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Abstract: Convenient and consistent phase convention is important in the construction of the hadronic
Lagrangian. However, the importance of phase convention has been overlooked for a long time, and
the sources of different conventions are never explicitly addressed. This obscure situation can cause
mistakes and misinterpretations in hadron physics. In this paper, we systematically analyze and
compare the flavor SU3 phase conventions from the perspective of the quark model. All sources
that could lead to different conventions are pointed out and carefully studied. With the tool of the
quark model, we also clarify some misconceptions and demonstrate a consistent way to incorporate
different conventions.

Keywords: SU3 group; phase convention; quark model; hadron physics

1. Introduction

Quantum mechanics is built upon the Hilbert space, where two vectors ψ and ϕ can
be linearly combined into a new state. aψ1 + bψ2 is generally not the same as aψ1 − bψ2.
The change in the sign at the amplitude level results in a different interference term, which
leads to different physical predictions. Thus, every physicist agrees that the relative phase
between the two vectors is important. On the other hand, the overall phase, such as the
complex η in η(aψ1 + bψ2) can be set arbitrarily because it is not physically observable.
Despite this degree of freedom in setting the arbitrary overall phases, a unified convention
will undoubtedly be helpful, especially when comparing results from various sources.

For simpler groups, such as the SU2 group of the angular momentum, there is a
widely accepted phase convention for physicists, the renowned Condon–Shortley phase
convention. For larger groups, despite the existing natural extension of the Condon–
Shortley phase convention in mathematics [1–4], different physicists have started to invent
and stick to their own phase conventions.

In principle, it is correct that all phase conventions are physically equivalent as long
as each convention is self-consistent, and some peculiar conventions should be suitably
explained once used. However, there are inevitably temporary treatments that make the
conventions hard to track, e.g., it may happen that not all SU3 multiplets are of interest,
and only some SU2 slices of the full SU3 multiplets are calculated for physical convenience.
What appears to be the irrelevant overall factors for SU2 are in fact deeply connected by
SU3; thus, they are essentially the crucial relative phase.

Differences in conventions and the temporary treatment mentioned above have made
it practically challenging to compare and merge coupling constants from different sources.
This situation also greatly hinders the communication of physicists. In practice, incon-
sistencies tend to be introduced to the convention; however, these inconsistencies can
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sometimes be absorbed by the redefinition of hadronic fields or the coupling constants in
the Lagrangian. This brings additional complexity in checking and comparing the results
in the literature. This chaotic situation was pointed out in Ref. [5], and a recommended
convention is also offered; however, a detailed analysis and comparison of different sources
is still missing. It would be beneficial if the intricate conventions could be classified or
compared, and different origins of the conventions could be addressed systematically.

This is the topic that this paper is mainly devoted to. To facilitate the analysis, we used
the quark model, which is familiar to physicists as a proxy for group theory. With the quark
model, we will address the various conventions that occur at different levels and stages
and offer a systematic way to pinpoint and compare the intricate conventions. We will
show that a convention is not just from mathematics, as it is a result of interplay between
mathematics and physics. In this paper, we mainly focus on the SU3 group in the hadron
flavor degree of freedom with a slight extension to SU4. We also show an interesting result
coming from the constraint of the color degree of freedom.

We summarize the whole procedure for writing down a hadronic Lagrangian in
Figure 1. The whole theme starting from the flavor wave function part is the identification
of hadrons with derived wave functions. In this part, the differences between different
conventions are purely notational. In principle, it is not difficult to translate different
conventions using the redefinition of the hadronic field. However, this may lead to various
confusions and misinterpretations.

Isospin
Convention

Flavor Wave Functions

Hadrons

, , ...

Hadron Flavor
Convention

(Generalized)
Condon-Shortley

Convention

Isospin Multiplets

Lagrangian with Multiplets

of

Group Theory

Particle Order
Convention

Clebsh-Gordan
Coefficients

Descending
Operator Set

Highest Weight
Convention

, ...

Isoscalar Factors

Notational Mathematical

Figure 1. The workflow of writing down a Lagrangian, where the ellipses mark the conventions that
lead to different rectangles (outcomes).

This paper is organized as follows. Section 2 is devoted to group theory, where
different generalizations of the Condon–Shortley phase conventions of the Clebsh–Gordan
coefficients are discussed. We also show an interesting result from the interplay of the
flavor and color degree of freedom. Section 3 explains the group theory result with the
language of the quark model and different hadron flavor conventions are derived and
compared. The isoscalar factor under the convention of Chen et al. [6] is derived in Section 4,
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which is also compared with the conventions used by de Swart [7,8] and Rabl et al. [9,10].
We provide a short summary of this paper in Section 5 and some calculation details in
Appendixes A and B.

2. Clebsh–Gordan Coefficients
2.1. SU2 and Condon–Shortley Phase Convention

The traditional way to obtain the SU2 Clebsh–Gordan coefficients (CGCs) is the de-
scending operator method. The main idea is a combination of a descending operator J−
with orthogonalization. The details can be found in many quantum mechanics textbooks,
such as Chapter 3.7 in Ref. [11]. Since this method will be extended to SU3, we demonstrate
the key steps in the following.

The matrix element of the J± operator is derived from the Casimir operator J⃗2 of SU2,
which has a diagonal matrix form. The J± is constructed to be a Hermitian conjugated
pair, and by the assumption that both matrix elements should be positive, one can take the
square root of the diagonal and obtain the matrix element. Specifically,

J+ J− = J2 − J2
z + Jz, (1)

⟨jm|J+ J−|jm⟩ = j(j + 1)− m(m − 1), (2)

J−|jm⟩ =
√

j(j + 1)− m(m − 1)|jm − 1⟩. (3)

In the last two equations, state |jm⟩ is treated as a whole no matter whether it is a compos-
ite system or not. For the sake of clarity in the following discussion, we introduce the concepts
of coupled and uncoupled bases. Consider the case where two angular momenta J1 and J2
couple to form a total angular momentum J; the corresponding Hilbert space can be spanned
by two sets of bases: the coupled basis |J, m⟩, (|J1 − J2| ≤ J ≤ J1 + J2,−J ≤ m ≤ J) and
the uncoupled basis |J1, m1⟩ ⊗ |J2, m2⟩ ≡ |J1, m1, J2, m2⟩, (−J1 ≤ m1 ≤ J1,−J2 ≤ m2 ≤ J2).
The coefficient ⟨J1, m1, J2, m2|J, m⟩, which relates the coupled/composite basis |J, m⟩ to the
uncoupled basis |J1, m1, J2, m2⟩, is the CGC.

In the coupled basis, the highest weight is |J1 + J2, J1 + J2⟩. One recursively applies
the J− operator, which gradually decreases Jz by one unit. The matrix element of the
J− operator is conventionally assumed to be positive. The process naturally terminates
when reaching the lowest weights |J, Jz⟩ = |J1 + J2,−J1 − J2⟩. All the signs before the
family |J1 + J2, m⟩, m = (−(J1 + J2), ..., J1 + J2) are fixed to (in fact, the same as) the highest
weight |J1 + J2, J1 + J2⟩. When this highest weight is expanded in the uncoupled basis, the
expanding coefficient (CGC) is assumed to be +1, i.e., |J1 + J2, J1 + J2⟩ = |J1, J1⟩|J2, J2⟩. In
this uncoupled basis, the J− operator works as

J−(|J1, m1⟩|J2, m2⟩) = (J−|J1, m1⟩)|J2, m2⟩+ |J1, m1⟩(J−|J2, m2⟩). (4)

As a result, the CGCs within this J = J1 + J2 family can be fixed.
To obtain the rest of the CGCs, one has to first make an assumption about the signs of

|J1 + J2 − 1, J1 + J2 − 1⟩, which is the highest weight of the J = J1 + J2 − 1 family. Clearly,
|J1 + J2 − 1, J1 + J2 − 1⟩ should be orthogonal to |J1 + J2, J1 + J2 − 1⟩, which will fix the
CGCs up to an overall sign. This sign can be fixed again by requiring the first non-zero CGC
to be positive, i.e., ⟨J1, J1, J2, J2 − 1|J1 + J2 − 1, J1 + J2 − 1⟩ > 0. And again, one recursively
applies the J− operator to |J1 + J2 − 1, J1 + J2 − 1⟩, and the procedure goes on until all the
CGCs are worked out. We summarize this descending operator method in Figure 2.
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|J1 + J2, J1 + J2⟩

|J1 + J2, J1 + J2 − 1⟩

|J1 + J2,−J1 − J2⟩

|J1 + J2 − 1, J1 + J2 − 1⟩

. . .

. . .

|J1 + J2,−J1 − J2 + 1⟩

|J1 + J2 − 1, J1 + J2 − 2⟩

J−

Orthogonal

|J1 + J2 − 1,−J1 − J2 + 1⟩

. . .
. . .

Figure 2. The workflow of obtaining SU2 Clebsch–Gordan coefficients using descending operator J−.

The convention that ⟨J1, J1, J2, J − J1|J, J⟩ > 0, J = (|J1 − J2|, . . . , J1 + J2) is the renowned
Condon–Shortley phase convention.

2.2. Generalized Condon–Shortley Phase Convention for SU3

Theoretically, one can apply this descending operator method to obtain the CGCs for
SUn, which consists of the following two steps:

1. Selecting a complete set of descending operators, whose matrix elements are set to
be positive.

2. Extending the Condon–Shortley phase conventions in the orthogonalization process.

There are various ways to achieve this, which leads to different conventions.
Like the gauges in quantum field theory, all conventions are mathematically equivalent,

and they should lead to the same prediction for the physical observable. Despite the
equivalence of the conventions, it turns out that some choices are mathematically more
elegant and more convenient to generalize. In this work, we begin with the analysis of the
first prerequisite, namely, the selection of the descending operators.

It is expected that obtaining the CGCs for SU3 is more involved than that for SU2.
The main reason originates from the fact that the rank of SU3 is two, which requires
two descending operators (instead of one J− in SU2). In SU3, we have three descending
operators to select from, I−, U−, V− (see Figure 3).

Based on experience with SU2, we intend to keep the operator I− as one of two
descending operators; otherwise, it would be a restart instead of an extension of SU2. This
choice also has a physical reason in that we can easily track different isospin multiplets.
One may want to make an assumption that the matrix elements of I±, U±, and V± can
be tuned to be positive; however, the three operators cannot be simultaneously positive
due to the structure of the SU3 Lie algebra (see e.g., the U− matrix in the (p, q) = (1, 1)
representation in Appendix A.1).

One may speculate that selecting {I±, V±} is the same as {I±, U±}; however, we will
show that there is a mathematical reason that the latter selection is superior.

From subplot Figure 3a, we learn that to enumerate all the states in the root space
(or the weight space of the adjoint representation) with only descending operators I−
and V−, one has to start from the two “highest” states p and Σ+. The consequence is
that one cannot naturally define the highest weight. To enumerate all of the octet, we
need both the descending operator and the ascending operator, i.e., by I+, V− from n (see
Figure 3b) or I−, V+ starting from Ξ0. However, both the “highest/lowest” starting weights
are unconventional and counter-intuitive. Despite that nothing stops one from assigning
an additional convention to the order of the octet states, this extra convention is essentially
unnecessary.
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Figure 3. Tracks of ladder operators on octet baryons.

In contrast, the convention of choosing {I±, U±} to be positive is free from this
dilemma. All the weights within any representations can be enumerated using pure de-
scending operators {I−, U−}. This fact can be easily seen by noting that the angle between
I− and U− is 120◦, and this obtuse angle makes the operator pair capable of enumerating
all the weight vectors in any representation, especially in the case like the octet, where the
envelope polygon has obtuse angles. This is also the reason why I+, V− or I−, V+ can also
do the job, but, as we have pointed out, if one operator is an ascending operator, it will
bring ambiguity to the choice of a highest weight.

To conclude, as long as one keeps the selection of the I− operator, the positive {I−, U−}
operator set is the only way to naturally extend the J− operator in SU2.

The second task is to fix the sign of |I1, Iz1, Y1; I2, Iz2, Y2⟩ in the highest weight. Haacke
et al. [10], de Swart [7], and Rabl et al. [9] all take essentially the same convention as SU2,
i.e., in the SU3 CGCs, the largest isospin of the first particle I1 of the highest weight is
assumed to be positive.

However, note that the essence of the second step is to define an order for the uncou-
pled representation; since {I−, U−} already defines a natural order for all the multiplets,
the extra assignment of the order is essentially unnecessary. Thus, we extend the SU2
Condon–Shortley convention to the requirement that, in the SUN CGCs, the coefficient of
the highest weight (instead of the largest isospin I) of the first particle is positive. In SU2,
the highest weights happen to be for the largest isospin I (or angular momentum J). We
call this convention the generalized Condon–Shortley convention.

It is reasonable to speculate that different conventions will lead to different CGCs
and isoscalar factors (ISFs). This turns out to be the case, and we will provide a detailed
discussion in Section 4.

Our definition of the order for the SU3 multiplets will be well defined in the non-
degenerate case. However, in some degenerate cases, such as 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10∗ ⊕ 8 ⊕
8⊕ 1, where the octet occurs twice, any rotation between the two octets is a valid CGC. This
degeneracy can only be broken by additional symmetry, and it is conventional to demand
that the CGCs of the 8 × 8 are split into symmetric and anti-symmetric parts. Here, we use
the same convention as that of Refs. [9,10], namely, the symmetric one is superior to the
anti-symmetric one.

At this stage, all the mathematics of the CGC are settled. Once the matrix elements of
the operators is given (see, e.g., Equation (48) in Ref. [2] or Equation (3.3) in Ref. [10]), we can
repeat and extend the process in SU2, which includes recursively applying the descending
operators and performing the orthogonalization with predefined phase conventions.

In principle, it is not difficult to turn these rules into computer programs. However, it
is worthy to mention that this method is still cumbersome in practice and not very efficient
to generalize to larger groups. The eigen function method (EFM) invented by Jin-Quan
Chen et al. [6,12] solves this problem once and for all. After a delicate construction of
the complete set of commuting operators and and conventions of the eigenvector phases,
the EFM can yield the so-called Gel’fand basis, which furnishes the irreducible basis of
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SUn ⊃ SUn−1 ⊗ U1 ⊃ . . . ⊃ SU2 ⊗ U1 ⊃ U1. Interested readers are referred to the
monograph in [6].

2.3. Beyond Flavor SU3

Things become more interesting when we push the flavor SU3 symmetry to SU4.
Although the flavor SU4 symmetry is strongly broken by the heavy charm quark, it is
worthwhile to study some mathematical properties. Perhaps one unexpected result is that
there is no baryon matrix in flavor SU4. This is a direct consequence of interplay between
flavor and color symmetry.

In the previous sections, we only focused on the flavor symmetry. It is time to talk
about the color symmetry. Unlike the flavor symmetry, which is only approximately
fulfilled by the hadrons, the color symmetry is an exact one.

The fundamental theory of the strong interactions is quantum chromodynamics (QCD),
which is an SU3 gauge theory on the color degree of freedom. So far, all the observed
hadrons are color singlets or colorless. Although not theoretically proved, it is widely
believed that colors are constrained within hadrons and all hadrons should be colorless.
This is an important and stringent constraint.

For baryons, the only way to obtain the color singlet is through 3n quarks with
possible quark–antiquark pairs, where n is the baryon number of the system. Formally,
we can continue the trick of trading one antiquark with two quarks, so the color-singlet
requirement always means 3n quarks.

For conventional baryons, with three quarks at our disposal, we have the following
tensor decomposition in the flavor degree of freedom:

⊗ ⊗ = ⊕ ⊕ ⊕ , (5)

3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1, for SU3, (6)

4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ 4̄, for SU4. (7)

For flavor SU4, we have

⊗ = ⊕ , (8)

4 ⊗ 4̄ = 15 ⊕ 1. (9)

The adjoint representations of SU3 and SU4 are the irreps of and , respectively.

The adjoint rep shows up naturally as a result of the tensor product of fundamental and
complex conjugate representation. For SU3, the motivation of constructing the matrix form
of the octet baryons and mesons is to explicitly reveal the decomposition process.

Namely, M → UMU†, where U is the transformation matrix in fundamental represen-
tation, and M is the octet baryon or meson matrix. For other irreps, such as 10 decuplets
in SU3 flavor symmetry, one would have to explicitly construct a 10 × 10 matrix for each
generator. In this case, D → R10×10(U)D, and the decuplet baryon is a column vector. They
cannot be organized into a 3 × 3 matrix form as the adjoint representation. In practice, how-
ever, this 10-dimensional vector is rarely used. Instead, people group them into different
isospin multiplets and treat them separately. Essentially, the matrix and vector forms of the
hadrons are nothing but convenient realizations of the underlying CGCs.

From Equation (7), we can see that adjoint does not show up in the decomposition.

There is no such thing like a SU4 baryon matrix, only a meson matrix is possible. It is a lucky
coincidence that the flavor SU3 symmetry happens to be the same as color SU3 symmetry.
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3. Group Theory from the Quark Model
3.1. Antiquarks and the Complex Conjugation Representation

From the perspective of the quark model, hadrons are made up of quarks and anti-
quarks. The quark is assumed to furnish the fundamental representation of SU3 (Here, we
focus on the quarks with three flavors instead of six. This setting is extensively studied in
the literature.) A straightforward definition of an antiquark is that it resides in the complex
conjugate representation of the fundamental representation, denoted as 3∗. This definition
has the advantage that the singlet 1 has an easy form:

1 ∝ uu∗ + dd∗ + ss∗ = qiqi∗, (10)
SU3−−→ = Ui

jq
j(Ui

k)
∗qk∗ (11)

= Ui
j(U

∗)i
kqjqk∗ (12)

= Ui
j(U

†)k
iq

jqk∗ = (U†U)k
j qjqk∗ (13)

= δk
j qjqk∗ = qiqi∗, (14)

where U is the fundamental representation matrix. To further simplify the notation, it is
conventional to group the antiquarks into a row vector, with a transformation property that
can be compactly written as

q̄ := (q∗)T ⇒ q̄′ = q̄U† ≡ q̄U−1. (15)

Specifically, for flavor SU3, we haveu′∗

d′∗

s′∗

 = U∗

u∗

d∗

s∗

 ⇔ (ū′, d̄′, s̄′) = (ū, d̄, s̄)U†. (16)

Then, the adjoint representation M has a natural transformation property M → UMU†.
This property is extensively used to simplify the construction process of the Lagrangian in
chiral perturbation theory (ChPT).

This Hermitian conjugate also leads to a readily decomposition for 3 ⊗ 3̄ as follows:

⊗ = ⊕ , (17)

3 ⊗ 3̄ = 8 ⊕ 1, (18)
ū d̄ s̄

u
 d

s

=

 1
3 (2uū − dd̄ − ss̄) ud̄ us̄

dū 1
3 (2dd̄ − uū − ss̄) ds̄

sū sd̄ 1
3 (2ss̄ − uū − dd̄)


+

1
3
(uū + dd̄ + ss̄)13×3. (19)

Identifying the decomposition on the right-hand side of Equation (19) with hadrons is
equivalent to specifying the hadron flavor wave functions. This is the process of adopting
a hadron flavor convention.

We need to point out that, in principle, one can adopt a different phase convention for
the antiquarks, with the consequence that their adjoint representation M would transform
differently from the usual UMU†. For example, one can define their s̄ to be the negative
of our s̄; then, their singlet would be proportional to uū + dd̄ − ss̄, which is quite bizarre
and counter-intuitive. In practice, it would cause confusions and, in worst cases, misinter-
pretations of the intermediate steps by another phenomenological model, like ChPT. Since
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the difference is just trivially notational without any profound reason, we see no need to
invent a new convention for the antiquarks.

It is worthy to point out that, in the famous paper [7] by de Swart (his work shows up
just before the dawn of the quark model), the redefinition of possible phases is involved
to maintain the positivity of I±, V± matrix elements in any representation (p, q). With
the language of the modern quark model, p and q represent the numbers of quarks and
antiquarks, respectively, and de Swart’s requirement can be boiled down to the phase
redefinition of the antiquarks.

Equation (8.2) in Ref. [7] can be extended to manage fractional charged quarks

q′∗ ≡ ϕ({N∗}, Iz, Y) := η(−)Iz− 3
2 Yϕ∗({N},−Iz,−Y) ≡ η(−)Iz− 3

2 Yq∗. (20)

For q = u, d, s quarks, this would result in

u′∗ = ηu∗, d′∗ = −ηd∗, s′∗ = −ηs∗. (21)

In contrast to the physical particles where (Iz, Y) = (0, 0) always shows up in any
irrep (p, q), one can naturally fix the η = 1 by requiring that ϕ({N∗}, 0, 0) := ϕ∗({N}, 0, 0)
(c.f. Equation (8.3) in Ref. [7]). There is no additional natural phases to pinpoint the phase η
in Equation (20) at the quark level. If, for whatever reason, η = 1, then the singlet would be

uu′∗ − dd′∗ − ss′∗ = uu∗ + dd∗ + ss∗, (22)

where the additional negative sign on the left-hand side is due to the CGCs of 3 ⊗ 3̄ → 1
under this convention. We do not adopt this additional redefinition of the antiquarks due
to the reason we explained above.

3.2. Antiquarks and the Isospin Convention

There is another way to represent the antiquarks from the anti-symmetrized combina-
tion of quarks. This way will also lead to the definition of the isospin convention.

To start, recall that for a system consisting of m particles, where each particle furnishes
a representation of a group, the total wave function is a tensor product of each degree
of freedom:

(ψ′)i1,i2,...,im = D(R)i1
j1

D(R)i1
j1

. . . D(R)i1
j1

ϕj1 ϕj2 . . . ϕjm , (23)

where D(R) is the representation matrix of a group. Note the following mathematical fact:

ϵi1,i2,...,iN Ai1
j1

Ai2
j2

. . . AiN
jN

= ϵj1,j2,...,jN det(A) (24)

where A is an arbitrary square matrix, and ϵi1,i2,...,iN is the Levi-Civita symbol. Replacing A
with unitary matrix U, we have

ϵi1,i2,...,iN Ui1
j1

Ui2
j2

. . . UiN
jN

= ϵj1,j2,...,jN . (25)

From the above equation, we can define a SUn singlet by

1 =
1√
N!

ϵi1,i2,...,iN ψi1,i2,...,iN , (26)

ψi1,i2,...,iN := ψi1 ψi2 . . . ψiN , (27)
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where 1/
√

N! is the normalization constant. This statement can be checked by

1
′ =

1√
N!

ϵi1,i2,...,iN Ui1
j1

Ui2
j2

. . . UiN
jN

ψj1,j2,...,jN , (28)

=
1√
N!

ϵj1,j2,...,jN ψj1,j2,...,jN , (29)

= 1. (30)

On the other hand, contracting with (U†)
j1
k1

on both sides of Equation (25), we will
arrive at

ϵi1,i2,...,iN (U
i1
j1
(U†)

j1
k1
)Ui2

j2
. . . UiN

jN
= ϵj1,j2,...,jN (U

†)
j1
k1

, (31)

ϵi1,i2,...,iN Ui2
j2

. . . UiN
jN

= ϵj1,j2,...,jN (U
†)

j1
i1

. (32)

Inspired by this equation and singlet state, as shown in Equation (26), we can define a
new state ψi1 as

ψi1 :=
1√

(N − 1)!
ϵi1,i2,...,iN ψi2,i3,...,iN (33)

i.e., instead of contracting all the indices of the Levi-Civita tensor, we choose to keep the
first index i1. This new state transforms as follows:

ψ′
i1 =

1√
(N − 1)!

ϵi1,i2,...,iN Ui2
j2

Ui3
j3

. . . UiN
jN

ψj2,j3,...,jN (34)

=
1√

(N − 1)!
ϵj1,j2,...,jN ψj2,j3,...,jN (U†)

j1
i1

(35)

= ψj1(U
†)

j1
i1
= (U∗)

j1
i1

ψj1 , (36)

where in the last step, (AT)
j

i = Aj
i is used. (The order of the matrix indices represents the

row–column relation, and in cases where only quarks are involved, one can safely write
only with lower indices.) So, ψi transforms into the complex conjugate representation, and
we call it an antiquark in the context of group theory. The last step also tells us that, in SUn,
the complex conjugate representation is equivalent to applying U† from the right side, i.e.,
q̄′ = q̄U† = q̄U−1.

We need to stress that we have kept the first index free in the definition, Equation (33),
of antiquarks. However, in principle, one can pick any free index in i1, i2, . . . , iN , and by
choosing a specific one, one pick a specific phase convention for antiquarks. Notably, in the
special case of the isospin symmetry which belongs to the SU2 group, one can let the first
index be free as we do:

ū := ϵ1,2d = d , (37)

d̄ := ϵ2,1u = −u , (38)

or choose to keep the last index be free as some authors do (Ref. [13]):

ū := ϵ2,1d = −d , (39)

d̄ := ϵ1,2u = u . (40)

The two choices will result in different conventions. This convention is very important
in hadron physics, and we call it the isospin convention, because in the strong interaction,
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the isospin symmetry is decently conserved, and the hadrons are conventionally organized
into different isospin multiplets.

As can be seen from Equation (33), a group representing one antiquark with one quark
is a property specific to the SU2 group, i.e., a complex representation of the SU2 group can

be achieved through a linear transformation of the fundamental representation
(

u
d

)
. This

tells us that the SU2 group has no complex representation (only a pseudo-real/quaternionic
representation).

Exchanging an antiquark with anti-symmetrized N − 1 quarks is reminiscent of the
Dirac sea. This quark–antiquark duality is proved to be extremely useful in deriving the
SUN CGCs [6].

3.3. Convention Comparison

We are now ready to study the convention in de Swart’s paper from the perspective
of the quark model. As explained before, the states within a multiplet are linked by the
descending operators, whose matrix elements are conventionally set to be positive. To start,
we should fix the phase of the highest wave function, and from the perspective of the quark
model, we set the first state in the octet to be∣∣∣8[1]〉 := |us∗⟩. (41)

The second highest state can be obtained using I−, i.e.,

I−
∣∣∣8[1]〉 = I−|us∗⟩, (42)∣∣∣8[2]〉 = |(I−u)s∗⟩+ |u(−(I+)s)∗⟩, (43)

= |ds∗⟩+ 0 = |ds∗⟩, (44)

where (I±)∗ = −(I∓) is used. (This complex conjugate here is what de Swart called the ϕ′

representation in Ref. [7].) To obtain the
∣∣∣8[3]〉, we have to use the operator U− = [V−, I+].

Here, we want to emphasize that the appearance of I+ breaks the “descending” convention,
and it also brings ambiguity to the definition of the “highest” weight.

Applying U− to
∣∣∣8[1]〉, we obtain

U−
∣∣∣8[1]〉 = U−|us∗⟩, (45)

−
∣∣∣8[3]〉 = |(U−u)s∗⟩+ |u(−(U+)s)∗⟩, (46)

= 0 + |u(−d)∗⟩, (47)∣∣∣8[3]〉 = |ud∗⟩. (48)

Please note the negative sign before
∣∣∣8[3]〉 in the second line. It is due to the non-positiveness

of U− in this convention. The applications of I− and V− on the rest states are straightfor-
ward, and we present the detailed steps in Appendix A.1.

For comparison, we also list the octet states with the convention of choosing descend-
ing operator set {I−, U−}, which was used by Baird-Biedenharn [1–4], Haacke et al. [10],
Rabl et al. [9], and Chen et al. [6,12]. We obtained the octet states with the language of the
quark model, as shown in Table 1.
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Table 1. Flavor wave functions of the octet states, where u∗, d∗, and s∗ can be identified with ū, d̄, and
s̄, respectively, along with an additional transpose operation. See Equation (16) in the main text. The
last three rows are the hadron flavor conventions. The convention from de Swart should be combined
with the results from {I±, V±}; those of Chen and Rabl should be combined with the results of of
{I±, U±}.

T1 T2 T3 T4 T5 T6 T7 T8

{I±, V±} us∗ ds∗ ud∗ − 1√
2

(uu∗ − dd∗) -du∗ − 1√
6
(uu∗ + dd∗ − 2ss∗) sd∗ −su∗

{I±, U±} us∗ ds∗ −ud∗ 1√
2

(uu∗ − dd∗) du∗ − 1√
6
(uu∗ + dd∗ − 2ss∗) −sd∗ su∗

de Swart [7] K+ K0 −π+ π0 π− η8 K̄0 −K−

Chen et al. [5] K+ K0 π+ π0 π− η8 K̄0 K−

Rabl et al. [9] K+ K0 −π+ π0 π− −η8 −K̄0 K−

In Table 1, Ti, i = 1, . . . , 8 serve as the basis of the octet representation under different
conventions. Although octet mesons also serve as the basis of the octet, we can freely pick
any phase conventions of their flavor wave functions, which we call the hadron flavor
convention. This kind of convention is also purely notational, and thus, it is independent
of any mathematical deduction. For instance, π+ can be set freely to be ±ud̄ whether we
choose operator set {I±, V±} or {I±, U±}.

This flavor convention can only be fixed with conventions from physics. One important
consideration is the charge conjugation, e.g., if the K+ flavor wave function is chosen to
be us̄, it is natural to assume that the wave function of its charge conjugate partner K− is
sū. (Here, we shift the notation q∗ into q̄ in order to be consistent with the notation in the
modern quark model). Since we conclude that the eighth basis T8 is −ūs, −K−, instead
of K−, should be identified with T8. Likewise, there is a relative negative sign between
the wave functions of T3 = ud̄ and T5 = −dū, and one could assign π+ = T3 = ud̄, π− =
−T5 = dū to eliminate the negative sign in the wave functions. However, de Swart picked
a different flavor convention, i.e., π+ = −T3 = −ud̄, π− = T5 = −dū. We summarize the
three hadron flavor conventions in the last three rows of Table 1 and list the pseudo-scalar
octet matrices as the following:

Pde Swart :=


−π0
√

2
− η8√

6
−π+ K+

−π− π0
√

2
− η8√

6
K0

K− K̄0
√

2
3 η8

 , (49)

PChen :=


π0
√

2
− η8√

6
−π+ K+

π− − π0
√

2
− η8√

6
K0

K− −K̄0
√

2
3 η8

 , (50)

PRabl :=


π0
√

2
+ η8√

6
π+ K+

π− − π0
√

2
+ η8√

6
K0

K− K̄0 −
√

2
3 η8

 . (51)

Conventionally, the SU3 octet is organized by its SU2 subgroup, which reflects the
isospin. As explained in Section 3.2, there are two possible conventions for the antiquarks.
For the work of de Swart, the isospin doublet convention at the hadronic level is K̄ =(
K̄0 −K−)T , and his flavor convention is −K− = T8 = −sū. Both of them immediately

conclude that the isospin convention at the quark level is −ū = |1/2,−1/2⟩. Thus, we
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reached a quark model explanation of de Swart’s hadron flavor convention. His isospin
multiplets are organized as follows:

de Swart :

π⃗ :=

−π+

π0

π−

 =

 ud̄
1√
2
(−uū + dd̄)
−dū

, (52)

K :=
(

K+

K0

)
=

(
us̄
ds̄

)
, K̄ :=

(
K̄0

−K−

)
=

(
sd̄
−sū

)
, (53)

where each doublet or triplet are organized by

 ∣∣∣ 1
2 , 1

2

〉∣∣∣ 1
2 ,− 1

2

〉 or

 |1, 1⟩
|1, 0⟩
|1,−1⟩

.

For comparison, we also list the isospin conventions −d̄ = |1/2, 1/2⟩ for Chen
and Rabl.

Chen :

π⃗ :=

π+

π0

π−

 =

 −ud̄
1√
2
(uū − dd̄)

dū

, (54)

K :=
(

K+

K0

)
=

(
us̄
ds̄

)
, K̄ :=

(
K̄0

K−

)
=

(
−sd̄
sū

)
(55)

Rabl :

π⃗ :=

−π+

π0

π−

 =

 −ud̄
1√
2
(uū − dd̄)

dū

, (56)

K :=
(

K+

K0

)
=

(
us̄
ds̄

)
, K̄ :=

(
−K̄0

K−

)
=

(
−sd̄
sū

)
(57)

Theoretically, one could also adopt the isospin conventions −ū = |1/2,−1/2⟩ for
Chen and Rabl. For completeness, we list the corresponding isospin multiplets with this
convention in Appendix A.2.

We need to point out that once the meson matrix (which is equivalent to adopting a
hadron flavor convention) is fixed, one only needs a meson with quark component d̄ or ū
in order to fix the isospin convention. Additional assignments would either be redundant
or inconsistent. For example, the meson matrix assignment Prabl in Equation (51), which is
widely used in ChPT, and the convention |π+⟩ = −|1, 1⟩ will conclude the doublet to be
K̄ =

(
−K̄0 K−)T not K̄ =

(
K̄0 −K−)T .

One may argue that, despite the inconsistent assignment
(
K̄0 −K−)T , a redefinition

of the K̄ field is sufficient to cease this inconsistency. This is perhaps the reason why the
convention issue does not attract enough attention. However, not all of the parameters in
the Lagrangian are free to adjust; in particular, what appears to be the irrelevant overall
phase factor in SU2 is deeply connected by SU3. This sneaky redefinition can only cause
confusion and misunderstanding, and we strongly suggest to do everything mathematically
strict and correct.

From Table 1, one can also read horizontally and directly obtain the isospin multiplets.
However, if only the meson matrix is offered, one cannot tell which descending operator
convention has been used. In other words, the hadron flavor convention or the meson
matrix alone does not lead to the isospin convention, although these two conventions are
closely related. One should make a clear distinction between a mathematical basis that
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directly furnishes the representation and physical particles that one may, in principle, use
to arbitrarily invent a convention.

Specifically, from Table 1, we can see that both operator conventions {I±, V±} and
{I±, U±} result in the same wave function for T6, i.e., T6 = − 1√

6
(uu∗ + dd∗ − 2ss∗). Like

the rest of the octet, mathematically, T6 is treated as |(p, q), I, Iz, Y⟩ = +|(1, 1), 0, 0, 0⟩, i.e.,
all the wave functions are directly identified as the Ti with no further sign conventions.
These states can be marked directly by their quantum numbers in the ISFs table, like Table II
in Ref. [7]. To replace these quantum numbers with physical baryons and mesons, one
must refer to their hadron flavor and isospin conventions.

This distinction is often not realized, and mistakes are even present in the paper, which
was supposed to offer ISFs. For example, the meson matrix in the paper of Rabl et al. [9]
happens to be the same as that widely used in ChPT. There is a non-trivial phase between
T6 and their η8. In their Table VI, η8 is actually supposed to be the mathematical basis T6
with quantum number (I, Y) = (0, 0), rather than physical η8 under their convention. Then,
the sign of the ISF in the channels like Ση → 10 should be changed. In contrast, there is no
such problem when quantum numbers are used to represent the mathematical basis, such
as in Table II I in Ref. [10] and the tables in Ref. [7].

However, to perform the real calculations, one has to obtain the physical basis. Once
the meson matrix is fixed to be Equation (51), to use the tables in Rabl et al. [9], one has
to refer to their isospin convention in Equation (57) or Equation (A25), and keep in mind
that their η8 = −|0, 0⟩. We have also carefully checked that the ISF table in Chapter 47 of
Review of Modern Physics by Particle Data Group [8] is a direct translation of the ISF tables
of Ref. [7], and the mathematical bases are rewritten into physical isospin multiplets. As
long as the isospin multiplets are explicitly defined, there would be no ambiguity.

The charge conjugation operator can add the additional constraint on the phases
of the particle anti-particle pairs within a multiplet, concluding a meson matrix whose
flavor wave function is quite symmetric. For example, in de Swart’s convention, K+ =
us̄ ↔ K− = sū, π+ = −ud̄ ↔ π− = −dū. And in the convention of Rabl et al. [9],
K0 = ds̄ ↔ K̄0 = sd̄, π+ = ud̄ ↔ π− = dū. The symmetry of the wave functions
will make the construction of the Lagrangian physically straightforward. For instance,
to construct the mass term of the mesons, one would expect that it is proportional to
π+π− + π−π+ + π0π0 + . . .. However, this convenience comes at a price; one has to keep
in mind the nontrivial signs in the isospin multiplets.

In contrast, the convention from Chen et al. [5] has the advantage that the particles
are directly the mathematical bases without any phase in Equation (55). However, a non-
trivial negative sign shows up when conducting the charge conjugation. For example,
π+ = −ud̄ = −dū = −π−. This explain the following puzzling behavior of the octet
mass term:

tr(PP) = −2K0K̄0 +
(

π0
)2

+ η2
8 + 2K−K+ − 2π−π+ (58)

= π0π0 + π−π− + π+π+ + K−K− + K+K+ + K0K0 + K̄0K̄0 + η8η8 (59)

In short, there is always a trade-off between mathematical and physical simplicity.

3.4. Octet Baryons

The work flow for the octet baryons is quite different from that of mesons. Mathemati-
cally, both baryons and anti-baryons fulfill the octet. (We constrained ourselves to the octet,
not the decuplet.) From the perspective of the SUN group theory, baryons and anti-baryons
are the same. But physically, we want to classify them into different multiplets because
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they have different baryon numbers. At the start, one can directly sort the baryons and
anti-baryons as in Table 1, by their quantum numbers I, Iz, Y,

p, n, Σ+, Σ0, Σ−, Λ, Ξ0, Ξ− (60)

Ξ̄+, Ξ̄0, Σ̄+, Σ̄0, Σ̄−, Λ̄, n̄, p̄ (61)

After that, the central topic of this paper naturally arises: what would be the consistent
phase conventions? Can we freely add signs to each of them?

The charge conjugation Ĉ will play an important role here. For the case of mesons,
Ĉ relates the meson pairs within the octet, while in the baryon case, it relates the baryon–
anti-baryon pairs between the two octets. Thus, one can freely add signs to one octet. This
is the reason why de Swart can assign [7] B3 = −Σ+ just to keep Σ⃗ · π⃗ simple, and refuse
to add the negative sign before Ξ−, which will lead to the Ξ0K0 − Ξ−K+ (note the relative
negative sign) term in the coupling to Λ∗

0 .
Recall that the widely used 3 × 3 matrix octet P is just a compact way to represent the

8 × 1 vector:

P = UPU† ⇐⇒ (P′
1, . . . , P′

8)
T = M8(P1, . . . , P8)

T , (62)

where U and M8 are the SU3 matrices in the fundamental and adjoint representation,
respectively. For the octet, we want ĈP to transform exactly the same as P. This can be
achieved using a Hermitian conjugate, namely, a complex conjugate on each element, and
then taking the transpose of the matrix as follows:

P′† = U(P†)U† ⇐⇒ (P′∗
1 , . . . , P′∗

8 ) = (P∗
1 , . . . , P∗

8 )M†
8 . (63)

The complex conjugate on each elements is just taking the flavor wave function into its
complex conjugate. For mesons, this is what we have carried out before, such as ud∗ → du∗.
For baryons, we use the physically simplest convention that the wave function of the
anti-baryon is the replacement of quarks with antiquarks, such as p∗ = p̄.

The rest of the process is determining the mathematical basis Ti under transpose. The
transpose operation seems undefined for the quarks, such as T1 = us∗, but this is just a
shorthand notation of

us∗ ≡

 0 0 1
0 0 0
0 0 0

. (64)

In other words, the wave functions at the quark level and the matrices are mathematically
equivalent. Then, all of the bases under transformation are properly defined.

For the convention of de Swart [7], we have

BiTi = pT1 + nT2 + (−Σ+)T3 + Σ0T4 + Σ−T5 + ΛT6 + Ξ0T7 + Ξ−T8, (65)

Ĉ(BiTi) = B̄iTT
i = p̄TT

1 + n̄TT
2 + (−Σ̄−)TT

3 + Σ̄0TT
4

+ Σ̄+TT
5 + Λ̄TT

6 + Ξ̄0TT
7 + Ξ̄+TT

8 , (66)

= p̄(−T8) + n̄(T7) + (−Σ̄−)(−T5) + Σ̄0(T4)

+ Σ̄+(−T3) + Λ̄T6 + Ξ̄0(T2) + Ξ̄+(−T1) (67)

= (−Ξ̄+)T1 + Ξ̄0T2 + (−Σ̄+)T3 + Σ̄0T4 + Σ̄−T5 + Λ̄T6 + n̄T7 + (− p̄)T8. (68)

This reproduces what has been claimed in the convention of his anti-baryons (cf. Equa-
tion (17.2) in Ref. [7]). By performing the same calculation and noting the different transpose
property of Ti in {I±, U±}, we can obtain the baryon and anti-baryon matrices for other
conventions. Here, we summarize these three cases as follows:
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de Swart :

B =


− Σ0

√
2
− Λ√

6
−Σ+ p

−Σ− Σ0
√

2
− Λ√

6
n

−Ξ− Ξ0
√

2
3 Λ

, B̄ =


− Σ̄0

√
2
− Λ̄√

6
−Σ̄+ −Ξ̄+

−Σ̄− Σ̄0
√

2
− Λ̄√

6
Ξ̄0

p̄ n̄
√

2
3 Λ̄

, (69)

Chen :

B =


Σ0
√

2
− Λ√

6
−Σ+ p

Σ− − Σ0
√

2
− Λ√

6
n

Ξ− −Ξ0
√

2
3 Λ

, B̄ =


Σ̄0
√

2
− Λ̄√

6
Σ̄+ Ξ̄+

−Σ̄− − Σ̄0
√

2
− Λ̄√

6
−Ξ̄0

p̄ n̄
√

2
3 Λ̄

, (70)

Rabl :

B =


Σ0
√

2
+ Λ√

6
Σ+ p

Σ− − Σ0
√

2
+ Λ√

6
n

Ξ− Ξ0 −
√

2
3 Λ

, B̄ =


Σ̄0
√

2
+ Λ̄√

6
Σ̄+ Ξ̄+

Σ̄− − Σ̄0
√

2
+ Λ̄√

6
Ξ̄0

p̄ n̄ −
√

2
3 Λ̄

. (71)

By the construction, all of the three conventions have the property that tr(B̄′B′) =
tr
(
UB̄U†UBU†) = tr(B̄B), which gives the mass term of the octet states. In fact, with the

octet baryon and meson matrices under each convention, one can recover some of the ISFs;
for example, tr(BP) will obtain the right-hand side of 1 → 8 ⊗ 8.

Since the decuplets do not show up in the decomposition 3 ⊗ 3̄ = 8 ⊕ 1, they cannot
be organized into a 3 × 3 matrix. Thus, their couplings to the octet baryons and mesons
cannot be reproduced by taking traces of the above matrices. However, they do show up in
the decomposition:

8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1, (72)

This ensures that the decuplet (and the octet baryons and mesons) can be packed
into an 8 × 8 matrix. This make it possible to write the coupling such as DBP (decouplet–
baryon–meson) using the matrix multiplication method. We present the details of this
construction in Appendix B.

3.5. Mixing Usage of Different Conventions

Despite the extensive usage of the ISFs by de Swart [7], his meson matrix, shown in
Equation (49), is not widely used at present. However, in ChPT, the meson matrix, shown in
Equation (51), is widely used. Thus, if one uses the meson matrix defined in Equation (51)
and the ISFs from de Swart [7,8], this mixing of the usage of different conventions could
result in misleading predictions if the isospin multiplets are not properly defined.

A common misinterpretation comes from the η8 in the meson matrix defined in
Equation (71). No matter what isospin convention one uses, ū = −|1/2,−1/2⟩ or d̄ =
−|1/2, 1/2⟩, T6 = − 1√

6
(uū + dd̄ − 2ss̄) should always be treated as |I, Iz, Y⟩ = +|0, 0, 0⟩.

In both de Swart’s and Chen’s conventions, η8 = +|0, 0, 0⟩, but for the matrix form defined
in Equation (51), widely used in ChPT, η8 = −|0, 0, 0⟩. Fortunately, η8 is the singlet in the
SU2 group; thus, such a negative sign will have no physical impact.

By comparing meson Equations (49) and (51) and baryon matrix Equations (69) and
(71), we arrive at Table 2.
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Table 2. The relation of physical particles and mathematical basis when mixing the usage of meson
Equation (51) and baryon matrix Equation (71) with the isoscalar factors in the de Swart convention [7,8].

T1 T2 T3 T4 T5 T6 T7 T8

{I±, V±} us∗ ds∗ ud∗ − 1√
2
(uu∗ − dd∗) −du∗ − 1√

6
(uu∗ + dd∗ − 2ss∗) sd∗ −su∗

Mesons K+ K0 π+ −π0 −π− −η8 K̄0 −K−

Baryons p n Σ+ −Σ0 −Σ− −Λ Ξ0 −Ξ−

From Table 2, we can see that the isospin multiplets have to be defined as in the
following:

K :=
(

K+

K0

)
, π⃗ :=

 π+

−π0

−π−

, K̄ :=
(

K̄0

−K−

)
,−η8 := |0, 0⟩ (73)

N :=
(

p
n

)
, Σ⃗ :=

 Σ+

−Σ0

−Σ−

, Ξ :=
(

Ξ0

−Ξ−

)
,−Λ := |0, 0⟩ (74)

As we have stated before, the baryon and meson matrices are nothing but convenient
ways to organize the octets. In principle, one is not bothered to explicitly write down the
meson and baryon matrices if the correct ISFs and isospin multiplets are used, as what was
done by de Swart.

4. Isoscalar Factors

Isoscalar factors are the agents between the small group SU2 and a larger group SU3.
With ISFs and the Clebsch–Gordan coefficients (CGCs) of the smaller group at hand, the
CGCs of the bigger group can be constructed. In some sense, ISFs are not as fundamental
as CGCs, since the physical processes are directly linked with CGCs, which physicists
directly work with. In the case of SU3, the ISFs only appear when one intends to separate
the contributions of the SU2 isospin group but still wants to find the relations between the
couplings of different SU3 flavor multiplets, much like how the famous Wigner–Eckart
theorem helps us separate the dynamics from the geometry.

Here, we demonstrate the process of obtaining SU3 CGCs from the quark level with
the Young–Weyl tableaux method, where the antiquarks are represented by the anti-
symmetrized combination of quarks. The phase conventions follow that of Ref. [6], where
the detailed calculation steps can be found.

In Table 3, we list two possible interpretations of the Weyl tableaux in the decay
particles, namely baryon-first or meson-first conventions. The two conventions originate
from the fact that both octet baryons and mesons live in the same SU3 representation. For

example, the Weyl tableaux u u
d , which stands for one state in an octet, can be identified

with K+ or a proton. This two-fold role of the Weyl tableaux turns out to be very useful.

In order to obtain the table, we also identify, say, the u u
d with

u u u
d d
s

, where a SU3

flavor vacuum
u
d
s

is prepended to the tableaux. The ISFs in Ref. [8] adopt the baryon-first

convention in the above table, such as, p → pπ0.
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Table 3. One part of SU3 CGCs.(
u u
d , u d

s

) (
u u
d , u s

d

) (
u u
s , u d

d

) (
u d
d , u u

s

) (
u d
s , u u

d

) (
u s
d , u u

d

)
(p, π0) (p, η8) (Σ+, K0) (n, π+) (Σ0, K+) (Λ, K+)

(K+, Σ0) (K+, Λ) (π+, n) (K0, Σ+) (π0, p) (η8, p)

u u u d
d s

1√
3

0 1√
6

1√
6

1√
3

0

u u u s
d d − 1

2
√

15
3

2
√

5
1√
30

1√
30

− 1
2
√

15
3

2
√

5

∆+
u u u d
d
s

1√
3

0 − 1√
6

1√
6

− 1√
3

0

u u u
d d s

1
2
√

3
1
2

1√
6

− 1√
6

− 1
2
√

3
− 1

2

p
u u u
d d
s

√
3

14 − 1√
14

0 −
√

3
7 0

√
2
7

p
u u u
d d
s

√
2

105 2
√

2
35 −

√
7

15 − 2√
105

√
7

30 − 1√
70

We interpret the term in the Lagrangian like B̄1B2M3 to be directly related to the
B2 + M3 → B1, whose Hermitian conjugate reflects the “decay” process B1 → B2 + M3.

As was explained at the end of Section 2.2, in order to distinguish the two protons
(which are in the last two rows of Table 3), the two possible couplings 8 → 8 ⊗ 8 can
be further classified into symmetric 81 and anti-symmetric 82 parts. The symmetrizer
(anti-symmetrizer) can be assigned to B ↔ B or B ↔ M because of the following property:

tr({B̄, B}M) = tr(B̄, {B, M}), tr([B̄, B]M) = tr(B̄, [B, M]). (75)

In the language of the Young tableaux, the above is a special case of the following:

⊗ = ⊕ ⊕ ⊕ ⊕ ⊕ , (76)

8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1. (77)

Unfortunately, the SU3 CGCs in Table 3 do not fulfill this requirement. For example,

in the coupled channel of the proton, when exchanging u u
d

u d
s ↔ u d

s
u u
d or

equivalently, pπ0 ↔ Σ0K+, the CGCs change like
√

3/14 ↔ 0 or
√

2/105 ↔
√

7/30, which
is neither symmetric nor anti-symmetric. However, additional rotation between the last
two row vectors will solve this issue:(

p1
p2

)
→

[(
cos θ − sin θ
sin θ cos θ

)( √
3/14 0√
2/105

√
7/30

)](
pπ0

Σ0k+

)
(78)

=

(
x x
y −y

)(
pπ0

Σ0k+

)
(79)

where x, and y are constants to be determined later. Note that one cannot fix these constants
later, such as x = y = 1/

√
2, since pπ0 and Σ0k+ are not the only channels that the proton

can couple to.
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There are two solutions for the equation, θ1 = π−arctan (3/
√

5) and θ2 = −arctan (3/
√

5),
which lead to

θ1 = π − arctan
3√
5
⇒

(
p1
p2

)
→

−
√

3
20 −

√
3

20√
1

12 −
√

1
12

(
pπ0

Σ0k+

)
, (80)

θ2 = − arctan
3√
5
⇒

(
p′1
p′2

)
→

 √
3

20

√
3

20

−
√

1
12

√
1

12

(
pπ0

Σ0k+

)
. (81)

Overall, the two solutions of θ only differ by a negative sign. Since we use the order
convention that the symmetric combination is before the anti-symmetric one, the first
non-zero coefficient of the symmetric combination should be positive, which leads to the
second rotation angle. Note that this rotation angle is universal for all 8 → 8 ⊗ 8 couplings.

To obtain the SU3 ISF, we need to divide the SU3 CGCs with the corresponding SU2
isospin CGCs, which results in Table 4. As shown in Table 4, we replaced the particles
in Table 3 with their isospin families and dropped the rows of the Weyl tableaux beyond

the octet and decuplet baryons, such as u u u d
d s . Please note that one isospin channel in

Table 4 corresponds to several charged channels in Table 3; for example, ∆+ → pπ0 and
∆+ → nπ+ belong to the family ∆ → Nπ.

Table 4. The isoscalar factor after the symmetrization and anti-symmetrization of 8 ⊗ 8.

(N, π) (N, η8) (Σ, K) (Λ, K)

∆ 1√
2

0 − 1√
2

0

N1
3

2
√

5
1

2
√

5
− 3

2
√

5
1

2
√

5
N2 − 1

2
1
2 − 1

2 − 1
2

Strictly speaking, the isospin multiplets such as π⃗ need to be defined. However, in
Chen’s convention, the isospin multiplets are directly identified by the Weyl tableaux
without additional phases, i.e., π⃗ =

(
π+ π0 π−)T , which directly corresponds to the

isospin states, (+|1, 1⟩ + |1, 0⟩ + |1,−1⟩)T .
In Table 3, the quark components are fixed to be u, u, u, d, d, s. Nothing stops us from

exploring other quark components, like u, u, u, u, d, s, and calculating the corresponding
ISFs. Following along this line, we list the ISFs in Chen’s convention as follows:

1 → 8 ⊗ 8(
Λ∗

0
)
→

(
NK̄ Σπ Λη ΞK

)
=

1√
8

(
2 −3 1 −2

)1/2 , (82)

81 → 8 ⊗ 8
N
Σ
Λ
Ξ

 D−→


Nπ Nη ΣK ΛK
NK̄ Σπ Λπ Ση ΞK
NK̄ Σπ Λη ΞK
ΣK̄ ΛK̄ Ξπ Ξη

 =
1√
20


9 1 −9 1
6 0 −4 −4 6
2 12 4 −2
9 1 −9 1


1/2

, (83)
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82 → 8 ⊗ 8
N
Σ
Λ
Ξ

 F−→


Nπ Nη ΣK ΛK
NK̄ Σπ Λπ Ση ΞK
NK̄ Σπ Λη ΞK
ΣK̄ ΛK̄ Ξπ Ξη

 =
1√
12


−3 3 −3 −3

2 −8 0 0 −2
−6 0 0 −6
−3 3 −3 −3


1/2

, (84)

10 → 8 ⊗ 8
∆
Σ∗

Ξ∗

Ω

 →


Nπ ΣK
NK̄ Σπ Λπ Ση ΞK
ΣK̄ ΛK̄ Ξπ Ξη
ΞK̄

 =
1√
12


6 −6
2 2 3 −3 −2
3 3 3 −3

12


1/2

, (85)

8 → 10 ⊗ 8
N
Σ
Λ
Ξ

 →


∆π Σ∗K
∆K̄ Σ∗π Σ∗η ΞK

Σ∗π Ξ∗K
Σ∗K̄ Ξ∗π Ξ∗η ΩK

 =
1√
15


12 3
8 −2 3 −2
9 6
3 −3 3 −6


1/2

, (86)

10 → 10 ⊗ 8
∆
Σ∗

Ξ∗

Ω

 →


∆π ∆η Σ∗K
∆K̄ Σ∗π Σ∗η Ξ∗K

Σ∗K̄ Ξ∗π Ξ∗η ΩK
Ξ∗K̄ Ωη

 =
1√
24


15 −3 6

8 8 0 8
12 3 3 6
12 12


1/2

, (87)

As a specific example to exhibit the effect of choosing different conventions, in Equation (85),
we see that the ISFs of the highest decuplets ∆ → pπ and ∆ → ΣK are different. In Chen’s
convention, the ISFs of ∆ → pπ should be positive, since p is higher than Σ. However, with
Haacke’s and Rabl’s conventions, I(Σ) = 1, which is larger than I(p) = 1/2, so the ISF of
∆ → ΣK should be positive. Although we agree on the same set of descending operators
{I−, U−}, we have a distinct convention on the highest weight. This difference will assign
an overall negative sign to the CGCs (or equivalently, ISFs) on 10 → 8 ⊗ 8, as it should be,
since the relative signs within the multiplets are controlled by the same set of descending
operators {I−, U−}.

If both the descending operator set and the highest state conventions are different,
then apart from the overall phase differences, the ISFs of each SU2 multiplet within each
SU3 multiplet could also be different. Since all conventions should be mathematically
equivalent, these superficially contradicting results can be absorbed by the redefinition of
the SU2 isospin multiplets.

Specifically, there is a similar ISF table in PDG [8] with absolute values that are the
same as those we obtained but the signs are different. To reproduce the table, we can
redefine the fields of N, K, Λ, η8 and change the overall sign of 1 → 8 ⊗ 8, 82 → 8 ⊗ 8.

The above discussion also offers a way to check the consistency of different conven-
tions. If the ISFs among different conventions are still different after the redefinition of
all SU2 multiplets and all SU3 coupled channels, then at least one convention is not self-
consistent. Note that this consistency checker is a necessary, but not a sufficient condition.

There is a subtlety when translating the ISFs to the A → B ⊗ C form when B and C are
both in the octet. Mathematically, since octet baryons and mesons share the same quantum
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numbers in group irreps, one has to assign a convention to distinguish them. We hereby
adopt the baryon-first convention, namely,(

8
I1Y1

8
I2Y2

µγ

IY
)

. (88)

This is interpreted as Baryon(I, Y) → Baryon(I1, Y1)⊗ Meson(I2, Y2) instead of Baryon →
Meson(I1, Y1)⊗ Baryon(I2, Y2).

This order convention is important when building the Lagrangian from the ISFs
and SU2 CGCs, especially when the Lagrangian is written in the charged states. For
example, with the baryon-first convention, the ppπ0 Lagrangian should be proportional
to

〈
pπ0

∣∣p〉 =
〈

1
2 , 1

2 ; 1, 0
∣∣∣ 1

2 , 1
2

〉
= 1√

3
instead of

〈
1, 0; 1

2 , 1
2

∣∣∣ 1
2 , 1

2

〉
= − 1√

3
. Due to this order

convention, in theory, one has to be cautious when adopting coupling constants from
various sources. In practice, however, this subtlety is often unnoticeable. Since the couplings
are conventionally reorganized into isospin multiplets, where SU2 CGCs (and thus the order
convention) are implicitly included, which eliminates the order ambiguity. For instance,
the ∆∆π vertex is often expressed as ∆̄µγ5γνT⃗∆µ∂νπ⃗, where each vector component of T⃗ is
a 4 × 4 matrix with SU2 CGCs included [14].

5. Summary

In this paper, we tracked and compared possible conventions in the construction of the
Lagrangian at the hadronic level. We pointed out that these conventions can be classified
into two different sources. One source is from group theory, where people may choose
different ways to generalize the SU2 Cordon–Shortley phase convention to SU3. We also
provide a group theory explanation that the Baird–Biedenharn convention is more natural
than the widely used de Swart convention. The second sources of the conventions are
purely notational, and they arise at the identification stage, such as whether the isospin of
π+ should be identified as |1, 1⟩ or −|1, 1⟩.

Through a detailed analysis of three different conventions, we pointed out some
common misconceptions about the sign convention of η8 and also provide some suggestions
for when one wants to mix the results from different conventions.

The tool used to track the conventions was the quark model, which served as an agent
for translating abstract mathematical bases into physical visions. It also has the ability to
check various conventions at finer details, and we suggest using it to check the consistency
of all conventions.

Author Contributions: Conceptualization, Y.L., H.J., and J.W.; methodology, Y.L.; software, Y.L. and
H.J.; validation, Y.L. and H.J.; formal analysis, Y.L. and H.J.; investigation, Y.L. and H.J.; resources,
J.W.; data curation, J.W.; writing—original draft preparation, Y.L.; writing—review and editing,Y.L.,
H.J., and J.W.; visualization, Y.L.; supervision, J.W.; project administration, J.W.; funding acquisition,
J.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant Nos. 12175239 and 12221005, by the National Key Research and Development Program of
China under Contracts 2020YFA0406400, by the Chinese Academy of Sciences under Grant No.
YSBR-101, and by the Xiaomi Foundation/Xiaomi Young Talents Program.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: Yu Lu is grateful to Jialun Ping, Yufei Wang, and Maojun Yan for helpful
discussions.

Conflicts of Interest: The authors declare no conflicts of interest. Moreover, the funders had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.



Symmetry 2024, 16, 1061 21 of 26

Abbreviations
The following abbreviations are used in this manuscript:

ChPT Chiral Pertubation Theory;
CGCs Clebsh–Gordan Coefficients;
ISFs Isoscalar Factors.

Appendix A. Conventions on Wave Functions and the Isospin

Appendix A.1. Octet Wave Functions under de Swart Convention

Here, we list the matrix elements and the steps to obtain the SU3 flavor wave functions
of the octet under the de Swart convention [7], i.e., the matrix elements of I±, V± are
positive. These wave functions are not the octet meson wave functions, because of the
additional hadron flavor conventions.

The corresponding I±, V±, and U± matrix elements in the (p, q) = (1, 0) and (1, 1)
representations are

(p, q) = (1, 0) :

I− =

0 0 0
1 0 0
0 0 0

, V− =

0 0 0
0 0 0
1 0 0

, U− =

0 0 0
0 0 0
0 1 0

 (A1)

(p, q) = (1, 1) :

I− =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0

√
2 0 0 0 0 0

0 0 0
√

2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0


, V− =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1√
2

0 0 0 0 0 0 0
0 1 0 0 0 0 0 0√

3
2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1√
2

0
√

3
2 0 0


(A2)

U− =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 − 1√

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
√

3
2 0 0 0 0 0 0

0 0 0 1√
2

0 −
√

3
2 0 0

0 0 0 0 1 0 0 0


The ascending operators can be obtained by taking the transpose of the descending

operators, namely, I+ = IT
−, V+ = VT

− , and U+ = UT
−. With the matrix form of the
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descending operators, we can enumerate the octet and obtain their flavor wave functions
as follows: ∣∣∣8[1]〉 := |us∗⟩ (A3)

Î−
∣∣∣8[1]〉 = Î−|us∗⟩ (A4)

⇒
∣∣∣8[2]〉 = |ds∗⟩ (A5)

Û−
∣∣∣8[1]〉 = Û−|us∗⟩ (A6)

−
∣∣∣8[3]〉 =

∣∣(Û−u)s∗
〉
+

∣∣u(−Û+s)∗
〉

(A7)

= 0 + |u(−d)∗⟩ (A8)

⇒
∣∣∣8[3]〉 = |ud∗⟩ (A9)

Î−
∣∣∣8[3]〉 = Î−|ud∗⟩ (A10)

√
2
∣∣∣84

〉
= |dd∗⟩+ |u(−I+d)∗⟩ (A11)

= |dd∗⟩+ |uu∗⟩ (A12)

⇒
∣∣∣8[4]〉 = − 1√

2
(|uu∗⟩ − |dd∗⟩) (A13)

Î−
∣∣∣8[4]〉 = − 1√

2
[I−(|uu∗⟩ − |dd∗⟩)] (A14)

√
2
∣∣∣8[5]〉 = − 1√

2
(|du∗⟩+ |du∗⟩) (A15)

⇒
∣∣∣8[5]〉 = −|du∗⟩ (A16)

V̂−
∣∣∣8[1]〉 = V̂−|us∗⟩ (A17)

1√
2

∣∣∣8[4]〉+

√
3
2

∣∣∣8[6]〉 = |ss∗⟩ − |uu∗⟩ (A18)

⇒
∣∣∣8[6]〉 =

1√
6
|−uu∗ − dd∗ + 2ss∗⟩ (A19)

V̂−
∣∣∣8[3]〉 = V̂−|ud∗⟩ (A20)

⇒
∣∣∣8[7]〉 = |sd∗⟩ (A21)

Î−
∣∣∣8[7]〉 = Î−|sd∗⟩ (A22)

⇒
∣∣∣8[8]〉 = −|su∗⟩ (A23)

Appendix A.2. Isospin Convention on ū

The isospin multiplets under the isospin convention ū := −
∣∣∣ 1

2 ,− 1
2

〉
for Chen et al. [5]

and Rabl et al. are as follows [9]:
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Chen :

π⃗ :=

−π+

−π0

−π−

 =

 ud̄
− 1√

2
(uū − dd̄)
−dū

,

K :=
(

K+

K0

)
=

(
us̄
ds̄

)
, K̄ :=

(
−K̄0

−K−

)
=

(
sd̄
−sū

)
(A24)

Rabl :

π⃗ :=

 π+

−π0

−π−

 =

 ud̄
− 1√

2
(uū − dd̄)
−dū

,

K :=
(

K+

K0

)
=

(
us̄
ds̄

)
, K̄ :=

(
K̄0

−K−

)
=

(
sd̄
−sū

)
(A25)

Appendix B. Matrix Form of the Decuplet

As an example, we provide a matrix form in this appendix that includes the coupling
of a baryon decuplet. To achieve this goal, one first needs to introduce the following ten
matrices Dα (α = 1, · · · 10), under the convention of Swart:

D1 =



0 0 0 0 − 1√
2

0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, D2 =



0 0 0 1√
3

0 0 0 0

0 0 0 0 − 1√
6

0 0 0

0 0 0 0 0 0 − 1√
6

0

0 0 0 0 0 0 0 1√
3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

D3 =



0 0 − 1√
6

0 0 0 0 0

0 0 0 1√
3

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1√

3
0

0 0 0 0 0 0 0 1√
6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, D4 =



0 0 0 0 0 0 0 0
0 0 − 1√

2
0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1√

2
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

D5 =



0 1√
6

0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 − 1

2
√

3
0 − 1

2 0 0

0 0 0 0 − 1
2
√

3
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 − 1

2 0 0 0

0 0 0 0 0 0 0 1√
6

0 0 0 0 0 0 0 0


, D6 =



− 1
2
√

3
0 0 0 0 0 0 0

0 1
2
√

3
0 0 0 0 0 0

0 0 1
2
√

3
0 0 0 0 0

0 0 0 0 0 − 1
2 0 0

0 0 0 0 − 1
2
√

3
0 0 0

0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 − 1
2
√

3
0

0 0 0 0 0 0 0 1
2
√

3



, (A26)

D7 =



0 0 0 0 0 0 0 0
− 1√

6
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 1

2
√

3
0 0 0 0 0

0 0 0 1
2
√

3
0 − 1

2 0 0

0 0 − 1
2 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1√

6
0


, D8 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1√
6

0 0 0 0 0 0 0

0 1
2
√

3
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0

0 0 0 − 1
2
√

3
0 − 1

2 0 0

0 0 0 0 − 1√
6

0 0 0


,

D9 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1

2
√

3
0 0 0 0 0 0 0

0 1√
6

0 0 0 0 0 0

− 1
2 0 0 0 0 0 0 0

0 0 1√
6

0 0 0 0 0

0 0 0 1
2
√

3
0 − 1

2 0 0


, D10 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1√
2

0 0 0 0 0 0 0

0 1√
2

0 0 0 0 0 0


.

Then, we can organize the baryon decuplet matrix D ≡ DαBα with

Bα = {∆++, ∆+, ∆0, ∆−, Σ∗+, Σ∗0, Σ∗−, Ξ0, Ξ−, Ω}α. (A27)
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Similarly, one can construct an anti-baryon decuplet matrix D̄ ≡ D̄αB̄α with

D̄α = (Dα)T , B̄α = {∆̄−−, ∆̄−, ∆̄0, ∆̄+, Σ̄∗−, Σ̄∗0, Σ̄∗+, Ξ̄0, Ξ̄+, Ω̄}α. (A28)

In addition, in order to construct the octet meson and baryon matrices, we also need
to introduce the following two types of matrices, denoted as Oa

A and Oa
S (a = 1, · · · , 8):

O1
A =



0 0 0 − 1
2
√

3
0 − 1

2 0 0

0 0 0 0 − 1√
6

0 0 0

0 0 0 0 0 0 − 1√
6

0

0 0 0 0 0 0 0 − 1
2
√

3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1

2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, O2

A =



0 0 1√
6

0 0 0 0 0

0 0 0 1
2
√

3
0 − 1

2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2
√

3
0

0 0 0 0 0 0 0 − 1√
6

0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

O3
A =



0 − 1√
6

0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 − 1√

3
0 0 0 0

0 0 0 0 − 1√
3

0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1√

6
0 0 0 0 0 0 0 0


, O4

A =



1
2
√

3
0 0 0 0 0 0 0

0 − 1
2
√

3
0 0 0 0 0 0

0 0 1√
3

0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 − 1√

3
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2
√

3
0

0 0 0 0 0 0 0 − 1
2
√

3


,

O5
A =



0 0 0 0 0 0 0 0
1√
6

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1√

3
0 0 0 0 0

0 0 0 1√
3

0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1√

6
0


, O6

A =



1
2 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2 0
0 0 0 0 0 0 0 − 1

2


,

O7
A =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1√
6

0 0 0 0 0 0 0

0 1
2
√

3
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0 0
0 0 0 − 1

2
√

3
0 1

2 0 0

0 0 0 0 − 1√
6

0 0 0


, O8

A =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1

2
√

3
0 0 0 0 0 0 0

0 1√
6

0 0 0 0 0 0
1
2 0 0 0 0 0 0 0
0 0 1√

6
0 0 0 0 0

0 0 0 1
2
√

3
0 1

2 0 0


,

(A29)



Symmetry 2024, 16, 1061 25 of 26

O1
S =



0 0 0 −
√

3
5

2 0 1
2
√

5
0 0

0 0 0 0 −
√

3
10 0 0 0

0 0 0 0 0 0
√

3
10 0

0 0 0 0 0 0 0
√

3
5

2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1

2
√

5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, O2

S =



0 0
√

3
10 0 0 0 0 0

0 0 0
√

3
5

2 0 1
2
√

5
0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

3
5

2 0

0 0 0 0 0 0 0
√

3
10

0 0 0 0 0 0 1
2
√

5
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

O3
S =



0
√

3
10 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 − 1√

5
0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1√

5
0 0 0

0 0 0 0 0 0 0 −
√

3
10

0 0 0 0 0 0 0 0


, O4

S =



−
√

3
5

2 0 0 0 0 0 0 0

0
√

3
5

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 − 1√

5
0 0

0 0 0 0 0 0 0 0
0 0 0 − 1√

5
0 0 0 0

0 0 0 0 0 0
√

3
5

2 0

0 0 0 0 0 0 0 −
√

3
5

2


,

O5
S =



0 0 0 0 0 0 0 0

−
√

3
10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 − 1√

5
0 0

0 0 1√
5

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

3
10 0


, O6

S =



1
2
√

5
0 0 0 0 0 0 0

0 1
2
√

5
0 0 0 0 0 0

0 0 − 1√
5

0 0 0 0 0

0 0 0 − 1√
5

0 0 0 0

0 0 0 0 − 1√
5

0 0 0

0 0 0 0 0 1√
5

0 0

0 0 0 0 0 0 1
2
√

5
0

0 0 0 0 0 0 0 1
2
√

5


,

O7
S =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0√

3
10 0 0 0 0 0 0 0

0
√

3
5

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1

2
√

5
0 0 0 0 0 0

0 0 0
√

3
5

2 0 1
2
√

5
0 0

0 0 0 0
√

3
10 0 0 0


, O8

S =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0√

3
5

2 0 0 0 0 0 0 0

0
√

3
10 0 0 0 0 0 0

− 1
2
√

5
0 0 0 0 0 0 0

0 0 −
√

3
10 0 0 0 0 0

0 0 0 −
√

3
5

2 0 1
2
√

5
0 0


.

(A30)

Through employing two types of matrices, Oa
A and Oa

S, one can construct meson and
baryon octet matrices as follows:

ΦA/S ≡ Oa
A/Sϕa, ϕa = {K+, K0,−π+, π0, π−, η8, K̄0,−K−}a,

BA/S ≡ Oa
A/SBa, Ba = {p, n,−Σ+, Σ0, Σ−, Λ, Ξ0, Ξ−}a,

B̄A/S ≡ Oa
A/S B̄a, B̄a = {−Ξ̄−, Ξ̄0,−Σ̄+, Σ̄0, Σ̄−, Λ̄, n̄,− p̄}a.

(A31)

Based on the introduced matrices above, we can construct the interaction vertices
involving the meson octet, baryon octet, and baryon decuplet in a unified form. In the
leading order, there are the following seven independent structures:



Symmetry 2024, 16, 1061 26 of 26

Mass term : L1 ∝ ⟨ΦAΦA⟩ = ⟨ΦSΦS⟩ or ⟨B̄ABA⟩ = ⟨B̄SBS⟩ (Meson/Baryon octet) (A32)

L2 ∝ ⟨D̄D⟩, (A33)

Yukawa term : L3 ∝ ⟨B̄ABAΦA⟩ = ⟨B̄ABSΦS⟩ = ⟨B̄SBAΦS⟩ = ⟨B̄SBSΦA⟩. (A34)

L4 ∝ ⟨B̄SBSΦS⟩ = −5
3
⟨B̄ABAΦS⟩ = −5

3
⟨B̄ABSΦA⟩ = −5

3
⟨B̄SBAΦA⟩, (A35)

Decuplet term : L5 ∝ ⟨D̄BSΦS⟩ = − 2√
5
⟨D̄BAΦS⟩ =

2√
5
⟨D̄BSΦA⟩ (A36)

L6 ∝ ⟨B̄SDΦS⟩ = − 2√
5
⟨B̄ADΦS⟩ =

2√
5
⟨B̄SDΦA⟩ (A37)

L7 ∝ ⟨D̄DΦS⟩ =
1√
5
⟨D̄DΦA⟩, (A38)

where the brackets ⟨. . . ⟩ represent taking the trace of the matrix. Interaction vertices not
mentioned above, such as ⟨D̄BAΦA⟩, are all zero. It can be verified that the interaction
vertices obtained from the above Lagrangian are consistent with those derived from the
SU3 CGCs.
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