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Abstract: Under certain assumptions, the existence of a unique solution of mixed integral equation
(MIE) of the second type with a symmetric kernel is discussed, in L2[Ω]× C[0, T], T < 1, Ω is the
position domain of integration and T is the time. The convergence error and the stability error
are considered. Then, after using the separation technique, the MIE transforms into a system of
Hammerstein integral equations (SHIEs) with time-varying coefficients. The nonlinear algebraic
system (NAS) is obtained after using the degenerate method. New and special cases are derived from
this work. Moreover, numerical results are computed using MATLAB R2023a software.
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1. Introduction

It is known that integral equations are the structural origin of differential equations.
Therefore, it is natural and known that to solve a differential equation or transform it into
an integral equation, the solution outcome depends on the given conditions. If the given
conditions are initial, the result represents the Volterra integral equation. If the conditions
are marginal, the result represents the Fredholm integral equation. If the conditions are
mixed, we obtain the Volterra–Fredholm integral equation. We find these types of problems
frequently in contact problems in elasticity science or mixed problems in communication
mechanics and other applied sciences.

The versatility of integral equations (IEs), with their various forms, permits the sim-
ulation of a broad array of issues in the realm of fundamental sciences, prompting a
considerable effort by researchers to present the solutions to these systems. Scientists have
used many different ways to solve these problems, which shows that they are getting
better quickly.

The orthogonal polynomial approach is well recognized as a crucial tool for solving di-
verse scientific challenges encountered in numerous fields of study. Alhazmi [1] employed
a novel method to extract several spectral connections from the mixed integral equation.
He did this by combining the generalized potential kernel with variable separation and
orthogonal polynomials. Nemati et al.’s study [2] used a novel method that included a
continuous kernel to examine the output of the two-dimensional (2D) Volterra integral
model. Hafez and Youssri [3] examined the numerical solutions of the two-dimensional
integral model, which is founded on the linear Volterra–Fredholm equation. They em-
ployed the collocation method using the Legendre–Chebyshev polynomials. In their study,
Abdou et al. [4] employed Chebyshev polynomials to effectively address quadratic integral
equations that incorporate a phase-lag factor in the time domain.

Presently, numerous studies have focused on developing advanced and efficient
methods for solving the integral equations (IEs) and integral differential equations (Io-DEs).
These include the utilization of Riemann–Stieltjes integral conditions [5,6], the application
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of the Lerch polynomial method [7,8], and the implementation of the Spectral Legendre–
Chebyshev method [9]. Additionally, numerical observations based on semi-analytical
approaches in [10] have been employed to solve the VIEs. The wavelet collocation method
was used [11] for solving fractional integro-differential equations (FrIo-DEs). In [12], the
authors applied the extended cubic B-spline to interpret the collocation strategy to solve
the FrIo-DEs. Zhang and Li, in [13], establish the basic structure of the exponential Euler
difference form for Caputo–Fabrizio fractional-order differential equations with multiple
lags. This kind of study provides a deep understanding of behavior for modifying systems.

The linear and nonlinear integral equations (LIEs/NIEs) are utilized in airfoil analysis,
quantum mechanics, astrophysics, and lasers; see [14–20].

Consider the NIE of the second kind of type Volterra–Hammerstein in (n + 1) dimensional

µU(u, t) = H(u, t) + λ
∫ t

0

∫
Ω f (t, τ)p(u, y)Z(τ, w, U(w, τ))dwdτ,(µ, λ − constants)

(u = u(u1, u2, ..., un), w = w(w1, w2, ..., wn))
(1)

Here, in Equation (1), the given functions H(u, t), Z(t, u, U(u, t)) belong to
L2(Ω)× C[0, T]—space. The integration domain Ω is a closed bounded set and depends
on the vector of position, while the time t ∈ [0, T]. The kernel p(u, w) ∈ L2([Ω]× [Ω]),
while f (t, τ) ∈ C([0, T]× [0, T]); t, τ ∈ [0, T], T < 1. The constant µ describes the type of
the integral equation, and λ carries a physical significance. Finally, U(u, t) is the unknown
function and will be discussed in the space of the given function H(u, t).

Differentiating Equation (1) with respect to the variable t, we obtain

µ
∂U(u,t)

∂t = ∂H(u,t)
∂t + λ f (t, t)

∫
Ω p(u, w)Z(t, w, U(w, t))dw

+λ
∫ t

0

∫
Ω

∂ f (t,τ)
∂t p(x, y)Z(τ, w, U(w, τ))dwdτ.

(2)

The integro-differential Equation (Io-DE) (2) is equivalent to IE (1). Therefore, the two
equations have the same solution after neglecting the constant term.

In this article, the author is interested in studying the effect of time on the integral
equation, so that the position part is linked to boundary conditions, while the time part is
linked to an initial condition. There is little research that has linked position and time in
integral equations. Therefore, the interest in this research is to study a nonlinear integral
equation linked between position and time. In addition, this work examines and establishes
the existence of a solitary solution for NIE (1), subject to specific circumstances. Further-
more, the analysis includes the examination of convergence and the assessment of error
stability. A numerical technique was applied to derive a set of location-wise Hammerstein
integral equations (SHIEs). In addition, the degenerate kernel method is employed to
calculate the numerical solution of the SHIEs, resulting in a nonlinear algebraic system
(NAS) of equations. A unique solution is obtained. Ultimately, a multitude of situations
with varying kernels was resolved.

2. The Existence Solution of the NV-HIE

A fixed-point theorem and the successive approximations approach will be used to
prove the existence of a single solution to Equation (1) and then converge this solution as
well as the error. Therefore, we represent it in the structure of an integral operator,

WU(u, t) =
1
µ

H(u, t) +
1
µ

WU(u, t), (µ ̸= 0) (3)

WU(u, t) = λ
∫ t

0

∫
Ω

f (t, τ)p(u, w)Z(τ,w, U(w, τ))dwdτ. (4)

Then, assume the assumptions:
(i) Position kernel p(u, w), u = u(u1, u2, ..., un), w = w(w1, w2, ..., wn), check the offline

condition,
{∫

Ω

∫
Ω |p(u, w)|2dudw

} 1
2
= M, (M-constant).
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(ii) Time kernel f (t, τ) ∈ C[0, T] check status | f (t, τ)| ≤ f , ( f —constant).
(iii) The given function H(u, t) belongs to L2(Ω)× C[0, T]—space, and its norm is

∥H(u, t)∥L2(Ω)×C[0,T] = max
0≤t≤T

∣∣∣∣∣
∫ t

0

{∫
Ω

H2(u, τ)du
} 1

2
dτ

∣∣∣∣∣ = G, (G − constant)

(iv) The function Z(t, u, U(u, t)), for the constants Q > L, Q > Q1, satisfies the
following conditions:

(a) max
0≤t≤T

∣∣∣∣∫ t
0

{∫
Ω |Z(τ, u, U(u, τ))|2du

} 1
2 dτ

∣∣∣∣ ≤ Q1∥U(u, t)∥L2(Ω)×C[0,T], ∥U(u, t)∥

= max
0≤t≤T

∣∣∣∣∫ t
0

{∫
Ω |U(u, τ)|2du

} 1
2 dτ

∣∣∣∣.
(b)|Z(t, u, U1(u, t))− Z(t, u, U2(u, t))| ≤ N(t, u)|U1(u, t)− U2(u, t)|,

∥N(t, u)∥L2(Ω)×C[0,T] = max
0≤t≤T

∣∣∣∣∫ t
0

{∫
Ω N2(τ, u)du

} 1
2 dτ

∣∣∣∣ = L, (L − constant).

Theorem 1. If the assumptions (i)–(iv) are verified, then Equation (1) has a single solution in
L2(Ω)× C[0, T], under the condition

|µ| > |λ| f MQT (5)

In order to establish the validity of this theorem, it is necessary to examine the follow-
ing lemmas:

Lemma 1. By the assumptions (i)–(iv-a), W transforms L2(Ω)× C[0, T] into itself.

Proof. Based on Equations (3) and (4), we obtain

∥∥WU(u, t)
∥∥ ≤ 1

|µ| ∥H(u, t)∥+ |λ|
|µ|

∥∥∥∥∫ t

0

∫
Ω
| f (t, τ)||P(u, w)||Z(τ, w, U(w, τ))|dwdτ

∥∥∥∥.

By utilizing the assumptions (ii)–(iii) and subsequently applying the Cauchy Schwarz
inequality, we obtain,

∥∥WU(u, t)
∥∥ ≤ G

|µ| +
|λ|
|µ| f

∥∥∥∥∥∥( max︸︷︷︸ ∫ t

0
dt

0≤t≤T

)

{∫
Ω

∫
Ω
|p(u, w)|2dudw

} 1
2
. max
0≤t≤T

∣∣∣∣∣
∫ t

0

{∫
Ω
|Z(τ, w, U(w, τ)|2dw

} 1
2
dτ

∣∣∣∣∣
∥∥∥∥∥∥.

Considering the given constraints (i), (iv-a), we have,

∥∥WU(u, t)
∥∥ ≤ G

|µ| + σ∥U(u, t)∥, (σ =

∣∣∣∣λµ
∣∣∣∣ f MQT). (6)

Hence, W maps the ball Sρ into itself where

ρ =
G[

|µ| − |λ| f MQT
] .

the positive values of ρ, G, lead to
[
|µ| − |λ| f MQT

]
> 0. This leads us to say that σ < 1.

Furthermore, W is bounded where

∥WU(u, t)∥ ≤ σ∥U(u, t)∥. (7)

□
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Lemma 2. Under (i), (ii), and (iv-b), W is contraction operator in L2(Ω)× C[0, T].

Proof. Regarding the two functions {U1(u, t), U2(u, t)} ⊂ L2(Ω) × C[0, T], then from
Equations (3) and (4), we find

∥W(U1(u, t) − U2(x, t))∥
≤ |λ|

|µ|

∥∥∥∫ t
0

∫
Ω | f (t, τ)||p(u, w)||Z(τ, w, U1(w, τ))− Z(τ, w, U2(w, τ))|dwdτ

∥∥∥.

With the aid of (i), (ii), and (iv-b), and Cauchy–Schwarz inequality, we obtain∥∥W(U1(u, t)− U2(u, t))
∥∥ ≤ σ∥U1(u, t)− U2(u, t)∥. (8)

Hence, W is continuous in L2(Ω)× C[0, T]. Moreover, under the condition σ < 1, W
is a contraction operator. Hence, W has a single fixed point, which is the unique solution of
Equation (1). □

3. Results the Convergence and the Error Stability of Solution

The successive approximation method was used to prove the convergence and error
stability of the solution. For this, we assume Un(u, t) ⊂ Ui(u, t)i=0

} , to have

µUn(u, t) = H(u, t)
+λ
∫ t

0

∫
Ω f (t, τ)p(u, w)Z(τ, w, Un−1(w, τ))dwdτ, (n ≥ 1, U0(u, t) = H(u, t))

(9)

set,
Ψn(u, t) = Un(u, t)− Un−1(u, t) (10)

to have
Un(u, t) = ∑n

i=1 Ψi(u, t), Ψ0(u, t) = H(x, t). (11)

Equation (1), yields

|µ|∥Un(u, t)− Un−1(u, t)∥
≤ |λ|∥

∫ t
0

∫
Ω| f (t, τ)||p(u, w)|||Z(τ, w, Un−1(w, τ))

−Z(τ, w, Un−2(w, τ))|dwdτ ∥.

Using assumptions (ii)–(iv-a), to have

|µ|∥Un(u, t)− Un−1(u, t)∥ ≤ |λ| f
∥∥∥∥∫ t

0

∫
Ω
|p(u, w)|N(τ, w)|Un−1(w, τ)− Un−2(w, τ))|dwdτ

∥∥∥∥.

By utilizing the Cauchy–Schwarz inequality on the Hammerstein integral term, and
considering the assumptions (i) and (iv-b), the inequality is simplified to

∥Ψn(u, t)∥ ≤ σ∥Ψn−1(u, t)∥, (n ≥ 1). (12)

When n = 1, the inequality (12), with condition (ii) takes the form

∥Ψ1(u, t)∥ ≤ σG. (13)

By induction, we write

∥Ψn(u, t)∥ ≤ σnG, n = 0, 1, ..., (14)

Since Equation (14), for n = 0, 1, ..., is obviously true then the sequence {Un(u, t)}
converges, and

U(u, t) = ∑∞
i=0 Ψi(u, t). (15)
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The series (15) exhibits uniform convergence due to the uniform behavior of its terms.
Ψi(u, t) are dominated by σi.

To discuss the error stability, we assume Un(u, t) is the numerical solution of Equation (1);
hence, we have

µR(u, t) = {H(u, t)− Hn(u, t)}

+λ
t∫

0

∫
Ω

f (t, τ)p(u, w)[Z(τ, w, U(w, τ))− Zn(τ, w, Un(w, τ)]dwdτ
(16)

Following the same previous way, we have

∥R(u, t)∥ ≤ ∥H(u, t)− Hn(u, t)∥
|µ| − |λ| f MQT

. (17)

The inequality (17) proved that the error is stable and has a unique representation
under the condition,

|µ| > |λ| f MQT.

4. System of Hammerstein Integral Equations (SHIEs) in Position

In this part, Equation (1) employs a numerical approach to derive SHIEs in position.
In order to achieve this objective, we divide [0, T] as t = tk,k = 0, 1, 2, ..., N, then from
Equation (1), we have (see [2,20])∫ tk

0

∫
Ω f (tk, τ)p(x, y)Z(τ, w, U(w, τ))dwdτ

=
k
∑

j=0
Ωj f (tk, tj)

∫
Ω p(u, w)Z(tj, w, U(w, tj))dw + O(h̄p+1

k ), P > 0,

h̄k = max
0≤j≤k

hj, hj = tj+1 − tj, ωk =
1
2 hk, ωj = hj, (j = 0, k).

(18)

Using Equation (18) in Equation (1), and neglecting O(h̄p+1
k ), we have

µUk(u) = Hk(u) + λ∑k
j=0 ωj f j,k

∫
Ω

p(u, w)Zj(w, Uj(w))dw. (19)

Here, we used the notations,

U(u, tk) = Uk(u), H(u, tk) = Hk(u), f
(
tk, tj

)
= f j,k, Z(tj, u, U(u, tj)) = Zj(u, Uj(u))

Equation (19) represents a set of n-dimensional HIEs, and its solution relies on the
specified function Hk(u), k = 0, 1, ..., N, the kernel p (u, w), and the known function
Zj(u, Uj(u)).

5. Special Cases

(i) As an important special case let, in (19), k = 0 to have

µU0(u) = H0(u) + λω0 f0,0

∫
Ω

p(u, w)Z0(w, U0(w))dw. (20)

Equation (20) represents an integral equation of Hammerstein type and its solution
depends on the kind of kernel.

(ii) Let u = u(u1), w = w(w1), Z0(w, U0(w)) = U0(w), Ω = (−1, 1), tohave

µU0(u) = H0(u) + ζ
∫ 1

−1
p(u, w)U0(w)dw, ζ = λω0 f0,0 (21)
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Formula (21) represents a Fredholm integral equation of the second kind. The importance of
the kernel when it takes different cases of a singular term like logarithmic kernel, Carleman
kernel, Cauchy kernel, and strong singular kernel,

As an important special case when in (21) p(u, w) = ln|u − v| (logarithmic kernel)
hence, we have

µU0(u) = H0(u) + ζ
∫ 1

−1
ln|u − v|U0(w)dw.

Differentiating the above equation with respect to u, we obtain

µ
dU0(u)

du
=

dH0(u)
du

+ ζ
∫ 1

−1

1
u − v

U0(w)dw

Using the substation u = 2x − 1, v = 2y − 1, we have

dθ(x)
dx

= g(x) + ζ
∫ 1

0

1
u − v

U0(w)dw,
{

g(x) =
dH0(2x − 1)

2µdx
, ζ =

ζ

µ

}
(22)

The integral Equation (22) has appeared in both combined infrared gaseous radiation
and molecular conduction, see [20].

(iii) Three-dimensional integral equation
Let u = u(u1, u2, u3), w = w(w1, w2, w3), Z0(w, U0(w)) = U0(w), we have

µU0(u, w) = H0(u, w) + β
∫

Ω
p(u − ζ, w − η)U0(ζ, η)dζdη, β = λω0 f0,0 (23)

here Ω Ω =
{
(u, w, v)ϵΩ : 2

√
u2 + w3 ≤ a, v = 0 .

If p(u − ζ, w − η) =
[
(u − ζ)2 + (w + η)2

]υ
, 0 ≤ ν < 1, the integral Equation (22) was

nvestigated from the semi-symmetric Hertz problem for two different elastic materials
in three dimensions when the modules of elasticity change according to the power law
σi = K0εν

i (0 ≤ ν ≤ 1),where σi and εi, i = 1, 2, 3 are the stress and strain rate intensities,
respectively, while K0, ν are physical constants.

6. The Degenerate Kernel Method and the Nonlinear Algebraic System

The straightforwardness of utilizing the Degenerate method to solve the nonlinear
algebraic integral system (19) compels one to contemplate substituting the provided kernel
p(u, w) approximately by a kernel pn(u, w); that is

pn(u, w) = ∑n
i=1 Bi(u)Ci(w). (24)

The set of functions {Bi(u)} and {Ci(w)} are linearly independent, such that

{∫
Ω

∫
Ω
|p(u, w)− pn(u, w)|2dudw

} 1
2
→ 0 as n → ∞ (25)

hence, the solution of Equation (19) associated to the kernel pn(u, w) takes the form

µUn,k(u) = Hk(u) + λ∑k
j=0 ωj f j,k

∫
Ω

pn(u, w)Zj(w, Un,j(w))dw. (26)

Using Equation (20) in Equation (22), we have

µUn.k(u) = Hk(u) + λ∑n
i=1 ∑k

j=0 ωj f(j,k)Ai,jBi(u), (µ ̸= 0), k = 0, 1, 2, ..., N. (27)

where
Ai,j =

∫
Ω

Ci(w)Zj(w, Un,j(w))dw,j = 0, 1, 2, ..., k
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here, Ai,j′s are constants to be determined from the following formula

Am,j =
∫

Ω
Cm(w)Zj(w,

1
µ

Hj(w) +
λ

µ

n

∑
i=1

j

∑
r=0

ωr fr,j Ai,jBi(w))dw, (m = 1, 2, ..., n).

Define

Em,j(A1,j, A2,j, ..., An,j) =
∫

Ω
Cm(w)Zj(w,

1
µ

Hj(w) +
λ

µ ∑n
i=1 ∑j

r=0 ωr fr,j Ai,jBi(w))dw, (28)

Equation (28) represents a system of NAEs that can be written as a matrix equation

A1,j
A2,j
A3,j

.

.

.
An,j


=



E1,j(A1,j, A2,j, ..., An,j)
E2,j(A1,j, A2,j, ..., An,j)
E3,j(A1,j, A2,j, ..., An,j)

.

.

.
En,j(A1,j, A2,j, ..., An,j)


, (29)

the nonlinear algebraic system (29) can be solved numerically.

The Existence of a Single Solution of the Nonlinear Algebraic System

This section will provide an exposition on the existence and validation of a distinct
NAS solution (24). To accomplish this, the following theorem will be formulated.

Theorem 2. Assume that the known continuous functions Zj(w, ψ(w, Ai,j)) in Equation (27)
satisfy the following conditions,

{∫
Ω

∣∣Zj(w, ψ(w, Ai,j))
∣∣2dw

} 1
2
≤ L

(
n

∑
i=1

∣∣Ai,j
∣∣2) 1

2

, (L is constant ) (30)

and,∣∣Zj(w, ψ(w, Ai,j))− Zj(w, ψ(w, Di,j))
∣∣ ≤ M1

∣∣ψ(w, Ai,j
)
− ψ

(
w, Di,j

)∣∣, (M1is constant) (31)

then, the NAS (29) has a single solution Aj, and Un,k(u) is the single solution of Equation (27) in
ℓ2-space.

To demonstrate the validity of this theorem, it is necessary to examine the following
two lemmas.

Lemma 3. By the aid of the condition (30), the operator Ej of Equation (28) maps ℓ2-space
into itself.

Proof. Let V be the set of functions Ξ = {ξi} in ℓ2 such that

∥Ξ∥ℓ2
=
(
∑∞

i=1|ξi|2
) 1

2 ≤ β, (β − constant).

From Equation (27), we have

∣∣Em,j(A1,j, A2,j, ..., An,j)
∣∣ ≤ ∫

Ω
|Cm(w)|

∣∣∣∣∣w,
1
µ

Hj(w) +
λ

µ

n

∑
i=1

j

∑
r=0

ωr fr,j Ai,jBi(w)))

∣∣∣∣∣dw.

Hence, after applying Cauchy–Schwarz inequality, and using condition (30), we have
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(
∑n

m=1

∣∣Em,j(A1,j, A2,j, ..., An,j)
∣∣2) 1

2 ≤ M2

(
∑n

i=1

∣∣Ai,j
∣∣2) 1

2 , (M2L
(

∑n
m=1

∫
Ω
|Cm(w)|2dw

) 1
2
)constant),

as n → ∞ , the last inequality yields∥∥Ej(Aj)
∥∥
ℓ2
≤ M2

∥∥Aj
∥∥
ℓ2

. (32)

Hence, Hi is a bounded operator that maps the set U into itself, where

β = M2

∥∥∥A(j)
∥∥∥
ℓ2

.

□

Lemma 4. Under the condition (31), Ej is a contraction mapping in ℓ2.

For the functions Aj = (A1,j, A2,j, ..., An,j) and Dj = (D1,j, D2,j, ..., Dn,j) in ℓ2, Equation (24)
leads to ∣∣Em,j(A1,j, A2,j, ..., An,j)− Em,j(D1,j, D2,j, ..., Dn,j)

∣∣ ≤∫
Ω |Cm(w)||Zj(w, 1

µ Hj(w) + λ
µ

n
∑

i=1

j
∑

r=0
ωr fr,j Ai,jBi(w))− Zj(w, 1

µ Hj(w)

+ λ
µ

n
∑

i=1

j
∑

r=0
ωr fr,jDi,jBi(w))|dw.

Introducing condition (31), then applying Cauchy–Schwarz inequality three times, the
above inequality takes the form

(
n
∑

m=1

∣∣Hm,j(A1,j, A2,j, ..., An,j)− Hm,j(D1,j, D2,j, ..., Dn,j)
∣∣2) 1

2
≤ M3

(
n
∑

i=1

∣∣Ai,j − Di,j
∣∣2) 1

2
,

M3 = |λ|
|µ| M1

(
j

∑
r=0

∣∣∣u(r)
∣∣∣2) 1

2
(

j
∑

r=0

∣∣∣F(r,j)
∣∣∣2) 1

2( n
∑

m=1

∫
Ω |Cm(y)|2dy

) 1
2
(

n
∑

i=1

∫
Ω |Bi(y)|2dy

) 1
2
.

As n → ∞ , the previous inequality can be reduced to∥∥Ej(Aj)− Ej(Dj)
∥∥
ℓ2
≤ M3

∥∥Aj − Dj
∥∥
ℓ2

. (33)

Thus, Ej is a continuous operator in the space ℓ2. If M3 < 1, then Ej is a contraction
operator. Hence, Ej has a unique fixed point Aj, which is the unique solution of the
algebraic system (27). In view of Theorem 2, the algebraic system (27) has a single solution
Un,k(u) in ℓ2.

7. Examples and Numerical Results

Example 1. For the NV-HIE

U(u, t)−
∫ t

0

∫ 1

0
τ3(1 + uw)Uℓ(w, τ)dwdτ = H(u, t),ℓ = 1, 2, ..., N, (U(u, t) = ut). (34)

If we divide the interval [0, T] as 0 = t0 < t1 < t2 < t3 = t, t = tk; k = 0, 1, 2, 3, and
using the degenerate method, we obtain

Uk(u)− ∑k
j=0 ∑n

m=0 ωjt3
j

um

m!
Aj,m = Hk(u), (k = 0, 1, 2, 3), (35)
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where

Ak,m =
∫ 1

0
ym
[

Hk(w) + ∑k
j=0 ∑n

m=0 ωjt3
j

um

m!
Aj,m

]2
dw, Hk(u) = H(u, tk).

The solution of Equation (35) gives the following results,

U0(u) = 0, U1(u) =
ut
3

, U2(u) =
2ut
3

, U3(u) = ut.

Here, U3(u) is the exact solution of Equation (34).

Example 2. For the NV-HIE

U(u, t)−
∫ t

0

∫ 1

0
τ3euwUℓ(w, τ)dwdτ = H(u, t), ℓ = 1, 2, ..., N, (U(u, t) = ut). (36)

Approximate the kernel of Equation (36) p(u, w) = euw in the form,

p(u, w) ≃ pn(u, w) = ∑n
m=0

(uw)m

m!
, (37)

where {∫ 1

0

∫ 1

0
|p(u, w)− pn(u, w)|2dudw

} 1
2

→ 0 as n → ∞.

Using the degenerate kernel, we obtain

Uk(u)−
k
∑

j=0

n
∑

m=0
ωjt3

j
um

m! Aj,m = Hk(u), Ak,m

=
∫ 1

0 wm

[
Hk(w) +

k
∑

j=0

n
∑

m=0
ωjt3

j
um

m! A(m)
j

]2

dw, (k = 0, 1, 2, 3).
(38)

The solution of Equation (38), gives U0(u) = 0, U1(u) = ut
3 , U2(u) = 2ut

3 , U3(u) = ut.
Here, U3(u) is the exact solution of Equation (36).

Example 3. Assume the kernel in the Legendre or Chebyshev polynomials forms. Then, we have
two cases as follows,

Example 3.1. Consider the MIE with the kernel in Legendre polynomial form,

U(u, t) = H(x, t) +
∫ t

0

∫ 1

−1
τ2

20

∑
n=0

Pn(u)Pn(w)Uℓ(w, τ)dwdτ;

The exact solution is U(u, t) = u2 + t2.
In the third example, the kernel generation method was applied when the kernel is in

the form of a Legendre polynomial, considering the difference in time. The equation was
also applied when it was linear and when it was nonlinear. From Tables 1–3, it was noted
that the error in the linear case is slightly higher than the error in the nonlinear case. Also,
as time increases, the cumulative error increases.
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Table 1. Discusses the numerical results and estimating errors at µ = 1, λ = 1, T = 0.01, in the linear
case l = 1, and nonlinear case.

u Exact Ulinear Unonlinear Eerrorlinear Errornonlinear

−1 1.0001 1.000027301 1.000156796 7.2699 × 10−5 5.6796 × 10−5

−0.5 0.2501 0.250558794 0.2501511588 4.58794 × 10−4 5.511588 × 10−5

0 0.0001 0.00032278 0.000093462 2.2278 × 10−4 6.538 × 10−6

0.5 0.2501 0.25060319 0.2503023022 5.0319 × 10−4 2.023022 × 10−4

1 1.0001 1.00027034 1.0000273 1.7034 × 10−4 7.27 × 10−5

Table 2. Discusses the numerical results and estimating errors at µ = 1, λ = 1, T = 0.4, in the linear
case l = 1, and nonlinear case.

u Exact Ulinear Unonlinear Eerrorlinear Errornonlinear

−1 1.16 1.209464729 1.160215981 0.04946429 2.15981 × 10−4

−0.5 0.41 0.4419580477 0.4099824773 0.0319580477 1.75227 × 10−5

0 0.16 0.1553572123 0.1599678394 4.6427877 × 10−3 3.21606 × 10−5

0.5 0.41 0.3977882159 0.4099281713 0.0122117841 7.18287 × 10−5

1 1.16 1.209464729 1.160085598 00.049464729 8.5598 × 10−5

Table 3. Discusses the numerical results and estimating errors at µ = 1, λ = 1, T = 0.8, in the linear
case l = 1, and nonlinear case.

u Exact Ulinear Unonlinear Eerrorlinear Errornonlinear

−1 1.64 1.8510286885 1.640901375 0.211028688 5.4191 × 10−4

−0.5 0.89 0.8371583441 0.8896882523 0.0528416559 3.117477 × 10−4

0 0.64 0.6104412354 0.6396523326 0.0295587646 3.476674 × 10−4

0.5 0.89 0.839453621 0.8896515856 0.050546379 3.484144 × 10−4

1 1.64 1.851028686 1.640038297 0.211028686 3.8297 × 10−5

Example 3.2. Consider the MIE with the kernel in the Chebyshev polynomial form,

U(u, t) = H(u, t) +
∫ t

0

∫ 1

−1
τ2∑20

n=0 Tn(u)Tn(w)Ul(w, τ)dwdτ;

The exact solution is U(u, t) = u2 + t2.
In this example, the kernel generation method was also applied in the linear and

nonlinear integral equation at different times for the continuous time kernel. The position
kernel was also imposed in the form of a Chebyshev polynomial function of the first kind.
The resulting error was also studied at different times, and this is clear in Tables 4–6.

Table 4. Discusses the numerical results and estimating errors at µ = 1, λ = 1, T = 0.01, in the linear
case l = 1, and nonlinear case.

u Exact Ulinear Unonlinear Eerrorlinear Errornonlinear

−1 1.0001 1.000645552 1.000156796 5.45552 × 10−4 5.6796 × 10−4

−0.5 0.2501 0.2499299037 0.2508547062 7.547062 × 10−4 1.700963 × 10−4

0 0.0001 0.0006081 0.0001345009 5.081 × 10−4 3.45009 × 10−4

0.5 0.2501 0.249258 0.2498976982 8.42 × 10−4 2.23018 × 10−4

1 1.0001 1.000645552 1.0002703450 5.45552 × 10−4 1.70345 × 10−4
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Table 5. Discusses the numerical results and estimating errors at µ = 1, λ = 1, T = 0.4 in the linear
case l = 1, and nonlinear case.

u Exact Ulinear Unonlinear Eerrorlinear Errornonlinear

−1 1.16 1.109657913 1.159812825 0.050342087 1.87175 × 10−4

−0.5 0.41 0.394436943 0.4101825043 0.015563057 1.825043 × 10−4

0 0.16 0.1509816382 0.1601612092 9.0183618 × 10−3 1.612092 × 10−4

0.5 0.41 0.4003211 0.40981749 9.6789 × 10−3 1.8251 × 10−4

1 1.16 1.21034208 1.160056829 0.05034208 5.6829 × 10−5

Table 6. Discusses the numerical results and estimating errors at µ = 1, λ = 1, T = 0.8, in the linear
case l = 1, and nonlinear case.

u Exact Ulinear Unonlinear Eerrorlinear Errornonlinear

−1 1.64 1.85248633 1.64054191 0.21248633 5.4191 × 10−4

−0.5 0.89 0.78216442 0.890210195 0.10783558 2.10195 × 10−4

0 0.64 0.6104412354 0.6403476674 0.0295587646 3.476674 × 10−4

0.5 0.89 0.839453621 0.88965158 0.050546379 3.4842 × 10−4

1 1.64 1.851028686 1.640038297 0.211028686 3.8297 × 10−5

8. Conclusions

The study successfully proves the existence of a solitary solution for NMIE (1) under
specified conditions. The research includes an analysis of convergence and an evaluation
of error stability. To solve the problem, a numerical technique is utilized to transform
the problem into a set of location-wise Hammerstein integral equations (SHIEs). The
degenerate kernel method is a powerful technique to compute the numerical solutions of
these SHIEs, leading to a nonlinear algebraic system (NAS) of equations that yields a unique
solution. The study concludes by resolving numerous scenarios involving different kernels,
including the kernels in the form of Legendre and Chebyshev polynomials, respectively,
and calculating the numerical solution in the linear and nonlinear cases. We deduce that
the error estimates associated with the nonlinear case are less than the linear ones; see
Tables 1–6 and Figures 1–4.
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