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Abstract: In optimization problems, the principle of symmetry provides important guidance. This
article introduces an enhanced NSGA-II algorithm, termed NDE-NSGA-II, designed for addressing
multi-objective optimization problems. The approach employs Tent mapping for population initial-
ization, thereby augmenting its search capability. During the offspring generation process, a hybrid
local search strategy is implemented to augment the population’s exploration capabilities. It is crucial
to highlight that in elite selection, norm selection and average distance elimination strategies are
adopted to strengthen the selection mechanism of the population. This not only enhances diversity
but also ensures convergence, thereby improving overall performance. The effectiveness of the
proposed NDE-NSGA-II is comprehensively evaluated across various benchmark functions with
distinct true Pareto frontier shapes. The results consistently demonstrate that the NDE-NSGA-II
method presented in this paper surpasses the performance metrics of the other five methods. Lastly,
the algorithm is integrated with the DSSAT model to optimize maize irrigation and fertilization
scheduling, confirming the effectiveness of the improved algorithm.

Keywords: NSGA-II; DSSAT model; local search; optimization of irrigation and fertilization

1. Introduction

In the real world, optimization problems frequently manifest as multi-objective opti-
mization problems (MOPs), characterized by a set of conflicting objective functions [1–4].
MOPs are pervasive across numerous application domains, rendering research on intel-
ligent algorithms for addressing MOPs a perennially active area of investigation [5–7].
In MOPs, improving one objective often worsens another, caused by conflicting objectives.
In most cases, no single solution can optimize all the objectives at the same time, so the
algorithm must find a set of trade-off solutions called the Pareto front (PF) [8,9].

A common challenge in MOPs is devising methods to swiftly attain a convergent
solution while also achieving a more evenly distributed solution set [10,11]. To better
solve more complex problems, in recent years, various multi-objective evolutionary algo-
rithms (MOEA) have been proposed, including NSGA-II [12], MOEA/D [13], SPEA2 [14],
and other algorithms. Since their inception, these algorithms have garnered immense
attention from researchers due to their impressive global search performance, high-speed
operational efficiency, and straightforward algorithmic framework. These multi-objective
optimization algorithms are applied to agricultural models. Zhou and Fan [15] optimized
the agricultural industry structure through a genetic-algorithm-based MOP to achieve
sustainable development. Llera [16] et al. optimized control settings using the NSGA-II
algorithm to help growers achieve maximum yield and minimize costs under greenhouse
conditions. Cheng [17] et al. optimized the irrigation and fertilization plan for winter wheat
by combining the NSGA-II algorithm with the DSSAT model. Song [18] et al. optimized
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the spring wheat irrigation plan using the AquaCrop model and NSGA-II algorithm. Liu
and Yang [19] constructed a distributed AquaCrop model and NSGA-II for simulation
optimization to develop effective irrigation plans. Despite the theoretical and experimental
effectiveness of these classic algorithms, they exhibit significant shortcomings in practical
applications, particularly regarding convergence speed and solution consistency. Specifi-
cally, when addressing high-dimensional and complex problems, the existing algorithms
often require extended periods to achieve satisfactory solutions. In practical applications,
rapid convergence is essential for conserving computational resources and time. Further-
more, the solutions generated by the current algorithms can vary significantly between
different runs, leading to insufficient reliability. Ensuring solution consistency is crucial for
maintaining the stability and reproducibility of results.

This article proposes an improved NSGA-II algorithm to address the aforementioned
issues. In initializing the population, using the Tent mapping initialization method ensures
a more unified initial solution, facilitates exploration of different regions, and enhances
the initial searchability. In the adaptive elite selection strategy proposed in this article,
in the early stage, the solutions with good convergence and diversity are selected based
on norms to enhance convergence and maintain a certain degree of diversity. In the later
stage, a selection method based on the average distance elimination strategy is adopted to
evenly distribute the population on the Pareto front, which is beneficial for the diversity of
the algorithm. Furthermore, within the offspring generation process, a mixed local search
strategy is employed. This approach facilitates random updates of the solution between
the optimal individual and neighboring individuals, thereby enhancing the solution’s
search capabilities. Subsequently, the algorithm was combined with the DSSAT [20–22]
model to optimize irrigation and fertilization management during the maize growth cycle.
The main contributions of this article are summarized as follows: (1) The initialization
method of the Tent chaotic mapping was employed for initializing the population. (2) An
adaptive elite selection strategy grounded in norm and average distance elimination was
formulated to identify superior solutions. (3) A mixed local search strategy was added
during the generation of offspring. (4) The algorithm was integrated with the DSSAT model
to simulate agricultural scenarios, leading to the development of a successful irrigation and
fertilization strategy.

The rest of this article is organized as follows. Section 2 introduces the NSGA-II and
its related works. Section 3 provides a comprehensive description of the proposed NDE-
NSGA-II, including the applied strategies and a complete framework. Section 4 conducted
experiments on the benchmark function, evaluated the performance of NDE-NSGA-II,
and discussed the experimental results in detail. Section 6 applies NDE-NSGA-II and the
original algorithm to maize yield optimization, proving the feasibility of the algorithm
proposed in this paper. Afterwards, the performance of the algorithm is discussed. Finally,
this article provides a summary in the sixth section.

2. Related Works
2.1. Multi-Objective Algorithm NSGA-II

NSGA-II is developed based on NSGA, incorporating the principles of nondominated
sorting and an elitism strategy. The algorithm calculates the neighborhood density of
individuals using the crowding distance (CD). Selection operators for both fitness and
diversity are employed to enhance the overall performance of the algorithm.

According to the nondominated sorting strategy of NSGA-II, as illustrated in Figure 1,
suppose the population size is N, and Population Rt (with a size of 2N) is formed by
combining the current dominated solution set Pt and the current offspring Qt. Following
the dominance relation, Rt obtains a series of nondominated Pareto solution sets denoted
as F1, F2, . . . , where F1 is at the top level. If the quantity of F1 is less than N, all members
of F1 are selected into Population Pt+1. The remaining members in Population Pt+1 are
chosen from F2, F3, and so forth, until the total number of members reaches N. Notably,
the order of the first member in F3 is less than N, while the order of the last member is
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greater than N. To maintain population diversity, the NSGA-II algorithm employs CD
sorting on F3. Individuals with a larger CD are given priority to enter Population Pt+1.
The CD calculation method is expressed in Formula (1).

nd =
M

∑
m=1

fm(i + 1)− fm(i − 1)
f max
m − f min

m
(1)

where f max
m and f min

m are the maximum and minimum of objective function fm, m is the
individual of the solution set, M represents the number of targets.

Figure 1. Nondominated sorting strategy of nondominated sorting genetic algorithm II [23] (NSGA-II).

2.2. Problems in CD Sorting of NSGA-II

Following the completion of nondominated sorting, the CD of each solution within
the nondominated solution set at the same level is calculated based on the objective space.
The CD of the extreme solution (either the maximum or minimum solution across all
objectives within the objective space) is consistently set as infinity. For all other solutions,
they are sorted based on all objectives, and their CD is defined as the average value of
target distances between two adjacent solutions.

In Figure 2, considering eight nondominated solutions, five solutions were selected
based on the CD. According to the CD sorting algorithm of NSGA-II, solutions 1, 2, 3, 4,
and 8 are chosen. However, it is observed that after the selection, the results of Solutions 4
and 8 are deemed unreasonable due to the sparse distance between them.

Upon the preceding analysis, it is evident that the congestion distance mechanism
employed by NSGA-II exhibits uneven distribution issues, potentially compromising
the diversity of solutions. Consequently, we present an enhancement strategy for this
mechanism in the subsequent section.

Figure 2. Screening results with NSGA-II. The numbers in the figure denote different individuals,
and the letters indicate those that have been removed.
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3. The Proposed NDE-NSGA-II

This section provides a comprehensive introduction to the proposed NDE-NSGA-II,
with the main objective of enhancing the convergence and diversity of NSGA-II. Firstly,
the initialization method of Tent mapping in chaotic mapping was adopted to generate
a more uniform population during the initialization stage. Subsequently, a local search
strategy and an adaptive elite selection mechanism were adopted to maintain convergence
and diversity within the population, ensuring the balance of solutions. Then the overall
workflow of NDE-NSGA-II was introduced, including these key enhancements to the
traditional NSGA-II model. The overall framework is illustrated in Figure 3.

Figure 3. The flow chart of NDE-NSGA-II algorithm.

3.1. Initializing Population with Tent Mapping

Over the past few decades, chaotic mapping [24] has found extensive application
across various fields, including parameter optimization, feature selection, and chaos control.
The popularity of chaotic mapping arises from three distinctive properties inherent in
chaotic mapping sequences: initial value sensitivity, ergodicity, and non-repeatability.
Utilizing chaotic mapping in the initialization stage serves to mitigate repetition, fostering
a more uniformly distributed initial population. This approach addresses challenges
encountered by previous intelligent optimization algorithms during the initialization phase,
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consequently enhancing the diversity of the decision space. The Tent mapping in chaotic
maps has been proven to be an effective initialization method [25].

This article employs the Tent mapping in chaotic mapping for initialization, and the
method is outlined as follows:

Pop = lb + T(N, dim)× (ub − lb) (2)

In this context, Pop represents the initialized population, ub and lb denote the upper
and lower bounds of the population, N signifies the number of populations, dim indi-
cates the number of decision variables, and T represents the mapped random number.
The formula for calculating T is as follows:

Tn+1 =

{
Tn
α Tn < α

1−Tn
1−α Tn ≥ α

(3)

Among them, α = 0.7. The pseudocode for initializing the population is as shown in
Algorithm 1.

Algorithm 1 Tent Chaos Initialization

Input: : population size N, decision variables dim, variable upper bound ub, variable lower
bound lb

Output: : new population Pop
1: α = 0.7 Tent chaos coefficient
2: T = rand(N, dim) Random initialization population
3: for i = 1 : N do
4: for j = 2 : dim do
5: if Ti,j−1 < α then
6: Ti,j = Ti,j−1/α
7: else
8: Ti,j = (1 − Ti,j−1)/(1 − α)
9: end if

10: end for
11: end for
12: Pop = lb + T × (ub − lb)

3.2. Local Search Strategy

In NSGA-II, nondominated sorting is used to assign individuals to different Pareto lev-
els. Utilizing this approach can bolster the algorithm’s convergence; however, in instances
where the optimization problem exhibits high complexity, it may suffer from inadequate
optimization accuracy and susceptibility to local optima. Quadratic interpolation serves as
a technique for locating the minimum value point of the objective function, a method previ-
ously demonstrated to enhance local exploration capabilities [26]. This paper advances the
existing methods by introducing a hybrid local update strategy. In this strategy, particles
undergo random updates positioned between the optimal individual and neighboring
individuals. The formula for this update strategy is as follows:

Xi =

{
Yi rand < 0.3
Zi rand > 0.3

(4)

Yi,j = 0.5 ×
(X2

i,j − X2
m,j)× fb + (X2

m,j − X2
b,j)× fi + (X2

b,j − X2
i,j)× fm

(Xi,j − Xm,j)× fb + (Xm,j − Xb,j)× fi + (Xb,j − Xi,j)× fm
(5)

Among these, Xi,j represents the current particle, where Xm,j and fm denote the mean
individual and fitness values of the j-th dimensional particle, respectively. Furthermore, fb
and Xb,j represent random individuals and fitness values among those with Pareto level 1.
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Zi,j =

{
Xi,j + c1 × (Xn,j − Xi,j)× (1 − t

T )
2 c2 > 0.5

Xi,j − c1 × (Xn,j − Xi,j)× (1 − t
T )

2 c2 < 0.5
(6)

c1 and c2 are random numbers sampled from the interval [0,1], where t denotes the current
iteration number, T represents the maximum iteration number, and Xn,j refers to the
neighboring individual of the current individual. The above two formulas demonstrate
symmetry. The formula is as follows:

Xn,j = rand(1 − sin(
2t
T

× π))× Xi,j (7)

In the aforementioned update strategies, individuals constituting 0.4 N are selected
for local updates. The pseudocode for a local search is as shown in Algorithm 2.

Algorithm 2 The local searching strategy

Input: : individuals at boundary and center points POp, offspring size N
Output: : population determined by local algorithm Nn f

1: for i = 1 : N do
2: Randomly select an individual X from Pop
3: index=rand(dim)
4: x=Xindex
5: Conduct local updates based on Formula (4).
6: Xindex=x_new
7: end for
8: Nn f =Pop

3.3. Convergence and Diversity Measures

The NSGA-II algorithm utilizes the Pareto dominance method for solution selection,
effectively maintaining convergence. However, the selection of solutions from the last layer
can impact the algorithm’s convergence and diversity during elite selection. To address this,
the article introduces enhancements to the elite selection strategy. The convergence degree
of each solution in population P is assessed using the p-norm value of the objective vector:

Norm(x) =∥ F(x)n ∥p=
M

∑
i=1

( f n
i (x)p)(1/p) (8)

where Fn(x) is the objective vector of solution x after the normalization and M is the
number of objectives. The most commonly used norm values are p = 1 and p = 2. In
this context, we opt for p = 2. A smaller Norm value of solution x indicates its better
convergence performance.

In the initial stages of population iteration, to guarantee that the algorithm can sustain
both convergence and substantial diversity, the formula for selecting based on the norm
and crowding distance is as follows:

f (x) = −Norm(x)× α + CD(x)× β (9)

Among them, a = 0.8, b = 0.2.
The smaller Norm(x), the better, and the larger CD(x), the better. Therefore, a larger

f (x) is better. Based on this, when selecting a solution, we choose a larger f (x).
The NSGA-II algorithm ensures diversity through a crowding distance strategy. How-

ever, as previously discussed, when the distance between two individuals is very close,
and the crowding distance is large, this method may struggle to effectively preserve pop-
ulation diversity. This article introduces a strategy based on the balance of the distance
between individuals. Initially, the individual with the smaller crowding distance among
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two individuals with the closest distance is eliminated. This process is repeated sequen-
tially until the desired number of populations is reached. Illustrated in Figure 4, the initial
elimination includes individual 3, followed by the sequential elimination of individuals 5
and 7. The final selection comprises individuals 1, 2, 4, 6, and 8, resulting in a more uniform
distance between populations and better preservation of diversity.

Figure 4. Screening results with average distance elimination method. The numbers in the figure
denote different individuals, and the letters indicate those that have been removed.

This article employs the following formula to determine whether to conduct conver-
gence analysis or diversity analysis:

P = M × (ra −
(ra − rb)× t

T
× n

N
) (10)

Among these variables, M represents the number of targets, with the values of ra and
ba set to 0.8 and 0.3, respectively. n denotes the count of individuals with Pareto level 1
within the population, while N represents the total number of populations. The pseudocode
for convergence and diversity is presented in Algorithm 3.

Algorithm 3 Elitist selection

Input: population size N, combined population combine_X, adaptive probability P
Output: updated population X

1: X = 0
2: current_N = 0
3: for i=1 : max_rank do
4: current_N = size(combine_Xi)
5: if current_N≤N then
6: X = X + combine_Xi
7: else
8: remain_N = N − current_N
9: if rand < P then

10: Update individuals according to Equation (9)
11: else
12: while size(combine_Xi)! = remain_N do
13: Sort(combine_Xi) Sort based on the distance of each individual
14: delete(min(combine_Xi)))
15: end while
16: X = X + combine_Xi
17: end if
18: end if
19: end for
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4. Algorithm Comparison

In this section, a set of diverse benchmark tests was conducted to evaluate the perfor-
mance of NDE-NSGA-II across ZDT [27] to DTLZ [28] functions. The experimental results
involved a comparison with four well-established algorithms, NSGA-II, CDE-NSGA-II [23],
MOEA/D, and SPEA2, alongside a novel algorithm, CMWOA [29], which incorporates a
competition mechanism.

4.1. Indicators for Evaluation

Firstly, this section introduces commonly used indicators for evaluating algorithm
performance. In the realm of multi-objective problems (MOPs), the Pareto front (PF) is
a crucial concept. Essentially, PF reflects the quality of the Pareto set obtained by the
algorithm. The properties of Pareto sets can be described in terms of convergence, diffusion,
and uniformity [30], where diffusion and uniformity are denoted as diversity.

To evaluate convergence, this article adopts the indicator GD+ [31], which can be seen
as an improvement on the calculation method of the change in distance of the indicator
GD. It can better evaluate the convergence degree of the solution than GD. The smaller the
value of GD+, the better the solution set.

In terms of diversity, the CPF [32] value is chosen as the performance indicator,
with the main idea of projecting the m-dimensional solution onto the M-1 dimensional
space. The Pareto set with better diversity results in a higher CPF value.

HV [33] is a comprehensive evaluation indicator for multi-objective optimization
algorithms that are sensitive to advantageous relationships. Once a solution set advances
in dominance, HV returns a higher value. Meanwhile, due to the important position of
dominance in the Pareto set, HV also reflects other performances to a certain extent.

Beyond the aforementioned metrics, we also deliberated on the quantity of offspring
discarded or generated by each algorithm within the mutation strategy.

4.2. Convergence Evaluation of Different Algorithms on ZDT and DTLZ Test Problems

Table 1 displays the average GD+ values, accompanied by standard deviations (in
parentheses), for the four algorithms, with optimal values highlighted in bold font. Fur-
thermore, a Wilcoxon rank-sum test was performed at a significance level of 0.05. Symbols
such as “+”, “−”, and “=” in the final row denote whether the respective algorithm is
significantly superior, significantly inferior, or similar to the proposed NDE-NSGA-II.

Table 1 illustrates that for GD+, NDE-NSGA-II achieved superior results in 5 instances,
while NSGA-II, MOEA/D, SPEA, CDE-NSAG-II, and CMWOA secured 1, 3, 0, 0 and 3 best
results, respectively. Notably, referencing the information in Table 1, it can be inferred that
the proposed NDE-NSGA-II is well-suited for addressing problems with a non-uniform
search space and local Pareto front, as observed in ZDT4, ZDT6, DTLZ1, and DTLZ2.
However, when confronted with Pareto front problems featuring discrete features like ZDT3
and DTLZ7, NDE-NSGA-II exhibits a comparatively poorer performance. Moreover, results
from Wilcoxon’s rank-sum test demonstrate that NDE-NSGA-II significantly outperforms
the other three methods in more than half of the 12 benchmark functions. This indicates
that the NDE-NSGA-II algorithm proposed in this paper emerges as a competitive and
effective solution.
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Table 1. GD+ values of the proposed NDE-NSGA-II and three multi-objective algorithms.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 1.1801 × 10−2 7.5242 × 10−2 1.4196 × 10−2 8.8438 × 10−3 3.6228 × 10−4 6.5618 × 10−4

(2.56 × 10−3)− (3.78 × 10−2)− (2.63 × 10−3)− (8.28 × 10−4)− (1.09 × 10−4)+ (1.92 × 10−4)
ZDT2 30 1.3028 × 10−2 2.1120 × 10−3 1.1928 × 10−2 1.2578 × 10−2 2.5870 × 10−4 2.2736 × 10−4

(3.38 × 10−3)− (2.21 × 10−3)− (4.24 × 10−3)− (1.77 × 10−3)− (1.12 × 10−4)− (8.81 × 10−5)
ZDT3 30 6.2900 × 10−3 7.5059 × 10−2 1.6723 × 10−3 6.5377 × 10−3 2.1435 × 10−4 3.0208 × 10−3

(4.67 × 10−3)− (2.67 × 10−2)− (9.49 × 10−3)+ (5.17 × 10−4)− (6.90 × 10−5)+ (2.86 × 10−4)
ZDT4 10 2.7336 × 10−3 1.9089 × 10−2 1.8403 × 10−1 7.2919 × 10−5 2.6171 × 10−1 6.6700 × 10−5

(1.39 × 10−3)− (1.82 × 10−2)− (1.19 × 10−1)− (3.80 × 10−5)= (2.05 × 10−1)− (4.22 × 10−5)
ZDT6 10 5.9099 × 10−2 7.6242 × 10−2 5.8502 × 10−2 1.4148 × 10−1 1.5845 × 10−1 2.4991 × 10−4

(2.59e × 10−2)− (2.50 × 10−2)− (2.86 × 10−2)− (4.90 × 10−2)− (1.67 × 10−2)− (1.47 × 10−4)
DTLZ1 7 1.5090 × 10−2 3.2258 × 10−3 1.1246 × 10−1 .6833 × 10−2 5.6172 × 10−1 2.4667 × 10−3

(6.28 × 10−2)− (1.73 × 10−3)− (1.84 × 10−1)− (8.51 × 10−2)− (5.34 × 10−1)− (1.16 × 10−3)
DTLZ2 12 1.0877 × 10−2 4.6049 × 10−3 5.4658 × 10−2 1.3317 × 10−2 3.1309 × 10−2 1.0645 × 10−2

(9.51 × 10−4)= (6.05 × 10−4)+ (4.57 × 10−4)− (1.73 × 10−3)= (3.27 × 10−3)− (1.70 × 10−3)
DTLZ3 12 2.4541 × 10−1 9.8374 × 10−1 7.5176 × 100 1.9417e × 100 2.4602 × 101 6.0531 × 10−1

(5.12e × 10−1)+ (1.13 × 100)− (3.57 × 100)− (2.93 × 100)− (3.41 × 101)− (8.26 × 10−1

DTLZ4 12 9.2717 × 10−3 1.7034 × 10−3 2.0093 × 10−1 1.2253 × 10−2 4.0307 × 10−2 8.9998 × 10−3

(2.88 × 10−3)= (2.13 × 10−3)+ (2.26 × 10−1)− (3.76 × 10−3)− (8.06 × 10−3)− (3.09 × 10−3)
DTLZ5 12 1.6588 × 10−3 2.3254 × 10−4 5.2708 × 10−3 1.6606 × 10−3 1.2031 × 10−2 1.5690 × 10−3

(3.60 × 10−4)= (1.88 × 10−4)+ (3.00 × 10−4)− (2.55 × 10−4)= (2.07 × 10−3)− (3.00 × 10−4)
DTLZ6 12 2.9192 × 10−5 1.8013 × 10−1 2.8984 × 10−2 8.3978 × 10−5 2.1359 × 10−5 8.6511 × 10−6

(4.50 × 10−5)− (4.84 × 10−1)− (1.35 × 10−1)− (3.71 × 10−4)− (1.41 × 10−6)− (5.41 × 10−7)
DTLZ7 12 5.1449 × 10−2 1.6310 × 10−2 8.1079 × 10−2 1.5389 × 10−2 1.1640 × 10−2 9.6279 × 10−2

(1.10 × 10−2)+ (4.30 × 10−3)+ (1.43 × 10−1)+ (2.84 × 10−2)− (2.09 × 10−3)+ (2.51 × 10−2)
+/−/= 2/7/3 4/8/0 2/10/0 0/9/3 3/9/0

4.3. Diversity Evaluation of Different Algorithms on ZDT and DTLZ Test Problems

Concerning diversity, as indicated by the CPF values in Table 2, the proposed NDE-
NSGA-II algorithm outperforms the other five algorithms. It secures the first rank among
seven benchmark tests and the second rank among two test functions.

Table 2. CPF values of the proposed NDE-NSGA-II and three multi-objective algorithms.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 6.8546 × 10−1 1.7925 × 10−1 8.0205 × 10−1 8.3221 × 10−1 8.7450 × 10−1 8.7580 × 10−1

(2.76 × 10−2)− (8.16 × 10−2)− (2.58 × 10−2)− (1.95 × 10−2)− (9.60 × 10−3)= (8.94 × 10−3)
ZDT2 30 6.4410 × 10−1 6.2313 × 10−3 7.2467 × 10−1 7.7441 × 10−1 8.7093 × 10−1 8.6470 × 10−1

(7.42 × 10−2)− (8.72 × 10−3)− (4.44 × 10−2)− (2.79 × 10−2)− (8.81 × 10−3)= (1.09 × 10−2)
ZDT3 30 6.6189 × 10−1 1.1442 × 10−1 7.0745 × 10−1 5.9863 × 10−1 8.9315 × 10−1 6.1488 × 10−1

(3.87 × 10−2)+ (5.97e × 10−2)− (5.33 × 10−2)+ (3.30 × 10−2)= (9.73 × 10−3)+ (5.12 × 10−2)
ZDT4 10 6.7576 × 10−1 4.7501 × 10−1 3.1359 × 10−1 7.6621 × 10−1 4.6558 × 10−1 8.7401 × 10−1

(2.98 × 10−2)− (1.59 × 10−1)− (9.78 × 10−2)− (1.94 × 10−2)− (2.16 × 10−1)− (8.41 × 10−3)
ZDT6 10 5.1181 × 10−1 2.7228 × 10−1 5.0701 × 10−1 5.5266 × 10−1 8.4110 × 10−1 8.7239 × 10−1

(5.75 × 10−2)− (1.13 × 10−1)− (4.77 × 10−2)− (6.90 × 10−2)− (2.95 × 10−2)− (9.44 × 10−3)
DTLZ1 7 2.9803 × 10−1 7.0126 × 10−1 3.5206 × 10−1 3.0072 × 10−1 2.9647 × 10−1 5.9606 × 10−1

(4.97 × 10−2)− (4.40 × 10−3)+ (2.17 × 10−1)− (6.34 × 10−2)− (2.33 × 10−1)− (2.68 × 10−2)
DTLZ2 12 3.2695 × 10−1 7.0787 × 10−1 7.1574 × 10−1 3.4783e × 10−1 6.6517 × 10−1 6.1444 × 10−1

(3.54 × 10−2)− (6.26 × 10−3)+ (2.83 × 10−2)+ (3.56 × 10−2)− (2.38 × 10−2)+ (3.06 × 10−2)
DTLZ3 12 2.8899 × 10−1 4.3226 × 10−1 1.0824 × 10−1 3.1697 × 10−1 4.6823 × 10−1 4.8327 × 10−1

(7.70 × 10−2)− (1.71 × 10−1)− (5.32 × 10−2)− (1.28 × 10−1)− (1.63 × 10−1)− (1.75 × 10−1)
DTLZ4 12 3.1499 × 10−1 2.0613 × 10−1 4.9790 × 10−1 3.3847 × 10−1 6.2879 × 10−1 6.3433 × 10−1

(1.11 × 10−1)− (3.01 × 10−1)− (3.20 × 10−1)− (8.73 × 10−2)− (2.83 × 10−2)= (2.97 × 10−2)
DTLZ5 12 7.8294 × 10−1 8.1416 × 10−2 9.4421 × 10−1 9.1363 × 10−1 9.0961 × 10−1 9.5135 × 10−1

(3.54 × 10−2)− (3.69 × 10−2)− (1.32 × 10−2)− (1.24 × 10−2)− (2.74 × 10−2)− (7.11 × 10−3)
DTLZ6 12 6.7924 × 10−1 1.5450 × 10−1 9.2164 × 10−1 8.9498 × 10−1 9.1266 × 10−1 9.5063 × 10−1

(6.48 × 10−2)− (1.80 × 10−1)− (4.13 × 10−2)− (1.54 × 10−2)− (8.00 × 10−3)− (6.60 × 10−3)
DTLZ7 12 4.4126 × 10−1 2.6965 × 10−1 6.2981 × 10−1 1.8519 × 10−1 8.0188 × 10−1 2.4661 × 10−1

(4.01 × 10−2)+ (3.39 × 10−2)= (1.13 × 10−1)+ (5.49e × 10−2)− (8.17 × 10−2)+ (6.78 × 10−2)
+/−/= 2/10/0 2/9/1 3/9/0 0/11/1 3/6/3
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An examination of the results from the rank-sum test indicates that the NDE-NSGA-II
proposed in this article significantly surpasses NSGA-II, MOEA/D, SPEA2, CDE-NSGA-II,
and CMWOA on 10, 9, 9, 11, and 6 benchmarks, respectively. Notably, in most test functions,
the NDE-NSGA-II algorithm demonstrates both high convergence and high diversity. This
further substantiates that NDE-NSGA-II can achieve commendable convergence while
concurrently maintaining high diversity. Moreover, it is crucial to highlight that the CPF
index effectively neutralizes the impact of convergence, providing a reliable assessment
of diversity. This suggests that the adopted strategy has indeed played a pivotal role in
enhancing population diversity and convergence.

4.4. Comprehensive Evaluation of Different Algorithms on ZDT and DTLZ Test Problems

As previously discussed, the HV value functions as a comprehensive indicator that
reflects the overall performance of multi-objective algorithms. The algorithm’s overall
performance improves with an increase in the value of HV.

Table 3 presents the experimental results of HV values. It is evident from the table
that the proposed NDE-NSGA-II surpasses NSGA-II in ten instances, MOEA/D in nine
instances, SPEA2 in ten instances, CDE-NSGA-II in eleven instances, and CMWOA’s HV
value in nine instances. It is noteworthy that among the twelve examples, the proposed
NDE-NSGA-II secures the top rank in six test functions.

Table 3. HV values of the proposed NDE-NSGA-II and three multi-objective algorithms.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 7.0524 × 10−1 5.4399 × 10−1 7.0400 × 10−1 7.0929 × 10−1 7.2012 × 10−1 7.1989 × 10−1

(3.16 × 10−3)− (6.02 × 10−2)− (3.56 × 10−3)− (1.27 × 10−3)− (1.43 × 10−4)= (1.99 × 10−4)
ZDT2 30 4.1906 × 10−1 1.0257 × 10−1 4.2034 × 10−1 4.2709 × 10−1 4.4480 × 10−1 4.4488 × 10−1

(2.54 × 10−2)− (1.35 × 10−2)− (6.61 × 10−3)− (6.21 × 10−3)− (1.47 × 10−4)= (9.95 × 10−5)
ZDT3 30 5.7787 × 10−1 5.6843 × 10−1 5.9423 × 10−1 5.7400 × 10−1 5.8321 × 10−1 5.7821 × 10−1

(1.93 × 10−2)= (6.44 × 10−2)− (2.45 × 10−2)+ (8.99 × 10−4)= (1.28 × 10−4)+ (6.09 × 10−3)
ZDT4 10 7.1643 × 10−1 6.8649 × 10−1 5.1044 × 10−1 7.1913 × 10−1 4.4701 × 10−1 7.2048 × 10−1

(1.76 × 10−3)− (2.59 × 10−2)− (1.29 × 10−1)− (3.84 × 10−5)= (1.66 × 10−1)− (5.05 × 10−5)
ZDT6 10 3.1969 × 10−1 2.7870 × 10−1 3.1472 × 10−1 2.5339 × 10−1 3.8867 × 10−1 3.8870 × 10−1

(2.98 × 10−2)− (2.95 × 10−2)− (3.49 × 10−2)− (4.50 × 10−2)− (1.87 × 10−4)= (1.79 × 10−4)
DTLZ1 7 8.0353 × 10−1 8.3780 × 10−1 6.5584 × 10−1 7.9397 × 10−1 3.1433 × 10−1 8.3594 × 10−1

(9.10 × 10−1)− (2.96 × 10−3)= (2.51 × 10−1)− (1.20 × 10−1)− (3.76 × 10−1)− (2.39 × 10−3)
DTLZ2 12 5.2846 × 10−1 5.5490 × 10−1 5.4292 × 10−1 5.2397 × 10−1 5.2613 × 10−1 5.4495 × 10−1

(4.17 × 10−3)− (8.96 × 10−4)+ (1.44 × 10−3)= (4.39 × 10−3)− (4.52 × 10−3)− (2.35 × 10−3)
DTLZ3 12 4.1495 × 10−1 2.0737 × 10−1 0.0000 × 100 2.4195 × 10−1 6.9750 × 10−2 3.3573 × 10−1

(1.64 × 10−1)+ (2.31 × 10−1)− (0.00 × 100)− (2.17 × 10−1)− (1.81 × 10−1)− (2.12 × 10−1)
DTLZ4 12 5.1554 × 10−1 3.6056 × 10−1 4.9017 × 10−1 5.1736 × 10−1 5.2232 × 10−1 5.3118 × 10−1

(5.78 × 10−2)− (1.66 × 10−1)− (9.55 × 10−2)− (3.49 × 10−2)− (5.86 × 10−3)− (4.99 × 10−2)
DTLZ5 12 1.9844 × 10−1 1.8256 × 10−1 1.9840 × 10−1 1.9899 × 10−1 1.9399 × 10−1 1.9899 × 10−1

(2.71 × 10−4)= (4.25 × 10−4)− (3.76 × 10−4)= (2.06 × 10−4)= (1.43 × 10−3)− (1.81 × 10−4)
DTLZ6 12 1.9946 × 10−1 1.5260 × 10−1 1.9309 × 10−1 1.9921 × 10−1 2.0018 × 10−1 2.0024 × 10−1

(1.32 × 10−4)− (6.17 × 10−2)− (3.65 × 10−2)− (5.51 × 10−3)− (3.47 × 10−5)= (2.26 × 10−5)
DTLZ7 12 2.4741 × 10−1 2.3085 × 10−1 2.5446 × 10−1 1.5659 × 10−1 2.7467 × 10−1 1.6271 × 10−1

(5.76 × 10−3)+ (1.33 × 10−2)+ (1.27 × 10−2)+ (7.12 × 10−3)− (6.32 × 10−3)+ (6.76 × 10−3)
+/−/= 2/8/2 2/9/1 2/8/2 0/9/3 2/6/4

4.5. Quantify the Number of Mutation Strategies across Different Algorithms and Test Functions

As illustrated in Table 4, our algorithm retains a greater number of solutions compared
to other algorithms across various test functions during the mutation-based offspring
generation process. This demonstrates that our algorithm effectively mitigates resource
waste. Furthermore, our algorithm secured first place in 6 out of the 12 test functions,
further attesting to its effectiveness.
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Table 4. Number of individuals eliminated/created during mutation.

D NSGA-II MOEA/D SPEA2 CDE-NSGA-II CMWOA NDE-NSGA-II

ZDT1 30 127/299 291/633 161/303 134/318 122/314 98/310
ZDT2 30 129/302 315/594 152/318 133/302 137/295 125/312
ZDT3 30 163/269 388/633 142/325 145/295 147/311 120/328
ZDT4 10 82/103 216/407 76/100 89/111 89/94 105/189
ZDT6 10 58/101 121/219 53/95 54/102 41/94 65/106

DTLZ1 7 8/70 36/237 8/69 10/75 20/73 8/77
DTLZ2 12 4/132 36/382 6/123 3/115 4/102 2/121
DTLZ3 12 44/126 43/347 33/117 28/113 28/108 16/126
DTLZ4 12 14/103 26/268 7/124 16/132 11/113 2/120
DTLZ5 12 7/122 13/343 9/113 11/126 13/120 6/134
DTLZ6 12 85/115 48/339 11/133 11/115 2/106 6/132
DTLZ7 12 102/193 298/587 103/222 90/230 80/233 123/241

5. Experiments and Analysis of Results
5.1. Study Area

The research area is situated in Hulan District, Harbin City, Heilongjiang Province,
China (46.340683◦ N 126.795502◦ E), as shown in Figure 5. This region, located in northeast-
ern China, falls within the continental monsoon climate of the northern temperate zone,
exhibiting distinct cold, warm, dry, and wet seasons.

Figure 5. Location of the field of study.

Fine-tuning a variety of parameters is vital for accurately simulating the local growth
environment. Maize (Longdan 96) has a plant height of 280 cm and an ear height of 100 cm.
18 leaves can be seen in adult plants. The number of rows per ear is 16–18, with teeth-
shaped and yellow grains, and a weight of 34 g per hundred grains. It is suitable for
planting in the first accumulated temperature zone of Heilongjiang Province (data sourced
from Heilongjiang Academy of Agricultural Sciences). In this experiment, field data from
2015 were gathered, and the parameters in the variety parameter file were adjusted using a
trial-and-error method. Weather data spanning from 2011 to 2015 for average optimization
were employed. The weather data for 2015 are shown in Figure 6. The DSSAT model can
effectively use these parameters to simulate the growth of local crops.
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Figure 6. Precipitation and highest and lowest temperatures in 2015.

5.2. Objective Function

Multi-objective optimization problems involve maximizing or minimizing two or
more objectives by adjusting one or more variables. In the context of crop production,
decision-makers modify irrigation and fertilization methods to attain optimal outcomes.
This study specifically addresses the timing and quantity of irrigation or fertilization in the
field. The objective function is outlined as follows:

Max : Y =
∑N

i=0 DSSATi(ia0 , . . . , iaj , fa0 , . . . , fad , Di)

N
(11)

Min : I =
∑N

i=0 ∑
j
n=0(ian)

N
(12)

Min : F =
∑N

i=0 ∑d
m=0( fam)

N
(13)

In the formula, Y is the yield, I is the total irrigation amount, F is the total nitrogen
application amount, ian is the one-time irrigation amount, fam is the one-time nitrogen ap-
plication amount, j is the irrigation amount, d is the nitrogen application amount, and N = 5
represents the number of years simulated. Di is the time for irrigation and fertilization.

5.3. Optimization Strategies and Configuration

Symmetry also plays an important role in water and fertilizer irrigation in agriculture.
Figure 7 shows the flowchart of optimizing water and fertilizer. We use the R language
to drive the DSSAT model for optimization. Using the integrated method of water and
fertilizer, the effect of different fertilizers on the maize yield was studied. The simulation sit-
uation is divided into two groups: rain irrigation and drip irrigation. We applied urea (N1),
diammonium phosphate (N2), and ammonium nitrate (N3) separately. Maize undergoes
five growth stages—seedling (VE), jointing (VJ), tasseling (VT), filling (R2), and physiologi-
cal maturity (R6). Fertilization and irrigation are carried out during these stages. The dates
for irrigation and fertilization are determined based on historical experience, but due to
differences in weather between different years, we have set their historical experience dates
to ±5 days. Considering the actual situation and based on historical experience, the sowing
date of Longdan 96 is set on May 1st, and the harvest date is set on October 1st. The goal of
each optimization strategy is to maximize production while minimizing resource waste. In
the case of two objectives, the population is 100 with 100 iterations, and in the case of three
objectives, the population is 300 with 100 iterations.
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Figure 7. Flow chart of optimized water and fertilizer irrigation.

5.4. Result and Analysis

Figure 8 illustrates that in the absence of irrigation, the utilization of N1 fertilizer
not only results in a higher yield (10,515 kg/ha) but also requires less fertilizer compared
to the other two fertilizers. Furthermore, the enhanced algorithm identifies a more ra-
tional fertilization strategy. For instance, at the point of maximum yield (10,515 kg/ha),
the original algorithm utilized 312 kg/ha of fertilizer, whereas the improved algorithm
required only 264 kg/ha, reflecting a 15% reduction in fertilizer application compared
to the original algorithm. This outcome substantiates the reliability and efficacy of the
improved algorithm.

(a) N1 (b) N2 (c) N3

Figure 8. Comparison of fertilization strategies between NSGA-II algorithm and NDE-NSGA-
II algorithm.

From Figure 9, it can be seen that under the comprehensive strategy of drip irrigation
and fertilization, the highest yields of N1, N2, and N3 nitrogen fertilizers were 13,585 kg/ha,
13,589 kg/ha, and 13,587 kg/ha, respectively. This means that under irrigation conditions,
all three fertilization methods can achieve higher yields. Compared with the original
algorithm, the improved algorithm exhibits superior yield performance while minimizing
resource waste to the greatest extent possible.

In addition, the improved algorithm provides decision-makers with more irrigation
decision-making solutions and verifies its reliability. Given the relatively low resource
consumption of N2 fertilizer, which has the lowest cost among the three types of fertilizers
(see Table 5 for details), N2 fertilizer has become the preferred choice under irrigation
strategies, improving its economic benefits. The optimal yield and resource consumption
achieved by applying different fertilizers, coupled with historical experience, are detailed
in Table 6, overall, applying N2 fertilizer and achieving the highest yield, with water
consumption reduced by 37.5%, nitrogen application reduced by 8.3%, and yield increased
by 5.9%.
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(a) N1 (b) N2 (c) N3

Figure 9. Comparison of irrigation and fertilization strategies between NSGA-II algorithm and
NDE-NSGA-II algorithm.

Table 5. Different fertilizer prices.

N1 Costs (Yuan/kg) N2 Costs (Yuan/kg) N3 Costs (Yuan/kg)

3.98 2.65 3.82

Examining Table 6, it is evident that opting for the N2 fertilization strategy yields the
highest output. However, in regions facing water scarcity, alternatives such as minimal
irrigation or no irrigation strategies could be considered as viable options.

Table 6. Comparison of best-simulated irrigation and nitrogen fertilizer test results with best practices
(using different fertilizers).

Yield (kg/ha)

Yield Increase (%)

Total Irrigation (mm)

Irrigation Reduction (%)

Total Nitrogen (kg/ha)
Fertilization

Reduction (%)Practices Optimized
Results Practices Optimized

Results Practices Optimized
Results

N1 12,836 13,585 5.8% 80 55 31.3% 300 375 −25%

N2 13,589 5.9% 50 37.5% 275 8.3%

N3 13,587 5.5% 62 22.5% 277 7.7%

6. Discussion

The NDE-NSGA-II algorithm significantly outperforms traditional multi-objective
optimization algorithms. It has demonstrated robust performance in test functions and
excels in optimizing resource allocation strategies, such as crop irrigation and fertilization.
However, the algorithm has certain limitations. Although NDE-NSGA-II improves conver-
gence speed, its computational complexity is relatively high, particularly for large-scale
optimization problems, which can lead to increased computational resource consump-
tion. Additionally, the algorithm’s performance may be sensitive to parameter settings,
and improper parameter selection can affect optimization results, necessitating further
research on parameter tuning and automation methods. Furthermore, this study primarily
relies on simulation environments for testing, and the algorithm’s performance in practical
applications has not been fully validated, requiring further empirical research. In sum-
mary, the development of the NDE-NSGA-II algorithm is significant for multi-objective
optimization, and its potential impact on agricultural applications underscores its practical
value. However, further research is needed to address existing limitations and validate its
effectiveness in real-world scenarios.

7. Conclusions

This article presents the NDE-NSGA-II algorithm as a solution for handling multi-
objective problems. Specifically, chaotic mapping is utilized to enhance the initialization
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process. This is followed by the implementation of a point selection method based on norm
and average distance elimination strategies, aiming to improve convergence and diversity
within the population. The performance of the proposed NDE-NSGA-II is rigorously
validated across 12 benchmark functions, each with distinct features. Comparative analyses
are conducted against other state-of-the-art methods in the field of multi-objective problems
(MOPs). The experimental results robustly affirm the effectiveness and reliability of the
algorithm, showcasing its capability to simultaneously address multi-objective problems
with high diversity and achieve commendable convergence. Finally, the NDE-NSGA-
II algorithm, introduced in this paper, is applied to optimize maize-related scenarios,
demonstrating superiority over the classical NSGA-II method. However, we only simulated
an ideal corn water and fertilizer irrigation, which has certain limitations. In the future,
we can consider using certain methods to predict weather changes and yield. These
results further underscore the practical efficacy of the NDE-NSGA-II algorithm proposed
in this study.

In the future, applying NDE-NSGA-II to more complex high-dimensional multi-objective
problems will be a promising work. At the same time, further testing will be conducted on
multi-objective problems in the real world, and the algorithm will be improved.
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