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Abstract: In order to treat the degree of belief rationally, Baoding Liu created uncertainty theory. An
uncertain variable, as a measurable function from an uncertainty space to the set of real numbers, is a
basic concept in uncertainty theory. It is very meaningful to study its properties. Lusin’s theorem
is one of the most classical theorems in measure theory that reveals the close relationship between
measurable and continuous functions, and has important significance. In this paper, we give three
pairs of continuity conditions for uncertain measures, and present that every pair reveals duality,
which is a kind of symmetry between objects. Furthermore, it is demonstrated that these continuity
conditions are equivalent. And, we also prove that these three pairs of continuity conditions and
the condition: if {Λn} is a sequence of open sets and Λn ↘ ∅, then lim

n→∞
M{Λn} = 0 are equivalent

in compact metric spaces. It is shown that Lusin’s theorem for uncertain variables holds if and
only if the uncertain measure satisfies any of the above continuity conditions in a compact metric
space. And, Lusin’s theorem can be applied to uncertain variables with symmetric or asymmetric
distributions. Finally, we provide several examples to illustrate applications of Lusin’s theorem for
uncertain variables. As far as we know, our results are new in uncertainty theory.

Keywords: uncertain variable; continuity of uncertain measure; Lusin’s theorem; compact metric space

1. Introduction

The world is always full of indeterminacy, usually one kind is random phenomena
and the other is non-random phenomena. For a random phenomenon related to frequency,
it can be analyzed by probability theory. To deal with a non-random phenomenon, the
concept of a fuzzy set was proposed by Zadeh [1] and possibility theory related to the
theory of fuzzy sets was founded by Zadeh [2]. In order to find Pareto optimal solutions to
multiple objective optimization problems under an imprecise environment, Garai, Mandal
and Roy [3] provided one new set, viz. T-set, to supersede fuzzy set for representing
uncertainty. After that, Garai, Mandal and Roy [4] investigated optimization of multi-
objective model with fuzzy coefficients in imprecise environment and parametric T-set was
provided. For more studies about T-set, the interested readers can refer to [5–7] and so on.

However, when there are no samples to estimate a probability distribution, we must
invite some domain experts to assess the belief degree that each event will happen. In order
to reasonably deal with the problem of belief degree, uncertainty theory was established in
2007 by Liu [8], and has been extensively investigated by many researchers. At present,
uncertainty theory has become a branch of credibility in axiomatic mathematical modeling.
In 2009, Liu [9] provided some results in uncertainty theory, including the product measure
axiom, an operational law of independent uncertain variables, a concept of entropy of
continuous uncertain variables, and so on. Following that, Gao [10] investigated some
properties of continuous uncertain measures. Subsequently, Liu [11] introduced some
concepts of uncertain sets and so on, proposed an uncertain inference rule, and presented
an uncertain system. Some methods for solving linear uncertain differential equations
were provided by Chen and Liu [12], and they also proved the existence and uniqueness
theorem of solutions to uncertain differential equations. After that, Liu [13] offered a
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method for solving a specific class of nonlinear uncertain differential equations. A stronger
new definition of independence of uncertain sets and its some properties were introduced
by Liu [14] in 2013. In 2014, Liu [15] put forward the concept of uncertainty distribution
and an independent definition of uncertain processes. In 2018, a concept of totally ordered
uncertain set was presented by Liu [16], and he also proved that totally ordered uncertain
sets always have membership functions if they are defined on a continuous uncertainty
space. Uncertainty theory has also been developed in other fields, such as uncertain
risk analysis (see, e.g., Liu [17]), uncertain programming (see, e.g., Zhang and Peng [18]),
uncertain finance (see, e.g., Liu [19]), and so on.

An uncertain variable is a measurable function from an uncertainty space to the set of
real numbers, and it is typically used to represent quantities with uncertainty. For applying
uncertainty theory more effectively, it is highly beneficial to explore its properties. In 2012,
the uncertain distribution and expected value of function of an uncertain variable were
investigated by Zhu [20]. In order to approximately compute the uncertain distribution,
the optimistic value, and expected value of the function of an uncertain variable, Zhu [20]
also introduced uncertainty simulations. The sine entropy of uncertain variables and its
properties were studied by Yao, Gao, and Dai [21] in 2013. Chen, Li, and Ralescu [22]
proved several useful inequalities for uncertain variables and deduced some convergence
theorems for continuous uncertain measures in 2014. In 2022, Tian, Zong, and Hu [23] gave
the necessary and sufficient condition of the convergence for complex uncertain sequences
(Egoroff’s theorem), and the sufficient condition of the continuity for complex uncertain
variables (Lusin’s theorem).

Lusin’s theorem is one of the most classical theorems in measure theory. So far, Lusin’s
theorem has already been generalized to many fields. By applying the regularity and weakly
null-additivity of fuzzy measure, Li and Yasuda [24] generalized Lusin’s theorem to fuzzy
measure spaces in 2004. Kawabe [25] showed that Lusin’s theorem remains valid for a
weakly null-additive, Riesz space-valued fuzzy Borel measure that has the multiple Egoroff
property and is order separable in 2007. Li and Mesiar [26] proved that Lusin’s theorem
also holds in monotone measure spaces if the monotone measure satisfies condition (E) and
has the pseudometric generating property. In 2020, Zong, Hu, and Tian [27] showed that
Lusin’s theorem for capacities in the framework of g-expectation still holds if g satisfies
the Lipschitz condition, g(t, y, 0) = 0 and subadditivity. In 2022, Wiesel [28] proved that
if Lusin’s theorem for sub-additive capacities v in a compact metric space holds, then v is
continuous from above. These scholars investigated Lusin’s theorem under fuzzy measures
and non-additive measures. The conditions of classical Lusin’s theorem are sufficient
and necessary. However, most scholars only provided sufficient conditions for Lusin’s
theorem. A lot of surveys showed that human uncertainty does not behave like fuzziness
and non-additive measures. The debate focus is that the measure of union of events is not
necessarily the maximum of measures of individual events (see, e.g., Liu [29]). Uncertainty
theory, as an important branch of mathematics, is an important tool for solving various
problems. However, Lusin’s theorem for uncertain variables has been rarely studied. Only
Tian, Zong, and Hu [23] showed that Lusin’s theorem for complex uncertain variables
holds if the uncertain measure is strongly order continuous. In our paper, we further derive
the sufficient and necessary condition of Lusin’s theorem for uncertain variables under
uncertainty theory. We have essentially resolved the problem of Lusin’s theorem in the
framework of uncertainty theory.

In this paper, our main result is Lusin’s theorem for uncertain variables in a compact
metric space. In order to study the necessary and sufficient condition of this main result, we
give three pairs of equivalence conditions for the continuity of uncertain measures and show
that these conditions and the condition: if {Λn} is a sequence of open sets and Λn ↘ ∅,
then lim

n→∞
M{Λn} = 0, are also equivalent in compact metric spaces. The remainder of

this paper is organized as follows: in Section 2, we prove several equivalent conditions
of the continuity for uncertain measures. In Section 3, we investigate the necessary and
sufficient condition of Lusin’s theorem for uncertain variables in a compact metric space
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including the proof, and give some examples for this Lusin’s theorem. In Section 4, we
present the conclusions of this paper and our future research plan. In Appendix A, some
of Lusin’s theorems for fuzzy measure spaces, monotone measure spaces, and capacities
are reviewed. In Appendix B, we introduce some definitions and theorems in uncertainty
theory that may be used in the paper.

2. Continuity Conditions of Uncertain Measures

In this section, we give some equivalent continuous conditions for uncertain measures.

Lemma 1. Suppose that M is an uncertain measure on Γ and {Λn} is a sequence of events. Then,
the following continuity conditions:

(a) Strongly order continuous: if Λn ↘ Λ, and M{Λ} = 0, then lim
n→∞

M{Λn} = 0;

(b) Strongly continuous: if Λn ↗ Λ, and M{Λ} = 1, then lim
n→∞

M{Λn} = 1;

(c) Continuous from above: if Λn ↘ Λ, then lim
n→∞

M{Λn} = M{Λ};

(d) Continuous from below: if Λn ↗ Λ, then lim
n→∞

M{Λn} = M{Λ};

(e) Continuous from above at ∅: if Λn ↘ ∅, then lim
n→∞

M{Λn} = 0;

(f) Continuous from below at Γ: if Λn ↗ Γ, then lim
n→∞

M{Λn} = 1

are equivalent.

Proof. “(a)⇒(e)”. Suppose that Λn ↘ Λ = ∅; by the fact that M{∅} = 0, we have

lim
n→∞

M{Λn} = 0, (1)

that is, for Λn ↘ ∅, we can obtain lim
n→∞

M{Λn} = 0. So, from condition (a), we have that

it is continuous from above at ∅.
“(e)⇒(c)”. Suppose that Λ′

n ↘ ∅, lim
n→∞

M{Λ′
n} = 0. As Λn ↘ Λ, we have

Λn − Λ ↘ ∅. (2)

Hence, it follows that
lim

n→∞
M{Λn − Λ} = 0. (3)

So, for any ε > 0, there exists n0 ∈ N, such that

M{Λn − Λ}≤ ε (4)

for all n ≥ n0. Furthermore, it is clear from the subadditivity of M that

M{Λn} −M{Λ} ≤ M{Λn − Λ} ≤ ε (5)

for all n ≥ n0. That is,
lim

n→∞
M{Λn} = M{Λ}. (6)

So, from condition (e), we can obtain that M is continuous from above.
“(c)⇒(d)”. Suppose that Λn ↗ Λ. Let Λ′

n := Γ − Λn for n = 1, 2, . . .,
then Λ′

n ↘ Λ′ := Γ − Λ. Using the duality of M and the condition (c), we have

1 −M{Λ} = M{Λ′} = lim
n→∞

M{Λ′
n}

= lim
n→∞

M{Γ − Λn} = 1 − lim
n→∞

M{Λn}.
(7)

Hence,
lim

n→∞
M{Λn} = M{Λ}. (8)
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So, from condition (c), it follows that M is continuous from below.
“(d)⇒(b)”. It is obvious.
“(b)⇒(a)”. Suppose that Λn ↘ Λ, and M{Λ} = 0. Let Λ′

n := Γ − Λn for n = 1, 2, . . .,
then Λ′

n ↗ Λ′ := Γ − Λ and M{Λ′} = 1. Using the duality of M and the condition (b), it
is easy to verify that

1 = lim
n→∞

M{Λ′
n} = lim

n→∞
M{Γ − Λn} = 1 − lim

n→∞
M{Λn}. (9)

Hence,
lim

n→∞
M{Λn} = 0. (10)

So, from condition (b), we can see that it is strongly order continuous.
From the above argument, we show that (a), (b), (c), (d), and (e) are equivalent. In the

following, in order to show that (a), (b), (c), (d), (e), and (f) are equivalent, we just have to
prove that (e) and (f) are equivalent.

“(e)⇒(f)”. Suppose that Λn ↗ Γ. Let Λ′
n := Γ − Λn for n = 1, 2, . . ., then Λ′

n ↘ ∅.
From the duality of M and the condition (e), we know that

0 = lim
n→∞

M{Λ′
n} = lim

n→∞
M{Γ − Λn} = 1 − lim

n→∞
M{Λn}. (11)

Hence,
lim

n→∞
M{Λn} = 1. (12)

So, from condition (e), we have that it is continuous from below at Γ.
“(f)⇒(e)”. Suppose that Λn ↘ ∅. Let Λ′

n := Γ − Λn, for n = 1, 2, . . ., then Λ′
n ↗ Γ. It

follows from the duality of M and the condition (f) that

1 = lim
n→∞

M{Λ′
n} = lim

n→∞
M{Γ − Λn} = 1 − lim

n→∞
M{Λn}. (13)

Hence,
lim

n→∞
M{Λn} = 0. (14)

So, from condition (f), we can see that it is continuous from above at ∅.
The proof of Lemma 1 is completed.

Remark 1. (1) Lemma 1 presents three pairs of continuity conditions for uncertain measures: (a)
strong order continuous, (b) strong continuous, (c) continuous from above, (d) continuous from
below, (e) continuous from above at ∅, and (f) continuous from below at Γ, and shows that they
are equivalent. From Lemma 1, we know that if, for an uncertain events sequence {Λn} in Γ,
lim

n→∞
M{Λn} = M{ lim

n→∞
Λn} holds, then for the sequence {Λc

n := Γ − Λn}, lim
n→∞

M{Λc
n} =

M{ lim
n→∞

Λc
n} still holds. It is clear that each pair of the above reveals duality. In fact, this duality is

a kind of symmetry between objects.
(2) In probability theory, P not only satisfies continuity from above, but also satisfies continuity

from below; thus, P is continuous. Therefore, similar to probability, an uncertain measure M is said
to be continuous if it satisfies both continuity from above and continuity from below. By Lemma 1, if
M satisfies any of the conditions (a), (b), (c), (d), (e), and (f), then it is continuous from above and
continuous from below. Thus, M is continuous if and only if it satisfies any of the above conditions.

In order to study the sufficient and necessary condition of Lusin’s theorem for uncer-
tain variables, we assume that (Γ, d) is a compact metric space. The following part of the
paper is developed under this assumption.

Lemma 2. Let (Γ, d) be a compact metric space, and L be the Borel σ-algebra on the non-empty set
Γ. Suppose that M is an uncertain measure on Γ. Then, we have the following condition:

(g) If {Λn} is a sequence of open sets and Λn ↘ ∅, then lim
n→∞

M{Λn} = 0
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is equivalent to the condition (e).

Proof. “(g)⇒(e)”. For the sequence {Λn} of events satisfying Λn ↘ ∅, we can always find
the sequence {Λ′

n} of open sets satisfying Λn ⊆ Λ′
n and Λ′

n ↘ ∅. By the condition (g), we
have lim

n→∞
M{Λ′

n} = 0. Then, we can easily obtain that lim
n→∞

M{Λn} = 0. Hence,

Λn ↘ ∅ ⇒ lim
n→∞

M{Λn} = 0. (15)

“(e)⇒(g)”. It is obvious.
The proof of Lemma 2 is completed.

Remark 2. Let (Γ, d) be a compact metric space and L be the Borel σ-algebra on the non-empty set
Γ. Suppose that M is an uncertain measure on Γ. Then, the conditions (a), (b), (c), (d), (e), (f), and
(g) are equivalent.

3. Lusin’s Theorem for Uncertain Variables

In this section, we provide the sufficient and necessary condition of Lusin’s theorem for
uncertain variables in a compact metric spaces. Before proving Lusin’s theorem of uncertain
variables, we give the definition and conditions of the regularity of uncertain measures.

Definition 1. (see [23]) An uncertain measure M is called regular if the following holds: for any
Λ in L and any ε > 0, there exists a closed set F and an open set G, such that F ⊆ Λ ⊆ G, and
M{G − F} < ε.

Lemma 3. Let (Γ, d) be a compact metric space and L be the Borel σ-algebra on the non-empty set
Γ. Suppose that M is an uncertain measure on Γ satisfying condition (g). Then, M is regular.

Proof. We can easily prove Lemma 3 by using a similar method to that of Lemma 3.1 in
Tian, Zong, and Hu [23]. Therefore, we omit this proof.

Theorem 1. (Lusin’s theorem) Let (Γ, d) be a compact metric space and L be the Borel σ-algebra on
the non-empty set Γ. Suppose that M is an uncertain measure on Γ. Then, for any given uncertain
variable ξ and for any ε > 0, there exists a compact set K = K(ξ, ε) ⊆ Γ, such that M{Γ−K} ≤ ε
and ξ is continuous on K if and only if M satisfies the condition (g).

Proof. “⇐” The proof method refers to the classical Lusin’s theorem for measure theory
(see, e.g., [30], Proof of Theorem 7.4.3).

(1) Suppose that ξ is an uncertain variable, having the form of an elementary function,
i.e., ξ = ∑∞

n=1 an IAn , where {an} is a sequence of real numbers and {An} is a countable
partition of Γ. By Lemma 3 and Definition 1, for any ε > 0, there exist open sets Gn and
closed sets Fn, such that Fn ⊆ An ⊆ Gn and

M{Gn − Fn}≤2−n−2ε. (16)

Thus, in particular,

Γ =
∞⋃

n=1

An ⊆
∞⋃

n=1

Gn ⊆ Γ, (17)

so that Γ =
∞⋃

n=1

Gn.

Noting the fact that
∞⋃

n=1

Fn −
N⋃

n=1

Fn ↘ ∅,
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when N → ∞ and by Lemma 2, we have

lim
N→∞

M
{ ∞⋃

n=1

Fn −
N⋃

n=1

Fn

}
= 0. (18)

Hence, there exists a positive integer N0, such that

M
{

∞⋃
n=1

Fn −
N⋃

n=1

Fn

}
≤ ε

4
(19)

for all N ≥ N0. For any ε > 0, by (16), (19), and the subadditivity of M, we have

M
{

∞⋃
n=1

Gn −
N⋃

n=1

Fn

}

= M
{(

∞⋃
n=1

Gn −
∞⋃

n=1

Fn

)⋃( ∞⋃
n=1

Fn −
N⋃

n=1

Fn

)}

≤ M
{(

∞⋃
n=1

(
Gn − Fn

))⋃( ∞⋃
n=1

Fn −
N⋃

n=1

Fn

)}

≤ M
{

∞⋃
n=1

(
Gn − Fn

)}
+M

{ ∞⋃
n=1

Fn −
N⋃

n=1

Fn

}

≤
∞

∑
n=1

M{Gn − Fn}+M
{

∞⋃
n=1

Fn −
N⋃

n=1

Fn

}
≤ ε

4
+

ε

4
=

ε

2

(20)

for all N ≥ N0. It follows from (20) that for all N ≥ N0,

M
{

∞⋃
n=N+1

An

}
= M

{
Γ −

N⋃
n=1

An

}
= M

{
∞⋃

n=1

Gn −
N⋃

n=1

An

}

≤ M
{

∞⋃
n=1

Gn −
N⋃

n=1

Fn

}
≤ ε

2
.

(21)

Hence, by (16), (21), and using the subadditivity of M, we can obtain that for all
N ≥ N0,

M
{

Γ −
N⋃

n=1

Fn

}
= M

{ ∞⋃
n=1

An −
N⋃

n=1

Fn

}

= M
{( N⋃

n=1

An −
N⋃

n=1

Fn

)
∪
(

∞⋃
n=N+1

An −
N⋃

n=1

Fn

)}

≤ M
{( N⋃

n=1

An −
N⋃

n=1

Fn

)
∪

∞⋃
n=N+1

An

}
≤ M

{
N⋃

n=1

An −
N⋃

n=1

Fn

}
+M

{
∞⋃

n=N+1

An

}

≤ M
{

N⋃
n=1

Gn −
N⋃

n=1

Fn

}
+M

{
∞⋃

n=N+1

An

}
≤ M

{ N⋃
n=1

(
Gn − Fn

)}
+M

{ ∞⋃
n=N+1

An

}

≤
N

∑
n=1

M{Gn − Fn}+
ε

2
≤ ε

2
+

ε

2
= ε.

(22)

That is, for any ε > 0, we have M
{

Γ −⋃N
n=1 Fn

}
≤ ε for all N ≥ N0.
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As Fn is a closed set satisfying Fn ⊆ Γ for any fixed n ∈ N, and Γ is a compact set,

we can see that Fn is a compact set.
N0⋃

n=1

Fn is the finite union of compact sets Fn, so
N0⋃

n=1

Fn

is compact. Take K :=
N0⋃

n=1

Fn, then K is a compact set and M{Γ − K} ≤ ε. Since ξ is a

constant on each Fn, it is obvious that it is continuous on K.
(2) Let ξ be an arbitrary uncertain variable. Then, ξ can be expressed as the uniform

limit of a sequence {ξn} of uncertain variables, where each ξn has only countably many
values, i.e., each ξn is an elementary function. According to what we have just proved, for
each n ∈ N, we can find a compact subset Kn of Γ, such that M{Γ − Kn} < 2−nε and ξn is

continuous on Kn. Take K :=
∞⋂

n=1

Kn. As K is the infinite intersection of compact subsets Kn,

K is a compact subset of Γ. And, we can obtain

M{Γ − K} = M
{

Γ −
∞⋂

n=1

Kn

}
= M

{
∞⋃

n=1

(Γ − Kn)

}

≤
∞

∑
n=1

M{Γ − Kn} ≤
∞

∑
n=1

2−nε = ε.

(23)

That is, for any ε > 0, we have M{Γ − K} ≤ ε.
At last, we prove that ξ is continuous on K. By the above argument, we know that

{ξn} is continuous, and converges uniformly to ξ on K. From the condition that {ξn} is
continuous, we have that for any ε > 0, there exists δ > 0 such that

|ξn(γ)− ξn(γ0)| ≤
ε

3
(24)

whenever |γ − γ0| < δ. From the condition that {ξn} converges uniformly to ξ on K, we
have that, for any above ε > 0 and any γ ∈ K, there exists a positive integer n0 such that

|ξn(γ)− ξ(γ)| ≤ ε

3
(25)

for all n ≥ n0. That is, for any ε > 0 and any γ, γ0 ∈ K, there exists a common positive
integer n0 and δ > 0, such that

|ξn0(γ)− ξn0(γ0)| ≤
ε

3
and |ξ(γ)− ξn0(γ)| ≤

ε

3
(26)

whenever |γ − γ0| < δ. So, it follows that

|ξ(γ)− ξ(γ0)| =| ξ(γ)− ξn0(γ) + ξn0(γ)− ξn0(γ0) + ξn0(γ0)− ξ(γ0)|

≤ |ξ(γ)− ξn0(γ)|+ |ξn0(γ)− ξn0(γ0)|+ |ξn0(γ0)− ξ(γ0)| ≤
ε

3
+

ε

3
+

ε

3
= ε.

(27)

That is, for any ε > 0, there exists δ > 0 such that

|ξ(γ)− ξ(γ0)| ≤ ε (28)

whenever |γ − γ0| < δ. Thus, ξ is continuous on K.
“⇒” Fix a sequence {Λn} of open sets such that Λn ↘ ∅. Now, we define the sequence

of uncertain variables {ξn} via

ξn :=

{
1, if γ ∈ Λn;
0, otherwise.

(29)
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Then, for each n ∈ N, there exists a compact Kn ⊆ Γ, such that

M{Γ − Kn}≤2−n−1ε (30)

and ξn is continuous in Kn. Our goal is to prove that lim
n→∞

M{Λn} = 0, i.e., for any ε > 0,

there exists a positive integer n0, such that M{Λn} ≤ ε for all n ≥ n0.
For each n ∈ N, as ξn is constant on Λn, ξn is continuous on Λn. But ξn is not

continuous on Λn, because the value of ξn on ∂Λn is 0, where Λn is the closure of Λn, and
∂Λn is the boundary of Λn. This means that ∂Λn ∩ Kn = ∅. Furthermore, ∂Λn is a compact
set, since ∂Λn is a closed set, ∂Λn ⊆ Γ, and Γ is a compact set. Define

dn := inf{d(γ, γ0)|γ ∈ ∂Λn, γ0 ∈ Kn}, ∀n ∈ N. (31)

Obviously, dn > 0. For each n ∈ N, choosing a common constant α that satisfies
0 < α < 1, denote

Bn := {γ ∈ Λn | d(γ, ∂Λn)≥αdn}. (32)

Obviously, Bn is a compact set. It follows from (31) and (32) that, for each n ∈ N,
Kn ∩ Λn = Kn ∩ Bn. Then, Kn ∩ Λn is compact for each n ∈ N.

Next, we choose a new sequence {K̃n} of compact sets, where K̃n can be expressed

as K̃n :=
n⋂

m=1

Km ⊆ Kn. Noting the fact that K̃n ∩ Λn is a finite intersection of compact

sets, we can obtain that K̃n ∩ Λn is also a compact set. As K̃n ∩ Λn ⊆ Λn ↘ ∅, we have
K̃n ∩ Λn ↘ ∅ when n → ∞. Because K̃n ∩ Λn is a compact set and decreasing, there exists
a positive integer n0, such that K̃n ∩ Λn = ∅ for all n ≥ n0. Hence,

M{K̃n ∩ Λn} = M{∅} = 0 (33)

for all n ≥ n0, i.e., for any ε > 0, we have

M
{

K̃n ∩ Λn
}
≤ ε

2
(34)

for all n ≥ n0. Furthermore, by (30) and using the subadditivity of M, we can see that

M{Λn − K̃n} ≤ M{Γ − K̃n} = M
{

Γ −
n⋂

m=1

Km

}

= M
{

n⋃
m=1

(Γ − Km)

}
≤

n

∑
m=1

M{Γ − Km} ≤
n

∑
m=1

2−m−1ε ≤ ε

2
.

(35)

Hence, it follows from (34) and (35) that, for any ε > 0, there exists a positive integer
n0, such that

M{Λn} = M
{(

K̃n
⋂

Λn

)⋃(
Λn − K̃n

)}
≤ M

{
K̃n
⋂

Λn

}
+M

{
Λn − K̃n

}
≤ ε

2
+

ε

2
= ε

(36)

for all n ≥ n0, by the subadditivity of M.
The proof of Theorem 1 is completed.

Remark 3. (1) In Theorem 1, the uncertain variable ξ can have a symmetric distribution, and can
also have an asymmetric distribution.

(2) Let (Γ, d) be a compact metric space and L be the Borel σ-algebra on the non-empty set Γ.
Suppose that M is an uncertain measure on Γ. From Remark 2, it follows that the Lusin’s theorem
for uncertain variables holds if and only if M satisfies any of the continuity conditions (a), (b), (c),
(d), (e), (f), and (g).
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In the following, several examples are provided to illustrate applications of Theorem 1.

Example 1. The triplet (Γ,L,M) is an uncertain space, where Γ = [0, 1] and L be the Borel
σ-algebra on Γ. Let A = {γ1, γ2, . . . γn, . . .} =

{
1, 1

2 , . . . 1
n , . . .

}
and the uncertain measure

M{Λ} =



sup
γn∈Λ∩A

1
n + 1

, if sup
γn∈Λ∩A

1
n + 1

< 0.5;

1 − sup
γn∈Λc∩A

1
n + 1

, if sup
γn∈Λc∩A

1
n + 1

< 0.5;

1, if Λ ∩ A = A;
0, if Λ ∩ A = ∅.

(37)

Suppose that ξ is any uncertain variable. Then, for any given ε > 0, there exists a compact set
K, such that M{Γ − K} ≤ ε and ξ is continuous on K.

Proof. By Theorem 1, we just only need to prove that for any sequence {Λn} of open sets,
and Λn ↘ ∅, we have lim

n→∞
M{Λn} = 0.

Suppose that {Λn} is a sequence of open sets, and Λn ↘ ∅. Now, we prove
lim

n→∞
M{Λn} = 0 by the reduction to absurdity.

Assume that
lim

n→∞
M{Λn} = a > 0. (38)

Then, for a given δ > 0 that satisfies a − δ > 0, there exists a positive integer N0,
such that

M{Λn} ≥ a − δ > 0 (39)

for all n ≥ N0. Hence, for any n ≥ N0, there exists at least one γk ∈ Λn ∩ A. Noting the
fact that Λn ↘ ∅ when n → ∞, we can obtain that Λn ∩ A ↘ ∅. Therefore, γk ∈ ∅. This
contradicts to the fact that there are no elements in ∅. Thus, lim

n→∞
M{Λn} = 0.

We complete the proof of Example 1.

Example 2. The triplet (Γ,L,M) is an uncertain space, where Γ = [a, b], and a, b are two real
numbers satisfying a < b, and L be the Borel σ-algebra on Γ. The uncertain measure M is defined
by the following uniform distribution with parameters a and b, i.e.,

M{Λ} =
∫

Λ

1
b − a

dγ. (40)

Suppose that ξ is any uncertain variable. Then, for any given ε > 0, there exists a compact set
K, such that M{Γ − K} ≤ ε and ξ is continuous on K.

Proof. We can easily prove that the uncertain measure M is also a probability measure.
Therefore, the uncertain measure M satisfies the condition (c). Thus, by Lemma 1, Lemma 2
and Theorem 1, we can complete the proof of Example 2.

At last, we give an example to show that Lusin’s theorem for uncertain variables does
not necessarily hold if M is not continuous.

Example 3. The triplet (Γ,L,M) is an uncertain space, where Γ = (0, 1), and L is the Borel
σ-algebra on Γ. The uncertain measure M is defined by

M{Λ} =


0, if Λ = ∅
1, if Λ = Γ
0.5, otherwise.

(41)
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The uncertain variable is defined by

ξ(γ) =

{
1, if γ = 1

2

0, otherwise.
(42)

Then, for the sequence {Λn := (0, 1 − 1
n )}, it is clear that Λn ↗ Γ. But, we have

lim
n→∞

M{Λn} = 0.5. By Lemma 1, we know that M is not continuous. It is easy to see that
ξ is not continuous.

4. Conclusions

Lusin’s theorem, a classical theorem in measure theory, reveals the close connection
between measurable functions and continuity, which makes many problems concerning
measurable functions reduce to the discussion of continuous functions. Uncertainty theory,
as an important branch of mathematics, has developed rapidly in the fields of uncertain
finance, uncertain statistics, uncertainty risk analysis, and so on. However, so far, little
attention has been paid to Lusin’s theorem for uncertain variables. In this paper, we
investigate the sufficient and necessary condition for Lusin’s theorem to hold for uncertain
variables. Before proving Lusin’s theorem, we first give three pairs of continuity conditions
for uncertain measures: strong order continuous, strong continuous, continuous from
above, continuous from below, continuous from above at ∅, and continuous from below at
Γ, and prove that they are equivalent. It follows from Remark 1 that every pair mentioned
above discloses duality. As we all know, this duality is a sort of symmetry between objects,
so every pair can be symmetrically transformed into each other, for example, in Lemma 1,
condition (c) can transform to (d), and (d) can also transform to (c). Then, we prove that
above conditions and the condition: if {Λn} is a sequence of open sets and Λn ↘ ∅,
then lim

n→∞
M{Λn} = 0, are equivalent in compact metric spaces. Finally, a sufficient and

necessary condition of Lusin’s theorem for uncertain variables is shown. Furthermore, we
obtain seven sufficient and necessary conditions for uncertain Lusin’s theorem. And some
examples are provided to illustrate applications of Lusin’s theorem for uncertain variables.

In this paper, in order to prove that our Lusin’s theorem holds, we need the continuity
condition Λn ↘ ∅, then lim

n→∞
M{Λn} = 0. In classical probability theory, for Lusin’s

theorem, this continuity condition is essential. Based on the condition that (Γ, d) is a
compact metric space, we prove that Lusin’s theorem for uncertain variables holds is
equivalent to the continuity condition Λn ↘ ∅ holding, thus lim

n→∞
M{Λn} = 0.

In many cases, randomness and human uncertainty coexist in a complex system. In
order to better deal with this case, Liu [31] presented a new concept of uncertain random
variable, and combined probability measure and uncertain measure into a chance measure
in 2013. Meanwhile, an operational law of uncertain random variables, an expected value
formula and uncertain random programming were firstly provided based on chance theory
by Liu [32]. Lusin’s theorem for uncertain random variables in chance measure spaces has
not yet been thoroughly examined. In the forthcoming study, we will explore the conditions
that make Lusin’s theorem of uncertain random variables hold.
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Appendix A. Some Results of Lusin’s Theorem

In the following, we review the results of Lusin’s theorem on fuzzy measure spaces
and monotone measure spaces, as well as capacities.

Definition A1. (See [24,33]) A set function µ : B → [0, ∞] is called a monotone measure, if it
satisfies that

(1) µ(∅) = 0 (vanishing at ∅);
(2) µ(A) ≤ µ(B) whenever A ⊂ B and A, B ∈ B (monotonicity).

µ is called a fuzzy measure if it fulfills (1), (2) and the following two properties:
(3) If An ↗ A, then lim

n→∞
µ(An) = µ(A) (continuity from below);

(4) If An ↘ A, then lim
n→∞

µ(An) = µ(A) (continuity from above).

Definition A2. (See [34]) µ is called weakly null-additive, if for any E, F ∈ B,

µ(E) = µ(F) = 0 ⇒ µ(E ∪ F) = 0.

Theorem A1. (See [24]) (Lusin’s theorem on fuzzy measure spaces) Let µ be weakly null-additive
fuzzy measure on B. If f is a real-valued measurable function on X then, for every ε > 0, there
exists a closed subset Fε ∈ B such that f is continuous on Fε and µ(X − Fε) < ε.

Definition A3. (See [35]) A set function µ : B → [0,+∞] is said to fulfill condition (E), if for
every double sequence {E(m)

n |n, m ∈ N} ⊂ B satisfying the conditions: for any fixed m = 1, 2, . . . ,

E(m)
n ↘ E(m) and µ(

∞⋃
m=1

E(m)) = 0,

there exist increasing sequences {ni}i∈N and {mi}i∈N of natural numbers, such that

lim
k→∞

µ(
∞⋃

i=k

E(mi)
ni ) = 0.

Definition A4. (See [36]) µ is said to have pseudometric generating property (for short (p.g.p.)),
if for each ε > 0 there exists δ > 0 such that for any E, F ∈ B, µ(E) ∨ µ(F) < δ implies
µ(E ∪ F) < ε.

Theorem A2. (See [26]) (Lusin’s theorem on monotone measure spaces) Let a monotone measure µ
fulfill condition (E) and have p.g.p, and f be a real-valued measurable function on X. Then, for each
ε > 0, there exists a closed subset Fε ∈ B such that µ(X − Fε) < ε and f is continuous on Fε.

Definition A5. (see [28]) Let (X, d) be a metric space and B denote its Borel σ-algebra.
A capacity v: B → R is a set function satisfying:

(1) v(∅) = 0, v(X) = 1;
(2) If A ⊂ B, then v(A) ≤ v(B);
(3) If An ↗ A, then limn→∞ v(An) = v(A).

A capacity v is said to be sub-additive, if v(A ∪ B) ≤ v(A) + v(B) for all A, B ∈ B.

Theorem A3. (See [28]) (Lusin’s theorem for capacities) Let (X, d) be a compact metric space and v
be a sub-additive capacity satisfying the following property: for all ε > 0 and for all Borel measurable
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function f : X → R, there exists a compact set K = K( f , ε) ∈ B, such that v(X − K) ≤ ε and f
is continuous on K.

Then, for all {On}n∈N, On open, and On ↘ O, we have limn→∞ v(On) = v(O).

Appendix B. Uncertain Variable

In this section, some definitions and theorems of uncertainty theory that may be used
in this paper are introduced.

Definition A6. (See [8]) Let L be a σ-algebra on a non-empty set Γ. A set function is M called an
uncertain measure if it satisfies the following axioms:

Axiom 1 (normality axiom). M(Γ) = 1 for the universal set;
Axiom 2 (duality axiom). M{Λ}+M{Λc} = 1 for any Λ ∈ L, where Λc := Γ − Λ;
Axiom 3 (subadditivity axiom). For every countable sequence of {Λi} ⊆ L, we have

M
{

∞⋃
i=1

Λi

}
≤

∞

∑
i=1

M{Λi}.

The triplet (Γ,L,M) is called an uncertain space, and each element Λ in L is called an event.
Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . Write

Γ = Γ1 × Γ2 × · · ·

which is the set of all ordered tuples of the form (γ1, γ2, . . .), where γk ∈ Γk for k = 1, 2, . . . A
measurable rectangle in Γ is a set

Λ = Λ1 × Λ2 × · · ·

where Λk ∈ Lk for k = 1, 2, . . .. The smallest σ-algebra containing all measurable rectangles of Γ is
called the product σ-algebra, denoted by

L = L1 ×L2 × · · · .

Then, the product uncertain measure M on the product σ-algebra L is defined by the following
product axiom in [9].

Axiom 4 (product axiom). Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . The product
uncertain measure M is an uncertain measure satisfying

M
{

∞

∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.

Theorem A4. (See [8]) (Monotonicity theorem) Uncertain measure M is a monotone increasing
set function. That is, for any events Λ1 ⊆ Λ2, we have

M{Λ1} ≤ M{Λ2}.

Theorem A5. (See [8]) Suppose that M is an uncertain measure. Then, the empty set ∅ has an
uncertain measure zero, i.e.,

M{∅} = 0.

Theorem A6. (See [8]) Suppose that M is an uncertain measure. Then, for any event Λ, we have

0 ≤ M{Λ}≤1.
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Definition A7. (See [8]) An uncertain variable ξ is a measurable function from an uncertainty
space (Γ,L,M) to the set of real numbers, i.e., for any Borel set of B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event.

Definition A8. (See [8]) The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}

for any real number x.

Definition A9. (See [9]) The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M
{

n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition A10. (See [8]) The uncertain sequence {ξn} is said to be convergent almost surely (a.s.)
to ξ if there exists an event Λ with M{Λ} = 1 such that

lim
n→∞

|ξn(γ)− ξ(γ)| = 0

for every γ ∈ Λ. In that case, we write ξn → ξ, a.s.

Definition A11. (See [37]) The sequence {ξn} is said to be convergent uniformly almost surely to
ξ if there exists {Ek}, M{Ek} → 0 such that {ξn} converges uniformly to ξ on Ec

k := Γ − Ek, for
any fixed k ∈ N.
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