL-based modeling and
training process by incorporating more informative structural information extracted from
problem instances. We also aim to explore effective strategies for leveraging the knowl-
edge acquired from the assisted tasks to further improve the performance of the proposed
algorithm. Additionally, we intend to conduct a thorough investigation into the impact
of key parameters on the performance of the MTMO/DRL-AT. Lastly, we plan to ex-
tend the application of the MTMO/DRL-AT to solve other multi-objective combinatorial
optimization problems.
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