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Abstract: In this paper, we propose a precise Wigner–Weyl calculus for the models defined on the
honeycomb lattice. We construct two symbols of operators: the B symbol, which is similar to the one
introduced by F. Buot, and the W (or, Weyl) symbol. The latter possesses the set of useful properties.
These identities allow us to use it in physical applications. In particular, we derive topological
expression for the Hall conductivity through the Wigner-transformed Green function. This expression
may be used for the description of the systems with artificial honeycomb lattice, when magnetic flux
through the lattice cell is of the order of elementary quantum of magnetic flux. It is worth mentioning
that, in the present paper, we do not consider the effect of interactions.
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1. Introduction

Wigner–Weyl calculus in its original form was proposed by H. Groenewold [1] and
J. Moyal [2]. It was designed to replace operator formulation of quantum mechanics by
phase space formulation, where the basic notion is Weyl symbol of operator, i.e., function in
phase space that carries all necessary information about the operator itself. Here, the ideas
of H. Weyl [3] and E. Wigner [4] have been used, which gave to this calculus its present
name. Instead of the non-commutative operator product in the Wigner–Weyl formalism,
the non-commutative Moyal product is used [5,6]. The calculus had several applications to
quantum mechanics [7,8] and quantum field theory [9–15].

Originally Wigner–Weyl formalism has been proposed for the systems defined in
continuum space. It is well known, however, that lattice regularization is necessary for
the self-consistent definition of quantum field theory. Moreover, in solid-state physics, the
tight-binding models give reasonable description of collective excitations. Therefore, the
field theory systems defined on the lattice represent an important domain of condensed
matter physics. The attempts to define Wigner–Weyl calculus for the lattice models have
been undertaken long time ago, starting from the works of Schwinger [16]. Important
ideas in this direction have been proposed by Buot [15,17,18]. The corresponding con-
structions have been proposed by several authors, including Wooters [19], Leonhardt [20],
Kasperowitz [21], and Ligabó [22]; see also [23–30] and references therein. It is worth men-
tioning also that the large chapter of pure mathematics called deformational quantization
is based on Wigner–Weyl calculus [31–34].

With the purpose of being applied to non-dissipative transport phenomena, the so-
called approximate lattice Wigner–Weyl calculus was suggested [35]. This version of
Wigner–Weyl calculus may be applied to the lattice systems with weak inhomogeneity,
caused by slowly varying external fields. In practice, this formalism can be used for the
consideration of any lattice-regularized continuous field theory, and can be applied to the
solid-state systems in the presence of elastic deformations, weak disorder, and magnetic
fields much smaller than 105 Tesla (at this value of magnetic field, the magnetic flux through
the lattice cell of the typical crystal lattice becomes of the order of elementary magnetic
flux). The latter requirement seems—at first glance—to be always fulfilled, because the
maximal values of magnetic fields accessed in laboratories do not exceed 100 Tesla. With
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the aid of approximate Wigner–Weyl calculus, the conductivities of several non-dissipative
transport effects have been expressed through the topological invariants [36–42]. Essentially
non-homogeneous systems within this methodology have been considered in [35,43–45].

In the present paper, we concentrate on the quantum Hall effect (QHE). Its topological
description for the idealized system of non-interacting electrons in the presence of con-
stant external magnetic field has been proposed in [46]. The QHE conductivity in such
systems is proportional to the so-called TKNN invariant, expressed through the integral
of Berry curvature over the occupied energy levels. The TKNN invariant is robust to the
smooth modification of the one-particle Hamiltonian [47–52]. However, the application
of the TKNN invariant is limited to unphysically idealized systems, without interactions
or disorder.

The alternative topological description of the QHE is given in terms of Green func-
tions. First, the intrinsic anomalous QHE (existing without external magnetic field) in
homogeneous topological insulators without interactions [53–55] has been given. The
corresponding expression for the conductivity is given by

σH =
e2

h
N ,

where

N = −
ϵijk

3! 4π2

∫
d3 p tr

[
G(p)

∂G−1(p)
∂pi

∂G(p)
∂pj

∂G−1(p)
∂pk

]
. (1)

Here, ϵijk is the totally anti-symmetric tensor with ϵ123 = 1, while pi are the components of
3-momentum (in 2 + 1D momentum space of the two-dimensional system). In this expression,
G(p) is the two-point Green function in momentum space. The advantage of Equation (1) is
that, contrary to the TKNN invariant, it may be extended to the systems with interactions.
Then, the two-point Green function is taken with the interaction corrections [44,56,57]. Notice
that the role of interaction corrections to the QHE conductivity was considered long time ago,
well before the mentioned description with the aid of Equation (1) [58–61].

Equation (1) solves the problem with interaction corrections to the QHE in topological
insulators. However, strictly speaking, it cannot be used for the description of ordinary
QHE in the presence of external magnetic field, and, more widely, for the QHE in the
non-homogeneous systems. The extension of this expression to the non-homogeneous
systems has been given in [35]. For the tight-binding model of a two-dimensional lattice
system the Hall conductivity averaged over the system area is σH = N

2π
e2

h̄ , with

N = −
Tϵijk

|A| 3! 4π2

∫
d3x

∫
M

d3 p tr GC(x, p) ⋆

⋆
∂QC(x, p)

∂pi
⋆

∂GC(x, p)
∂pj

⋆
∂QC(x, p)

∂pk
(2)

Here, the integral is over momentum spaceM, while T → 0 is temperature, |A| → ∞
is the total area of the system, and GC(x, p) is the Wigner transformation of the two-
point Green function Ĝ. QC(x, p) is the lattice Weyl symbol of operator Q̂. Here, Q̂ is
the operator inverse to the Green function. The Moyal product is denoted by ⋆. As
mentioned above, here, the approximate version of the lattice Wigner–Weyl calculus
has been used, which allows to deal with realistic magnetic fields much smaller than
105 Tesla. It is worth mentioning that, by definition, the Weyl symbol is defined as a
function of real valued coordinates, not only for the discrete lattice points. In [44,62],
it was proven that Equation (2) remains valid in the presence of interactions (taken into
account perturbatively) if bare non-interacting Green function is replaced by the complete
interacting one.
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Equation (2) is to be modified for the artificial lattices or in cases of strong inhomo-
geneities. These are the systems where the so-called Hofstadter butterfly appears. Extension
of Equation (2) to such systems has been given in [43], where the consideration was limited
by the tight-binding models defined on the infinite rectangular lattice. The corresponding
version of lattice Wigner–Weyl calculus was called “precise” because the corresponding
Weyl symbol of an operator satisfies the basic identities of continuous Wigner–Weyl cal-
culus precisely. Within this formalism, the expression for the QHE conductivity has been
derived, where Equation (2) is replaced by

N = −
ϵijk

|A| 3! 4π2
|V (2)|

22 ∑
−→x ∈D

∫
M

d3 pTr
[

GW(x, p) ⋆

⋆
∂QW(x, p)

∂pi
⋆

∂GW(x, p)
∂pj

⋆
∂QW(x, p)

∂pk

]
. (3)

Here, x = (τ,−→x ), −→x is the point in space, and τ is imaginary time that belongs to
the interval between 0 and 1/T → ∞. Wigner transformation of the Green function GW
and the Weyl symbol of Dirac operator QW are defined within the precise Wigner–Weyl
calculus and do not depend on τ. V (2) is the area of the elementary lattice cell, and that
above |A| → ∞ is the system area. By D , we denote the extended lattice, in which the
extra lattice sites are added with the half-integer coordinates (assuming the coordinates
of the original lattice are integer). Notice that, although we expect that in the presence of
interactions (taken into account perturbatively), Equation (3) remains valid (just like for
the case of approximate Wigner–Weyl calculus), the direct proof of this statement is still
not given.

Recall that Equation (3) has been derived specifically for the systems defined on the
rectangular lattice. In practice, however, the systems with large magnetic flux through the
lattice cell have been obtained with the artificial lattices that do not have the rectangular
form (see, for example, [63] and references therein). In particular, the artificial lattices may
have the honeycomb form [64]. Therefore, in the present paper, we extend the precise
Wigner–Weyl calculus to the systems defined on the honeycomb lattices. We found that
it is possible to overcome technical difficulties specific for the honeycomb lattice, and we
arrive at the Wigner–Weyl calculus with the definition of the Weyl symbol that obeys the
basic properties of the continuous Wigner–Weyl calculus.

• Star product identity:

(AB)W(x, p) = AW(x, p) ⋆ BW(x, p) (4)

• First trace identity:
TrAW = trÂ (5)

Here, by Tr, we understand the trace of the Weyl symbol, while tr is the trace of an
operator itself.

• Second trace identity:

Tr[AW(x, p)BW(x, p)] = Tr[AW(x, p) ⋆ BW(x, p)] (6)

• Weyl symbol of the identity operator:(
1̂
)

W(x, p) = 1 (7)

Here the Moyal product, as defined below, serves as the star product mentioned in
property (4):

⋆ ≡ ⋆x,p = e
i
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)
. (8)
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Here, the left arrow means that the derivative acts on the expression standing left to the star,
while the right arrow points out that the derivative acts to the right. Using the designed
precise Wigner–Weyl calculus, we derive expression for the Hall conductivity of the non-
interacting system defined on the honeycomb lattice. We rely on the unification of the lattice
Wigner–Weyl calculus with the Keldysh technique. Here, we follow the methodology
developed in [45,65–68].

In the present paper, we do not consider interactions either perturbatively or non-
perturbatively. However, the very form of the obtained below expression for QHE conduc-
tivity through a topological invariant admits extension to the case, when both interactions
and disorder are present. The disorder can be taken into account immediately, without
additional efforts, because the given expression contains the Wigner-transformed Green
functions. One should simply write down expression for Q̂ (inverse of the Green function)
in the presence of disorder, and the proposed topological invariant gives the answer for
integer QHE conductivity. As for the interactions, one can extend the results of [44] to
the case of the present precise Wigner–Weyl calculus. Then, supposedly, the expression
presented in the present paper will remain at work with the non-interacting Green function
replaced by the interacting one (if the interactions are taken into account perturbatively).
We suppose that this might be performed relatively easily. However, this is still the work
to be performed, and is out of the scope of the present paper. The more difficult problem
is to take into account interactions non-perturbatively. That is what should give the true
microscopic explanation of the fractional QHE. Furthermore, this problem is also out of
the scope of the present paper. Nevertheless, in spite of the absence of the considera-
tion of interactions, the derivation of expression for the Hall conductivity through the
Wigner-transformed Green functions seems to us an important step towards the complete
understanding of the problem with the interactions taken into account both perturbatively
and non-perturbatively.

2. Statement of the Main Results
2.1. Definition of Weyl Symbol and Its Properties

We are considering the honeycomb lattice of mono-layer graphene. The physical lattice
vectors of graphene are defined as follows:

l⃗1 =
ℓ

2

(
3x̂ +

√
3ŷ
)

l⃗2 =
ℓ

2

(
3x̂−

√
3ŷ
)

ℓ⃗ = ℓx̂, (9)

where the last vector is the basis vector. These are the reciprocal lattice vectors:

g⃗1 =
2π

3ℓ

(
k̂x +

√
3k̂y

)
g⃗2 =

2π

3ℓ

(
k̂x −

√
3k̂y

)
. (10)

The physical lattice is defined by the following:

O ≡
{

2c1
1 l⃗1 + 2c1

2⃗l2, c1
1,2 ∈ Z

2⃗ℓ+ 2c2
1 l⃗1 + 2c2

2⃗l2, c2
1,2 ∈ Z

}
. (11)

The physical lattice’s first Brillouin zone is given by:

M =

{
1
2

m1 f⃗1 +
1
2

m2 f⃗2,

{
m1 ∈ (−1/2, 1/2]

m2 ∈ (−1/4, 1/4]

}
. (12)
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The extended lattice, which is the union of the physical and auxiliary lattices, is:

D ≡
{

c1
1 l⃗1 + c1

2⃗l2, c1
1,2 ∈ Z

−⃗ℓ+ c2
1 l⃗1 + c2

2⃗l2, c2
1,2 ∈ Z

}
= O ∪O ′. (13)

The extended lattice’s first Brillouin zone is given by:

M =

{
m1 f⃗1 + m2 f⃗2,

{
m1 ∈ (−1/2, 1/2]

m2 ∈ (−1/4, 1/4]

}
. (14)

For x ∈ D, p ∈M , we define Weyl symbol of operator Â, as follows

AW(x, p) ≡
∫
M

d2qe2ixq⟨p + q|Â|p− q⟩

×
(

1 + e−2il1q + e−2il2q + e−2i(l1+l2)q
)

. (15)

Here, |p⟩ = 1√
|M | ∑x∈O eixp|x⟩ is vector of momentum space expressed through the eigen-

vectors of the coordinates |x⟩. This expression is naturally extended to continuous values
of x.

We formulate the following properties of the Weyl symbol:

1. Trace property:

Tr Â = ∑
x∈D

∫
M

d2 p
|M|AW(x, p) (16)

2. Second trace identity:

TrÂB̂ = ∑
x∈D

∫
M

d2 p
|M|AW(x, p)BW(x, p) (17)

3. Star property:

(ÂB̂)W(x, p)
∣∣∣

p∈M,x∈D

= AW(p, q)e
i
2 (
←−
∂q
−→
∂p−
←−
∂p
−→
∂q )BW(p, q) (18)

4. Weyl symbol of unity:

1W(x, p)
∣∣∣

p∈M,x∈D
= 1 (19)

5. Star product without differentiation:

AW(x, p) ⋆ BW(x, p)
∣∣∣
x∈D

= ∑
z,z̄∈D

∫ dp ′

|M|
dp̄′

|M|

e2ip′(z̄−x)+2i p̄′(x−z)AW(z, p− p′)BW(z̄, p− p̄′) (20)

2.2. Quantum Hall Effect in Condensed Matter System Defined on Honeycomb Lattice

We consider an inhomogeneous system defined on the honeycomb lattice O . Time
remains continuous. The fermionic field Φ is defined on lattice sites. We assume that the
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system remains non-interacting. The Keldysh Green function is defined as the follow-
ing matrix:

Ĝ(t, x|t′, x′)

= −i
(
⟨TΦ(t, x)Φ+(t′, x′)⟩ −⟨Φ+(t′, x′)Φ(t, x)⟩
⟨Φ(t, x)Φ+(t′, x′)⟩ ⟨T̃Φ(t, x)Φ+(t′, x′)⟩

)
. (21)

Here, Heisenberg fermionic field operator Φ depends on time t and spatial coordinates x.
By T, we denote the time ordering, while T̃ is anti-time ordering.

The 2 + 1-dimensional vectors (with space and time components) are denoted by large
Latin letters. Correspondingly, in momentum space, A(P1, P2) = ⟨P1|Â|P2⟩. The space com-
ponents of momentum belong to the Brillouin zone, while its time component (frequency)
is real-valued. We then define the Weyl symbol of an operator Â as the mixture of the lattice
Weyl symbol and Wigner transformation, with respect to the frequency component:

AW(X|P) = 2
∫

dP0
∫
M

d2Q⃗ e−2iXµQµ A(P + Q, P−Q)(
1 + e−2il1Q⃗ + e−2il2Q⃗ + e−2i(l1+l2)Q⃗

)
. (22)

Here, µ = 0, 1, 2 is the space–time index, while 2 + 1 momentum is denoted by
Pµ = (P0, p⃗), and Pµ = (P0,− p⃗). Here, p⃗ is spatial momentum with 2 components. The
Keldysh Green function is an operator inverse to Q̂. The Weyl symbol of the Keldysh Green
function Ĝ is denoted by ĜW , while the Weyl symbol of Keldysh Q̂ is Q̂W .

We obtain the following results for the dynamics of the lattice system written in terms
of the Weyl symbols of the operators.

1. Weyl symbols ĜW and Q̂W obey Groenewold equation

Q̂W ∗ ĜW = 1W . (23)

Here, the Moyal product ∗ is defined as

(A ∗ B)(X|P)

= A(X|P) e−i(
←−
∂ Xµ
−→
∂ Pµ−

←−
∂ Pµ

−→
∂ Xµ )/2B(X|P). (24)

It is worth mentioning that, for the complete description of the system, we need the
values of the Weyl symbols defined on spatial phase space D⊗M . For such values of
spatial momenta and coordinates, the Weyl symbol of unity is equal to 1.

2. We express the DC conductivity (in units of e2/h̄, averaged over the lattice area) of
the two-dimensional non-interacting systems as

σij =
1
4

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(

∂πi Q̂W

[
ĜW ⋆ ∂π[0 Q̂W ⋆ ∂πj] ĜW

])<
+ c.c. (25)

through the lesser component of expression that contains the Wigner-transformed
Keldysh Green function G(X|π) and its inverse Q that obey Groenewold equation
Q ⋆ G = 1. We denote π = P− A. Here, πµ is a 2 + 1-dimensional vector, similar to
Pµ. By <, we denote the lesser component of the Keldysh matrix. Here, by |D|, we
denote the number of lattice points in the extended lattice D. It is assumed here that
this number is large but remains finite. Using the representation of the Keldysh Green
function of Equation (21), the lesser component in the above representation may be
rewritten explicitly as

σij =
1
4

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(

γ<∂πi Q̂W

[
ĜW ⋆ ∂π[0 Q̂W ⋆ ∂πj] ĜW

])
+ c.c. (26)
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where trace is taken over the Keldysh components as well as over the internal in-
dices, while

γ< =

(
0 0
1 0

)
.

Here, (. . . )[0(. . . )j] = (. . . )0(. . . )j − (. . . )j(. . . )0 means anti-symmetrization.
3. We show that the above expression for the conductivity (in units of e2/h̄, averaged

over the system area) is reduced to the following expression in the case of the equilib-
rium system at zero temperature:

σ̄ij =
N
2π

ϵij,

where

N =
1

24 π2 ϵµνρ 1
|D|

∫
dP0

∫
M

d2P⃗ ∑
x∈D

tr
(

∂Πµ Q̂M
W ⋆

⋆ĜM
W ⋆ ∂Πν Q̂M

W ⋆ ĜM
W ⋆ ∂Πρ Q̂M

W ⋆ ĜM
W

)
. (27)

Here, the ĜM
W is the Weyl symbol of the Matsubara Green function, while Q̂M

W is the
Weyl symbol of its inverse. Momentum space is a Euclidean one; its points are denoted
by Πi. Π3 is the Matsubara frequency.

4. One can check that Equation (27) is a topological invariant. For that, we need the
system to have been in thermal equilibrium originally, and need the thermal equilib-
rium to correspond to zero temperature. Moreover, we need the Hamiltonian to not
depend on time. The value of the average conductivity σ̄ij is then robust to smooth
variations of the system. The sum over x is important for the topological invariance
of this quantity.

3. Wigner–Weyl Calculus of Felix Buot (1D)

The precise Wigner–Weyl calculus for lattice models, inspired by the original construc-
tion of F. Buot, is excerpted here. Notice that, strictly speaking, the Buot symbol of an
operator differs from the original definition given by F. Buot. We call it the Buot symbol to
distinguish it from the construction that uses the extended lattice. We restrict ourselves to a
simple one-dimensional physical lattice O with a one-dimensional first Brillouin zone M .

3.1. The Hilbert Space

The following definition applies to the physical lattice, which is represented by the
symbol O :

O ≡ {2ℓk, k ∈ Z}, (28)

where 2ℓ stands for the lattice spacing. Its first Brillouin zone is denoted by the symbol M
and has the following definition:

M =
(
− π

2ℓ
,

π

2ℓ

]
. (29)

Furthermore, the auxiliary lattice, which is a translation of the physical lattice by half
the lattice spacing, is defined as follows:

O ′ ≡ {ℓ(2k + 1), k ∈ Z} = O + ℓ. (30)

Consequently, it is possible to define the extended lattice, represented by the symbol
D, which comprises both the auxiliary lattice and the physical lattice, as follows:

D ≡ {ℓk, k ∈ Z} = O ∪O ′. (31)
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Here, ℓ stands for the lattice spacing, and M is the definition of the first Brillouin zone of
the extended lattice:

M =
(
−π

ℓ
,

π

ℓ

]
. (32)

The characteristics of the physical states are described by the following definitions:

1̂O = ∑
x∈O

|x⟩⟨x| =
∫
M

dp|p⟩⟨p| ⟨x|p⟩ = 1√
|M |

eixp (33)

⟨p|q⟩ = δ[
π
ℓ ](p− q) ⟨x|y⟩ = δx,y (34)

|p⟩ = 1√
|M | ∑

x∈O

eixp|x⟩. (35)

The latter being the Fourier transform. Here, by δ[
π
ℓ ](p− q), we denote the delta function

of an argument-defined modulo, π
ℓ .

3.2. The B Symbol

The Buot transformation of a function B(p, q) (which is assumed to be equal to matrix
elements of an operator B), where p, q ∈M , is defined as follows:

BB(x, p) ≡ 1
2

∫
M

dqeixqB
(

p +
q
2

, p− q
2

)
=
∫
M

dqe2ixqB(p + q, p− q). (36)

This expression is also considered as the definition of the Buot B symbol of the given operator.
In addition, the inverse transformation of a function QB(x, p) is given by:

Q(p, q) =
1
|M | ∑

x∈D
e−i(p−q)xQB

(
x,

p + q
2

)
. (37)

Using the Fourier transform approach (35) and the B symbol definition (36), the following
can be demonstrated

1
|M | ∑

x∈D
e−ikxQB(x, p) =

1
|M | ∑

x∈D
e−ikx

∫
M

dqe2ixq

×Q(p + q, p− q)

=
1
|M | ∑

x∈D
e2ix(q− k

2 )
∫
M

Q(p + q, p− q)dq

=
1
|M | ∑

n∈Z
einℓ(2q−k)

∫
M

Q(p + q, p− q)dq

=
2π

|M | ∑
n∈Z

δ[ℓ(2q− k)− 2πn]
∫
M

Q(p + q, p− q)dq

=
2π

|M |
1
2ℓ ∑

n∈Z
δ

(
q− k

2
− π

ℓ
n
) ∫

M
Q(p + q, p− q)dq

=
∫
M

dqδ[
π
ℓ ]
(

q− k
2

)
Q(p + q, p− q)

= Q
(

p +
k
2

, p− k
2

)
. ■
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3.3. Moyal Product

It is possible to show that the B symbol of an operator obeys the star product identity
stated in Section 1—(4) through the definition of the B symbol in (36):

(AB)B(x, p) =
1
2

∫
M

dPeixP
〈

p +
P
2

∣∣ÂB̂
∣∣p− P

2

〉
=

1
2

∫
M

dPeixP
∫
M

dR
〈

p +
P
2

∣∣Â∣∣R〉〈R∣∣B̂∣∣p− P
2

〉
=

1
4

∫
M

dPdKeixP
〈

p +
P
2

∣∣Â∣∣p− K
2

〉
×
〈

p− K
2

∣∣B̂∣∣p− P
2

〉
=

2
2× 4

∫
M

dqdkeix(q+k)
〈

p +
q
2
+

k
2

∣∣Â∣∣p− q
2
+

k
2

〉
×
〈

p− q
2
+

k
2

∣∣B̂∣∣p− q
2
− k

2

〉
=

1
4

∫
M

dqdkeixq
〈

p +
q
2

∣∣Â∣∣p− q
2

〉
e

k
2
←−
∂p− q

2
−→
∂p

× eixk
〈

p +
k
2

∣∣B̂∣∣p− k
2

〉
=

1
2

∫
M

dqeixq
〈

p +
q
2

∣∣Â∣∣p− q
2

〉
e

i
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)

× 1
2

∫
M

dkeixk
〈

p +
k
2

∣∣B̂∣∣p− k
2

〉
. ■

The factor 2 in the fifth line is the Jacobian, generated by changing the variables P = q+ k and
K = q− k, where q, k ∈M. Additionally, changing the variables transforms the integration
region contained within M×M from a square to a rhomboid, as shown in Figure 1. Due to
the periodicity of the integral over the rhomboid form, the factor 1/2 appears in the fifth line
when the integration region is transformed back from a rhomboid to a square.

Figure 1. The integral over a square is transformed into a rhombus; the contributions from shaded
areas are equal.
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3.4. Trace and Its Properties

The definitions of the traces of the physical and extended lattices are as follows:

TrO AB ≡ ∑
x∈O

∫
M

dp
|M |AB(x, p)

TrDAB ≡ ∑
x∈D

∫
M

dp
|M |AB(x, p). (38)

Both adhere to the first trace identity stated in Section 1—(5). As proof, consider the following:

TrDAB ≡
1
|M | ∑

x∈D

∫
M

dpAB(x, p)

=
1
|M | ∑

x∈D

∫
M

dpdqe2ixq⟨p + q|Â|p− q⟩

=
1
|M | ∑

x∈D
∑

x,y∈O

∫
M

dpdqe2ixq⟨p + q|z⟩⟨z|Â|y⟩⟨y|p− q⟩

=
1
|M |2 ∑

x∈D
∑

z,y∈O

∫
M

dpdqei(2x−z−y)qei(y−z)p⟨z|Â|y⟩

= ∑
x∈D

∑
y,z∈O

δ2x,y+zδy,z⟨z|Â|y⟩

= ∑
x∈O

⟨x|Â|x⟩ = trÂ. ■

The same can be demonstrated for the physical lattice, but only the extended lattice accom-
modates the second trace identity specified in Section 1—(6). The proof:

TrD(AB ⋆ BB) ≡ ∑
x∈D

∫
M

dp
|M |AB(x, p) ⋆ BB(x, p)

=
1
|M | ∑

x∈D

∫
M

dpdqdke2ixq⟨p + q|Â|p− q⟩

× e
i
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)
e2ixk⟨p + k|B̂|p− k⟩

=
1
|M |3 ∑

x∈D
∑

y,z,ȳ,z̄∈O

∫
M

dpdqdkei(2x−y−z)q+i(z−y)p

× ⟨y|Â|z⟩e
i
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)
ei(2x−ȳ−z̄)k+i(z̄−ȳ)p⟨ȳ|B̂|z̄⟩

=
1
|M |3 ∑

x∈D
∑

y,z,ȳ,z̄∈O

∫
M

dpdqdkei(2x−y−z)q+i(z−y)p

× ⟨y|Â|z⟩ei(ȳ−z̄)q+i(z−y)kei(2x−ȳ−z̄)k+i(z̄−ȳ)p⟨ȳ|B̂|z̄⟩
= ∑

x∈D
∑

y,z,ȳ,z̄∈O

δ2x+ȳ−z̄,y+z⟨y|Â|z⟩δy−z,z̄−ȳ

× δ2x−y+z,ȳ+z̄⟨ȳ|B̂|z̄⟩
= ∑

x∈O

⟨x|ÂB̂|x⟩ = trÂB̂. ■

3.5. The B Symbol of the Identity Operator

The identity operator’s B symbol is given by:

(1̂)B =
1
2

[
1 + cos

π

ℓ
x
]
, (39)
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where x ∈ D. Contrary to how it is shown in Section 1—(7), the identity operator’s B
symbol fluctuates and is not necessarily unitary. The following provides proof for this:

(1̂)B =
∫
M

dqe2ixq⟨p + q|p− q⟩

=
∫ π

2ℓ

− π
2ℓ

dqe2ixqδ[
π
ℓ ](2q) =

1
2

∫ π
2ℓ

− π
2ℓ

dqe2ixqδ[
π
2ℓ ](q)

=
1
2

∫ π
2ℓ

− π
2ℓ

dqe2ixq
[

δ(q) +
1
2

δ
(

q− π

2ℓ

)
+

1
2

δ
(

q +
π

2ℓ

)]
=

1
2
+

1
4

ei π
ℓ x +

1
4

e−i π
ℓ x =

1
2
+

1
2

cos
π

ℓ
x. ■

Because only half of each function exists inside the integration region M , the shifted Dirac
delta functions, enclosed in square parentheses in the third line, are factored by 1/2.

4. Wigner–Weyl Calculus of Felix Buot in Graphene

In the following, we will sometimes refer to the honeycomb lattice as to the lattice of
graphene. However, all our considerations are applicable to any tight-binding models with
honeycomb lattices, including those with artificial lattices. Moreover, we do not require
that those models have only the nearest-neighbor hoppings.

It is possible to think of the honeycomb lattice as the union of two Bravais lattices,
but it is not one. However, it transforms into a Bravais lattice when the basis is set to two
atoms (each lattice point represents one atom). The primitive physical lattice vectors of
are defined as Equation (9), where the last vector is the representation of the basis. The
reciprocal lattice vectors are given by Equation (10).

Furthermore, the reciprocal lattice vectors’ sum and difference are given by:

f⃗1 = g⃗1 + g⃗2 =
4π

3ℓ
k̂x

f⃗2 = g⃗1 − g⃗2 =
4π√

3ℓ
k̂y. (40)

The aforementioned vectors are necessary in the application of the formalism in a graphene lattice.

4.1. The Hilbert Space (Physical Properties)

The physical lattice is defined by Equation (11) (see Figure 2). The physical lattice’s
first Brillouin zone is given by Equation (12) (see Figures 3 and 4).

Figure 2. An illustration of the physical lattice O .
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Figure 3. The first Brillouin zone and the reciprocal lattice of O .

Figure 4. The translation of the first Brillouin zone; it is denoted by the symbol M and can be seen in
(12); the contributions from shaded areas are equal.

The auxiliary lattice, denoted by the symbol O ′ and comprised of three distinct transla-
tions of the physical lattice by half of its spacing, is further defined as follows (see Figure 5):

O ′ ≡



(
2c1

1 + 1
)⃗

l1 + 2c1
2⃗l2

2⃗ℓ+
(

2c1
1 + 1

)⃗
l1 + 2c1

2⃗l2

2c2
1 l⃗1 +

(
2c2

2 + 1
)⃗

l2

2⃗ℓ+ 2c2
1 l⃗1 +

(
2c2

2 + 1
)⃗

l2(
2c3

1 + 1
)⃗

l1 +
(

2c3
2 + 1

)⃗
l2

2⃗ℓ+
(

2c3
1 + 1

)⃗
l1 +

(
2c3

2 + 1
)⃗

l2



, (41)

where c1
1,2, c2

1,2, c3
1,2 ∈ Z. This leads to the definition of the extended lattice, which is the

union of the physical and auxiliary lattices (Equation (13)). The extended lattice’s first
Brillouin zone is given by Equation (14) (see Figures 6 and 7).
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Figure 5. An illustration of the extended lattice D.

Figure 6. The first Brillouin zone and the reciprocal lattice of D.

Figure 7. The translation of the first Brillouin zone; it is denoted by the symbol M and can be seen in
Equation (14); the contributions from shaded areas are equal.

The definitions that describe the characteristics of the physical states repeat those
of Equations (33) and (35) (defined on the physical lattice O), while Equation (34) is
substituted by:

⟨p|q⟩ = δ[(
1
2 g⃗1, 1

2 g⃗2)](p− q) ⟨x|y⟩ = δx,y. (42)
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4.2. B Symbol

The following definition applies to the two-dimensional B symbol of an operator B̂:

BB(x, p) ≡
∫
M

d2qe2ixq⟨p + q|B̂|p− q⟩

=
∫
M

d2qe2ixqB(p + q, p− q)

=
1
4

∫
M

d2qeixqB
(

p +
q
2

, p− q
2

)
. (43)

In contrast to Section 3.2—(36), a 1/4 factor is produced when a second dimension is added
to the definition of an operator’s B symbol. Moreover, the following is the equation for the
inverse transformation, or Q(p, q), of the function QB(x, p):

Q(p, q) =
1
|M | ∑

x∈D
e−i(p−q)xQB

(
x,

p + q
2

)
. (44)

The following symbols have to be defined in order to show that the inverse transformation
holds true in this two-dimensional case:

δ[a](q) = ∑
n∈Z

δ[q− an]

δ̃[a](q) = ∑
n∈Z

δ[q− añ], (45)

where ñ = n− 1/2. Here, δ[a](q) is again the delta function of an argument defined modulo
a. At the same time, δ̃[a](q) is the similar delta function, which vanishes when the argument
differs from a/2 modulo a. These Dirac functions δ and δ̃ denote, respectively, even and
odd shifts in steps of a/2. Therefore, the inverse transformation can be demonstrated
as follows:

1
|M | ∑

x∈D
e2ix(q− k

2 ) =
1
|M | ∑

c1,c2∈Z
ei 3ℓ

2 (c1+c2)(2qx−kx)

× ei
√

3ℓ
2 (c1−c2)(2qy−ky)

=
1
|M | ∑

d1,d2∈Z
ei 3ℓ

2 (2qx−kx)d1 ei
√

3ℓ
2 (2qy−ky)d2

× 1
2

(
1 + eiπ(d1+d2)

)
=

1
2|M | ∑

d1,d2∈Z
ei 3ℓ

2 (2qx−kx)d1 ei
√

3ℓ
2 (2qy−ky)d2

+
1

2|M | ∑
d1,d2∈Z

ei[ 3ℓ
2 (2qx−kx)+π]d1 ei

[√
3ℓ
2 (2qy−ky)+π

]
d2

= ∑
n∈Z

δ

[(
qx −

kx

2

)
− 2π

3ℓ
n
]

δ

[(
qy −

ky

2

)
− 2π√

3ℓ
n
]

+ ∑
n∈Z

δ

[(
qx −

kx

2

)
− 2π

3ℓ
ñ
]

δ

[(
qy −

ky

2

)
− 2π√

3ℓ
ñ
]

= δ[
2π
3ℓ ]
(

qx −
kx

2

)
δ

[
2π√

3ℓ

](
qy −

ky

2

)
+ δ̃[

2π
3ℓ ]
(

qx −
kx

2

)
δ̃

[
2π√

3ℓ

](
qy −

ky

2

)
,

such that
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1
|M | ∑

x∈D
e−ikxQB(x, p) =

1
|M | ∑

x∈D

∫
M

d2qe2ix(q− k
2 )

×Q(p + q, p− q)

=
∫
M

d2qδ[
1
2 f⃗1, 1

2 f⃗2]
(

q− k
2

)
Q(p + q, p− q)

+
∫
M

d2qδ̃[
1
2 f⃗1, 1

2 f⃗2]
(

q− k
2

)
Q(p + q, p− q)

=
∫
M

d2qδ[(
1
2 g⃗1, 1

2 g⃗2)]
(

q− k
2

)
Q(p + q, p− q)

= Q
(

p +
k
2

, p− k
2

)
. ■

In this expression δ[⃗a1 ,⃗a2](q) is the delta function of an argument with two components.
This vector is defined as the modulo a⃗i, i = 1, 2. The function δ̃[⃗a1 ,⃗a2](q) is the similar delta
function, in which the argument is a defined modulo a⃗i; however, this function vanishes
when the argument differs from ∑i a⃗ini/2 with integer ni. The Buot symbol of an operator
can also be expressed as

BB(x, p) ≡
∫
M

dq e2ixq⟨p + q|B̂|p− q⟩

= ∑
z,y∈O

∫
M

dq e2ixq⟨p + q|z⟩⟨z|B̂|y⟩⟨y|p− q⟩

=
1
|M | ∑

z,y∈O

∫
M

dq e2ixq−i(p+q)z+i(p−q)y⟨z|B̂|y⟩

= ∑
z,y∈O

e−ip(z−y)d(2x− z− y)⟨z|B̂|y⟩, (46)

where
d(w) =

1
|M|

∫
M

dq eiwq.

Here, the integral is over the Brillouin zone. Function BB(x, p) is defined by (46) for any
real-valued x, not only for the values of x ∈ O . Function d(w) is reduced to δw,0 for w ∈ O .

4.3. Moyal Product

The two-dimensional case is consistent with the definition of the star product in
Section 1—(4) and the two-dimensional definition of the B symbol in (43). Consider the
following as proof:

AB(x, p) ⋆ BB(x, p) =
1
4

∫
M

d2qeixq
〈

p +
q
2

∣∣Â∣∣p− q
2

〉
× e

i
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)
× 1

4

∫
M

d2keixk
〈

p +
k
2

∣∣B̂∣∣p− k
2

〉
=

1
42

∫
M

d2qd2keix(q+k)
〈

p +
q
2
+

k
2

∣∣Â∣∣p− q
2
+

k
2

〉
×
〈

p +
k
2
− q

2

∣∣B̂∣∣p− k
2
− q

2

〉
=

22

22 × 42

∫
M

d2Pd2KeixP
〈

p +
P
2

∣∣Â∣∣p− K
2

〉
×
〈

p− K
2

∣∣B̂∣∣p− P
2

〉
=

1
4

∫
M

d2PeixP
∫

M
d2K

〈
p +
P
2

∣∣Â∣∣p−K〉
×
〈

p−K
∣∣B̂∣∣p− P

2

〉
=

1
4

∫
M

d2PeixP
〈

p +
P
2

∣∣ÂB̂
∣∣p− P

2

〉
. ■
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The transition to the third line is possible via the Taylor expansion given below:

ea∂x f (x) =
∞

∑
n=0

an

n!
∂n

x f (x) = f (x + a). (47)

The origin of the 1/22 factor in the fifth line is the Jacobian generated by changing the
variables P = q + k and K = q − k, where q, k ∈ M. When the variables are changed,
the integration region also changes from a four-dimensional square to a four-dimensional
rhomboid. The x and y projections of the four-dimensional square and rhomboid regions
are shown in Figures 8 and 9, respectively:

Figure 8. The x projections of the four-dimensional square and rhomboid regions; the contributions
from colored areas are equal.

Figure 9. The y projections of the four-dimensional square and rhomboid regions; the contributions
from colored areas are equal.

Due to the integral’s periodic nature, with periods of 2π/3ℓ in x and 2π/
√

3ℓ in y,
the four-dimensional rhomboid region can be converted back into the four-dimensional
square region. The white, grey, green, and blue triangles are shifted twice by 4π/3ℓ in x,
whereas the red, yellow, cyan, and magenta triangles are shifted once by ±2π/3ℓ in x and
once more by ±2π/

√
3ℓ in y. The black-outlined rectangles are eventually shifted once

more in x and y (the shifts are denoted by the arrows). This shifts in x and y are linearly
correlated, which means there are eight four-dimensional triangles that can be shifted into
a single four-dimensional square, making the four-dimensional rhomboid region 22 times
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the size of the four-dimensional square region. Thus, the factor 1/22 appears in the fifth
line when the integration region is transformed back from a four-dimensional rhomboid to
a four-dimensional square.

4.4. Trace and Its Properties

The definitions of the traces for B symbols of operators A and B on the physical and
extended lattices are as follows:

TrO AB ≡ ∑
x∈O

∫
M

d2 p
|M |AB(x, p)

TrDAB ≡ ∑
x∈D

∫
M

d2 p
|M |AB(x, p). (48)

Both adhere to the first trace identity stated in Section 1—(5). As proof, consider the following:

TrDAB ≡
1
|M | ∑

x∈D

∫
M

d2 pAB(x, p)

=
1
|M | ∑

x∈D

∫
M

d2 pd2qe2ixq⟨p + q|Â|p− q⟩

=
1
|M | ∑

x∈D
∑

x,y∈O

∫
M

d2 pd2qe2ixq⟨p + q|z⟩⟨z|Â|y⟩⟨y|p− q⟩

=
1
|M |2 ∑

x∈D
∑

z,y∈O

∫
M

d2 pd2qei(2x−z−y)qei(y−z)p⟨z|Â|y⟩

= ∑
x∈D

∑
y,z∈O

δ2x,y+zδy,z⟨z|Â|y⟩

= ∑
x∈O

⟨x|Â|x⟩ = trÂ. ■

The same can be demonstrated for the physical lattice, but only the extended lattice accom-
modates the second trace identity specified in Section 1—(6). The proof:

TrD(AB ⋆ BB) ≡ ∑
x∈D

∫
M

d2 p
|M |AB(x, p) ⋆ BB(x, p)

=
1
|M | ∑

x∈D

∫
M

d2 pd2qd2ke2ixq⟨p + q|Â|p− q⟩

× e
i
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)
e2ixk⟨p + k|B̂|p− k⟩

=
1
|M |3 ∑

x∈D
∑

y,z,ȳ,z̄∈O

∫
M

d2 pd2qd2kei(2x−y−z)q+i(z−y)p

× ⟨y|Â|z⟩e
i
2

(←−
∂x
−→
∂p−
←−
∂p
−→
∂x

)
ei(2x−ȳ−z̄)k+i(z̄−ȳ)p⟨ȳ|B̂|z̄⟩

=
1
|M |3 ∑

x∈D
∑

y,z,ȳ,z̄∈O

∫
M

d2 pd2qd2kei(2x−y−z)q+i(z−y)p

× ⟨y|Â|z⟩ei(ȳ−z̄)q+i(z−y)kei(2x−ȳ−z̄)k+i(z̄−ȳ)p⟨ȳ|B̂|z̄⟩
= ∑

x∈D
∑

y,z,ȳ,z̄∈O

δ2x+ȳ−z̄,y+z⟨y|Â|z⟩δy−z,z̄−ȳ

× δ2x−y+z,ȳ+z̄⟨ȳ|B̂|z̄⟩
= ∑

x∈O

⟨x|ÂB̂|x⟩ = trÂB̂. ■



Symmetry 2024, 16, 1081 18 of 37

4.5. B Symbol of the Identity Operator

The identity operator’s two-dimensional B symbol is represented by:

(1̂)B(x, p) =
1
4

[
1 + cos πc1

1 + cos πc1
2 + cos π

(
c1

1 + c1
2

)]
. (49)

Here, x ∈ D, p ∈ M , and the extended lattice D is defined by Equation (13). It is clear
that Weyl symbol of identity operator is equal to unity if both c1

1 and c1
2 are even integers

(i.e., x ∈ O), but it is not equal to unity if either c1
1 or c1

2 is an odd integer. As a result, the
function 1W instead of being constant is fast oscillating. Take into account the following
when validating (49):

(1̂)B =
∫
M

d2qe2ixq⟨p + q|p− q⟩

=
∫
M

d2qe2ixqδ[(
1
2 g⃗1, 1

2 g⃗2)](2q)

=
1
4

∫
M

d2qe2ixqδ[(
1
4 g⃗1, 1

4 g⃗2)](q)

=
1
4

∫ π
3ℓ

− π
3ℓ

dqxe2ixqx δ(qx)
∫ π

2
√

3ℓ

− π
2
√

3ℓ

dqye2iyqy δ
(
qy
)

+
1
4

∫ π
3ℓ

− π
3ℓ

dqxe2ixqx δ
(

qx ∓
π

6ℓ

) ∫ π
2
√

3ℓ

− π
2
√

3ℓ

dqye2iyqy

× δ

(
qy ±

π

2
√

3ℓ

)
+

1
4

∫ π
3ℓ

− π
3ℓ

dqxe2ixqx δ
(

qx ±
π

6ℓ

)
×
∫ π

2
√

3ℓ

− π
2
√

3ℓ

dqye2iyqy δ

(
qy ±

π

2
√

3ℓ

)
+

1
4

∫ π
3ℓ

− π
3ℓ

dqxe2ixqx

× δ
(

qx ±
π

3ℓ

) ∫ π
2
√

3ℓ

− π
2
√

3ℓ

dqye2iyqy δ
(
qy
)

=
1
4
+

1
8

ei π
3ℓ xe−i π√

3ℓ
y
+

1
8

e−i π
3ℓ xei π√

3ℓ
y
+

1
8

e−i π
3ℓ xe−i π√

3ℓ
y

+
1
8

ei π
3ℓ xei π√

3ℓ
y
+

1
8

e−i 2π
3ℓ x +

1
8

ei 2π
3ℓ x

=
1
4
+

1
2

cos
π

3ℓ
x cos

π√
3ℓ

y +
1
4

cos
2π

3ℓ
x,

where

x =
(

c1
1 l⃗1 + c1

2⃗l2
)

x
=

3ℓ
2

(
11 + c1

2

)
y =

(
c1

1 l⃗1 + c1
2⃗l2
)

y
=

√
3ℓ
2

(
c1

1 − c1
2

)
(50)

These variables, x and y, are the linear projections of the extended lattice vectors (lattice D)
onto the axes.

4.6. Star Product without Differentiation

Let us represent the star product of Buot symbols for x ∈ D through the matrix
elements of Â and B̂:
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AB(x, p) ⋆ BB(x, p) =
∫
M

dkdqei2xk⟨p + k|Â|p− k⟩

⋆e2ixq⟨p + q|B̂|p− q⟩

=
1
|M|2 ∑

z1,z2,z̄1,z̄2∈O

∫
M

dkdqei2xk−iz1(p+k)+iz2(p−k)⟨z1|Â|z2⟩ ⋆

e2ixq−iz̄1(p+q)+iz̄2(p−q)⟨z̄1|B̂|z̄2⟩

=
1
|M|2 ∑

z1,z2,z̄1,z̄2∈O

∫
M

dkdqei(2x−z1−z2)k+ip(−z1+z2)⟨z1|Â|z2⟩ ⋆

ei(2x−z̄1−z̄2)q+ip(−z̄1+z̄2)⟨z̄1|B̂|z̄2⟩
= ∑

z1,z2,z̄1,z̄2∈O
δ2x,z1+z2 eip(−z1+z2)⟨z1|Â|z2⟩ ⋆

eip(−z̄1+z̄2)δ2x,z̄1+z̄2⟨z̄1|B̂|z̄2⟩

= ∑
z1,z2,z̄1,z̄2∈O

δ2x,z1+z2 ei(p−i∂⃗x/2)(−z1+z2)⟨z1|Â|z2⟩

ei(p+i ⃗∂x/2)(−z̄1+z̄2)δ2x,z̄1+z̄2⟨z̄1|B̂|z̄2⟩
= ∑

z1,z2,z̄1,z̄2∈O
δ2x+z̄1−z̄2,z1+z2 eip(−z1+z2)⟨z1|Â|z2⟩

eip(−z̄1+z̄2)δ2x−z1+z2,z̄1+z̄2⟨z̄1|B̂|z̄2⟩. (51)

Next, using Equation (46) we obtain (for x ∈ D):

AB(x, p) ⋆ BB(x, p) = ∑
2z,2z̄,u,ū∈O

δ2x−ū,2zδ2x+u,2z̄

∫ dp ′

|M|
dp̄′

|M| e
ip′u+i p̄′ ū AB(z, p− p′)BB(z̄, p− p̄′). (52)

One can see, that in order to define the star product of the symbols AB(x, p) and BB(x, p)
for x ∈ D we do not need to know the values of these functions for all real values of x. It is
enough to know the values of the Weyl symbols for x ∈ D .

5. Precise Wigner–Weyl Calculus in Graphene

Here, the precise Wigner–Weyl formalism—which makes use of the extended lat-
tice—is constructed. We use this precise Wigner–Weyl calculus on the extended lattice of
graphene, utilizing both the physical lattice O and the extended lattice D, along with their
respective first Brillouin zones M and M.

5.1. The Hilbert Space (Extended Properties)

This section is the same as Section 4.1, with the exception that the properties of the
physical states that act on the physical lattice O are reconfigured to act on the extended lattice
D. Consequently, the following definitions are given for the extended states’ properties:

1̂D = ∑
x∈D
|x⟩⟨x| =

∫
M

d2 p|p⟩⟨p| ⟨x|p⟩ = 1√
|M|

eixp

⟨p|q⟩ = δ[(g⃗1 ,⃗g2)](p− q) ⟨x|y⟩ = δx,y (53)

together with the Fourier decomposition, which is defined as follows:

|p⟩ = 1√
|M| ∑

x∈D
eixp|x⟩

=
1√
|M| ∑

x∈O

eixp|x⟩+ 1√
|M| ∑

x′∈O ′
eix′p|x′⟩. (54)
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Additionally, the following relationships hold true for the extended operators:

⟨x|Q̂|y⟩ = ⟨x + l1|Q̂|y + l1⟩
= ⟨x + l2|Q̂|y + l2⟩
= ⟨x + l1 + l2|Q̂|y + l1 + l2⟩, (55)

where x, y ∈ O , and the inter-lattice matrix elements vanish, such that

⟨x|Q̂|y⟩ = ⟨y|Q̂|x⟩ = 0. (56)

Here, x ∈ O , and y ∈ O ′. Therefore, the matrix elements in the momentum space of such
operators are given by:

⟨p|Q̂|q⟩ = 1
4

Q(p, q)

×
(

1 + eil1(q−p) + eil2(q−p) + eil1,2(q−p)
)

, (57)

where l1,2 = l1 + l2. It is required to mention the following definition before verifying (57):

Q(p, q) =
1
|M | ∑

x1,x2∈O

⟨x1|Q̂|x2⟩ei(x2q−x1 p). (58)

As a result, it is now possible to demonstrate that (57) is true as follows:

⟨p|Q̂|q⟩ = 1
|M| ∑

x1,x2∈O

⟨x1|Q̂|x2⟩ei(x2q−x1 p)

+
1
|M| ∑

x′1,x′2∈O ′
⟨x′1|Q̂|x′2⟩ei(x′2q−x′1 p)

=
1
|M| ∑

x1,x2∈O

⟨x1|Q̂|x2⟩ei(x2q−x1 p)

+
1
|M| ∑

x1,x2∈O

⟨x1 + l1|Q̂|x2 + l1⟩ei(x2q−x1 p)eil1(q−p)

+
1
|M| ∑

x1,x2∈O

⟨x1 + l2|Q̂|x2 + l2⟩ei(x2q−x1 p)eil2(q−p)

+
1
|M| ∑

x1,x2∈O

⟨x1 + l1 + l2|Q̂|x2 + l1 + l2⟩ei(x2q−x1 p)

× ei(l1+l2)(q−p)

=
1
|M| ∑

x1,x2∈O

⟨x1|Q̂|x2⟩ei(x2q−x1 p)

×
(

1 + eil1(q−p) + eil2(q−p) + ei(l1+l2)(q−p)
)

, ■

where, in this two-dimensional case, |M | = |M|/4. According to that definition, the matrix
element ⟨p|Q̂|q⟩ is periodic with periods of 2π/3ℓ in x and 2π/

√
3ℓ in y, whereas the

function Q(p, q) is periodic with periods of π/3ℓ in x and π/
√

3ℓ in y.

5.2. W Symbol

The B symbol of an operator, defined on the extended lattice D, can be used to
determine the W symbol of an operator, defined on the physical lattice O . Take into account
the following:
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QW(x, p) ≡
∫
M

d2qe2ixq⟨p + q|Q̂|p− q⟩

=
1
4

∫
M

d2qe2ixqQ(p + q, p− q)

×
(

1 + e−2il1q + e−2il2q + e−2i(l1+l2)q
)

=
∫

M
d2qe2ixqQ(p + q, p− q)

×
(

1 + e−2il1q + e−2il2q + e−2i(l1+l2)q
)

, (59)

where QW(x, p) is defined for any x ∈ R, but due to the discrete values of x ∈ D the
integration is reduced from M to M . In addition, for brevity’s sake, the expression in
parentheses will henceforth be abbreviated as f (q). Furthermore, the inverse transformation
of a function QW(x, p) is given by:

Q(p, q) =
f−1
(

p−q
2

)
|M | ∑

x∈D
e−i(p−q)xQW

(
x,

p + q
2

)
. (60)

It is possible to validate (60) in a manner similar to how it was demonstrated in Section 4.2
by doing the following:

1
|M | ∑

x∈D
e2ix(q− k

2 ) =
1
|M | ∑

c1,c2∈Z
ei 3ℓ

2 (c1+c2)(2qx−kx)

× ei
√

3ℓ
2 (c1−c2)(2qy−ky)

=
1
|M | ∑

d1,d2∈Z
ei 3ℓ

2 (2qx−kx)d1 ei
√

3ℓ
2 (2qy−ky)d2

× 1
2

(
1 + eiπ(d1+d2)

)
=

1
2|M | ∑

d1,d2∈Z
ei 3ℓ

2 (2qx−kx)d1 ei
√

3ℓ
2 (2qy−ky)d2

+
1

2|M | ∑
d1,d2∈Z

ei[ 3ℓ
2 (2qx−kx)+π]d1 ei

[√
3ℓ
2 (2qy−ky)+π

]
d2

= ∑
n∈Z

δ

[(
qx −

kx

2

)
− 2π

3ℓ
n
]

δ

[(
qy −

ky

2

)
− 2π√

3ℓ
n
]

+ ∑
n∈Z

δ

[(
qx −

kx

2

)
− 2π

3ℓ
ñ
]

δ

[(
qy −

ky

2

)
− 2π√

3ℓ
ñ
]

= δ[
2π
3ℓ ]
(

qx −
kx

2

)
δ

[
2π√

3ℓ

](
qy −

ky

2

)
+ δ̃[

2π
3ℓ ]
(

qx −
kx

2

)
δ̃

[
2π√

3ℓ

](
qy −

ky

2

)
,

such that
1
|M | ∑

x∈D
e−ikxQW(x, p) =

1
|M | ∑

x∈D

∫
M

d2qe2ix(q− k
2 )

×Q(p + q, p− q) f (q)

=
∫

M
d2qδ[

1
2 f⃗1, 1

2 f⃗2]
(

q− k
2

)
Q(p + q, p− q) f (q)

+
∫

M
d2qδ̃[

1
2 f⃗1, 1

2 f⃗2]
(

q− k
2

)
Q(p + q, p− q) f (q)

=
∫

M
d2qδ[(

1
2 g⃗1, 1

2 g⃗2)]
(

q− k
2

)
Q(p + q, p− q) f (q)

= Q
(

p +
k
2

, p− k
2

)
f
(

k
2

)
. ■
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The Buot symbol on the extended lattice may be expressed as

QW(x, p) = ∑
z,y∈D

e−ip(z−y)d(2x− z− y)⟨z|Q̂|y⟩, (61)

where
d(w) =

1
|M|

∫
M

dq eiwq.

The doubly extended lattice S may be defined as an extension of D in the same way as D
is an extension of O .

We should take into account the constraints of Equations (55) and (56). This results in

QW(x, p) = ∑
z,y∈O ;ni=0,1

e−ip(z−y)

d(2x− z− y− 2lini)⟨z|Q̂|y⟩, (62)

and
QW(x, p)

∣∣∣
x∈S \D

= 0. (63)

5.3. Moyal Product

The two-dimensional case is consistent with the definition of the star product in
Section 1—(4) and the definition of the W symbol in (59). Consider the following as proof:

AW(x, p) ⋆ BW(x, p) =
∫
M

d2qe2ixq f (q)A(p + q, p− q)

× e
i
2 (
←−
∂x
−→
∂p−
←−
∂p
−→
∂x )
∫
M

d2ke2ixk f (k)B(p + k, p− k)

=
∫
M

d2qe2ixq f (q)A(p + q + k, p− q + k)

×
∫
M

d2ke2ixk f (k)B(p− q + k, p− q− k)

=
1

22 × 22

∫
M

d2Pd2Ke2ixP f
(
P +K

2

)
f
(
P −K

2

)
× A(p + P , p−K)B(p−K, p−P)

=
1

22 × 22

∫
M

d2Pd2Ke2ixP
[

1 + g
(
P +K

2

)]
×
[

1 + g
(
P −K

2

)]
A(p + P , p−K)B(p−K, p−P)

=
1

22 × 22

∫
M

d2Pd2Ke2ixP
[

1 + g
(
P +K

2

)
+ g
(
P −K

2

)
+ g
(
P +K

2

)
g
(
P −K

2

)]
A(p + P , p−K)

× B(p−K, p−P)

=
42

22 × 22

∫
M

d2Pd2Ke2ixP f (P)A(p + P , p−K)

× B(p−K, p−P) = (AB)W(x, p). ■

The two 1/22 factors in the fifth line are produced by the Jacobian and the transition of the
integration region from a four-dimensional rhomboid to a four-dimensional square M⊗M.
Due to the periodic nature of the functions f ((P ±K)/2), which have periods of 2π/3ℓ
in x and 2π/

√
3ℓ in y, it is impossible to immediately reduce the integration region from

M⊗M to M ⊗M . As a result, the following modification is implemented:
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g(p) ≡ f (p)− 1 = e−2il1q + e−2il2q + e−2i(l1+l2)q. (64)

Therefore, after the expressions in square parentheses are multiplied and the integration
region is reduced, the integrals, including the terms g((P ± K)/2), cancel out because
these functions change sign when shifted by π/3ℓ in x and/or by π/

√
3ℓ in y. Those

shifts are demonstrated in Figures 10 and 11. Furthermore, canceling out are the integrals,
including the terms 1 and g((P +K)/2)× g((P −K)/2), which do not add up to f (P).
Once f (P) is all that is left, the integration region can be reduced from M⊗M to M ⊗M
because it is periodic, with periods of π/3ℓ in x and π/

√
3ℓ in y. The factor 42 in the final

line is produced by this reduction.

Figure 10. The four-dimensional squares M⊗M and M ⊗M ’s x projections. Arrows depict the
shifts: red shifts are negative, while blue shifts are positive.

Figure 11. The four-dimensional squares M⊗M and M ⊗M ’s y projections. Arrows depict the
shifts: red shifts are negative, while blue shifts are positive.

5.4. Trace and Its Properties

The definitions of the traces of the physical and extended lattices are as follows:

TrO QW ≡ ∑
x∈O

∫
M

d2 p
|M |QW(x, p)

TrDQW ≡ ∑
x∈D

∫
M

d2 p
|M|QW(x, p). (65)

Both adhere to the first trace identity stated in Section 1—(5). As proof, consider the following:
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TrO QW ≡ ∑
x∈O

∫
M

d2 p
|M |QW(x, p)

=
1
|M | ∑

x∈O

∫
M

d2 pd2qe2ixqQ(p + q, p− q) f (q)

=
∫
M

d2 pd2qδ[(
1
2 g⃗1, 1

2 g⃗2)](2q)Q(p + q, p− q) f (q)

=
1
4

∫
M

d2 pd2qδ[(
1
4 g⃗1, 1

4 g⃗2)](q)Q(p + q, p− q)

×
(

1 + e−2il1q + e−2il2q + e−2i(l1+l2)q
)

=
1
4

∫
M

d2 p
∫ π

3ℓ

− π
3ℓ

dqx

∫ π
2
√

3ℓ

− π
2
√

3ℓ

dqyQ(p + q, p− q)

×
(

δ(qx)δ(qy) + δ
(

qx ∓
π

6ℓ

)
δ

(
qy ±

π

2
√

3ℓ

)
+ δ
(

qx ±
π

6ℓ

)
δ

(
qy ±

π

2
√

3ℓ

)
+ δ
(

qx ±
π

3ℓ

)
δ(qy)

)
×
(

1 + 2e−i3ℓqx cos
√

3ℓqy + e−i6ℓqx

)
=
∫
M

d2 pd2qδ(q)Q(p + q, p− q)

=
∫
M

d2 p Q(p, p) = trQ̂. ■

The same can be demonstrated for the extended lattice. Therefore, both definitions of the
traces in (65) obey the first trace identity as follows:

TrO QW = TrDQW = tr.Q̂ (66)

The second trace identity stated in Section 1—(6) is solely accommodated by the
extended lattice, much like in Section 4.4. The proof is:

TrD(AW BW) ≡ ∑
x∈D

∫
M

d2 p
|M|AW(x, p)BW(x, p)

= ∑
x∈D

∫
M

d2 p
|M|

∫
M

d2qe2ixq A(p− q, p + q) f (q)

×
∫
M

d2ke2ixkB(p− k, p + k) f (k)

=
1
4

∫
M

d2 pd2qA(p− q, p + q)B(p + q, p− q) f (q) f (−q)

=
1

4|M |2
∫
M

d2 pd2q ∑
x1,2∈O

⟨x1|Â|x2⟩ei(x2(p+q)−x1(p−q))

× ∑
y1,2∈O

⟨y1|B̂|y2⟩ei(y2(p+q)−y1(p−q))

×
(

4 + 2e±2il1q + 2e±2il2q + e±2i(l1+l2)q + e±2i(l1−l2)q
)

=
1
4 ∑

x1,2∈O

⟨x1|Â|x2⟩ ∑
y1,2∈O

⟨y1|B̂|y2⟩
[
4δ2x1,2y2 δ2x2,2y1

+ 2δ2x1,2y2±2l1 δ2x2,2y1±2l1 + 2δ2x1,2y2±2l2 δ2x2,2y2±2l2

+ δ2x1,2y2±2(l1+l2)δ2x2,2y1±2(l1+l2)

+ δ2x1,2y2±2(l1−l2)δ2x2,2y1±2(l1−l2)
]

= ∑
x1∈O

⟨x1|ÂB̂|x1⟩ = trÂB̂. ■
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All Kronecker terms enclosed in square parentheses disappear for xi, yi ∈ O save the first.
Thus, a solution exists when x1 = y2 and x2 = y1. Following the example above, it can be
simply demonstrated that:

TrD(AW BW) = TrD(AW ⋆ BW) = trÂB̂. (67)

5.5. W Symbol of the Identity Operator

The identity operator’s two-dimensional W symbol is represented by:

(1̂)W(x, p)
∣∣∣
x∈D

=
1
4

[
1 + cos 2πc1

1 + cos 2πc1
2 + cos 2π

(
c1

1 + c1
2

)]
= 1, (68)

where it is clear that for all values of c1
1 and c1

2, the identity operator is unitary. When
validating (49), consider the following:

(1̂)W =
∫
M

d2qe2ixq⟨p + q|p− q⟩

=
1
4

∫
M

d2qe2ixqδ[(g⃗1 ,⃗g2)](2q) f (q)

=
1

16

∫
M

d2qe2ixqδ[(
1
2 g⃗1, 1

2 g⃗2)](q)

×
(

1 + e−2il1q + e−2il2q + e−2i(l1+l2)q
)

=
1

16

∫ 2π
3ℓ

− 2π
3ℓ

dqxe2ixqx

∫ π√
3ℓ

− π√
3ℓ

dqye2iyqy

(
δ(qx)δ(qy)

+ δ
(

qx ∓
π

3ℓ

)
δ

(
qy ±

π√
3ℓ

)
+ δ
(

qx ±
π

3ℓ

)
δ

(
qy ±

π√
3ℓ

)
+ δ

(
qx ±

2π

3ℓ

)
δ(qy)

)
×
(

1 + 2e−i3ℓqx cos
√

3ℓqy + e−i6ℓqx

)
=

1
4
+

1
8

ei 2π
3ℓ xe−i 2π√

3ℓ
y
+

1
8

e−i 2π
3ℓ xei 2π√

3ℓ
y

+
1
8

e−i 2π
3ℓ xe−i 2π√

3ℓ
y
+

1
8

ei 2π
3ℓ xei 2π√

3ℓ
y
+

1
8

e−i 4π
3ℓ x +

1
8

ei 4π
3ℓ x

=
1
4
+

1
2

cos
2π

3ℓ
x cos

2π√
3ℓ

y +
1
4

cos
4π

3ℓ
x,

where x and y are given by Equation (50). These variables, x and y, are the linear projections
of the extended lattice vectors (lattice D) onto the axes.

5.6. Star Product without Differentiation

One can represent the star product of Weyl symbols for x ∈ S through the matrix
elements of Â and B̂. Using Equation (46), we obtain (for x ∈ S ):

AW(x, p) ⋆ BW(x, p) = ∑
2z,2z̄,u,ū∈D

δ2x−ū,2zδ2x+u,2z̄

∫ dp ′

|M|
dp̄′

|M| e
ip′u+i p̄′ ū AW(z, p− p′)BW(z̄, p− p̄′)

= ∑
z,z̄∈S

∫ dp ′

|M|
dp̄′

|M|

e2ip′(z̄−x)+i p̄′(x−z)AW(z, p− p′)BW(z̄, p− p̄′). (69)
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One can see that, in order to define the star product of the symbols AW(x, p) and BW(x, p)
for x ∈ S , we do not need to know the values of these functions for all real values of x.
It is enough to know the values of the Weyl symbols for x ∈ S . Moreover, according to
Equation (63), we have

AW(x, p)
∣∣∣
x∈S \D

= 0 (70)

for the operators that obey Equation (56). As a result, for such operators all needed
information is encoded in the Weyl symbols AW(x, p) and BW(x, p) for x ∈ D :

AW(x, p) ⋆ BW(x, p)
∣∣∣
x∈D

= ∑
z,z̄∈D

∫ dp ′

|M|
dp̄′

|M|

e2ip′(z̄−x)+2i p̄′(x−z)AW(z, p− p′)BW(z̄, p− p̄′). (71)

6. Dynamics of Systems Defined on Honeycomb Lattice, and Hall Conductivity
6.1. Keldysh Technique of Field Theory

In this section, we use for brevity the units with h̄ = 1 and absorb electric charge to the
definition of the gauge field. As a result, the obtained expression for electric conductivity
should be multiplied by e2/h̄ (which is pointed out explicitly if necessary).

Here, we follow the approach developed in [45,68]. We work in the relativistic system
of units with h̄ = 1. Moreover, we absorb electric charge in the definition of electromagnetic
field. In order to come back to the usual system of units expression for the conductivity to
be obtained below should be multiplied by e2/h̄.

Let us consider the system defined on the honeycomb latticeO. Time is not discretized
and is continuous. Field theory Hamiltonian is denoted by Ĥ. An operator O[ψ̂, ˆ̄ψ] is a
functional of fields ψ̂, ˆ̄ψ. Operator O at time t is a function of ψ and ψ̄ defined at the same
time. The average of the corresponding quantity is given by

⟨O⟩ = tr
(

ρ̂(ti) e−i
∫ t

ti
ĤdtO[ψ̂, ˆ̄ψ]e−i

∫ t f
t Ĥdtei

∫ t f
ti
Ĥdt
)

.

Here, ti < t < t f , and ρ̂(ti) is density matrix at ti. Time ordering T allows us to rewrite the
above expression as

⟨O⟩ = tr
(
T
[
ρ̂(ti) e−i

∫ t f
ti
ĤdtO[ψ̂, ˆ̄ψ]

]
ei
∫ t f

ti
Ĥdt
)

.

For the considered lattice system, ⟨O⟩ is given by

⟨O⟩ =
∫
Dψ̄Dψ O[ψ, ψ̄] exp

{
i
∫

C
dt ∑

x
ψ̄(t, x)Q̂ψ(t, x)

}
.

Here, ψ and ψ̄ are the Grassmann variables, x is a lattice point. Without interactions, Q̂ is
Q̂ = i∂t − Ĥ, where Ĥ is the one-particle Hamiltonian. Integration over time is along the
Keldysh contour C. The contour starts at the ti, goes to t f , and returns back from t f to ti.

The forward part of the contour carries fields ψ̄−(t, x) and ψ−(t, x). The fields on the
backward part are ψ̄+(t, x) and ψ+(t, x).

The boundary conditions relate fields of the forward and backward parts of the
Keldysh contour: ψ̄−(t f , x) = ψ̄+(t f , x) and ψ−(t f , x) = ψ+(t f , x). The integration mea-
sure Dψ̄Dψ contains ψ̄+(ti, x), ψ+(ti, x) and ψ̄−(ti, x), ψ−(ti, x) and depends on initial
density matrix ρ̂:
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⟨O⟩ =
∫ Dψ̄±Dψ±

Det (1 + ρ)
O[ψ+, ψ̄+]

exp
(

i
∫ t f

ti

dt ∑
x

[
ψ̄−(t, x)Q̂ψ−(t, x)− ψ̄+(t, x)Q̂ψ+(t, x)

]
−∑

x
ψ̄−(ti, x)ρψ+(ti, x)

)
. (72)

ρ is an operator in one-particle Hilbert space. Its eigenstates are |λi⟩, the matrix
elements enter expression ⟨λi |ρ|λi⟩

1+⟨λi |ρ|λi⟩
for the probability that the one-particle state |λi⟩ is

occupied. At the same time, 1
1+⟨λi |ρ|λi⟩

is the probability that the same state is empty.
Keldysh spinors are composed of

Ψ =

(
ψ−
ψ+

)
, (73)

The average of an operator O is

⟨O⟩ =
1

Det (1 + ρ)

∫
DΨ̄DΨ O[Ψ, Ψ̄] exp

{
i
∫ t f

ti

dt ∑
x

Ψ̄(t, x)Q̂Ψ(t, x)
}

. (74)

Here, x is a two-dimensional vector. Q̂ is given in Keldysh representation as

Q̂ =

(
Q−− Q−+
Q+− Q++

)
. (75)

To calculate the components of this matrix, one should use continuum limit of lattice
regularized expressions:

Q++ = −
(

i∂t − Ĥ − iϵ
1− ρ

1 + ρ

)
,

Q−− = i∂t − Ĥ + iϵ
1− ρ

1 + ρ
,

Q+− = −2iϵ
1

1 + ρ
,

Q−+ = 2iϵ
ρ

1 + ρ
. (76)

Here, ρ gives rise to one-particle distribution f = ρ(1 + ρ)−1. For a distribution depending
only on energy, ρ = ρ(Ĥ) is a function of the one-particle Hamiltonian. (In particular,
in cases of Fermi distribution with temperature T and chemical potential µ, we have
ρ(E) = e(E−µ)/T .) The infinitely small parameter ϵ → 0 points out the way to avoid the
singularities while calculating the inverse operators (see Section 5.1 of [69]).

The Green function Ĝ is defined as

Gα1α2(t, x|t′, x′) =
∫ DΨ̄DΨ

iDet (1 + ρ)
Ψα1(t, x)Ψ̄α2(t

′, x′)

exp

{
i
∫ t f

ti

dt ∑
x

Ψ̄(t, x)Q̂Ψ(t, x)

}
. (77)

Here, α is Keldysh spinor index (73). We have an equation

Q̂Ĝ = 1.



Symmetry 2024, 16, 1081 28 of 37

Components of Ĝ obey
G−− + G++ − G−+ − G+− = 0 (78)

while
Q−− + Q++ + Q−+ + Q+− = 0. (79)

Another representation is related to the spinors defined above as(
ψ1
ψ2

)
=

1√
2

(
1 1
1 −1

)(
ψ−
ψ+

)
(
ψ̄1 ψ̄2

)
=

1√
2

(
ψ̄− ψ̄+

)( 1 1
−1 1

)
.

Green function in this representation is triangular

Ĝ(K) = −i⟨
(

ψ1
ψ2

)
⊗
(
ψ̄1 ψ̄2

)
⟩ (80)

=
1
2

(
1 1
1 −1

)(
G−− G−+

G+− G++

)(
1 1
−1 1

)
=

(
GR GK

0 GA

)
.

We introduced the above Keldysh, advanced, and retarded Green functions:

GK = G−+ + G+− = G−− + G++,

GA = G−− − G+− = G−+ − G++,

GR = G−− − G−+ = G+− − G++.

(81)

Another triangular representation will be used below

Ĝ(<) =

(
1 1
0 1

)(
GR GK

0 GA

)(
1 −1
0 1

)
=

(
GR 2G<

0 GA

)
.

(82)

It is expressed through the Green function defined by Equation (77) as

Ĝ(<) = UĜV, (83)

where

U =
1√
2

(
1 1
0 1

)(
1 1
1 −1

)
=

1√
2

(
2 0
1 −1

)
and

V =
1√
2

(
1 1
−1 1

)(
1 −1
0 1

)
=

1√
2

(
1 0
−1 2

)
.

In addition, we have

Q̂(<) = V−1Q̂U−1 (84)

=
1
2

(
2 0
1 1

)(
Q−− Q−+

Q+− Q++

)(
1 0
1 −2

)
=

(
Q−− + Q−+ −2Q−+

Q−−+Q+−+Q−++Q++

2 −Q−+ −Q++

)

=

(
QR 2Q<

0 QA

)
,
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Here, we denote

QR = Q−− + Q−+, QA = −Q−+ −Q++, Q< = −Q−+, (85)

Then
GA = (QA)−1, GR = (QA)−1, G< = −GRQ<GA. (86)

with

GR = (i∂t − Ĥe+ϵ∂t)−1 = (i∂t − Ĥ + iϵ)−1,

GA = (i∂t − Ĥe−ϵ∂t)−1 = (i∂t − Ĥ − iϵ)−1,

G< = (GA − GR)
ρ

ρ + 1
.

(87)

Q̂< is inverse to Ĝ<:

Q< = (QA −QR)
ρ

ρ + 1
= −2iϵ

ρ

ρ + 1
,

QR = i∂t − Ĥ + iϵ,

QA = i∂t − Ĥ − iϵ.

(88)

(see [69,70]).

6.2. Electric Conductivity and Wigner–Weyl Calculus

Here, we adopt basic notions of Wigner–Weyl calculus [35,65] to the models defined on
honeycomb lattice. The 2+ 1-dimensional vectors are denoted by large Latin letters. For any
operator, Â, its matrix elements in momentum space are denoted by A(P1, P2) = ⟨P1|Â|P2⟩.
Correspondingly, the space components of momentum belong to the Brillouin zone while
its time component (frequency) is real-valued. We then define Weyl symbol of an operator
Â as the mixture of lattice the Weyl symbol and the Wigner transformation, with respect to
the frequency component via Equation (22), where 2 + 1 D momentum is Pµ = (P0, p), and
Pµ = (P0,−p). The Weyl symbol of Keldysh Green function Ĝ is denoted by Ĝ, while the
Weyl symbol of the Keldysh operator Q̂ is Q̂. The subscript W is omitted below for brevity.

Ĝ and Q̂ obey the Groenewold equation (23). The Moyal product ∗ is written as
Equation (24). Electromagnetic potential A corresponds to constant components of electric
field with the field strength Fµν. We choose the gauge, in which the spatial part of potential
is proportional to time but does not depend on spatial coordinates.

6.3. Gauge Transformation of Weyl Symbol

The Weyl symbol of operator Â may be represented also as

AW(X|P) = 2
∫

dZ0dY0 ∑
Z⃗,Y⃗∈O ;ni=0,1

ei(Zµ−Yµ)Pµ ⟨Z| Â |Y⟩

δ(2X0 − Z0 −Y0)d(2X⃗− Z⃗− Y⃗− 2lini) (89)

U(1) gauge transformation acts as |X⟩ → eiα(X) |X⟩. As a result, the Weyl symbol of
an operator Â is transformed as

AW(X|P) → 2
∫

dZ0dY0 ∑
Z⃗,Y⃗∈O ;ni=0,1

ei(Zµ−Yµ)Pµ+i(α(Y)−α(Z)) ⟨Z| Â |Y⟩

δ(2X0 − Z0 −Y0)d(2X⃗− Z⃗− Y⃗− 2lini)
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Let us consider those gauge transformations, for which function α almost does not
vary at the distances of the order of the correlation length λ characterizing operator Â, i.e.,
|λ∂α| ≪ 1. We call these transformations “slow” (with respect to Â). For them, we obtain:

AW(X|P) → 2
∫

dZ0dY0 ∑
Z⃗,Y⃗∈O ;ni=0,1

ei(Zµ−Yµ)(Pµ−∂µα(X)) ⟨Z| Â |Y⟩

δ(2X0 − Z0 −Y0)d(2X⃗− Z⃗− Y⃗− 2lini)

= AW(X|P− ∂µα(X)) (90)

If operator Â depends on the U(1) gauge field A, then we may require that the gauge
transformation of Â should be compensated by the gauge transformation of field A. This
occurs, for example, for Dirac operator Q̂ due to gauge invariance of the whole model.
Consideration of “slow” gauge transformation results in the requirement that Weyl symbol
AW(x, p) depends on A(x) through the functional dependence on P− A(x), and gauge
invariant quantities: field strength Fij and its derivatives, provided that variation of A(x)
may be neglected at the distances of the order of λ, i.e., |λ2Fij| ≪ 1. As a result, for such
A(x) we may represent AW as a series

AW(X|P) = A(0)
W (X|P− A(x))

+B(1)
(ij)W(X|P− A(x))Fij(X)

+A(2)
(ijk)W(X|P− A(x))∂kFij(x) + . . . (91)

Here, dots denote the higher order terms in derivatives. This expansion is reasonable, i.e.,
the higher order terms are smaller than the lower order terms under the same condition
|λ2Fij| ≪ 1.

In particular, for bare Q̂, the correlation length λ is given by the lattice spacing, and
we may use the above expansion for the fields A that vary slowly at the distance of the
order of lattice spacing. Response to such fields gives electric conductivity.

Thus, in order to calculate conductivity we expand our expressions in powers of Fµν

up to the linear term. We denote π = P− A. Here, πµ is 2 + 1-dimensional vector similar
to Pµ. The Moyal product may be decomposed as

∗ = ⋆e−iFµν←−∂ πµ
−→
∂ πν /2. (92)

with
(A ⋆ B)(X|π) = A(X|π) e−i(

←−
∂ Xµ
−→
∂ πµ−

←−
∂ πµ
−→
∂ Xµ )/2B(X|π). (93)

If the external field A does not depend on spatial coordinates, then this expression can
be used.

Both Q̂ and Ĝ are expanded in powers of Fµν up to the linear terms

Q̂ = Q̂(0) +
1
2
FµνQ̂(1)

µν , Ĝ = Ĝ(0) +
1
2
FµνĜ(1)

µν . (94)

We omit below the superscript (0) for brevity. The Green function and its inverse are
expressed through the one-particle Hamiltonian as

GR = (π0 − Ĥ(π⃗, x) + iϵ)−1,

GA = (π0 − Ĥ(π⃗, x)− iϵ)−1,

G< = (GA − GR) f (π0) = 2πiδ(π0 − Ĥ(π⃗)) f (π0).

(95)
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Q̂< is inverse to Ĝ<:

Q< = (QA −QR) f (π0) = −2iϵ f (π0),

QR = π0 − Ĥ(π⃗, x) + iϵ,

QA = π0 − Ĥ(π⃗, x)− iϵ.

(96)

Groenewold equation can be written as(
Q̂ +

1
2
FµνQ̂(1)

µν

)
⋆ e−iFµν←−∂ πµ

−→
∂ πν /2

(
Ĝ +

1
2
FµνĜ(1)

µν

)
= 1W . (97)

In the zeroth order in F it is reduced to Q̂ ⋆ Ĝ = 1W (in the following, we will write Ĝ
instead of Ĝ(0) if this will not lead to contradictions), while the first order gives Q̂ ⋆ Ĝ(1) +

Q̂(1) ⋆ Ĝ−iQ̂ ⋆
←−
∂ πµ
−→
∂ πν Ĝ = 0.

At this point, we notice that, according to the properties of the Weyl symbols QW(x, p)
and G(x, p), all needed information is encoded in their values at x ∈ D . At these values
1W(x, p) ≡ 1. As a result, Ĝ(0)(x, p) is smooth function of x and p as long as Q̂(0) ≡ Q̂ is
smooth function of x and p. Therefore, the expansion in powers of derivatives has sense. If
we would use instead of the Weyl symbol ĜW the B symbol ĜB , then function Ĝ(0)

B (x, p)
will be oscillating fast since 1B(x, p) is fast-oscillating. The derivative expansion of such
functions is problematic, and most likely we cannot expand our expressions in powers of
Fij (although this question is to be analyzed more carefully).

We obtain

Ĝ(1)
µν = −Ĝ ⋆ Q̂(1)

µν ⋆ Ĝ

−i
(
Ĝ ⋆ ∂πµ Q̂ ⋆ Ĝ ⋆ ∂πν Q̂ ⋆ Ĝ− (µ↔ ν)

)
/2. (98)

The above derivation is somehow similar to the derivation presented in [65]. The
difference is that here we consider the lattice model. For the homogeneous system Weyl
symbol Q̂ does not depend on coordinate x. It may depend on P0 and X0 and on p ∈ M.
Electric current density is given by

ĵi = − ˆ̄ψ
∂Q̂
∂pi

ψ̂, i = 1, 2, . . . D.

Recall that spatial components of momentum are pi = pi = Pi = −Pi.

⟨ji(t, x)⟩ = − i
2

tr
[
Ĝv̂i

]
. (99)

The velocity operator is

v̂i = ∂pi

(
−Q−− 0

0 Q++

)
.

For the non-uniform systems, the above expression for the electric current density is
not valid. Nevertheless, response of the partition function to variation of electromagnetic
potential gives expression for the electric current averaged over the whole area:

⟨Ji(t)⟩ = − i
2

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr G(X|P)

∂i

(
−Q−−(X|P) 0

0 Q++(X|P)

)
(100)
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Here, we use the Weyl symbols of operators.

v̂i = ∂pi

(
−Q−−(P|X) 0

0 Q++(P|X)

)
.

is the Weyl symbol of velocity operator.
The average current J may be expressed through the Keldysh Green function in the

representation of Equation (82).

v̂(<)
i = ∂pi

1
2

(
2 0
1 1

)(
−Q−− 0

0 Q++

)(
1 0
1 −2

)
(101)

= ∂pi

(
−Q−− 0

−Q−−+Q++

2 −Q++

)

Using Equation (85) (Q−− = QR + Q<, Q−+ = −Q<, Q+− = −QR + QA − Q<, and
Q++ = Q< −QA) we represent current density as

⟨Ji⟩ = − i
2|O |

∫ dP0

2π
Tr
[
Ĝv̂i

]
= − i

2|O |

∫ dP0

2π
Tr
[(GR 2G<

0 GA

)
∂pi

(
−QR −Q< 0

−QR+QA

2 −Q< + QA

)]
(102)

=
i

2|O |

∫ dP0

2π
Tr
(

GR∂pi Q
R − GA∂pi Q

A
)

+
i

2|O |

∫ dP0

2π
Tr
(

GR∂pi Q
< + G<∂pi Q

A
)

+
i

2|O |

∫ dP0

2π
Tr
(

GA∂pi Q
< + G<∂pi Q

R
)

(103)

The second term here is expressed through i
2 Tr
(
G∂pi Q

)<. We obtain

⟨Ji⟩ =
i

2|O |

∫ dP0

2π
Tr
(
Ĝ∂pi Q̂

)R

+
i

2|O |

∫ dP0

2π
Tr
(
Ĝ∂pi Q̂

)<
+ c.c. (104)

Electric current is given by

⟨Ji(t)⟩ = − i
2

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(
Ĝ(∂πi Q̂)

)R

− i
2

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(
Ĝ(∂πi Q̂)

)A

− i
2

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(
Ĝ(∂πi Q̂)

)<
− i

2
1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(
(∂πi Q̂)Ĝ

)<.

The poles of GR (GA) are shifted out of the real axis of frequency ω. The integration is
closed at infinity if we use lattice regularization of time. As a result, the sum of the first
two terms vanishes in the above expression:
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Ji(t) = − i
2

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(
Ĝ(∂πi Q̂)

)<
− i

2
1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(
(∂πi Q̂)Ĝ

)<. (105)

Using Equations (94)–(98), we calculate term in electric current proportional to the
external electric field strength Fµν:

Ji = −1
4

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(

Ĝ ⋆ ∂πµ Q̂ ⋆ Ĝ ⋆ ∂πν Q̂ ⋆ Ĝ∂πi Q̂
)<
Fµν

−1
4

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(

∂πi Q̂Ĝ ⋆ ∂πµ Q̂ ⋆ Ĝ ⋆ ∂πν Q̂ ⋆ Ĝ
)<
Fµν. (106)

Then
Ji = σijF0j,

where the conductivity tensor σij may be given by Equation (25), where we restore index W
for the Weyl symbols. The anti-symmetrization is denoted by (. . . )[0(. . . )j] = (. . . )0(. . . )j−
(. . . )j(. . . )0. The asymmetric (Hall) part of conductivity is σ

ij
H = (σij − σji)/2.

6.4. Equilibrium Limit of Hall Conductivity

According to the second trace identity, the star may be inserted between the two Weyl
symbols standing under the trace. We obtain an expression for the average conductivity

σ̄ij = −1
4

1
|D|

∫ dP0

2π

∫
M

d2P⃗
(2π)2 ∑

x∈D
tr
(

∂πi Q̂W ⋆

⋆ĜW ⋆ ∂π[0 Q̂W ⋆ ĜW ⋆ ∂πj] Q̂W ⋆ ĜW

)<
+ c.c. (107)

We assume that Q̂ does not depend on time. For the thermal distribution, we represent
the integral as a sum over the Matsubara frequencies. By Π, we denote Euclidean 2 + 1-
momentum, i.e., Π3 = ω is Matsubara frequency, Πi = πi for i = 1, 2. ∂π0 = −i∂Π3 . We
substitute iω instead of π0 and obtain the Matsubara Green function GM.

The system with the one-particle Hamiltonian Ĥ gives the real-time Green function

G(x1, x2, ω) ≡ ⟨x1|(ω− Ĥ)−1|x2⟩

It produces advanced, retarded, or time-ordered Green functions when the integration con-
tour in the plane of the complex ω is shifted in a specific way. The Feynman propagator is

GT(x, x′, ω) = lim
η→0

G(x, x′, ω + iη sign ω). (108)

The retarded Green function is

GR(x, x′, ω) = lim
η→0

G(x, x′, ω + iη), (109)

The advanced Green function is

GA(x, x′, ω) = lim
η→0

G(x, x′, ω− iη). (110)

The Matsubara Green function GM is obtained as

GM(x, x′, ωn) = G(x, x′, iωn), (111)
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The latter may be written in terms of imaginary time τ:

GM(x, x′, τ) =
1
β

∞

∑
n=−∞

e−iωnτG(x, x′, iωn). (112)

ωn = (2n + 1)π/β is the Matsubara frequency, β = 1/T.
The conductivity averaged over the system area is (in the units of e2/h̄)

σ̄ij =
N
2π

ϵij,

where

N = 2π T
1
3!

ϵµνρ 1
|D|

∫
M

d2P⃗
(2π)2 ∑

x∈D
∑

ωn=2πT(n+1/2)

tr
(

∂Πµ Q̂M
W ⋆ ĜM

W ⋆ ∂Πν Q̂M
W ⋆ ĜM

W ⋆ ∂Πρ Q̂M
W ⋆ ĜM

W

)
. (113)

Here, ϵij and ϵµνρ are anti-symmetric tensors. QM
W is the inverse to the Matsubara

Green function GM
W :

QM
W ⋆ GM

W = 1W = 1

The sum over Matsubara frequencies is reduced to an integral for small temperatures
(see Equation (27)), where the sum over x is important for the topological invariance of
this quantity.

7. Conclusions

In the present paper, we extend the previously proposed construction of precise lattice
Wigner–Weyl calculus [43] to the models defined on the honeycomb lattices. (Recall that,
in [43], the rectangular lattices were considered.) Models with artificial honeycomb lattices
realize the Hofstadter butterfly and the quantum Hall effect, with effectively large magnetic
flux occurring through the lattice cell [64]. For such systems, the approximate lattice
Wigner–Weyl calculus of [44] cannot be used because magnetic flux through the lattice cell
appears to be of the order of the quantum of magnetic flux. Then, the present construction
is inevitable if we are going to represent the QHE conductivity through the topological
invariant composed of the Green functions. We derive the corresponding expression. It is
manifestly topological invariant, which demonstrates that the QHE conductivity is robust
to the smooth modifications of the system.

We started our consideration from the construction of the B symbol that realized the
original ideas of F. Buot (F. Buot’s original construction contains a few technical flaws.
However, the very notion of such a construction that he offered seems to us to be so
significant that we feel it is appropriate to give their name to our corrected construction).
The B (or Buot) symbol obeys the basic properties of the continuous Wigner–Weyl calculus.
However, we observe that the B symbol of the unity operator is a fast-oscillating function
of coordinates. As a result, the Buot symbol of the Green function does not depend
smoothly on coordinates, and the derivative expansion cannot be used in the expression
for the electric current. In order to improve the situation, we propose the more involved
construction with the new symbol of operator, which is here called the W symbol or the
Weyl symbol. It obeys precisely the same properties as the Buot symbol, but, contrary to the
latter, the Weyl symbol of the unity operator depends smoothly on coordinates. This allows
us to apply derivative expansion to the corresponding expression for electric current. This
expansion leads us finally to the expression for the Hall conductivity σH = e2

h N , where N
is given by Equation (27).

Thus, we have similar constructions of lattice Wigner–Weyl calculus for the rectangular
and honeycomb lattices. It would be instructive to extend these constructions to the
lattices of arbitrary form. Additionally, it would be important to consider the effects of
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the interactions. We expect that the latter, being taken into account perturbatively, cannot
change the form of Equation (27), in which the interacting Green function should replace
the bare one. At a first look, the consideration of [44] (given for the case of approximate
Wigner–Weyl calculus) might be extended to the case of the precise Wigner–Weyl calculus
and the above-given expression for the QHE conductivity. This is, however, remains to be
completed and is outside the scope of the present paper.

The important challenge is to understand the topological nature of fractional QHE.
We suppose that the latter is a completely non-perturbative phenomenon. It is not clear at
the present moment how the topological expression of Equations (7) and (27) is replaced
by e2/h times the fractional number. We do not seek to present a solution to the problem
that occurs when taking into account interactions non-perturbatively, nor do we seek to
explain the topological quantization of fractional QHE. A discussion of the relation of
topological invariants to fractional QHE is given in [71], where the expression through
the multi-particle Green functions is given. The consideration of these issues, however,
remains outside the scope of the present paper.
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