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Abstract: This study introduces the notion of complex t-neutrosophic graphs (CTNGs) as a powerful
tool for understanding and displaying complex interactions that are sometimes difficult to under-
stand. It demonstrates that CTNGs may accurately reflect complicated interactions involving several
components or dimensions within a particular scenario. It also instructs the basic set operations of
CTNGs and analyzes notions like homomorphism and isomorphism within this framework. Further-
more, the research describes a practical application of CTNGs. It illustrates their value in addressing
biodiversity conservation by taking into account a variety of relevant factors. The paper uses this
application to highlight the flexibility and effectiveness of CTNGs as a tool for decision-makers to
visualize and prioritize activities targeted at improving biodiversity conservation.

Keywords: graph theory; t-neutrosophic graph; decision-making and sustainability

MSC: 05C72; 03B52; 68R10; 05C60; 05C90

1. Introduction

Decision-making is an essential part of both personal lives and corporate administra-
tion. Its relevance stems from its potential to influence the success or failure of an organi-
zation. Managers make decisions at all stages of the management cycle, from planning to
control, and the quality of those decisions has a substantial impact on their performance.
Managers who lack excellent decision-making abilities are unable to efficiently perform
other managerial functions such as planning, organizing, supervising, regulating, and
staffing. The decision-making process should be cumulative and participatory, promoting
organizational progress. In contexts characterized by ambiguity and vagueness, uncertainty
management solutions become critical. Fuzzy decision-making settings implement such
tactics by utilizing fuzzy set theory, which is effective at expressing circumstances when
data lack clarity or accuracy. This theory gives membership degrees to items in a set, taking
into account the uncertainty inherent in decision-making.

1.1. Fuzzy Set

Zadeh [1] fuzzy set theory provides a mathematical framework for addressing ambi-
guity, vagueness, and imprecision in computational perception. Since its origin, fuzzy set
theory has been successfully applied in a variety of technological and scientific disciplines,
including consumer electronics, control systems, image processing, robotics, artificial in-
telligence, and industrial automation. Furthermore, it has proved useful in operations
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research areas such as project management, decision theory, supply chain management,
queuing theory, and quality control. Authors such as Kandel [2], Klir, and Yuan [3], as well
as Mendel [4] and Zimmermann [5], write introductory works that explain the concepts
and principles of fuzzy set theory to facilitate further comprehension and application.

1.2. Intuitionistic Fuzzy Set

The intuitionistic fuzzy set (IFS) is an extension of the fuzzy set that includes both mem-
bership and non-membership functions, expanding Zadeh’s original notion. Atanassov [6]
proposed IFS as an extension of Zadeh’s fuzzy set, which in turn extends on the standard
concept of a set. These sets provide a flexible framework for dealing with the uncertainty
and ambiguity that are inherent in decision-making processes. De et al. [7] presented oper-
ations on IFS and investigated their varied properties, shedding light on key components
of these procedures. IFS is important in fuzzy mathematics because it has a wide range of
real-world applications, such as pattern identification, machine learning, decision-making,
and market forecasting. Ejegwa et al. [8] offered a thorough analysis of numerous IFS
models in actual circumstances. Smarandache [9] established Neutrosophy in 1998, which
investigates the genesis, nature, and scope of neutralities, as well as their interconnections
across many ideational spectrums. A neutrosophic set is defined by three membership
functions: truth, indeterminacy, and falsity. This framework is an effective mathematical
tool for extending the ideas of classical sets, fuzzy sets [1], IFSs [5], interval-valued fuzzy
sets [10], paraconsistent sets, dialetheist sets, paradoxist sets, and tautological sets [9].
Neutrosophic sets are effective at managing the uncertain and inconsistent information that
is omnipresent in daily life. In recent years, scholars throughout the world have conducted
substantial studies on neutrosophic sets. Wang et al. [11] researched single-valued neutro-
sophic sets, making them more useful in scientific and technical sectors where reflecting
uncertainty, incompleteness, imprecision, and inconsistency is critical. Hanafy et al. [12,13]
investigated the correlation coefficient of neutrosophic sets, whereas Ye [14] looked into
the correlation coefficient of single-valued neutrosophic sets. Broumi and Smaradache [15]
defined the correlation coefficient for interval neutrosophic sets, whereas Salama et al. [16]
investigated neutrosophic sets and topological spaces.

1.3. Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graph Theory

Graphs are a useful method to illustrate relationships between items, with edges
indicating relationships and vertices representing objects. Graph theory is a strong tool for
understanding and simplifying complicated systems. In mathematical chemistry, molecular
descriptors are important for investigating the structure of molecules using mathematical
approaches. Chemical graph theory investigates the intersection of chemistry, graph theory,
and mathematics, using molecular graphs to represent atoms and bonds in compounds,
allowing for the depiction of connections. Creating a Fuzzy Graph Model is necessary
when expressing item connections when there is uncertainty. Fuzzy graphs are excel-
lent mathematical tools for dealing with unknown elements. Rosenfeld [17] pioneered
research in fuzzy graph theory, which was followed by Mordeson and Chang-Shyh’s [18]
discussion of fuzzy graph operations and Bhattacharya’s [19] proof of graph theoretic
findings. Bhutani [20] investigated the automorphisms of fuzzy graphs. Fuzzy graph
theory has several applications in science and engineering, including broadcast commu-
nications, production, social networks, artificial intelligence, data processing, and neural
systems. Intuitionistic fuzzy graphs (IFGs) provide a finer model of human cognition and
decision-making processes, allowing for the exact determination of acceptance or rejection
within a set. Shannon and Atanassov [21] introduced IFGs and intuitionistic fuzzy relations,
which have been studied for their properties. Karunambigai and Atanassov [22] focused
on IFG operations, whereas Gani and Begum [23] investigated IFG size, order, and degree.
Sundas and Akram [24] explained how intuitionistic fuzzy soft graphs may be used to solve
decision-making difficulties. Yaqoob et al. [25] contributed to the advancement of compli-
cated intuitionistic fuzzy graph theory. Abida and Faryal [26] classified essential operations
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for complex IFGs into direct, semi-strong, strong, and modular products. Quek et al. [27] de-
velop pentapartitioned neutrosophic graphs and show how they may be used to determine
the safest pathways and towns in response to COVID-19. They investigate mathematical
models that take neutrosophic components into account, resulting in a complete framework
for assessing complex pandemic responses. AL Al-Omeri and Kaviyarasu [28] present a
method for detecting online streaming services based on the Max product of complement in
neutrosophic graphs. Their method uses neutrosophic graphs to model and evaluate inter-
net streaming networks, assisting in the discovery and optimization of streaming services.
Broumi et al. [29] introduce the notion of single-valued neutrosophic graphs, which expands
graph theory to include neutrosophic components. Their work strengthens the theoretical
underpinning of neutrosophic graph theory by providing insights into the representation
and analysis of ambiguous and indeterminate data and later provides complex fermatean
neutrosophic graphs and illustrates their use in decision-making processes. By incorporat-
ing fermatean neutrosophic aspects into graph theory, they present a unique paradigm for
dealing with choice issues in uncertain contexts [30]. Akram and Shahzadi [31] investigate
basic mathematical characteristics and procedures related to neutrosophic graph theory.
Their work advances the creation of mathematical methods for assessing uncertain and
indeterminate data represented by neutrosophic graphs. Yaqoob and Akram [32] define
complex neutrosophic graphs, which expand the idea of neutrosophic graphs to include
complex-valued neutrosophic constituents. Their work broadens the scope of neutrosophic
graph theory by introducing a flexible framework for modeling and evaluating complicated
systems with uncertain knowledge. Şahin’s [33] approach to neutrosophic graph theory
with applications provides insights into the theoretical underpinnings and practical appli-
cations of neutrosophic graph models. Their work advances neutrosophic graph theory,
making it easier to analyze complex systems in uncertain environments. Kaviyarasu’s [34]
research focuses on the mathematical and structural features of neutrosophic graphs with
regular edge patterns. Their study advances our understanding of neutrosophic graph
topologies, providing insights into the representation and processing of ambiguous data.
Mohammed Alqahtani et al. [35] investigate the use of complicated neutrosophic graphs in
hospital infrastructure design. Their research shows how complicated neutrosophic graph
models may be used to enhance hospital infrastructure layouts, hence increasing efficiency
and resource allocation in healthcare institutions. Asima Razzaque et al. [36] explain a
comprehensive analysis to reduce poverty by using t-intuitionistic fuzzy graphs. In [37–41]
discussed some diction making by using FG, IFG, NFG and CNFGs. When compared to
traditional complex neutrosophic fuzzy sets, the use of complex t-neutrosophic fuzzy sets
(CTNFSs) offers significant benefits in negotiating ambiguity and uncertainty. This strategic
approach provides a flexible technique for dealing with the uncertainties and ambiguities
that are inherent in decision-making processes. Furthermore, complex t-neutrosophic fuzzy
models are gaining popularity as a way to bridge the gap between traditional numerical
models used in engineering and research and the symbolic models found in expert systems.

The theoretical framework of complex neutrosophic graphs (CNGs) is a useful tool
for illuminating and clarifying complicated and ambiguous difficulties faced in actual
situations. This efficacy stems from its capacity to successfully communicate the intrinsic
features of unpredictability, complexity, imprecision, and uncertainty connected with the
things contained inside these sets. However, to address practical problems about truth
membership, indeterminacy membership, and falsity membership functions, it is necessary
to reformulate these techniques using precise numerical values. To address this issue,
the idea of CTNGs was proposed, which employs linear t-norm and t-conorm operators.
The implementation of CTNGs originates from the need for a systematic and adaptive
technique to successfully manage ambiguity and enable decision-making based on pre-
defined criteria. In this case, the parameter ‘t’ simplifies the procedure by defining specific
criteria for determining the degree of truth membership, indeterminacy membership and
falsity membership. In many real circumstances, decision-making must account for varied
levels of confidence. Introducing the parameter ‘t’ in CTNGs seeks to overcome standard
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NFG limits by providing precise control over stringency, improving customization, allowing
for independent decision thresholds, increasing flexibility, and decreasing ambiguity. These
advantages establish CTNGs as an effective strategy for representing uncertainty and
promoting well-informed decision-making in situations demanding a personalized and
controlled approach to uncertainty management.

The benefit of CTNGs extends to comprehending and negotiating complicated choice
settings, where standard NFG fails. These graphs offer decision-makers significant tools for
studying and evaluating various options by completely illustrating the complex interplay
between input and outcome factors. Complex fuzzy connections enable decision-makers to
analyze numerous criteria and their interdependence methodically, allowing for a more
holistic approach to tackling complex decision-making difficulties. The complex approach
of CTNGs provides a considerable improvement in decision-making, especially in scenarios
defined by truth membership, indeterminacy membership, falsity membership, and the
parameter ’t’. It represents a break from the constraints imposed by binary logic, providing
the path for greater precision in decision-making processes. Finally given some exiting
work in Table 1.

Table 1. Some relevant studies.

Years Reference Technique Used Decision-Making

2022 37 Degree and distance of fuzzy graph Urban public transportation problem for finding the best
place for a bus stop

2023 38 Spherical Fuzzy Zagreb Energy Selecting location
2018 39 Neutrosophic Cubic Graphs Real-life applications in industries
2020 40 Neutrosophic graph Application in wireless network
2020 41 t-fuzzy graphs Find minimum distance
2023 36 t-intuitionistic fuzzy graphs Application in poverty reduction
2024 35 Complex neutrosophic graphs Hospital infrastructure design
2024 Present Complex t-neutrosophic graph Biodiversity conservation

1.4. Motivation

Understanding complex interactions in many contexts, such as biodiversity conser-
vation, is critical for making good decisions. However, standard approaches may fail to
capture the complexities of such multiple events. As a result, there is a need for a sophisti-
cated tool capable of correctly representing and analyzing complicated relationships.

1.5. Novelty

The use of CTNGs as a unique tool for expressing and evaluating complex relation-
ships is what distinguishes this work. While there are other graph-based models, including
complex t-neutrosophic sets (CTNS) brings a new depth to the topic. This integration allows
for the depiction of uncertainty, indeterminacy, and inconsistency in complex systems, mak-
ing the suggested technique ideal for modeling real-world events with various interacting
elements. Furthermore, the paper investigates basic set operations, homomorphism, and
isomorphism within the context CTNGs, adding to its originality.

1.6. Goal

• To introduce CTNGs and its associated properties.
• To give the new framework of CTNGs with the intention of preserving biodiversity.
• To develop theoretical foundations for CTNGs.
• To illustrate that CTNGs can be used in real applications to address biodiversity con-

servation.
• To show the impact of isomorphism and homomorphism in CTNGs for making better

decisions preserving biodiversity.
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1.7. Objective

• Complex objective: A mathematical tool for modeling ambiguous or imprecise infor-
mation inside a graph structure is the T-neutrosophic graph. T-neutrosophic sets, a
generalization of fuzzy sets, intuitionistic fuzzy sets, and classical sets, are included
into the idea of traditional graphs to expand upon it.

• Expand the scope of standard graph theory principles and techniques to intricate
t-neutrosophic graphs, enabling more thorough examination and resolution of issues
in intricate systems.

• Utilize complex t-neutrosophic graphs in decision-making processes where multiple
conflicting criteria or uncertain information need to be considered simultaneously.

• Utilize intricate t-neutrosophic graphs to solve practical issues in a variety of fields,
including biological, transportation, social, and communication networks.

1.8. Key Contribution

The main contribution of this study is the development of CTNGs, an effective tool
for visualizing and understanding complex relationships, especially in the context of
biodiversity protection. The work illustrates how CTNGs effectively capture complex
interactions between several conservation variables, supporting well-informed decision-
making. By means of real-world implementations, it demonstrates the adaptability of
CTNGs in tackling issues related to biodiversity conservation by taking into account several
pertinent aspects including species preservation, habitat preservation, and climate change
adaption. The incorporation of indeterminacy, truth membership, and falsity membership
functions into CTNGs gives decision-makers an understanding of conservation endeavors,
empowering them to efficiently prioritize actions. Furthermore, the parameter ’t’ in CTNGs
enables modification to fit various sensitivities and situations, enabling decision-makers to
manage risk and uncertainty and navigate through complex decision-making environments.
All things considered, this study provides a thorough framework and analytical tools that
improve biodiversity conservation decision-making processes, greatly advancing ecosystem
preservation and human well-being.

The paper progresses as follows: The ‘Basics of CTNGs’ section clarifies key terminol-
ogy to highlight the originality of the offered work. Various set-theoretical operations are
investigated with graphical representations in the next section, ‘Symmetric Operations on
CTNGs’. Following that, the section ‘Isomorphism CTNGs’ defines homomorphisms and
isomorphisms inside CTNGs. Moving on, the ‘Application of CTNG in biodiversity conser-
vation’ section employs the newly developed strategy to promote ecosystem preservation.
Finally, the research finishes with sensitivity analysis, comparative analysis, and definite
conclusions summarizing the findings.

2. Basics of CTNGs

Definition 1. Given a universal set U, let G be its neutrosophic set (NS) and t∈ [0,1]. Known
as a t-neutrosophic set (TNS), the NSGt of U is defined as TGt(U1) = min

{
TGt(U1), t

}
, IGt(U1) =

max
{

IGt(U1), 1 − t
}

, and FGt(U1) = max
{

FGt(U1), 1 − t
}

, ∀ U1 ∈ U. The form of TNS is
Gt =

{
U1, TGt(U1), IGt(U1), FGt(U1) : U1 ∈ U

}
where TGt , IGt, and FGt are functions that assign

a degree of truth membership, indeterminacy membership, and falsity membership, respectively.
Moreover, the functions TGt , IGt and FGt satisfy the condition 0 ≤ TG(U1) + IG(U1) + FG(U1) ≤ 3.

Definition 2. A complex neutrosophic set (CNS) A, defined on a universe of discourse X is
an objective of the form A =

{
U1, TGt(U1)e

iTτGt (U1), IGt(U1)e
iIσGt (U1), FGt(U1)e

iFρGt
(U1)

}
, where

i =
√
−1, (TGt(U1), IGt(U1), FGt(U1)) ∈ [0, 1], 0 ≤ TτGt(U1), IσGt(U1), FρGt

(U1) ≤ 2π.

Definition 3. For a given simple graph G = (V,E), let Gt = (A, B) be a neutrosophic graph
(NG). The notation Gt = (At, Bt) denotes a CTNG, where At =

{(
Ui, TϑGt(Ui)eiTτGt(Ui),
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IϑGt(Ui)eiIσGt(Ui), FϑGt(Ui)eiFρGt(Ui)
)

: Ui ∈ V
}

is a CTNS on V and Bt =
{((

Ui, Uj
)
,

TϑGt
(
Ui, Uj

)
eiTτGt(Ui , Uj), IϑGt

(
Ui, Uj

)
eiIσGt(Ui , Uj), FϑGt

(
Ui, Uj

)
eiFρGt(Ui , Uj)

)
:
(
Ui, Uj

)
∈ E

}
is

a CTNS on E⊆ V × V, such that ∀
(
Ui, Uj

)
∈ E.

TϑBt

(
Ui, Uj

)
eiTτBt (Ui , Uj) ≤ min

{
TϑAt(Ui), TϑAt

(
Uj
)}

ei min{TτAt (Ui), TτAt (Uj)}

IϑBt

(
Ui, Uj

)
eIσBt (Ui , Uj) ≤ max

{
IϑAt(Ui), IϑAt

(
Uj
)}

ei max{IσAt (Ui), IσAt (Uj)}

FϑBt

(
Ui, Uj

)
eiFρBt

(Ui , Uj) ≤ max
{

FϑAt(Ui), FϑAt

(
Uj
)}

eimax{FρAt
(Ui), FρAt

(Uj)}

Satisfy the condition

0 ≤ TϑAt(Ui) + IϑAt(Ui)+FϑAt(Ui) ≤ 3 and 0 ≤ TϑBt

(
Ui, Uj

)
+ IϑBt

(
Ui, Uj

)
+ FϑBt

(
Ui, Uj

)
≤ 3.

Example 1. Examine the G′ = (V, E) in which V = {U1, U2, U3} and E =
{U1U2, U1U3, U1U4, U2U3, U3U4}. Let A be a complex t-neutrosophic subset (CTNSs) of V and B
be a CTNS of E ⊆ V × V, as given at t = 0.60ei0.9π in Figure 1

A0.60ei0.6π =



(
U1, 0.2ei0.3π , 0.5ei0.6π , 0.7ei0.8π

)
,(

U2, 0.4ei0.5π , 0.5ei0.6π , 0.65ei0.6π
)
,(

U3, 0.3ei0.4π , 0.6ei0.7π , 0.8ei0.9π
)
,

(U 4, 0.3ei0.4π , 0.6ei0.7π , 0.8ei0.9π
)


and

B0.60ei0.6π =



(
U1U2, 0.2ei0.1π , 0.6ei0.7π , 0.7ei0.9π

)
,(

U1U3, 0.1ei0.3π , 0.9ei0.8π , 0.7ei0.8π
)
,(

U1U4, 0.2ei0.3π , 0.6ei0.7π , 0.8ei0.9π
)
,(

U2U3, 0.1ei0.2π , 0.4ei0.3π , 0.6ei0.4π
)
,(

U3U4, 0.1ei0.3π , 0.9ei0.7π , 0.6ei0.7π
)


.
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Definition 6. In the CTNG, the order is defined as follows: 

Figure 1. The graphical representation of a CTNG, where t = 0.6ei0.9π ; G0.6 = (A0.60ei0.6π , B0.60ei0.6π ).

Definition 4. Let Gt = (At, Bt) be a CTNG; then, Ht = (A′
t, B′

t) is considered a complex
neutrosophic subgraph (CTNSG) if A′

t ⊆ At and B′
t ⊆ Bt.
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Definition 5. A CTNG Gt = (At, Bt) is termed a complete CTNG if it satisfies the following condition:

TϑBt(U1, U2)eiTτBt (U1, U2) = min{TϑAt(U1), TϑAt(U2)}ei min{TτAt (U1), TτAt (U2)}

IϑBt(U1, U2)eiIσBt (U1, U2) = max{IϑAt(U1), IϑAt(U2)}ei max{IσAt (U1), IσAt (U2)}

FϑBt(U1, U2)e
iFρBt

(U1, U2) = max{FϑAt(U1), FϑAt(U2)} ei max {FρAt
(U1), FρAt

(U2)}, ∀ (U1, U2) ∈ E.

Example 2. Figure 2 illustrates the entire 0.6ei0.5π-NG Gt.
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Definition 6. In the CTNG, the order is defined as follows:

O(Gt) =



∑
U1∈V

TϑAt(U1) e∑U1∈V TτAt (U1) ,

∑
U1∈V

IϑAt(U1)e
∑U1∈V IσAt (U1),

∑
U1∈V

FϑAt(U1)e
∑U1∈V FρAt

(U1)



Example 3. The order of CTNG Gt is (1.0ei1.5π , 2.5ei2.7π , 2.75ei3.0π) from Example 1.

Definition 7. The CTNG has a size defined by

S(Gt) =



∑
(U1,U2)∈E

TϑBt(U1, U2)ei TτBt (U1,U2),

∑
(U1,U2)∈E

IϑBt(U1, U2)ei IσBt (U1,U2),

∑
(U1,U2)∈E

FϑBt(U1, U2)e
i FρBt

(U1,U2)



Definition 8. In the CTNG, the degree of vertex U1 in Gt is defined as follows:

1. degGt(U1) =
(

degTBt
(U1), degIBt

(U1), degFBt
(U1)

)
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degGt(U1) =



∑
(U1,U2)∈E

TϑBt(U1, U2)ei TτBt (U1,U2),

∑
(U1,U2)∈E

IϑBt(U1, U2)ei IσBt (U1,U2),

∑
(U1,U2)∈E

FϑBt(U1, U2)e
i FρBt

(U1,U2)


2. The minimum degree δ(Gt) of the CTNG is given by

δ(Gt) =

(
δTϑBt

(Gt)e
iδTτBt

(Gt), δIϑBt
(Gt)e

iδIσBt
(Gt).δFϑBt

(Gt)e
iδFρBt

(Gt)
)

δ(Gt) =


min

{
degTϑBt

(U1)
}

e
i min{degTτBt

(U1)},

min
{

degIϑBt
(U1)

}
e

i min{degIσBt
(U1)},

min
{

degFϑBt
(U1)

}
e

i min{degFρBt
(U1)}

U1 ∈ V

3. The maximum degree ∆(Gt)of the CTNG is given by

∆(Gt) =
(

∆TϑBt
(Gt)e

i∆TτBt
(Gt), ∆ϑIBt

(Gt)e
i∆IσBt

(Gt), ∆ϑFBt
(Gt)e

i∆FρBt
(Gt)

)

∆(Gt) =


max

{
degTϑBt

(U1)
}

e
imax{degTτBt

(U1)},

max
{

degIϑBt
(U1)

}
e

imax{degzIσBt
(U1)},

max
{

degFϑBt
(U1)

}
e

imax{degFρBt
(U1)}

U1 ∈ V

Example 4. From Example 1, the degree of vertex in Gt is

degGt(a) =
(

0.5ei0.7π , 2.1ei2.2π , 2.2ei2.6π
)

; degGt(b) =
(

0.3ei0.3π , 1ei1.0π , 1.3ei1.3π
)

;

degGt(c) =
(

0.3ei0.8π , 2.2ei1.8π , 1.9ei1.9π
)

; degGt(d) =
(

0.3ei0.6π , 1.5ei1.4π , 1.4ei1.6π
)

3. Operation on CTNG
3.1. Cartesian Product of CTNG

Definition 9. Let Gt = (At, Bt) and G ′
t = (A′

t, B′
t) be any two CTNGs of G = (V, E) and G′=

(V′, E′), respectively. In the Cartesian product Gt × G ′
t of two CTNGs, Gt and G ′

t are defined by
(At × A′

t, Bt × B′
t) where At × A′

t and Bt × B′
t are CTNSs on V × V′ = {(U1, ω1), (U2, ω2) :

U1 & U2 ∈ V; ω1 & ω2 ∈ V′} and E × E′ = {(U1, ω1), (U2, ω2) : U1 = U2, U1 & U2 ∈ V,
(ω1, ω2) ∈ E′} U {(U1, ω1), (U2, ω2) : ω1 = ω2, ω1 & ω2 ∈ V′, (U1, U2) ∈ E} U {(U1, ω1),
(U2, ω2) : ω1 ̸= ω2, U1 ̸= U2, (ω1, ω2) ∈ E′, (U1, U2) ∈ E}, respectively, which satisfies the fol-
lowing condition:

1. ∀(U1, ω1) ∈ V × V′

(a) TϑAt×A′
t
(U1, ω1)e

iTτAt×A′
t
(U1,ω1)

= min
{

TϑAt(U1), TϑAt′
(ω1)

}
eimin{TτAt (U1),TτAt′

(ω1)}

(b) IϑAt×A′
t
(U1, ω1)e

iIσAt×A′
t
(U1,ω1)

= max
{

IϑAt(U1), IϑAt′
(ω1)

}
eimax{IσAt (U1),IσAt′

(ω1)}

(c) FϑAt×A′
t
(U1, ω1)e

iFρAt×A′
t
(U1, ω1)

= max
{

FϑAt(U1), FϑAt′
(ω1)

}
e

i max{FρAt
(U1), FρAt′

(ω1)}
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2. If U1 = U2 and ∀ (ω1, ω2) ∈ E′

(a) TϑBt×B′
t
((U1, ω1), (U2, ω2))e

iTτBt×B′t
((U1,ω1),(U2,ω2))

= min
{

TϑAt(U1), TϑBt′
(ω1, ω2)

}
ei min{TτAt (U1), TτBt′

(ω1, ω2)}

(b) IϑBt×B′
t
((U1, ω1), (U2, ω2))e

iIσBt×B′t
((U1,ω1),(U2,ω2))

= max
{

IϑAt(U1), IϑBt′
(ω1, ω2)

}
eimax{IσAt (U1), IσBt′

(ω1, ω2)}

(c) FϑBt×B′
t
((U1, ω1), (U2, ω2))e

iFρBt×B′t
((U1, ω1), (U2, ω2))

= max
{

FϑAt(U1), FϑBt′
(ω1, ω2)

}
e

imax{FρAt
(U1), FρBt′

(ω1, ω2)}

3. If ω1 = ω2 and ∀ (U1, U2) ∈ E

(a) TϑBt×B′
t
((U1, ω1), (U2, ω2))e

iTτBt×B′t
((U1,ω1),(U2,ω2))

= min
{

TϑBt(U1, U2), TϑAt′
(ω1)

}
eimin{TτBt (U1, U2), TτAt′

(ω1)}

(b) IϑBt×B′
t
((U1, ω1), (U2, ω2))e

i IσBt×B′t
((U1, ω1), (U2, ω2))

= max
{

IϑBt(U1, U2), IϑAt′
(ω1)

}
ei max{IσBt (U1,U2), IσAt′

(ω1)}

(c) FϑBt×B′
t
((U1, ω1), (U2, ω2))e

i FρBt×B′t
((U1, ω1), (U2, ω2))

= max
{

FϑBt(U1, U2), FϑAt′
(ω1)

}
e

i max{FρBt
(U1, U2), FρAt′

(ω1)}

Example 5. Figure 3a,b illustrate two 0.4ei0.7π-NG Gt and G′
t, which are the elements of con-

sideration. The Cartesian product G0.4ei0.5π ×G′
0.4ei0.5π , which corresponds to them, is seen in

Figure 4.
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Definition 10. The degree of a vertex in Gt ×G ′
t is defined as followes: for any (U1, ω1) ∈ V × V′.

deg Gt×G ′
t
(U1, ω1) =


deg

{
TϑBt×B′

t
((U1, ω1), (U2, ω2))

}
e

iTτBt×B′t
((U1,ω1),(U2,ω2)),

deg
{

IϑBt×B′
t
((U1, ω1), (U2, ω2))

}
e

iIσBt×B′t
((U1,ω1),(U2,ω2)),

deg
{

FϑBt×B′
t
((U1, ω1), (U2, ω2))

}
e

iFρBt×B′t
((U1,ω1),(U2,ω2))


where

deg
{

TϑBt×B′
t
((U1, ω1), (U2, ω2))

}
e

iTτBt×B′t
((U1,ω1), (U2,ω2))

= ∑U1=U2,(ω1,ω2)∈E′ min
{

TϑAt(U1), TϑBt′
(ω1, ω2)

}
ei∑U1=U2,(ω1,ω2)∈E′ min{TτAt (U1),TτBt′

(ω1,ω2)}

+∑ ω1=ω2,(U1,U2)∈E min
{

TϑBt(U1, U2), TϑAt′
(ω1)

}
ei∑ ω1=ω2,(U1,U2)∈E min{TτBt (U1,U2),TτAt′

(ω1)}

+∑ω1 ̸=ω2,U1 ̸=U2
min

{
TϑBt(U1, U2), TϑBt′

(ω1, ω2)
}

ei∑ω1 ̸=ω2,U1 ̸=U2
min{TτBt (U1,U2),TτBt′

(ω1,ω2)},

deg
{

IϑBt×B′
t
((U1, ω1), (U2, ω2))

}
e

iIσBt×B′t
((U1,ω1),(U2,ω2))

= ∑U1=U2,(ω1,ω2)∈E′ max
{

IϑAt(U1), IϑBt′
(ω1, ω2)

}
ei ∑U1=U2,(ω1,ω2)∈E′ max{IσAt (U1),IσBt′

(ω1,ω2)}

+∑ ω1=ω2,(U1,U2)∈E max
{

IϑBt(U1, U2), IϑAt′
(ω1)

}
ei ∑ ω1=ω2,(U1,U2)∈E max{IσBt (U1,U2), IσAt′

(ω1)}

+∑ω1 ̸=ω2,U1 ̸=U2
max

{
IϑBt(U1, U2), IϑBt′

(ω1, ω2)
}

ei ∑ω1 ̸=ω2,U1 ̸=U2
max{IσBt (U1,U2), IσBt′

(ω1,ω2)}
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and

deg
{

FϑBt×B′
t
((U1, ω1), (U2, ω2))

}
e

i FρBt×B′t
((U1,ω1),(U2,ω2))

= ∑U1=U2,(ω1,ω2)∈E′ max
{

FϑAt(U1), FϑBt′
(ω1, ω2)

}
e

i ∑U1=U2,(ω1,ω2)∈E′ max{FρAt
(U1),FρBt′

(ω1,ω2)}

+∑ ω1=ω2,(U1,U2)∈E max
{

FϑBt(U1, U2), FϑAt′
(ω1)

}
e

i ∑ ω1=ω2,(U1,U2)∈E max{FρBt
(U1,U2), FρAt′

(ω1)}

+∑ω1 ̸=ω2,U1 ̸=U2
max

{
FϑBt(U1, U2), FϑBt′

(ω1, ω2)
}

e
i ∑ ω1= ω2,(U1,U2)∈E max{FρBt

(U1,U2),FρAt′
(ω1)}.

Example 6. From example 5, each vertex in Gt × G ′
t has the following degree:

degGt×G ′
t
(a, p) =

(
0.5ei0.5π , 1.7ei1.4π , 1.2ei0.8π

)
, degGt×G ′

t
(a, q) =

(
0.4ei0.3π , 1.4ei1.4π , 1.3ei1.2π

)
degGt×G ′

t
(a, r) =

(
0.9ei0.7π , 2.5ei2.0π , 1.9ei1.6π

)
, degGt×G ′

t
(a, s) =

(
0.7ei0.3π , 2.0ei2.0π , 2.1ei2.4π

)
,

degGt×G ′
t
(b, p) =

(
0.8ei0.9π , 2.6ei1.4π , 1.8ei1.2π

)
, degGt×G ′

t
(b, q) =

(
0.6ei0.5π , 2.3ei1.4π , 2ei2.0π

)
degGt×G ′

t
(b, r) =

(
0.5ei0.2π , 1.6ei0.8π , 1.3ei1.2π

)
, degGt×G ′

t
(b, s) =

(
0.5ei0.2π , 1.6ei0.8π , 1.4ei1.6π

)
Theorem 1. Two CTNGs are Cartesian products, and the result is another CTNG.

Proof. For At × A′
t, the condition is obvious. Assuming that u1 ∈ V and (ω1, ω2) ∈ E′,

TϑBt×B′
t
((U1, ω1), (U1, ω2))e

iTτBt×B′t
((U1,ω1),(U1,ω2))

= min
{

TϑAt(U1), TϑBt′
(ω1, ω2)

}
eimin{TτAt (u1),TτBt′

(ω1,ω2)}

≤ min
{

TϑAt(u1), min
{

TϑAt′
(ω1), TϑAt′

(ω2)
}}

ei min{TτAt (U1),min{TτAt′
(ω1),TAt′

(ω2)}}

≤ min
{

min
{

TϑAt(U1), TϑAt′
(ω1)

}
, min

{
TϑAt(U1), TϑAt′

(ω2)
}}

ei min{min{TτAt (U1),TτAt′
(ω1)},min{TτAt (U1),TτAt′

(ω2)}}

TϑBt×B′
t
((U1, ω1), (U2, ω2))e

iTτBt×B′t
((U1,ω1),(U2,ω2))

= min
{

TϑAt×A′
t
(U1, ω1), TϑAt×A′

t
(ω1, ω2)

}
e

imin{TτAt×A′
t
(U1,ω1),TτAt×A′

t
(ω1,ω2)}

Consequently,

TϑBt×B′
t
((U1, ω1), (U2, ω2))e

iTτBt×B′t
((U1,ω1),(U2,ω2))

≤ min
{

TϑAt×A′
t
(U1, ω1), TϑAt×A′

t
(ω1, ω2)

}
e

imin{TτAt×A′
t
(U1,ω1),TτAt×A′

t
(ω1,ω2)}

if U1 ∈ V, (ω1, ω2) ∈ E′. Similarly for

IϑBt×B′
t
((U1, ω1), (U2, ω2))e

iIσBt×B′t
((U1,ω1),(U2,ω2))

≤ max
{

IϑAt×A′
t
(U1, ω1), IϑAt×A′

t
(ω1, ω2)

}
e

imax{IσAt×A′
t
(U1,ω1),IσAt×A′

t
(ω1,ω2)}
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if U1 ∈ V, (ω1, ω2) ∈ E′ and

FϑBt×B′
t
((U1, ω1), (U2, ω2))e

iFρBt×B′t
((U1,ω1),(U2,ω2))

≤ max
{

FϑAt×A′
t
(U1, ω1), FϑAt×A′

t
(ω1, ω2)

}
e

imax{FρAt×A′
t
(U1,ω1),FρAt×A′

t
(ω1,ω2)}

if U1 ∈ V, (ω1, ω2) ∈ E′. Likewise, we can demonstrate it for w1 ∈ V′,(U1, U2) ∈ E. □

3.2. Composistion of CTNG

Definition 11. In the composition Gt ◦ G ′
t of two CTNGs, Gt and G ′

t is a CTNG and de-
fined as a pair (At ◦ A′

t, Bt ◦ B′
t) where (At ◦ A′

t) and (Bt ◦ B′
t) are CTNSs on V × V′ =

{(U1, ω1), (U2, ω2) : U1 & U2 ∈ V; ω1 & ω2 ∈ V′} and E×E′ = {(U1, ω1), (U2, ω2) : U1 = U2,
U1 & U2 ∈ V, (ω1, ω2) ∈ E′} U {(U1, ω1), (U2, ω2) : ω1 = ω2, ω1 & ω2 ∈ V′, (U1, U2) ∈ E}
U {(U1, ω1), (U2, ω2) : ω1 ̸= ω2, U1 ̸= U2, (ω1, ω2) ∈ E′, (U1, U2) ∈ E}, respectively, which sat-
isfies the following condition:

1. ∀((U1, ω1) ∈ V ◦ V′

(a) TϑAt◦A′
t
(U1, ω1)e

iTτAt◦A′
t
(U1,ω1)

= min
{

TϑAt(U1), TϑAt′
(ω1)

}
eimin{TτAt (U1),TτAt′

(ω1)}

(b) IϑAt◦A′
t
(U1, ω1)e

iIσAt◦A′
t
(U1,ω1)

= max
{

IϑAt(U1), IϑAt′
(ω1)

}
eimax{IσAt (U1),IσAt′

(ω1)}

(c) FϑAt◦A′
t
(U1, ω1)e

iFρAt◦A′
t
(U1,ω1)

= max
{

FϑAt(U1), FϑAt′
(ω1)

}
e

imax{FρAt
(U1),FρAt′

(ω1)}

2. If U1 = U2 and ∀ (ω1, ω2) ∈ E′

(i) TϑBt◦B′
t
((U1, ω1), (U2, ω2))e

iTτBt◦B′t
((U1,ω1),(U2,ω2))

= min
{

TϑAt(U1), TϑBt′
(ω1, ω2)

}
eimin{TτAt (U1),TτBt′

(ω1,ω2)}

(ii) IϑBt◦B′
t
((U1, ω1), (U2, ω2))e

i IσBt◦B′t
((U1, ω1), (U2, ω2))

= max
{

IϑAt(U1), IϑBt′
(ω1, ω2)

}
e

imax{IσAt (U1), IρBt′
(ω1, ω2)}

(iii) FϑBt◦B′
t
((U1, ω1), (U2, ω2))e

i FρBt◦B′t
((U1, ω1), (U2, ω2))

= max
{

FϑAt(U1), FϑBt′
(ω1, ω2)

}
e

imax{FρAt
(U1), FρBt′

(ω1, ω2)}

3. If ω1 = ω2 and ∀ (U1, U2) ∈ E

(a) TϑBt◦B′
t
((U1, ω1), (U2, ω2))eiTτBt ◦ Bt′U1, ω1, U2, ω2

= min
{

TϑBt(U1, U2), TϑAt′
(ω1)

}
eimin{TτBt (U1,U2),TτAt′

(ω1)}

(b) IϑBt◦B′
t
((U1, ω1), (U2, ω2))e

iIσBt◦B′t
((U1, ω1), (U2, ω2))

= max
{

IϑBt(U1, U2), IϑAt′
(ω1)

}
ei max{IσBt (U1, U2), IσAt′

(ω1)}

(c) FϑBt◦B′
t
((U1, ω1), (U2, ω2))e

iFρBt◦B′t
((U1, ω1), (U2, ω2))

= max
{

FϑBt(U1, U2), FϑAt′
(ω1)

}
e

i max{FρBt
(U1,U2), FρAt′

(ω1)}

4. If ω1 ̸= ω2 and ∀ (U1, U2) ∈ E

(a) TϑBt◦B′
t
((U1, ω1), (U2, ω2))e

iTτBt◦B′t
((U1,ω1),(U2,ω2))

= min
{

TϑBt(U1, U2), TϑAt′
(ω1), TϑAt′

(ω2)
}

emin{TτBt (U1, U2), TτAt′
(ω1), TτAt′

(ω2)}

(b) IϑBt◦B′
t
((U1, ω1), (U2, ω2))e

i IσBt◦B′t
((U1, ω1), (U2, ω2))

= max
{

IϑBt(U1, U2), IϑAt′
(ω1), IϑAt′

(ω2)
}

ei max{IσBt (U1,U2), IσAt′
(ω1), IσAt′

(ω2)}

(c) FϑBt◦B′
t
((U1, ω1), (U2, ω2))e

i FρBt◦B′t
((U1, ω1), (U2, ω2))

= max
{

FϑBt(U1, U2), FϑAt′
(ω1), FϑAt′

(ω2)
}

e
i max{FρBt

(U1,U2), FρAt′
(ω1), FρAt′

(ω2)}
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Example 7. Consider the two 0.6ei0.5π -CTNGs Gt and G ′
t illustrated in Figure 5a,b and then their

corresponding composition Gt ◦ G ′
t see in Figure 6.
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Definition 12. The following defines the degree of vertex in Gt ◦ G ′
t , for any

(U1, ω1) ∈ V × V′; degGt◦G ′
t
(U1, ω1) =


deg

{
TϑBt◦B′

t
((U1, ω1), (U2, ω2))

}
e

i{TτBt◦B′t
((U1,ω1),(U2,ω2))} ,

deg
{

IϑBt◦B′
t
((U1, ω1), (U2, ω2))

}
e

IσBt◦B′t
((U1,ω1),(U2,ω2)),

deg
{

FϑBt◦B′
t
((U1, ω1), (U2, ω2))

}
e

i FρBt◦B′t
((U1,ω1),(U2,ω2)).


where

deg
{

TϑBt◦B′
t
((U1, ω1), (U2, ω2))

}
e

i{TτBt◦B′t
((U1,ω1),(U2,ω2))}

= ∑U1=U2,(ω1,ω2)∈E′ min
{

TϑAt(U1), TϑBt′
(ω1, ω2)

}
ei∑U1=U2,(ω1,ω2)∈E′ min{TτAt (U1),TτBt′

(ω1,ω2)} +

∑ ω1=ω2,(U1,U2)∈E min
{

TϑBt(U1, U2), TϑAt′
(ω1)

}
ei ∑ ω1=ω2,(U1,U2)∈E min{TτBt (U1,U2), TτAt′

(ω1)} +

∑ ω1 ̸=ω2,(U1,U2)∈E min
{

TϑBt(U1, U2), TϑAt′
(ω1), TϑAt′

(ω2)
}

ei ∑ ω1 ̸=ω2,(U1,U2)∈E min{TτBt (U1,U2), TτAt′
(ω1),TτAt′

(ω2)}
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deg
{

IϑBt◦B′
t
((U1, ω1), (U2, ω2))

}
e

i{IσBt◦B′t
((U1,ω1),(U2,ω2))}

=

∑U1=U2,(ω1,ω2)∈E′ max
{

IϑAt(U1), IϑBt′
(ω1, ω2)

}
ei∑U1=U2,(ω1,ω2)∈E′ max{Iσ(U1), IσBt′

(ω1,ω2)} +

∑ ω1=ω2,(U1,U2)∈E max
{

IϑBt(U1, U2), IϑAt′
(ω1)

}
ei ∑ ω1=ω2,(U1,U2)∈E max{IσBt (U1,U2),IσAt′

(ω1)} +

∑ ω1 ̸=ω2,(U1,U2)∈E max
{

IϑBt(U1, U2), IϑAt′
(ω1), IϑAt′

(ω2)
}

ei ∑ ω1 ̸=ω2,(U1,U2)∈E max{IσBt (U1,U2), IσAt′
(ω1), IσAt′

(ω2)}

and

deg
{

FϑBt◦B′
t
((U1, ω1), (U2, ω2))

}
e

i{IρBt◦B′t
((U1,ω1),(U2,ω2))}

= ∑
U1=U2,(ω1,ω2)∈E′

max
{

FϑAt(U1), FϑBt′
(ω1, ω2)

}
e

i∑U1=U2,(ω1,ω2)∈E′ max{Fρ(U1), FρBt′
(ω1,ω2)}

+ ∑
ω1=ω2,(U1,U2)∈E

max
{

FϑBt(U1, U2), FϑAt′
(ω1)

}
e

i ∑ ω1=ω2,(U1,U2)∈E max{FρBt
(U1,U2), FρAt′

(ω1)}

+ ∑
ω1 ̸=ω2,(U1,U2)∈E

max
{

FϑBt(U1, U2), FϑAt′
(ω1), FϑAt′

(ω2)
}

e
i ∑ ω1 ̸=ω2,(U1,U2)∈E max{FρBt

(U1,U2),FρAt′
(ω1), FρAt′

(ω2)}

Example 8. From Example 7 the degree of each vertices in Gt ◦ G ′
t are

degGt◦G ′
t
(a, e) =

(
0.5ei0.5π , 1.2ei1.4π , 1.4ei1.7π

)
, degGt◦G ′

t
(a, f ) =

(
0.5ei0.5π , 1.2ei1.3π , 1.4ei1.7π

)
,

degGt◦G ′
t
(b, e) =

(
0.6ei0.3π , 2.1ei2.2π , 2.2ei2.4π

)
, degGt◦G ′

t
(b, f ) =

(
0.6ei0.3π , 2.1ei2.1π , 2.2ei2.4π

)
,

degGt◦G ′
t
(c, e) =

(
0.9ei0.7π , 2.7ei2.4π , 1.8ei1.2π

)
, degGt◦G ′

t
(c, f ) =

(
0.8ei0.7π , 2.7ei2.4π , 2.4ei2.3π

)
degGt◦G ′

t
(d, e) =

(
0.9ei0.9π , 1.6ei1.8π , 1.1ei1.3π

)
, degGt◦G ′

t
(d, f ) =

(
0.6ei0.8π , 1.8ei1.3π , 1.4ei1.5π

)
3.3. Union of CTNG

Definition 13. Let G = (V, E) and G′ = (V′, E′) be any two CTNGs, such that Gt = (At, Bt),
and G ′

t = (A′
t, B′

t). The union Gt ∪ G ′
t of these two CTNGs is defined, under certain assumptions,

as (At ∪ A′
t, Bt ∪ B′

t), where At ∪ A′
t and Bt ∪ B′

t , respectively, represent CTNSs on V ∪ V′ and
E ∪ E′, which satisfies the following condition:

(1) If U1 ∈ V and U1 /∈ V′

(a) TϑAt∪A′
t
(U1)e

iTτAt∪A′
t
(U1) = TϑAt(U1)e

iTτAt (U1)

(b) IϑAt∪A′
t
(U1)e

iIσAt∪A′
t
(U1) = IϑAt(U1)e

iIσAt (U1)

(c) FϑAt∪A′
t
(U1)e

iFρAt∪A′
t
(U1) = FϑAt(U1)e

iFρAt
(U1)

(2) If U1 /∈ V and U1 ∈ V′

(a) TϑAt∪A′
t
(U1)e

iTτAt∪A′
t
(U1) = TϑA′

t
(U1)e

iTτA′
t
(U1)

(b) IϑAt∪A′
t
(U1)e

iIσAt∪A′
t
(U1) = IϑA′

t
(U1)e

iIσA′
t
(U1)

(c) FϑAt∪A′
t
(U1)e

iFρAt∪A′
t
(U1) = FϑA′

t
(U1)e

iFρA′
t
(U1)

(3) If U1 ∈ V ∩ V′

(a) TϑAt∪A′
t
(U1)e

iTτAt∪A′
t
(U1) = max

{
TϑAt(U1), TϑA′

t
(U1)

}
e

imax{TτAt (U1),TτA′
t
(U1)}

(b) IϑAt∪A′
t
(U1)eie

iIσAt∪A′
t
(U1)

= min
{

IϑAt(U1), IϑA′
t
(U1)

}
e

imin{IσAt (U1),IσA′
t
(U1)}



Symmetry 2024, 16, 1033 15 of 30

(c) FϑAt∪A′
t
(U1)e

iFρAt∪A′
t
(U1) = min

{
FϑAt(U1), FϑA′

t
(U1)

}
e

imin{FρAt
(U1),FρA′

t
(U1)}

(4) If (U1, ω1) ∈ E and (U1, ω1) /∈ E′

(a) TϑBt∪B′
t
(U1, ω1)e

iTτBt∪B′t
(U1,ω1) = TϑBt(U1, ω1)e

iTτBt (U1,ω1)

(b) IϑBt∪B′
t
(U1, ω1)e

iIσBt∪B′t
(U1,ω1) = IϑBt(U1, ω1)e

iIσBt (U1,ω1)

(c) FϑBt∪B′
t
(U1, ω1)e

iFρBt∪B′t
(U1,ω1) = FϑBt(U1, ω1)e

iFρBt
(U1,ω1)

(5) If (U1, ω1) /∈ E and (U1, ω1) ∈ E′

(a) TϑBt∪B′
t
(U1, ω1)e

iTτBt∪B′t
(U1,ω1) = TϑB′

t
(U1, ω1)e

iTτB′t
(U1,ω1)

(b) IϑBt∪B′
t
(U1, ω1)e

iIσBt∪B′t
(U1,ω1) = IϑB′

t
(U1, ω1)e

iIσB′t
(U1,ω1)

(c) FϑBt∪B′
t
(U1, ω1)e

iFρBt∪B′t
(U1,ω1) = FϑB′

t
(U1, ω1)e

iFρB′t
(U1,ω1)

(6) If (U1, ω1) ∈ E ∩ E′

(a) TϑBt∪B′
t
(U1, ω1)e

iTτBt∪B′t
(U1,ω1)

= max
{

TϑBt(U1, ω1), TϑB′
t
(U1, ω1)

}
e

max{TτBt (U1,ω1),TτB′t
(U1,ω1)}

(b) IϑBt∪B′
t
(U1, ω1)e

iIσBt∪B′t
(U1,ω1)

= min
{

IϑBt(U1, ω1), IϑB′
t
(U1, ω1)

}
e

min{IσBt (U1,ω1),IσB′t
(U1,ω1)}

(c) FϑBt∪B′
t
(U1, ω1)e

iFρBt∪B′t
(U1,ω1)

= min
{

FϑBt(U1, ω1), FϑB′
t
(U1, ω1)

}
e

min{FρBt
(U1,ω1),FρB′t

(U1,ω1)}

Example 9. Consider the two 0.7ei0.6π-CTNGs Gt and G ′
t shown in Figure 7a,b.

Figure 8 depicts the graphical representation of the union: G0.7 ∪ G ′
0.7 of two 0.7-CTNGs

G0.7 and G ′
0.7.
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Figure 8. G0.7 ∪ G ′
0.7.

Definition 14. The degree of vertex (U1, ω1) at a CTNG for any (U1, ω1) ∈ V × V′

degGt∪G ′
t
(U1, ω1) =


deg

{
TϑBt∪B′

t
(U1, ω1)

}
e

i {TτBt∪B′t
(U1,ω1)},

deg
{

IϑBt∪B′
t
(U1, ω1)

}
e

i {IσBt∪B′t
(U1,ω1)},

deg
{

FϑBt∪B′
t
(U1, ω1)

}
e

i {FρBt∪B′t
(U1, ω1)}


where

deg
{

TϑBt∪B′
t
(U1, ω1)e

i TτBt∪B′t
(U1,ω1)

}
= ∑(U1, ω1)∈E ,(U1, ω1)/∈E′ TϑBt(U1, ω1)e

i∑(U1, ω1)∈E ,(U1, ω1)/∈E′ TτBt (U1,ω1)

+ ∑ (U1, ω1)/∈E,(U1,ω1)∈E′ TϑB′
t
(U1, ω1)e

i∑ (U1,ω1)/∈E,(U1,ω1)∈E′ TτB′t
(U1,ω1)

+∑ (U1, ω1)∈E∩E′ max
{

TϑBt(U1, ω1), TϑB′
t
(U1, ω1)

}
e

∑ (U1,ω1)∈E∩E′ max{TτBt (U1,ω1), TτB′t
(U1,ω1)},

deg
{

IϑBt∪B′
t
(U1, ω1)e

i IσBt∪B′t
(U1,ω1)

}
= ∑(U1, ω1)∈E ,(U1, ω1)/∈E′ IϑBt(U1, ω1)e

i∑(U1,ω1)∈E ,(U1,ω1)/∈E′ IσBt (U1, ω1)

+∑ (U1,ω1)/∈E,(U1, ω1)∈E′ IϑB′
t
(U1, ω1)e

i∑ (U1,ω1)/∈E,(U1,ω1)∈E′ IσB′t
(U1, ω1)

+∑ (U1,ω1)∈E∩E′ min
{

IϑBt(U1, ω1), IϑB′
t
(U1, ω1)

}
e

∑ (U1,ω1)∈E∩E′ min{IσBt (U1,ω1), IσB′t
(U1, ω1)}
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and

deg
{

FϑBt∪B′
t
(U1, ω1)e

i FρBt∪B′t
(U1,ω1)

}
= ∑(U1,ω1)∈E ,(U1,ω1)/∈E′ FϑBt(U1, ω1)e

i∑(U1, ω1)∈E ,(U1, ω1)/∈E′ FρBt
(U1, ω1)

+∑ (U1,ω1)/∈E,(U1,ω1)∈E′ FϑB′
t
(U1, ω1)e

i∑ (U1,ω1)/∈E,(U1, ω1)∈E′ FρB′t
(U1, ω1)

+∑ (U1,ω1)∈E∩E′ min
{

FϑBt(U1, ω1), FϑB′
t
(U1, ω1)

}
e

∑ (U1,ω1)∈E∩E′ min{FρBt
(U1,ω1), FρB′t

(U1,ω1)}

3.4. Joining of CTNGs

Definition 15. Consider two CTNGs Gt = (At, Bt) and G ′
t = (A′

t, B′
t). These CTNGs’ joining

operation Gt + G ′
t is described as (At + A′

t, Bt + B′
t), where At + A′

t produces a CTNG on V ∪ V′

and Bt + B′
t forms a CTNG on E ∪ E′ ∪ E′′ , subject to certain requirements.

(1) If U1 ∈ V and U1 /∈ V′

(a) TϑAt+A′
t
(U1)e

iTτAt+A′
t
(U1) = TϑAt(U1)e

iTτAt (U1)

(b) IϑAt+A′
t
(U1)e

iIσAt+A′
t
(U1) = IϑAt(U1)e

iIσAt (U1)

(c) FϑAt+A′
t
(U1)e

iFρAt+A′
t
(U1) = FϑAt(U1)eiFρ(U1)

(2) If U1 /∈ V and U1 ∈ V′

(a) TϑAt+A′
t
(U1)e

iTτAt+A′
t
(U1) = TϑA′

t
(U1)e

iTτA′
t
(U1)

(b) IϑAt+A′
t
(U1)e

iIσAt+A′
t
(U1) = IϑA′

t
(U1)e

iIσA′
t
(U1)

(c) FϑAt+A′
t
(U1)e

iFρAt+A′
t
(U1) = FϑA′

t
(U1)e

iFρA′
t
(U1)

(3) If U1 ∈ V ∩ V′

(a) TϑAt+A′
t
(U1)e

iTτAt+A′
t
(U1) = max

{
TϑAt(U1), TϑA′

t
(U1)

}
e

imax{TτAt (U1),TτA′
t
(U1)}

(b) IϑAt+A′
t
(U1)e

iIσAt+A′
t
(U1) = min

{
IϑAt(U1), IϑA′

t
(U1)

}
e

imin{TσAt (U1),TσA′
t
(U1)}

(c) FϑAt+A′
t
(U1)e

iFρAt+A′
t
(U1) = min

{
FϑAt(U1), FϑA′

t
(U1)

}
e

imin{FρAt
(U1),FρA′

t
(U1)}

(4) If (U1, ω1) ∈ E and (U1, ω1) /∈ E′

(a) TϑBt+B′
t
(U1, ω1)e

iTτBt+B′t
(U1,ω1) = TϑBt(U1, ω1)e

iTτBt (U1,ω1)

(b) IϑBt+B′
t
(U1, ω1)e

iIσBt+B′t
(U1,ω1) = IϑBt(U1, ω1)e

iIσBt (U1,ω1)

(c) FϑBt+B′
t
(U1, ω1)e

iFρBt+B′t
(U1,ω1) = FϑBt(U1, ω1)e

iFρBt
(U1,ω1)

(5) If (U1, ω1) /∈ E and (U1, ω1) ∈ E′

(a) TϑBt+B′
t
(U1, ω1)e

iTτBt+B′t
(U1,ω1) = TϑB′

t
(U1, ω1)e

iTτB′t
(U1,ω1)

(b) IϑBt+B′
t
(U1, ω1)e

iIσBt+B′t
(U1,ω1) = IϑB′

t
(U1, ω1)e

iIσB′t
(U1,ω1)

(c) FϑBt+B′
t
(U1, ω1)e

iFρBt+B′t
(U1,ω1) = FϑB′

t
(U1, ω1)e

iFρB′t
(U1,ω1)

(6) If (U1, ω1) ∈ E ∩ E′

(a) TϑBt+B′
t
(U1, ω1)e

i TτBt+B′t
(U1,ω1)

= max
{

TϑBt(U1, ω1), TϑB′
t
(U1, ω1)

}
e

imax{TτBt (U1,ω1),TτB′t
(U1,ω1)}

(b) IϑBt+B′
t
(U1, ω1)e

i IσBt+B′t
(U1,ω1)

= min
{

IϑBt(U1, ω1), IϑB′
t
(U1, ω1)

}
e

imin{IσBt (U1,ω1), IσB′t
(U1,ω1)}
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(c) FϑBt+B′
t
(U1, ω1)e

i FρBt+B′t
(U1,ω1)

= min
{

FϑBt(U1, ω1), FϑB′
t
(U1, ω1)

}
e

imin{FρBt
(U1,ω1), FρB′t

(U1,ω1)}

(7) If (U1, ω1) ∈ E′′

(a) TϑBt+B′
t
(U1, ω1) e

iTτBt+B′t
(U1,ω1) = max

{
TϑBt(U1), TϑB′

t
(ω1)

}
e

imax{TτBt (U1),TτB′t
(ω1)}

(b) IϑBt+B′
t
(U1, ω1)e

iIσBt+B′t
(U1,ω1) = min

{
IϑBt(U1), IϑB′

t
(ω1)

}
e

imin{IσBt (U1),IσB′t
(ω1)}

(c) FϑBt+B′
t
(U1, ω1)e

iFρBt+B′t
(U1,ω1) = min

{
FϑBt(U1), FϑB′

t
(ω1)

}
e

imin{FρBt
(U1),FρB′t

(ω1)}

Example 10. From Example 9, the graphical representation of 0.4ei0.7π-CTNG Gt + G ′
t is shown in

Figure 9.
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Figure 9. G0.4ei0.7π + G ′

0.4ei0.7π .

Definition 16. Consider the following two CTNGs Gt and G ′
t . The vertex degree in the CTNG

Gt + G ′
t is described below. For any (U1, ω1) ∈ V × V′.

degGt+G ′
t
(U1, ω1) =


deg

{
TϑBt+B′

t
(U1, ω1)

}
e

i{TτBt+B′t
(U1,ω1)} ,

deg
{

IϑBt+B′
t
(U1, ω1)

}
e

i{IσBt+B′t
(U1,ω1)} ,

deg
{

FϑBt+B′
t
(U1, ω1)

}
e

i{FρBt+B′t
(U1,ω1)}


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where

deg
{

TBt+B′
t
(U1, ω1)e

iTτBt+B′t
(U1,ω1)

}
=(

∑(U1,ω1)∈E ,(U1,ω1)/∈E′ TϑBt(U1, ω1)e
i ∑(U1,ω1)∈E ,(U1,ω1)/∈E′ TτBt (U1,ω1)+

∑ (U1,ω1)/∈E,(U1,ω1)∈E′ TϑB′
t
(U1, ω1)e

i ∑ (U1,ω1)/∈E,(U1,ω1)∈E′ TτB′t
(U1,ω1)

+

∑(U1,ω1)∈E+E′ max
{

TϑBt(U1, ω1), TϑB′
t
(U1, ω1)

}
e

i ∑(U1,ω1)∈E∩E′ max{TτBt (U1,ω1), TτB′t
(U1,ω1)}

+

∑(U1,ω1)∈E′′ max
{

TϑBt(U1), TϑB′
t
(ω1)

}
e

i ∑(U1,ω1)∈E′′ max{TτBt (U1),TτB′t
(ω1)}

)
,

deg

{
Iϑ

BtB′
t

(U1, ω1)e
iIσBt+B′t

(U1,ω1)

}

=


∑

(U1,ω1)∈E ,(U1,ω1)/∈E′
IϑBt(U1, ω1)e

i ∑(U1,ω1)∈E ,(U1,ω1)/∈E′ IσBt (U1,ω1)

+ ∑
(U1,ω1)/∈E,(U1,ω1)∈E′

IϑB′
t
(U1, ω1)e

i ∑ (U1,ω1)/∈E,(U1,ω1)∈E′ IσB′t
(U1,ω1)

+

∑
(U1,ω1)∈E∩E′

max
{

IϑBt(U1, ω1), IϑB′
t
(U1, ω1)

}
e

i ∑
(U1,ω1)∈E∩E′

max{IσBt (U1,ω1), IσB′t
(U1,ω1)}

+ ∑
(U1,ω1)∈E′′

max
{

IϑBt(U1), IϑB′
t
(ω1)

}
e

i ∑
(U1,ω1)∈E′′

max{IσBt (U1), IσB′t
(ω1)}


and

deg
{

FϑBt+B′
t
(U1, ω1)e

iFρBt+B′t
(U1,ω1)

}

=

 ∑
(U1,ω1)∈E ,(U1,ω1)/∈E′

FϑBt(U1, ω1) ei ∑(U1,ω1)∈E ,(U1,ω1)/∈E′ FρBt
U1,ω1

+ ∑
(U1,ω1)/∈E,(U1,ω1)∈E′

FϑB′
t
(U1, ω1)e

i ∑ (U1,ω1)/∈E,(U1,ω1)∈E′ FρB′t
(U1,ω1)

+ ∑
(U1,ω1)∈E+E′

max
{

FϑBt(U1, ω1), FϑB′
t
(U1, ω1)

}
e

i ∑ (U1,ω1)∈E∩E′ max{FρBt
(U1,ω1), FρB′t

(U1,ω1)}

+ ∑
(U1,ω1)∈E′′

max
{

FϑBt(U1), FϑB′
t
(ω1)

}
e

i ∑ (U1,ω1)∈E′′ max{FρBt
(U1), FρB′t

(ω1)}


Theorem 2. For any two CTNGs Gt = (At, Bt) and G ′

t = (A′
t, B′

t) of G = (V,E) and G′ = (V′,E′),
respectively, where V ∩ V′ ̸= ∅, their union Gt ∪ G ′

t = (At ∪ A′
t, Bt ∪ B′

t) is a CTNG of G = G∪
G′ if Gt and G ′

t are the CTNGs of G and G′, respectively.

Proof. Let us assume a CTNG, Gt ∪ G ′
t . Let (U1, ω1) ∈ E, (U1, ω1) /∈ E′, and

(U1, ω1) ∈ V − V′.
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Consider

TϑBt(U1, ω1)eiTτBt (U1,ω1) = TϑBtUB′
t
(U1, ω1)e

iTτBtUB′t
(U1,ω1)

≤ min
{

TϑAt∪A′
t
(U1), TϑAt∪A′

t
(ω1)

}
e

imin{TτAt∪A′
t
(U1),TτAt∪A′

t
(ω1)}

= min{TϑAt(U1), TϑAt(ω1)}eimin{TτAt (U1),TτAt (ω1)}

Consequently,

IϑBt(U1, ω1)eiIσBt (U1,ω1) ≤ max{IϑAt(U1), IϑAt(ω1)}eimax{IσAt (U1),IσAt (ω1)}

Also IϑBt(U1, ω1)eiIσBt (U1,ω1) = IϑBtUB′
t
(U1, ω1)e

iIσBtUB′t
(U1,ω1)

≤ max
{

IϑAt∪A′
t
(U1), IϑAt∪A′

t
(ω1)

}
e

imax{IσAt∪A′
t
(U1),IσAt∪A′

t
(ω1)}

= max{IϑAt(U1), IϑAt(ω1)}eimax{IσAt (U1),IσAt (ω1)}

Consequently,

IϑBt(U1, ω1)eiIσBt (U1,ω1) ≤ max{IϑAt(U1), IϑAt(ω1)}eimax{IσAt (U1),IσAt (ω1)}

Consequently,

FϑBt(U1, ω1)e
iFρBt (U1,ω1) ≤ max{FϑAt(U1), FϑAt(ω1)}eimax{FρAt (U1),FρAt (ω1)}

Also,

FϑBt(U1, ω1)e
iFρBt (U1,ω1) = FϑBtUB′

t
(U1, ω1)e

iFρBtUB′t
(U1,ω1)

≤ max
{

FϑAt∪A′
t
(U1), FϑAt∪A′

t
(ω1)

}
e

imax{FρAt∪A′
t
(U1),FρAt∪A′

t
(ω1)}

= max{FϑAt(U1), FϑAt(ω1)}eimax{FρAt (U1),FρAt (ω1)}

Consequently,

FϑBt(U1, ω1)e
iFρBt (U1,ω1) ≤ max{FϑAt(U1), FϑAt(ω1)}eimax{FσAt (U1),FσAt (ω1)}

This establishes Gt = (At, Bt) as a CTNG. Similarly, we conclude G ′
t = (A′

t, B′
t) as a

CTNG of G′′ . Assuming Gt and G ′
t and understanding that the merging of two CTNGs

generates a CTNG, it follows that Gt ∪ G ′
t . □

4. Isomorphism of CTNGs

Definition 17. Let Gt = (At, Bt) and G ′
t = (A′

t, B′
t) be any two CTNGs of G = (V, E) and G′

= (V′, E′), respectively. A homomorphism θ from CTNG Gt and G ′
t is a mapping θ : V → V′,

satisfying the following conditions:

1. TϑAt(U1)e
i TϑAt (U1) ≤ TϑA′

t
(θ(U1))e

i TτA′
t
(θ(U1)),

IϑAt(U1)e
i IσAt (U1) ≤ IϑA′

t
(θ(U1))e

i IσA′
t
(θ(U1)), and

FϑAt(U1)e
i FρAt

(U1) ≤ FϑA′
t
(θ(U1))e

i FρA′
t
(θ(U1)); ∀U1 ∈ V.

2. TϑBt(U1, ω1)e
i TτBt (U1, ω1) ≤ TϑB′

t
(θ(U1), θ(ω1)) e

i TτB′t
(θ(U1),θ(ω1)),

IϑBt(U1, ω1)e
i IσBt (U1,ω1) ≤ IϑB′

t
(θ(U1), θ(ω1))e

i IσB′t
(θ(U1),θ(ω1)) , and

FϑBt(U1, ω1)e
i FρBt

(U1,ω1) ≤ FϑB′
t
(θ(U1), θ(ω1))e

i FρB′t
(θ(U1),θ(ω1)); ∀(U1, ω1) ∈ E.

Definition 18. A weak isomorphism θ : V → V′, from CTNG Gt to G ′
t , must meet the follow-

ing conditions:
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TϑAt(U1)e
I TτAt (U1) ≤ TϑA′

t
(θ(U1))e

I TτA′
t
(θ(U1)),

IϑAt(U1)e
i IσAt (U1) ≤ IϑA′

t
(θ(U1))e

i IσA′
t
(θ(U1)), and

FϑAt(U1)e
iFρAt

(U1) ≤ FϑA′
t
(θ(U1))e

i FρA′
t
(θ(U1)); ∀U1 ∈ V.

Definition 19. A strong co-isomorphism is defined as a bijective mapping θ : V → V′ between
any two CTNGs, Gt = (At, Bt) and G ′

t = (A′
t, B′

t) of G = (V,E) and G′ = (V′,E′), respectively,
which meets the following conditions:

1. TϑAt(U1)e
iTτAt (U1) ≤ TϑA′

t
(θ(U1))e

TτA′
t
(θ(U1)),

IϑAt(U1)e
iIσAt (U1) ≤ IϑA′

t
(θ(U1))e

iIσA′
t
(θ(U1)), and

FϑAt(U1)e
iFρAt

(U1) ≤ FϑA′
t
(θ(U1))e

i FρA′
t
(θ(U1)); ∀U1 ∈ V.

2. TϑBt(U1, ω1)e
iTτBt (U1,ω1) ≤ TϑB′

t
(θ(U1), θ(ω1))e

iTτB′t
(θ(U1),θ(ω1)),

IϑBt(U1, ω1)e
iIσBt (U1,ω1) ≤ IϑB′

t
(θ(U1), θ(ω1))e

iIσB′t
(θ(U1), θ(ω1)), and

FϑBt(U1, ω1)e
iFρBt

(U1, ω1) ≤ FϑB′
t
(θ(U1), θ(ω1))e

iFρB′t
(θ(U1), θ(ω1)); ∀(U1, ω1) ∈ E.

3. TϑBt(U1, ω1)e
iTτBt (U1, ω1) = TϑB′

t
(θ(U1), θ(ω1))e

iTτB′t
(θ(U1), θ(ω1)),

IϑBt(U1, ω1)e
iIσBt (U1, ω1) = IϑB′

t
(θ(U1), θ(ω1))e

iIσB′t
(θ(U1), θ(ω1)), and

FϑBt(U1, ω1)e
iFρBt

(U1, ω1) = FϑB′
t
(θ(U1), θ(ω1))e

iFρB′t
(θ(U1), θ(ω1)); ∀(U1, ω1) ∈ E.

Definition 20. An isomorphism between CTNGs Gt = (At, Bt) and G ′
t = (A′

t, B′
t) is a bijective

homomorphism mapping θ : V → V′ (written as Gt ≈ G ′
t) which satisfies the following conditions:

1. TϑAt(U1)e
iTτAt (U1) ≤ TϑA′

t
(θ(U1))e

TτA′
t
(θ(U1)),

IϑAt(U1)e
iIσAt (U1) ≤ IϑA′

t
(θ(U1))e

iIσA′
t
(θ(U1)), and

FϑAt(U1)e
iFρAt

(U1) ≤ FϑA′
t
(θ(U1))e

iFρA′
t
(θ(U1)); ∀U1 ∈ V.

2. TϑBt(U1, ω1)e
i TτBt (U1,ω1) = TϑB′

t
(θ(U1), θ(ω1))e

iTτB′t
(θ(U1),θ(ω1)),

IϑBt(U1, ω1)e
i IσBt (U1,ω1) = IϑB′

t
(θ(U1), θ(ω1)) e

iIσB′t
(θ(U1),θ(ω1)), and

FϑBt(U1, ω1)e
iFρBt

(U1,ω1) = FϑB′
t
(θ(U1), θ(ω1))e

iFρB′t
(θ(U1),θ(ω1)); ∀(U1, ω1) ∈ E.

Example 11. According to the following figures, take the two 0.8ei0.7π-Gt and G ′
t as shown in

Figure 10a,b.
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According to Definition (20), the mapping ζ(a) = g, ζ(b) = f, and ζ(c) = e gives us

G 0.8ei0.7π ≈ G ′
0.8ei0.7π

Theorem 3. The characteristics of an equivalence relation are satisfied by the connection of an
isomorphism between CTNGs.

Proof. Both symmetry and reflexivity are clear. The isomorphism of Gt onto G ′
t and G ′

t onto
G ′′

t , respectively, are denoted by the notations φ : V → V′ and θ : V′ → V ′′ . Accordingly,
θ ◦ φ:V → V ′′ is a bijective map from V′ to V ′′ , and it is defined as follows:

(θ ◦ φ)(U1) = θ(φ(U1)), ∀U1 ∈ V

For a map φ : V → V′ defined by φ(U1) = ω1, ∀U1 ∈ V, it is an isomorphism. Considering
Definition (20), we have

TϑAt(U1)e
iTτAt (U1) = TϑA′

t
(φ(U1))e

iTτA′
t
(φ(U1))

= TϑA′
t
(ω1)e

iTτA′
t
(φ(U1)), ∀U1 ∈ V (1)

IϑAt(U1)e
i IσAt (U1) = IϑA′

t
(φ(U1))e

iIσA′
t
(φ(U1))

= IϑA′
t
(ω1) e

iIσA′
t
(ω1), ∀U1 ∈ V (2)

FϑAt(U1)e
iFρAt

(U1) = FϑA′
t
(φ(U1))e

iFρA′
t
(φ(U1))

= FϑA′
t
(ω1)e

iFρA′
t
(ω1), ∀U1 ∈ V (3)

and
TϑBt(U1, U2)eiTτBt (U1,U2) = TϑB′

t
(φ(U1), φ(U2))e

iTτB′t
(φ(U1),φ(U2))

= TϑB′
t
(ω1, ω2)e

iTτB′t
(ω1,ω2), ∀(U1, U2) ∈ E

(4)

IϑBt(U1, U2)eiIσBt (U1,U2) = IϑB′
t
(φ(U1), φ(U2))e

iIσB′t
(φ(U1),φ(U2))

= IϑB′
t
(ω1, ω2)e

iIσB′t
(ω1,ω2), ∀(U1, U2) ∈ E

(5)

FϑBt(U1, U2)e
iFρBt

(U1,U2) = FϑB′
t
(φ(U1), φ(U2))e

iFρB′t
(φ(U1),φ(U2))

= FϑB′
t
(ω1, ω2)e

iFρB′t
(ω1,ω2)∀(U1, U2) ∈ E

(6)

In the same way, we obtain that

TϑA′
t
(ω1)e

iTτA′
t
(ω1)

= TϑA′′
t
(v1)e

iTτ
A
′′
t
(v1)

, ∀ ω1 ∈ V′ (7)

IϑA′
t
(ω1)e

iIσA′
t
(ω1)

= IϑA′′
t
(v1)e

iIσ
A
′′
t
(v1)

, ∀ ω1 ∈ V′ (8)

FϑA′
t
(ω1)e

iFρA′
t
(ω1)

= FϑA′′
t
(v1)e

iFρ
A
′′
t
(v1)

, ∀ ω1 ∈ V′ (9)

and

TϑB′
t
(ω1, ω2)e

iTτB′t
(ω1,ω2)

= TϑB′′
t
(v1, v2)e

iTτ
B
′′
t
(v1,v2)

, ∀(ω1, ω2) ∈ E′ (10)

IϑB′
t
(ω1, ω2)e

iIσB′t
(ω1,ω2)

= IϑB′′
t
(v1, v2)e

iIσ
B
′′
t
(v1,v2)

, ∀(ω1, ω2) ∈ E′ (11)

FϑB′
t
(ω1, ω2)e

iFρB′t
(ω1,ω2)

= FϑB′′
t
(v1, v2)e

iFρ
B
′′
t
(v1,v2)

, ∀(ω1, ω2) ∈ E′ (12)
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By using the relations (1) and (7) and φ(U1) = ω1 , ∀ U1 ∈ V, we have

TϑAt(U1)e
TτAt (U1) = TϑA′

t
(φ(U1))e

iTτA′
t
(φ(U1))

= TϑA′
t
(ω1)e

iTτA′
t
(ω1)

= TϑA′′
t
(θ(ω1))e

iTτ
A
′′
t
(θ(ω1))

= TϑA′′
t
(θ(φ(U1)))e

i Tτ
A
′′
t
(θ(φ(U1)))

By using the relations (2) and (8) and φ(U1) = ω1 , ∀ U1 ∈ V, we have

IϑAt(U1)e
IσAt (U1) = IϑA′

t
(φ(U1))e

iIσA′
t
(φ(U1))

= IϑA′
t
(ω1)e

iIσA′
t
(ω1)

= IϑA′′
t
(θ(ω1))e

iIσ
A
′′
t
(θ(ω1))

= IϑA′′
t
(θ(φ(U1)))e

i Iσ
A
′′
t
(θ(φ(U1)))

By using the relations (3) and (9) and φ(U1) = ω1 , ∀ U1 ∈ V, we have

FϑAt(U1)e
FρAt

(U1) = FϑA′
t
(φ(U1))e

iFρA′
t
(φ(U1))

= FϑA′
t
(ω1)e

iFρA′
t
(ω1)

= FϑA′′
t
(θ(ω1))e

iFρ
A
′′
t
(θ(ω1))

= FϑA′′
t
(θ(φ(U1)))e

i Fρ
A
′′
t
(θ(φ(U1)))

When using the relations (4) and (10), the outcome is

TϑBt(U1, U2)eiTτBt (U1,U2) = TϑB′
t
(ω1, ω2)e

iTτB′t
(ω1, ω2)

= TϑB′′
t
(θ(ω1), θ(ω2))e

Tτ
B
′′
t
(θ(ω1) , θ(ω2))

= TϑB′′
t
(θ(φ(U1)), θ(φ(U2)))e

iTτ
B
′′
t
(θ(φ(U1)), θ(φ(U2)))

When using the relations (5) and (11), the outcome is

IϑBt(U1, U2)eiIσBt (U1,U2) = IϑB′
t
(ω1, ω2)e

iIσB′t
(ω1,ω2)

= IϑB′′
t
(θ(ω1), θ(ω2))e

Iσ
B
′′
t
(θ(ω1), θ(ω2))

= IϑB′′
t
(θ(φ(U1)), θ(φ(U2)))e

iIσ
B
′′
t
(θ(φ(U1)), θ(φ(U2)))

When using the relations (6) and (12), the outcome is

FϑBt(U1, U2)e
iFρBt

(U1,U2) = FϑB′
t
(ω1, ω2)e

iFρB′t
(ω1, ω2)

= FϑB′′
t
(θ(ω1), θ(ω2))e

Fρ
B
′′
t
(θ(ω1), θ(ω2))

= FϑB′′
t
(θ(φ(U1)), θ(φ(U2)))e

iFρ
B
′′
t
(θ(φ(U1)), θ(φ(U2)))

Hence, Gt and G ′′
t are isomorphic to each other via θ ◦ φ. As a result, the proof is

finished. □
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5. Real-World Applications in Biodiversity Conservation

In this section, we consider applications for biodiversity conservation based on CTNGs
and TNGs.

5.1. Experiment Description

The experiments used CTNGs to investigate and address biodiversity conservation
issues. CTNGs enabled decision-makers to evaluate confusing data and estimate many
aspects of biodiversity conservation, such as habitat protection, species conservation,
sustainable land-use practices, ecosystem restoration, climate change adaption, and public
awareness and education. The CTNG framework used indeterminacy, truth membership,
and falsity membership functions to characterize interactions between conservation factors,
reflecting the degree of alignment or divergence from specified factors.

The findings are as follows:

1. CTNGs made it easier to identify critical aspects that contribute to biodiversity con-
servation, giving decision-makers insight into the complicated relationships between
conservation elements.

2. Using CTNGs to examine the links between conservation factors and prioritize in-
terventions allowed decision-makers to make more informed conservation program
decisions.

3. The parameter ‘t’ in CTNGs allows decision-makers to tailor the graphs to their do-
main knowledge and problem, resulting in better targeted interventions and informed
biodiversity conservation decisions.

4. Visual representations of CTNGs shed light on the intricate relationships between con-
servation factors, contributing to the formulation of effective conservation strategies
and biodiversity preservation.

5.2. Application of CTNGs in Biodiversity Conservation

The loss of biodiversity presents huge worldwide issues, affecting ecosystems, economies,
and human well-being. Factors such as habitat degradation, pollution, overexploitation,
and climate change all contribute to biodiversity loss, endangering species survival and
ecosystem health. Addressing biodiversity protection demands a comprehensive approach
that takes into account the intricate interplay of numerous elements. Using CTNGs,
decision-makers may examine ambiguous data and estimate biodiversity conservation
components. This method allows for the identification of crucial factors and improves
decision-making in conservation programs.

In Figure 11, Key aspects contributing to biodiversity conservation include habitat
protection (B1) , species conservation (B2), sustainable land-use practices (B3), ecosystem
restoration (B4), climate change adaptation (B5), and public awareness and education
(B6). Let M = {B1, B2, B3, B4, B5, B6} be the vertex of factors that strongly contribute to
biodiversity conservation. The edges represent the degree of connection or link between
components using t-neutrosophic values. Within the CTNG paradigm, indeterminacy, truth
membership, and falsity membership functions represent the relationship between diverse
factors, capturing the degree to which an element aligns with or diverges from specified
factors. The integration of these functions provides a thorough knowledge of relationships
between elements and variables, which can help decision-makers evaluate conservation
efforts. The parameter’t’ enables decision-makers to modify the complicated TNG to their
domain knowledge and problem, allowing for more targeted interventions and informed
biodiversity conservation decision-making. Visual representations employing CTNGs
shed light on the complex connections between conservation elements, assisting in the
creation of successful conservation strategies and the preservation of biodiversity for future
generations. Furthermore, various parameter values for ‘t’ in neutrosophic graphs indicate
different attitudes toward risk and uncertainty. The direction of threshold values for inde-
terminacy, truth membership, and falsity membership allows decision-makers to stress or
downplay certain features depending on the desired level of uncertainty and confidence.
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The parameter ‘t’ in neutrosophic graphs allows for customization to varied circumstances
and sensitivities. Adjusting the ‘t’ value allows decision-makers to experiment with differ-
ent scenarios by varying the balance of element acceptance and rejection. This versatility is
essential for making decisions in unclear contexts or changing conditions.
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Additionally, varying parameter values of ‘t’ signify distinct perspectives on risk and
uncertainty. The orientation of threshold values for membership and non-membership
empowers decision-makers to accentuate or downplay specific facts, aligning with their
preferred degrees of acceptance and rejection. The parameter ‘t’ facilitates the customization
of CTNGs to suit diverse contexts and sensitivities. By adjusting the variable ‘t’, decision-
makers can investigate numerous possibilities by modulating the balance between favorable
and opposing viewpoints. This capability proves crucial when navigating decisions in
uncertain environments or amid ongoing changes.

The parameter ‘t’ allows decision-makers to customize CTNGs to match their subject
expertise and unique issue requirements. Furthermore, differing parameter values for
‘t’ represent varied attitudes toward risk and uncertainty. The direction of threshold
values for truth membership, indeterminacy membership, and falsity membership allows
decision-makers to emphasize or downplay certain facts based on the desired levels of
truth membership, indeterminacy membership, and falsity membership. This parameter,
designated as ‘t’, allows CTNGs to be customized to fit a variety of settings and sensitivity
levels. Changing the variable ‘t’ allows decision-makers to investigate a range of options by
altering the balance between positive and opposing opinions. This capacity is critical while
making judgments in unclear circumstances or amid continual change. Table 2 shows the
complex neutrosophic fuzzy sets (CNFSs) and 0.7-CNFS defined at the vertices.

Table 2. Vertices of NS and 0.7e0.9π-NS.

Vertices CNS Complex 0.7-NS

B1
(

0.8ei0.7π , 0.4ei0.3π , 0.4ei 0.3π
) (

0.7ei0.7π , 0.4ei0.3π , 0.4ei 0.3π
)

B2
(

0.6ei0.5π , 0.3ei0.2π , 0.1ei 0.1π
) (

0.6ei0.5π , 0.3ei0.3π , 0.3ei 0.3π
)

B3
(

0.5ei0.4π , 0.7ei0.3π , 0.6ei 0.4π
) (

0.5ei0.4π , 0.7ei0.3π , 0.6ei 0.4π
)

B4
(

0.8ei0.7π , 0.9ei0.4π , 0.7ei 0.6π
) (

0.7ei0.7π , 0.9ei0.4π , 0.7ei 0.6π
)

B5
(

0.9ei0.8π , 0.6ei0.7π , 0.5ei 0.4π
) (

0.7ei0.7π , 0.6ei0.7π , 0.5ei 0.4π
)

B6
(

0.4ei0.3π , 0.5ei0.4π , 0.2ei 0.1π
) (

0.4ei0.3π , 0.5ei0.4π , 0.3ei 0.3π
)

As seen in Table 3, edge R12, which connects habitat protection to species conservation,
represents a link between encouraging habitat protection and species conservation. In the
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context of edge R12 =
(

0.5ei0.4π , 0.4ei0.3π , 0.4ei 0.3π ), a truth membership degree of 0.5ei0.4π

implies a relationship between these variables, 0.4ei0.3π implies the indeterminacy member-
ship value between these variables, whereas a falsity membership of 0.4ei 0.3π indicates a
lesser correlation efforts. In this context, the parameter ‘t’ represents the component that can
lead to a 70% reduction in biodiversity conservation. Moving on to Table 4, the application
of Part (1) of Definition (8) produces the following outcomes. The edges’ score function is
defined below. By using this formula, the score value of each edge can be defined.

SV =

∣∣∣∣ (degTϑ
(
lj
)
− degIϑ

(
lj
)
− degFϑ

(
lj
))

+
1

2π

(
degTτ

(
lj
)
− degIσ

(
lj
)
− degFρ

)(
lj
) ∣∣∣∣,

1 ≤ j ≤ 6.

Table 3. Edges of CNS and complex 0.7e0.9π-NS.

Edges Complex 0.7-NS

R12 = (l1, l2)
(

0.5ei0.4π , 0.4ei0.3π , 0.4ei 0.3π
)

R13 = (l1, l3)
(

0.4ei0.3π , 0.6ei0.3π , 0.6ei 0.4π
)

R14 = (l1, l4)
(

0.6ei0.6π , 0.8ei0.4π , 0.7ei 0.6π
)

R15 = (l1, l5)
(

0.6ei0.6π , 0.6ei0.7π , 0.5ei 0.4π
)

R16 = (l1, l6)
(

0.3ei0.2π , 0.5ei0.4π , 0.4ei 0.3π
)

R23 = (l2, l3)
(

0.4ei0.3π , 0.6ei0.3π , 0.6ei 0.4π
)

R24 = (l2, l4)
(

0.4ei0.3π , 0.8ei0.3π , 0.7ei 0.6π
)

R25 = (l2, l5)
(

0.4ei0.3π , 0.5ei0.6π , 0.5ei 0.4π
)

R26 = (l2, l6)
(

0.3ei0.2π , 0.5ei0.4π , 0.3ei 0.3π
)

R34 = (l3, l4)
(

0.2ei0.3π , 0.8ei0.4π , 0.7ei 0.5π
)

R35 = (l3, l5)
(

0.4ei0.3π , 0.7ei0.7π , 0.6ei 0.4π
)

R36 = (l3, l6 )
(

0.3ei0.2π , 0.7ei0.4π , 0.6ei 0.4π
)

R45 = (l4, l5 )
(

0.6ei0.6π , 0.8ei0.6π , 0.7ei 0.6π
)

R46 = (l4, l6 )
(

0.4ei0.3π , 0.8ei0.3π , 0.7ei 0.6π
)

R56 = (l5, l6 )
(

0.4ei0.3π , 0.6ei0.7π , 0.5ei 0.4π
)

Table 4. Table of truth, indeterminate, and falsity membership degree of each factor.

Factor Degree of Each Factor

B1 deg(l1) =
(

2.4ei 2.1π , 2.9ei 2.1π , 2.6ei 2.0π
)

B2 deg(l2) =
(

2.0ei 1.5π , 2.8ei 1.9π , 2.5ei 2.0π
)

B3 deg(l3) =
(

2.9ei 1.4π , 3.4 ei 2.1π , 3.1ei 2.1π
)

B4 deg(l4) =
(

2.4ei 2.1π , 4.0ei 2.0π , 3.5ei 2.9π
)

B5 deg(l5) =
(

2.4ei 2.1π , 3.2ei 3.3π , 2.8ei 2.2π
)

B6 deg(l6) =
(

1.8ei 1.25π , 3.1ei 2.2π , 2.4ei 2.0π
)

Table 5 shows the results obtained by using the scoring function formula stated in
Table 4. Figure 12 shows a visual depiction of the score function for the parameters listed
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in Table 5. B4 = 9.49822971 has the greatest value, showing that B4 is the most influential
factor in biodiversity conservation (parameter ‘t’). From the above Table 5, it is clear that
ecosystem restoration will have an impact in biodiversity conversation.

Table 5. Score value of CTNGs.

Factor Score Value SV(lj) of CTNG

Habitat protection (B1) 6.24159265
Species conservation (B2) 5.06991118

Sustainable land-use practice (B3) 7.99822971
Ecosystem restoration (B4) 9.49822971

Climate change adaptation (B5) 8.94070751
Public awareness and education (B6) 8.51238898

5.3. Performance Comparative Analysis

The CTNGs improve upon neutrosophic graphs by incorporating the parameter ‘t’
for fine-tuning uncertainty modeling to individual requirements and domain features.
Adjusting ‘t’ allows decision-makers to more precisely describe diverse decision-making
circumstances, resulting in a more nuanced depiction of ambiguity and vagueness. With
applications covering a wide range of scenarios and decision-making processes, the change-
able parameter ‘t’ allows modification to capture variable degrees of caution or optimism,
responding to unique requirements. This adaptability is crucial in problem-solving contexts
where several degrees of ambiguity, reluctance, and decision preferences must be handled
concurrently. CTNGs develop in complex decision-making scenarios such as medical di-
agnosis, pattern identification, and decision support systems because of their capacity to
tolerate varying degrees of ambiguity and reluctance. The graph’s uniformity implies that
all elements have an equal link to the component under study, independent of truth, inde-
terminacy, and falsity membership levels. Furthermore, assigning ‘t’ a truth membership
value of 0.6 implies a strong link, whilst an indeterminacy membership value of 0.3 suggests
either a high, weak, or medium-strength relationship, and a falsity membership value of
0.4 indicates a weak connection between elements. Using the supplied ‘t’ values, decision-
makers may adjust the CTNS to their background and scenario. Furthermore, varied ‘t’
values correlate to different perspectives on risk and uncertainty. The continuous uniformity
implies that all features are regarded to be equally related to the component under discus-
sion, with no visible differentiation depending on their level of truth, indeterminacy, and
falsity membership. The persistence of uncertainty in linking these aspects with the factor is
consistent across all dimensions. Choosing a parameter value of ‘t’ around zero implies a
need for greater accuracy in determining the consequences for biodiversity conservation.

Symmetry 2024, 16, x FOR PEER REVIEW 28 of 30 
 

 

nario. Furthermore, varied �t� values correlate to different perspectives on risk and uncer-
tainty. The continuous uniformity implies that all features are regarded to be equally re-
lated to the component under discussion, with no visible differentiation depending on 
their level of truth, indeterminacy, and falsity membership. The persistence of uncertainty 
in linking these aspects with the factor is consistent across all dimensions. Choosing a 
parameter value of �t� around zero implies a need for greater accuracy in determining the 
consequences for biodiversity conservation. 

 
Figure 12. Graphical representation of score values of CTNGs. 

5.4. Sensitivity Analysis 
The present investigation�s sensitivity analysis focuses on the parameter �t� in 

CTNGs, highlighting its critical importance in biodiversity conservation decision-making 
processes. �t� enables decision-makers to change the balance of element acceptance and 
rejection, reflecting different attitudes toward risk and uncertainty. Decision-makers can 
experiment with alternative situations by changing the value of �t�, highlighting or down-
playing key aspects based on desired confidence levels. This flexibility promotes efficient 
decision-making in unknown contexts and changing situations, which is critical for han-
dling the challenges of biodiversity protection. Furthermore, the capacity to adapt �t� helps 
conservation plans match with different viewpoints on risk and uncertainty, allowing de-
cision-makers to appropriately prioritize operations. 

6. Conclusions 
The notion of complex t-neutrosophic graphs (CTNGs) was introduced in this study, 

and some basic aspects of this phenomena were investigated. There have been many stud-
ies and demonstrations of graphical representations for numerous set-theoretical opera-
tions of CTNGs. Furthermore, a definition and an examination of some of the fundamental 
components of a complement of CTNGs were provided. The concepts of CTNG homo-
morphisms and isomorphisms were presented. Additionally, an example of how the re-
cently developed technique can be used in biodiversity conservation was shown. 

The consequences of biodiversity preservation lack discernible specificity when a pa-
rameter value �t� near 0 is used. Conversely, when the value of the parameter �t� gets closer 
to 1, it indicates a significant and apparent association with accomplishing goals associ-
ated with biodiversity preservation. The parameter �t� in CTNGs expresses the degree of 
confidence or doubt on the success of biodiversity preservation initiatives. The two ex-
tremes of this metric represent a strong association and/or negligible impact with the de-
sired outcome. By employing this calibrated parameter, decision-makers can accurately 
modify how uncertainty is portrayed and how it impacts analytical outcomes, resulting 

6.24159265
5.06991118

7.99822971

9.49822971
8.940707518.51238898

0
1
2
3
4
5
6
7
8
9

10

B1  B2  B3 B4 B5 B6

Score Value of CTNGS

Figure 12. Graphical representation of score values of CTNGs.



Symmetry 2024, 16, 1033 28 of 30

5.4. Sensitivity Analysis

The present investigation’s sensitivity analysis focuses on the parameter ‘t’ in CTNGs,
highlighting its critical importance in biodiversity conservation decision-making processes.
‘t’ enables decision-makers to change the balance of element acceptance and rejection,
reflecting different attitudes toward risk and uncertainty. Decision-makers can experiment
with alternative situations by changing the value of ‘t’, highlighting or downplaying key as-
pects based on desired confidence levels. This flexibility promotes efficient decision-making
in unknown contexts and changing situations, which is critical for handling the challenges
of biodiversity protection. Furthermore, the capacity to adapt ‘t’ helps conservation plans
match with different viewpoints on risk and uncertainty, allowing decision-makers to
appropriately prioritize operations.

6. Conclusions

The notion of complex t-neutrosophic graphs (CTNGs) was introduced in this study,
and some basic aspects of this phenomena were investigated. There have been many
studies and demonstrations of graphical representations for numerous set-theoretical
operations of CTNGs. Furthermore, a definition and an examination of some of the
fundamental components of a complement of CTNGs were provided. The concepts of
CTNG homomorphisms and isomorphisms were presented. Additionally, an example of
how the recently developed technique can be used in biodiversity conservation was shown.

The consequences of biodiversity preservation lack discernible specificity when a
parameter value ‘t’ near 0 is used. Conversely, when the value of the parameter ‘t’ gets
closer to 1, it indicates a significant and apparent association with accomplishing goals
associated with biodiversity preservation. The parameter ‘t’ in CTNGs expresses the degree
of confidence or doubt on the success of biodiversity preservation initiatives. The two
extremes of this metric represent a strong association and/or negligible impact with the
desired outcome. By employing this calibrated parameter, decision-makers can accurately
modify how uncertainty is portrayed and how it impacts analytical outcomes, resulting in a
more complex and adaptable framework for addressing the complex challenges associated
with poverty alleviation.

Future work: Future studies might focus on creating complex optimization algorithms
that are customized to the properties of CTNGs, allowing for more efficient and effective
decision-making in biodiversity conservation and other complex system analysis fields.
These algorithms might include multi-objective optimization strategies to find optimum
solutions while taking into account competing objectives, as well as uncertainty quantifica-
tion methods to effectively manage uncertainty in decision-making processes. Furthermore,
additional validation studies and case studies in a variety of ecological situations would
give empirical proof of CTNGs’ relevance and efficacy, making them more widely adopted
by decision-makers and conservation practitioners. Then, we will extend this work to
various symmetric differences in complex t-neutrosophic graphs.

Our main objective for the next research is to tackle MCDM problems—supplier
selection, risk management, and renewable energy selection—by using the suggested
approach. Neural networks, clustering, feature selection, and risk management will all
be impacted by the suggested strategies. Furthermore, a few sophisticated methods for
generating decisions involving complicated spherical fuzzy Aczel Alsina aggregation
operators will also be examined in relation to the tactics discussed in this paper.
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