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Abstract: Preserving the privacy of the ever-increasing multimedia data on the cloud while providing
accurate and fast retrieval services has become a hot topic in information security. However, existing
relevant schemes still have significant room for improvement in accuracy and speed. Therefore, this
paper proposes a privacy-preserving image–text retrieval scheme called PITR. To enhance model
performance with minimal parameter training, we freeze all parameters of a multimodal pre-trained
model and incorporate trainable modules along with either a general adapter or a specialized adapter,
which are used to enhance the model’s ability to perform zero-shot image classification and cross-
modal retrieval in general or specialized datasets, respectively. To preserve the privacy of outsourced
data on the cloud and the privacy of the user’s retrieval process, we employ asymmetric scalar-
product-preserving encryption technology suitable for inner product calculation, and we employ
distributed index storage technology and construct a two-level security model. We construct a
hierarchical index structure to speed up query matching among massive high-dimensional index
vectors. Experimental results demonstrate that our scheme can provide users with secure, accurate,
fast cross-modal retrieval service while preserving data privacy.

Keywords: privacy-preserving; searchable encryption; image–text retrieval; cross-modal retrieval

1. Introduction

With the rapid development of the Internet and information technology, personal
multimedia data with pictures and text as the main types have shown explosive growth, and
with them have come an increasing demand for storage space. Therefore, more and more
users store private multimedia data in third-party cloud servers to save local storage space.
How to preserve data privacy while providing users with accurate and fast cross-modal
data retrieval services has become a hot issue that requires urgent research.

However, current privacy-preserving data retrieval solutions face many issues. First,
most solutions are designed only for single-modal data like text or images [? ? ? ? ? ?
? ? ? ? ? ? ]. They cannot meet the needs for storing and retrieving multimedia data,
which greatly limits the users’ scope. For instance, when users wish to retrieve text and
images of apples stored in the cloud using a text query “apple”, the current unimodal
retrieval methods based on text or images alone are inadequate. Our proposed cross-modal
retrieval scheme can address this issue effectively. Cross-modal retrieval requires solving
the semantic alignment of multimodal data. This means accurately mapping the features
of multimodal data to a common semantic space [? ]. Second, existing solutions can
only meet general retrieval needs. When the data involve specialized knowledge, the
accuracy of retrieval decreases. If training is conducted on data from numerous specialized
domains, the limited expressive capacity of the parameters will be a constraint. Third,
current solutions mainly use traditional indexing structures for retrieval, such as forward
index structure [? ], inverted index structure [? ], tree-based index structure [? ], and hash
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index structure [? ]. However, these structures become inefficient when searching among
large amounts of high-dimensional vectors.

To address the issues mentioned above, this paper proposes an efficient privacy-
preserving cross-modal image–text retrieval scheme called PITR. The main contributions of
this paper are as follows:

• General adapter structure: We propose a general adapter structure that introduces
a set of trainable pseudo-prompt vectors and an encoder to map these vectors to a
specific space on the text input end of a frozen multimodal pre-trained model. The
vectors generate appropriate prompts for different tasks. Our general adapter only
needs to train about 5.23% of the parameters to improve performance in image–text
retrieval and zero-shot image classification tasks in general domain datasets.

• Specialized adapter structure: We propose a specialized adapter structure that incor-
porates learnable rescaling vectors at specific positions in the multi-head attention
and feed-forward layers of the transformer networks on both the text and visual ends
of a frozen multimodal pre-trained model in order to perform fine-grained scaling of
computation results. The original model equipped with this structure only needs to
train about 0.017% of the parameters to improve performance in image–text retrieval
and zero-shot image classification tasks in specialized domain datasets.

• Diverse retrieval interfaces: We provide users with both general domain and special-
ized domain retrieval interfaces. For users’ general retrieval needs, only the trained
general adapter needs to be installed on the base model. For data from different
specialized domains, it is only necessary to train and install lightweight specialized
adapter modules corresponding to those domains. This approach offers users diverse
and flexible cross-modal retrieval services.

• Efficient cross-modal retrieval structure: We design an efficient cross-modal retrieval
scheme. The hierarchical navigable small world (HNSW) algorithm is used instead of
traditional indexing structures. This improves the efficiency of approximate nearest
neighbor (ANN) searches for users’ query trapdoors among a large number of high-
dimensional encrypted feature indexing vectors.

• Comprehensive privacy protection mechanism: We develop a comprehensive pri-
vacy protection mechanism with two levels of security modes that are adaptable
to different user tasks. The level I security mode is based on our proposed index
distributed storage technology, and the level II security mode is based on asym-
metric scalar-product-preserving encryption (ASPE) technology suitable for inner
product calculation.

The remainder of this paper is organized as follows. Section 2 reviews the current
state of research related to the issues addressed in this study, including privacy-preserving
image retrieval schemes and cross-modal retrieval schemes. Section 3 presents the main
background knowledge and techniques required for designing the PITR scheme. Section 4
introduces the system framework of PITR, including the system components and the
overall operation process. Section 5 details the main methods used in PITR and the specific
implementation details of its three main modules (feature extraction model, encryption
model, and retrieval model). Section 6 evaluates the performance of PITR in zero-shot
image classification tasks and cross-modal image–text retrieval tasks. Finally, Section 7
concludes the paper by summarizing the overall value and significance of the proposed
scheme and discussing directions for future research.

2. Related Work
2.1. Privacy-Preserving Image Retrieval Schemes

Existing privacy-preserving image retrieval schemes focus on image-to-image searches.
Among them, privacy-preserving content-based image retrieval (PPCBIR) is the most
widely studied. These solutions can be categorized into three types:
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1. Images are encrypted and then uploaded to the cloud for feature extraction [? ? ? ? ?
], and we use the extracted features to build an unsupervised or supervised retrieval
model. For this approach, the task of feature extraction from encrypted images can
be outsourced to the cloud. Despite encryption preserving the privacy of images on
the cloud, accurately and comprehensively extracting dense semantic features from
encrypted images is challenging [? ? ? ]. Most existing solutions can only extract
coarse-grained features and use simple retrieval models [? ? ] such as k-means and
bag-of-words models. However, these models struggle to learn the complex nonlinear
features in images. Additionally, a multi-level feature extraction method for images
should be compatible with the encryption algorithm used. Therefore, existing schemes
generally choose to extract weak features that differ from but are somewhat related
to the original images. They also need to design suitable encryption algorithms
and multi-level weak feature extraction algorithms that are compatible with the
encryption algorithms [? ]. However, while these approaches can ensure a certain
degree of privacy and offload the feature extraction task to the cloud, using manually
designed weak features instead of the complex fine-grained semantic features in the
original images significantly reduces retrieval accuracy.

2. Homomorphic encryption is used to modify the retrieval model on the cloud to
achieve secure inference [? ? ? ? ]. Although these schemes can accomplish secure
image retrieval tasks, they have inherent limitations. Firstly, homomorphic encryption
algorithms only support integer-type data, while the data and model parameters in
machine learning are typically floating-point numbers. Secondly, fully homomorphic
encryption (FHE) does not support nonlinear operations and can only approximate
results using approximate functions [? ]. However, deep learning models that accu-
rately capture data features involve numerous nonlinear operations, leading to a loss
of computational accuracy in the original models.

3. Features are extracted from original images before encryption [? ? ? ]. Then, the
encrypted images and their encrypted features are sent to the cloud. For retrieval,
the user needs to construct a query trapdoor and send it to the cloud; then, the cloud
calculates the similarity between the query trapdoor and the encrypted indexes and
returns the most relevant results. This type of scheme transfers the feature extraction
work to the user, increasing the user’s workload. However, it allows the use of larger
models to extract complex dense semantic features from data, enabling cross-modal
retrieval and ensuring maximum retrieval accuracy.

2.2. Privacy-Preserving Cross-Modal Image–Text Retrieval Schemes

Currently, there is limited research on privacy-preserving cross-modal retrieval. Ref. [? ]
proposed the first privacy-preserving cross-modal retrieval system. This method performs
cross-modal retrieval on special hardware: the Intel SGX. However, original data may be
leaked if the system is attacked. Ref. [? ] is the first to study privacy-preserving cross-modal
retrieval using deep hashing and adversarial learning. The authors built a two-branch GAN
hashing model to extract features, which improved retrieval accuracy. However, the feature
extraction and index construction process is computationally complex. Ref. [? ] proposed a
privacy-preserving cross-media retrieval scheme, PPCMR, for encrypted data in the cloud.
They constructed a two-branch feature extraction model based on convolutional neural
networks (CNNs) to learn the semantic gap between different modalities of encrypted
data. However, since it requires retraining the two-branch feature extraction network, the
retrieval accuracy is not high.

3. Preliminary Knowledge
3.1. Contrastive Language-Image Pre-Training (CLIP)

CLIP [? ] is a dual-stream structure image–text pre-trained large model that uses
400 million image–text pairs collected from the internet and is trained using a contrastive
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learning method. The model performs very well in zero-shot image classification and
image–text matching tasks.

In CLIP’s training process, shown in Figure 1, the text and visual feature extractors
encode the text and images into embeddings of the same dimension. Then, the embeddings
are used to calculate their similarity. In contrastive learning, the goal is to maximize the
diagonal values of the similarity matrix, which represents paired image–text pairs, and to
minimize the off-diagonal values.

Figure 1. Contrastive learning training process of CLIP model.

Figure 2 illustrates the process of using CLIP for zero-shot image classification. The
image labels are appended to pre-designed prompt templates to form prompt sentences,
such as “A photo of a {class}.” These prompt sentences are then processed by the text
encoder to obtain the global semantic feature embedding. On the visual side, the image is
sent to the image encoder to obtain the global feature embedding of the image with the
same dimensions as the prompt embedding. Finally, the dot product is computed between
the prompt embedding and the image embedding. The result represents the degree to
which the image matches each label, and the label corresponding to the highest value is the
one predicted by CLIP.

Figure 2. Zero-shot image classification process of CLIP model.

3.2. Hierarchical Navigable Small World Graphs (HNSW)

In 2018, ref. [? ] proposed the HNSW algorithm for vector nearest neighbor searches; it
is currently the best-performing ANN algorithm overall. The HNSW algorithm constructs
its index by incrementally inserting elements into a multi-layer graph structure. Each
element is inserted starting from the top layer, where it is connected to a subset of existing
elements based on proximity. As the insertion progresses to lower layers, the connections
become denser, ensuring that each element is linked to its nearest neighbors. This hierar-
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chical approach allows the algorithm to maintain a balance between search efficiency and
accuracy. The sparsity of connections in higher layers facilitates rapid traversal, while the
denser connections in lower layers ensure precise neighbor identification.

When performing a search on the constructed HNSW index, the algorithm begins at
the top layer with a randomly selected entry point. It then traverses the graph by iteratively
moving to the closest neighbor of the current node, gradually descending through the
layers. At each layer, the search process refines the candidate set of nearest neighbors
by exploring nodes within a defined radius. This hierarchical search strategy enables the
algorithm to efficiently navigate the graph, leveraging the sparse connections in higher
layers for rapid exploration and the dense connections in lower layers for accurate neighbor
retrieval. Ultimately, this approach achieves a balance between speed and precision in
nearest neighbor searches.

In contrast, the index structures used in traditional searchable encryption schemes
(including forward indexes, inverted indexes, cluster indexes, and hash indexes) are de-
signed based on keyword matching. They require the precise extraction of keywords from
each document and the construction of a large keyword set, which becomes inefficient
and unsuitable for semantic retrieval based on feature vector representation. Moreover, in
some schemes that implement semantic searches using feature vectors, refs. [? ? ] perform
pairwise matching computations directly on all vectors. This method is inefficient for
handling large-scale datasets because the computational load increases rapidly with the
data size, leading to significant increases in search time and resource consumption.

3.3. Singular Value Decomposition (SVD)

The singular value decomposition (SVD) algorithm [? ] is one of the most important
matrix decomposition methods in machine learning. It decomposes the original matrix into
three matrices: an orthogonal matrix, a diagonal matrix, and another orthogonal matrix.
As shown in Figure 3, any matrix A(m× n) can be decomposed as: A = UΣVT . Here,
U(m× n) is an orthogonal matrix formed by the eigenvectors of AAT and is called the left
singular matrix. Σ(m× n) is a diagonal matrix, with diagonal elements being the square
roots of the eigenvalues of AAT or AT A, which are arranged in descending order; this
matrix is called the singular value matrix. V(n× n) is an orthogonal matrix formed by the
eigenvectors of AT A and is called the right singular matrix.

Figure 3. SVD matrix decomposition method.

It is worth noting that not all matrices can be decomposed using SVD. However, for
any real-valued matrix, there exists a closest matrix that can be decomposed using SVD; this
is known as the optimal approximation theorem. Additionally, the singular values on the
diagonal of the singular value matrix σ are arranged in descending order, and these singular
values decrease rapidly [? ]. Therefore, we can approximate the original matrix using the
largest k singular values and their corresponding left and right singular matrices. This
approach helps save local storage space but also leads to a loss of the semantic information
represented by the matrix. This is shown in Equation (1):

Am×n = Um×mΣm×nVT
n×n ≈ Um×kΣk×kVT

k×n (1)



Symmetry 2024, 16, 1084 6 of 19

3.4. Asymmetric Scalar-Product-Preserving Encryption (ASPE)

Wong et al. [? ], based on their research on k-nearest neighbor (KNN) computation [? ],
proposed the ASPE algorithm, which supports KNN computation on encrypted data.
The basic idea of ASPE is that data owners first encrypt all tuples using an encryption
method EncA before uploading the data tuples to the server. The encrypted data are
then sent to the cloud server. Queries are encrypted using another encryption method
EncB, and EncA and EncB are different. These two encryption methods ensure that the
product of the encrypted query tuple and the encrypted database tuples is preserved: that
is, pq = EncA(p)EncB(q). Additionally, it is required that for any two tuples ei and ej in
the database, eiej ̸= EncA(ei)EncA(ej). The original ASPE technique is based on Euclidean
distances for computing the distances between vectors. To adapt this technique for inner
product similarity computation between vectors, ref. [? ] improved the algorithm in their
proposed MRSE scheme. Inspired by their method, PITR will use the improved ASPE
algorithm to encrypt data feature embeddings.

4. System Framework
4.1. System Composition

The operation of PITR is realized through the connection and interaction between
different entities, which include:
Data Owner (DO): Fully trusted, can access all plaintext data in the system, and has unique
key management permissions.
Cloud Server (CS): “Honest but curious”, meaning it will honestly execute user query
requests but will also try to peek into users’ privacy. It hosts the retrieval model used for
index construction and searches.
Private Server (PS): Fully trusted and attached to DO. It can share all keys with DO and
hosts the feature extraction model used for extracting features from original images and
text data.
Data User (DU): Needs prior authorization from DO to query, sends text or image type
queries to PS, and receives the related query result from PS.

4.2. System Operation

Our overall system framework is shown in Figure 4. The complete process during
system operation is as follows:

(1) DO sends the original data to PS and the encrypted data to CS.
(2) PS extracts features from the original data and uploads the encrypted feature

embeddings set to CS.
(3) When DO or DU need to perform a search, they send a query to PS; then, PS

extracts feature embeddings from the query, encrypts them to form a query trapdoor, and
sends them to CS.

(4) CS uses the encrypted embeddings uploaded by PS to construct the index structure.
Upon receiving a query trapdoor from PS, CS runs the retrieval model and returns the
most relevant query results to PS.

(5) PS decrypts the received encrypted query results and returns the decrypted query
results to DO or DU.

In the aforementioned process, the content transmitted between DO, PS, and CS is
encrypted. However, the communication between DO and PS, as well as between PS and
DU, is not encrypted. Therefore, to further enhance the security of the communication
process, taking the interaction between PS and DU as an example, both parties need to
generate their respective public and private keys and exchange public keys before commu-
nication, with identity authentication facilitated by a certificate authority. Simultaneously,
PS generates a symmetric key K for subsequent encrypted communication and encrypts
K using DU’s public key before sending it to DU. DU decrypts it with its private key to
obtain the symmetric key K. Subsequently, PS and DU use symmetric encryption for secure
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communication. This process is outlined briefly, and the specific encryption algorithms and
communication techniques are not detailed further.

Figure 4. The system framework of PITR.

5. PITR: Privacy-Preserving Image–Text Retrieval Scheme

This section will introduce the implementation details of PITR. Our PITR scheme
consists of three parts: the feature extraction model deployed on PS, the encryption model,
and the secure retrieval model deployed on CS. This section will provide a detailed
explanation of them.

5.1. Feature Extraction Model

The feature extraction model of PITR can be divided into a general domain feature
extraction model and a specialized domain feature extraction model.

5.1.1. General Domain Feature Extraction Model

In the general domain data, our base model for feature extraction is CN-CLIP, as
proposed in [? ]. CN-CLIP is a multimodal pre-trained large model that is based on CLIP
and is trained on a large-scale Chinese dataset. Inspired by the method of [? ? ], we designed
new training methods to further enhance the base model’s feature extraction capability.

It is worth noting that in zero-shot image classification tasks, both CLIP and CN-CLIP
use manually designed prompt templates. However, these templates are very unstable.
For example, changing “A photo of a {class}” to “This photo belongs to {class}” can lead
to significantly different results, even though the semantic meaning seems unchanged
from a human perspective. Therefore, a better choice is to replace manually designed
templates with flexible, trainable templates. These templates consist of several learnable
vectors. Although these cannot be translated into human-readable language, they overcome
the limitations of traditional textual language in expressing semantic information. This
enhances the model’s ability to capture and represent the semantics of the text.

Specifically, as shown in Figure 5, during the zero-shot image classification phase, we
add a series of learnable vectors called pseudo-prompts and a prompt encoder to map them
into a specific semantic space. The structure of the prompt encoder can be an LSTM [? ]
or an MLP network [? ]. This training method enhances the model’s performance in zero-
shot image classification tasks on general domain data. However, for image–text retrieval
tasks in the general domain, the text is no longer simple words but longer sentences.
Therefore, it is necessary to design a new training method to improve the general adapter’s
ability to extract semantic features from longer texts like image captions. To achieve
this, we switch from the previous multi-label learning method to the contrastive learning
method and increase the number of pseudo-prompts while keeping the rest of the process
unchanged. The specific training process is shown in Figure 6. It is important to note
that during the training process of the general adapter, only the parameters of the pseudo-
prompts and the prompt encoder need to be trained, while the rest of the network remains
frozen. This accounts for only 5.23% of the total model parameters. Compared to fully
fine-tuning 100% of the parameters, our approach significantly saves training time and
computational resources.
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Figure 5. The zero-shot image classification task of PITR. Step 1: n pseudo-prompts ([P0], [P1], . . . [Pn])
are sent into the prompt encoder, which maps them to template embeddings (prompts:
[V0], [V1], . . . [Vn]). Step 2: The image labels are sent to the token mapping module. This mod-
ule tokenizes the labels, adds special tokens, performs token embedding mapping, and adds segment
embeddings and position embeddings to get the word embeddings: [W0], [W1], . . . [Wm]. Step 3: The
prompts and word embeddings are concatenated. The position of concatenation is flexible; prompts
can be inserted at the beginning, middle, or end of the word embeddings. Step 4: The concatenated
result is sent to the text encoder to get the global semantic feature embeddings of the entire sentence
(sentence embeddings). These are then compared with the global semantic feature embeddings of the
image produced by the image encoder using cosine similarity. The pseudo-prompts and the weights
of the prompt encoder are optimized using the multi-label learning method.

Figure 6. Similar to the training process of PITR in zero-shot image classification tasks, during
the training process of PITR’s image–text matching task, pseudo-prompts and the prompt encoder
generate prompts suitable for the task. These prompts can more accurately help determine whether
an image and text are matched.

5.1.2. Specialized Domain Feature Extraction Model

When extracting features from specialized domain data, the base model remains
unchanged. Inspired by [? ], we add three sets of learnable rescaling vectors lk, lv, and l f f
(collectively referred to as the specialized adapter), as shown in Figure 7. If the output at a
particular position needs to be amplified, a positive learnable vector is added. Conversely,
if it needs to be suppressed, a negative learnable vector is added, and the degree of
amplification or suppression is determined by the vector’s value. Specifically, as shown
in Equation (2), lk and lv are injected at the intermediate output of the key and value
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sub-layers, respectively, where ⊙ represents element-wise multiplication, X represents a
series of word vectors input to the self-attention layer, dk represents the second dimension
of WK, and WK, WQ, and WV represent the weights of the query, key, and value sub-layers,
respectively. In the feed-forward layer of each transformer layer, as shown in Equation (3),
l f f is injected after the output of the nonlinear function. Here, x represents the input to
the feed-forward layer. Additionally, it is important to note that l f f injected into the feed-
forward layer of each transformer layer, as well as lk and lv in each head of the multi-head
self-attention layer, need to be independently trained. Assuming the number of layers in
the transformer is N and the number of heads in each multi-head attention layer is H, the
total number of parameters that need to be trained is N(Diml f f

+ H(Dimlk + Dimlv)).

Figure 7. The learnable rescaling vectors lk and lv are injected into each head of the multi-head
attention layer in every transformer block of both the text encoder and the image encoder, specifically
at the intermediate output positions of the key and value sub-layers. Another learnable vector l f f is
injected after the output of the nonlinear function in the feed-forward network of each transformer
layer. These learnable vectors can flexibly suppress or amplify the outputs of the key and value
sub-layers in each self-attention layer and the outputs of the feed-forward network layer depending
on the task.

So f tmax

(
XWQ[lk ⊙ (XWK)

T ]√
dk

)
(lv ⊙ XWV) (2)

W2(l f f ⊙ Relu(xW1 + b1)) + b2 (3)

By using the specialized adapter to fine-tune the output results at different positions,
the model can flexibly select the appropriate specialized adapter for training and inference
based on the specialized knowledge in different domains.

Notably, before training, we freeze all parameters in the original model and only
optimize the parameters of the learnable rescaling vectors, which account for a very small
proportion of the model’s total parameters, typically around 0.017%. During training,
we use image–text datasets from different specialized domains to train the model and
generate different specialized adapters. When performing downstream tasks on datasets
from different specialized domains, we only need to load the corresponding specialized
adapter. This enables the model to flexibly apply the specialized knowledge it has learned
to complete various downstream tasks.

5.1.3. Dimensionality Reduction of the Extracted Embedding Vectors

The embedding vectors extracted by the feature extraction model are of very high
dimensions. These embedding vectors will be subsequently used to construct HNSW
indexes and compute distances with query vectors. If the computational resources of the
cloud server are limited, dimensionality reduction of these high-dimensional embedding
vectors can be performed first to reduce time and computational resource consumption.
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However, it is important to note that dimensionality reduction will diminish the accurate
representation of global semantic information in the original data for these embedding
vectors, resulting in a loss of retrieval accuracy.

A common method for dimensionality reduction is the PCA algorithm [? ], which
can also be implemented using the SVD algorithm. This is because the eigenvectors of
the covariance matrix required for PCA correspond to the right singular matrix obtained
from SVD decomposition, and the eigenvalues correspond to the squares of the singular
values [? ]. The specific process of dimensionality reduction is as follows:

Assume that the feature embedding matrix of images and text is E, with dimensions
m × n. Here, m represents the total number of texts and images, and n represents the
dimension of the feature embeddings.

(1) Using the SVD algorithm to decompose E, we obtain Em×n = Um×mΣm×nVT
n×n .

(2) To calculate the mean value of each dimension of E, let meanj represent the mean
value of the j-th column of E. If eij is the element in the i-th row and j-th column of E, then
meanj =

1
m Σm

i=1eij.
(3) By subtracting the mean value of each corresponding column from every element

in E, we obtain the centered matrix Ecentered. For any element êij in Ecentered, we have
êij = eij −meanj.

(4) Assuming the reduced dimension is k, we select the first k columns from V to form
Vn×k. Finally, we obtain the feature embedding matrix after PCA dimensionality reduction
as EPCA(m×k) = Ecentered(m×n) ×V(n×k).

5.2. Encryption Model
5.2.1. Symbol Definition and Description

The definitions of the main symbols used in our scheme are shown in Table 1. All
sentences in each document of the text document collection D together form the text
sentence collection S. We assume the total number of text documents is p, the total number
of sentences in all documents is h, the total number of images is k, and the total number of
images and text sentences is m.

Table 1. Symbol definitions.

Symbol Description Symbol Description

D =
{

d1, d2, . . . , dp
}

Document set Et = {et1 , et2 , . . . , eh} Sentence embedding set
S = {s1, s2, . . . , sh} Sentence set EI =

{
ei1 , ei2 , . . . , eik

}
Image embedding set

I = {i1, i2, . . . , ik} Image set E = {e1, e2, . . . , em} Image–text embedding set
D =

{
d̃1, d̃2, . . . , d̃p

}
Encrypted document set Ẽ = {ẽ1, ẽ2, . . . , ˜em} Encrypted image–text embedding set

Esvd =
{

es
1, es

2, . . . , es
m
} Incomplete image–text embedding

matrix Ẽsvd =
{

ẽs
1, ẽs

2, . . . , ˜es
m
} Encrypted incomplete image–text

embedding matrix
EQ Embedding of query ẼQ Query trapdoor

5.2.2. The Operation of the Encryption Model in the Level I Security Mode

Assuming the original dimension of the data feature embeddings is n, the dimension
of the image–text embedding matrix E, which is formed by vertically concatenating Et and
EI , is m× n. The operation process of the encryption model in the level I security mode is
as follows:

(1) KeyGen(1λ) → S, M1, M2: Key generation algorithm. DO inputs the security
parameter λ and outputs a random index encryption key M. M is an invertible matrix with
dimensions (n + 1)× (n + 1).

(2) Encdata(D) → D̃, Encdata(I) → Ĩ: Data encryption algorithm. DO uses text and
image encryption algorithms to encrypt D and I into D̃ and Ĩ. The specific encryption
algorithms for text and images differ and will not be detailed here.

(3) SV D(E) → Esvd: Embeddings matrix decomposition algorithm. PS uses the SVD
algorithm to decompose the matrix E into three submatrices U, Σ, and VT . The left singular
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matrix U(m×m) is then multiplied by the singular-value matrix Σ(m× n). Additionally, to
meet the retrieval functionality requirements, we need to extend (U× Σ) by one dimension
to store the file number corresponding to each feature embedding, with the numbering
range from 1 to m. Thus, the dimension of (U× Σ) should be m× (n + 1), and it is referred
to as the incomplete feature embedding matrix Esvd =

{
es

1, es
2, . . . , es

m
}

.
(4) Encindex(Esvd, M) → Ẽsvd: Incomplete feature embeddings matrix encryption

algorithm. PS uses the index encryption key M to encrypt the incomplete embedding
matrix Esvd, resulting in the encrypted incomplete feature embedding matrix Ẽsvd with
dimensions m × (n + 1). Specifically, Esvd × M = (U × Σ) × M = Ẽsvd. Ẽsvd is then
uploaded to the cloud server.

(5) Encindex(EQ) → ẼQ: Trapdoor construction algorithm. Upon receiving the query
from DU, PS extracts its feature EQ(1× n) and uses M−1 and VT to encrypt it into the
query trapdoor ẼQ. The original dimension of VT should be n× n. To ensure compatibility
between the query and the incomplete feature embeddings matrix during computation,
VT needs to be extended by one dimension in the row direction, with all values in this
dimension set to 0, resulting in a final dimension of (n + 1) × n for VT . The specific
computation process is: M−1 ×VT × ET

Q = ẼQ.
In level I security mode, if DO wants to add new data, they need to use the SVD

algorithm to decompose the new matrix composed of the feature embeddings of the original
data and the feature embeddings of the new data. The more frequently DO adds new data,
the more computational resources are consumed for each repeated decomposition. Inspired
by the method in [? ], we adopt the following approach to solve this problem.

For the original feature embedding matrix E, we have SVD(ET) = VΣUT . Suppose
the feature embedding matrix of the newly added data is E1; then the new complete feature
embedding matrix is E

′
= [E, E1]. The process of performing SVD decomposition on E

′
is

shown in Equation (4):

E
′
= [ET , ET

1 ] = [VΣUT , ET
1 ] = V[Σ, VTET

1 ]

[
UT 0
0 I

]
=

VW
[

UT 0
0 I

]
= V(UwΣwVT

w )

[
UT 0
0 I

]
= (VUw)Σw(

[
U 0
0 I

]
Vw)

T
(4)

In Equation (4), W = [Σ, VTET
1 ] and SVD(W) = UwΣwVT

w . Finally, E
′

is decomposed

into E
′
= UEΣEVT

E , where UE = VUw, ΣE = Σw, and VE =

[
U 0
0 I

]
Vw.

In the decomposition process of E
′

described above, we do not need to perform SVD
decomposition on the newly expanded feature embedding matrix E

′
. Instead, we only

need to perform SVD decomposition on the newly added feature embedding matrix E1

and then combine the results with the original matrix E to obtain the decomposition of E
′
.

This approach significantly saves computational resources during the process of adding
new data.

5.2.3. The Operation of the Encryption Model in the Level II Security Mode

The operation process of the encryption model in the level II security mode is as fol-
lows. In this mode, we use the asymmetric-scalar-product-preserving encryption technique
from the MRSE [? ], which is adapted for computing the similarity between vectors through
inner product calculation, to encrypt the feature embeddings of the data.

(1) KeyGen(1λ) → S, M1, M2: Key generation algorithm. DO inputs the security
parameter λ and outputs a randomly generated vector S with dimensions 1× (n + 2) and
encryption matrices M1 and M2 with dimensions (n + 3)× (n + 3); each element in S is a
random 0 or 1 value.

(2) Encdata(D) → D̃, Encdata(I) → Ĩ: Data encryption algorithm. DO uses text and
image encryption algorithms to encrypt D and I into D̃ and Ĩ, respectively.
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(3) Encindex(ei, M1, M2, εi) → Ẽ: Feature embedding encryption algorithm. PS gen-
erates a random number εi for the i-th feature embedding ei in E and convert ei into
ē = (ei, εi, 1, i), with a dimension of n + 3. Next, using S, ē is split into e

′
i and e

′′
i . The split-

ting principle is: for j ∈ [1, n + 2], if S[j] = 0, then e
′
i [j] = e

′′
i [j]; otherwise, e

′
i [j] + e

′′
i [j] = ei[j]

(the splitting ratio is also random). The final encrypted feature embedding for the i-th entry
is: ẽi = (e

′
i M1, e

′′
i M2). Then, PS uploads ẽi to CS to build the index structure.

(4) Encindex(EQ, r, t) → ẼQ: Trapdoor construction algorithm. PS receives the query
Q from DU and extracts its feature EQ, generating random numbers r and t. Then, EQ
is converted into ĒQ = (rEQ, r, t, 0), with a dimension of n + 3. Using S, ĒQ is split into
E
′
Q and E

′′
Q. The splitting principle is: for j ∈ [1, n + 2], if S[j] = 1, then E

′
Q[j] = E

′′
Q[j];

otherwise, E
′
Q[j] + E

′′
Q[j] = EQ[j] (the splitting ratio is also random). The final trapdoor is

ẼQ = (M−1
1 (E

′
Q)

T , M−1
2 (E

′′
Q)

T).

5.3. Retrieval Model
5.3.1. Index Building and Search Process

The retrieval model of PITR is deployed on CS. It uses each encrypted feature em-
bedding Ẽ uploaded by the PS as a vector node to construct a hierarchical graph-based
index structure. When a ẼQ is received from PS, it is used as a query point in the index
structure for the approximate nearest neighbor search. CS then returns the k most relevant
results. The detailed processes of index construction and search are shown in Algorithm 1
and Algorithm 2, respectively.

The index construction algorithm is achieved by continuously inserting new element
nodes into the established index structure. Compared to traditional ciphertext retrieval
schemes, this algorithm is more accommodating to node update operations. To delete a
node, simply make it invisible to other nodes. However, if the number of nodes that need
updating reaches a threshold, the index structure must be rebuilt.

Algorithm 1 Index structure construction

Input: Encrypted feature embedding set: Ẽ = {ẽ1, ẽ2, . . . , ˜em}.
Output: Hierarchical graph-based index structure Indexhnsw.
Preparatory:
SearchLayer(s, en, e f , l): start from en; find the e f nearest node to s at layer l.
GetNeighbors(l, s, m, W): select the m nearest nodes to s from the set W at level l.
AddConnections(M, s): add bidirectional connections between M and s.
RandomLayer(s): assign layers to s using random function.
W: current nearest neighbor element set. m: the number of connections each node needs to
establish with other nodes. e f : the size of the dynamic candidate set.

1: l1 ← RandomLayer(ẽ1)
2: Insert the first node ẽ1 from Ẽ into the l1 layer.
3: for ẽ in Ẽ− ẽ1 do
4: le ← RandomLayer(ẽ)
5: for l in

{
ltop, . . . , le + 1

}
do

6: W ← SearchLayer(ẽ, en, e f = 1, l)
7: en← the nearest node to ẽ in W
8: end for
9: for l in {le+1, . . . , 0} do

10: W ← SearchLayer(s, en, e f , l)
11: neighbors← GetNeighbors(l, s, W, m)
12: AddConnections(neighbors, ẽ)
13: end for
14: end for
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Algorithm 2 Search in index structure
Input: Indexhnsw and query node q; the number of the nearest neighbor nodes to be returned
is k.
Output: The nearest k nodes to q.

1: for l ←
{

ltop, . . . , lbottom+1
}

do
2: W ← SearchLayer(q, en, e f = 1, l)
3: en← the nearest node to ẽ in W
4: end for
5: ▷ Starting from en obtained from the previous layer, search the bottom layer to obtain

e f nearest neighbor nodes to q.
6: W ← SearchLayer(q, en, e f , l = 0)
7: return the nearest k nodes to q from W

5.3.2. Similarity Calculation

When CS performs the approximate nearest neighbor search using the query trapdoor
ẼQ in Indexhnsw, the distance calculation between vector nodes is based on cosine distance.
Its reciprocal is the cosine similarity between the feature embeddings corresponding to the
nodes. Since data features have been normalized during extraction, it is not necessary to
divide by the vector modulus when calculating similarity. The following are the similarity
calculation processes under the two security modes:

(1) Level I security mode: To ensure that the query trapdoor has a certain level of
indistinguishability, a random number r is added during the trapdoor construction. This
makes the trapdoors generated from the same query not identical, but it does not affect the
consistency of the query results. The specific process is shown in Equation (5):

Encindex(EQ, r)→ ẼQ = M−1 ×VT × ET
Q · r (5)

The encrypted incomplete feature embedding matrix is Ẽsvd =
{

ẽs
1, ẽs

2, . . . , ˜es
m
}

, where
ẽs

i represents the i-th embedding in Ẽsvd and is also the i-th vector node in HNSWindex. The
computation process between the trapdoor and ẽs

i is shown in Equation (6):

ẽs
i × ẼQ = es

i ×M×M−1 ×VT × ET
Q · r

= es
i ×VT × ET

Q · r = ei × ET
Q · r

(6)

where ei represents the i-th feature embedding in the original image–text feature embedding
matrix E. The resulting scalar ei × ET

Q · r represents the cosine similarity between the query
vector EQ and the node vector ei.

(2) Level II security mode: The similarity calculation formula between the i-th embed-
ding ẽi in Ẽ and the query trapdoor ẼQ is shown in Equation (7):

ẽi · ẼQ =
{

e
′
i M1, e

′′
i M2

}
·
{

M−1
1 (E

′
Q)

T , M−1
2 (E

′′
Q)

T
}

= e
′
i · E

′
Q + e

′′
i · E

′′
Q

= ēi · ĒQ = r(ei · EQ + εi) + t

(7)

5.4. Model Security Analysis

(1) Level I security mode: In the level I security mode, we perform SVD decomposition
on the image–text feature embedding matrix E and upload a portion of the decomposed
incomplete embeddings matrix to CS to build the index structure. The purpose of this is if
the encryption key M is inadvertently obtained by CS, CS can only compute the original
incomplete feature embedding index stored on it. However, since these incomplete feature
embeddings are only a part of the complete feature embeddings matrix, CS cannot infer the
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similarity relationships between different feature embeddings or the associations between
feature embeddings and their corresponding plaintext data.

In level I mode, after decomposing the expanded feature embedding matrix E
′

formed
by the addition of new user data, the decomposed partial results need to be encrypted and
uploaded to CS, where the index structure is reconstructed. Therefore, level I mode is more
suitable for storing data that remain fixed and unchanged over the long term.

(2) Level II security mode: By decomposing the feature embedding set of image and
text data into two parts and adding some random numbers during the encryption process,
we effectively ensure data privacy. Additionally, random numbers are also added to the
user’s query embedding, so even for the same query made twice, the resulting trapdoors
are different. This can resist access pattern attacks from CS and prevent it from linking user
queries with outsourced data. However, the final similarity calculation results will also be
affected by these added random numbers, which can impact the accuracy of the retrieval
tasks. Therefore, the value of the added random numbers should be appropriate to ensure
effective data privacy protection while minimizing their impact on retrieval accuracy.

6. Experiment and Performance Analysis

In this section, we test the performance of the feature extraction model and the retrieval
model in our PITR scheme, including capability testing for zero-shot image classification
and cross-modal retrieval tasks on image–text data in both general and specialized domains.
Our experimental environment is as follows: system version: Ubuntu 20.04, software
environment: Python 3.10, CUDA 12.2; hardware environment: two NVIDIA GeForce
RTX 4090D GPUs with a total of 48GB VRAM and a CPU: 30 vCPU Intel(R) Xeon(R)
Platinum 8474C.

6.1. Zero-Shot Image Classification Task
6.1.1. Image Classification in the General Data Domain

The text feature extractor for PITR uses RoBERTa-wwm-Large with 24 layers and
24 heads in the multi-head attention module. The visual feature extractor uses ViT-H/14
with 32 layers and 16 heads in the multi-head attention module. The dimensions of the text
and image embeddings are both 1024, and the total number of model parameters is 958M.

Based on this, we added 15 pseudo-prompts and a prompt encoder using an LSTM
network to the input end of PITR. We then trained the model using the manually corrected
Chinese versions of the Caltech-101, CIFAR-100, and CIFAR-10 general domain datasets.
Table 2 shows the accuracy comparison of PITR with other multimodal pre-trained models
in both general domain and specialized domain datasets for zero-shot image classification
tasks. The comparison models selected were BriVL, Wukong, and CN-CLIP.

Table 2. Performance comparison for zero-shot image classification.

Scheme Caltech-101 Cifar-100 Cifar-10 Pets Food Flower DTD EuroSAT

BriVL - 35.9 72.3 - - - - -
Wukong - 77.1 95.4 - - - - -
CN-CLIP 90.6 79.7 96.0 83.5 74.6 68.4 51.2 52.0

PITR 92.1 81.4 96.5 87.0 83.3 81.4 79.6 70.0

6.1.2. Image Classification in the Specialized Data Domain

To test the PITR’s ability to learn specialized domain knowledge, we incorporated
different specialized adapters according to the specific professional domains and then
trained the model using the Chinese versions of specialized domain datasets, which belong
to categories including pets, food, flowers, cars, surface textures, and satellite geographic
images. The experimental results are shown in Table 2.
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6.2. Image–Text Retrieval in General Domain Data

We trained on the general domain image–text dataset Flickr30K-CN using a combi-
nation of general adapter and contrastive learning methods. Additionally, for the text
and image feature embeddings, we added the original data’s corresponding ID to the last
dimension of each embedding before encrypting and uploading them to CS. Then we
used the HNSW algorithm to build the index for retrieval. For the feature embeddings of
user queries, we added a dimension to store a zero value, ensuring it does not affect the
similarity calculations between the query and index vectors.

Table 3 shows the recall rates of PITR and other pre-trained large models for image-to-
text retrieval. Assume the total number of queries is m, and for a given query, the number
of relevant returned results is k. If there is at least one correct result among the k results, the
score for that query is 1; otherwise, it is 0. The recall rate Recall@k in the image retrieval
domain is defined as in Equation (8).

Recall@k =
1
m

i=1

∑
m

scorei (8)

Table 3. Comparison of the recall rates when performing the image-to-text task.

Scheme R@1 R@5 R@10
Wukong 76.1 94.8 97.5

R2D2 77.6 96.7 98.9
CN-CLIP 81.6 97.5 98.8

PITR 82.8 97.3 99.2

We further tested the model’s performance in text-to-image retrieval tasks using the
COCO-CN dataset for training and testing. The training method also utilized a combination
of the general adapter and contrastive learning. Table 4 presents a comparison of recall
rates for text-to-image retrieval tasks.

Table 4. Comparison of the recall rates when performing the text-to-image task.

Schemes R@1 R@5 R@10
Wukong 53.4 80.2 90.1

R2D2 56.4 85.0 93.1
CN-CLIP 69.2 89.9 96.1

PITR 70.4 91.1 96.9

6.3. Image–Text Retrieval in Specialized Domain Data

We continued to use the model from the specialized domain image classification task
and trained it using contrastive learning on specialized domain multimedia datasets, with
category labels representing image captions. Tables 5 and 6 show the performance of PITR
in image-to-text and text-to-image retrieval tasks, respectively.

Table 5. Image-to-text experiment on specialized domain datasets.

Dataset R@1 R@5 R@10
Pets 87.0 96.3 99.7
DTD 79.6 86.2 95.8

EuroSAT 70.0 88.4 100
Flowers 81.7 89.9 96.2

Table 6. Text-to-image experiment on specialized domain datasets.

Dataset R@1 R@5 R@10
Pets 88.1 98.5 100
DTD 83.0 91.9 98.4

EuroSAT 71.8 85.2 93.7
Flowers 84.4 96.3 99.8
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6.4. Retrieval Speed Experiment

We tested the speed advantage of PITR compared to other similar schemes. The com-
parison schemes selected were SSSW2 [? ] and SSRB2 [? ], both of which generate feature
embeddings with a dimension of 768, and PITR generates expanded feature vectors with a
dimension of 1027. Figure 8 shows the change in time consumption for PITR during the
feature extraction and indexing construction process as the number of files increases (each
image and text sentence represents a file). As shown in the figure, PITR’s time consumption
in this process is on the order of 1e1 (1× 101) seconds, while the other two schemes’ time
consumption for the same process is on the order of 1e3 (1× 103) seconds [? ]. Figure 9
shows the indexing construction process as the number of files increases.

Figure 10 shows the change in time consumption of PITR for performing nearest
neighbor searches for query trapdoors on an established index structure as the number of
files increases. Some important parameters for the HNSW algorithm are e fconstruction = 200,
M = 16, and k = 5. As shown in the figure, compared to the other two schemes, PITR’s
time consumption during the search process remains very stable as the number of files
increases. Additionally, when the number of files is large, the speed advantage of PITR
becomes more obvious.

Figure 8. The time consumption for feature extraction and index construction varies with the number
of files.

Figure 9. The time consumption for index construction varies with the number of files.
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Figure 10. Comparison of the time consumption during the search process as the number of
files increases.

7. Conclusions

This paper proposes an efficient privacy-preserving cross-modal image–text retrieval
scheme: PITR. By introducing the general adapter and the specialized adapter into the
frozen multimodal pre-trained model, we enhanced the model’s ability to extract global fea-
tures from multimodal data in both general and specific domains with minimal training re-
source overhead, thereby meeting users’ diverse cross-modal retrieval needs. Experiments
show that, compared to previous methods, PITR improves the average accuracy of zero-shot
image classification tasks by approximately 1.23% and 14.32% in general and specialized
domain datasets, respectively. Additionally, the average recall rates for image-to-text and
text-to-image retrieval tasks in general domain datasets are improved by approximately
0.47% and 1.07%, respectively. In terms of privacy security, PITR employs a two-level
security model, utilizing ASPE technology suitable for inner product calculation and dis-
tributed index storage technology to meet users’ varying privacy protection requirements.
For retrieval, PITR uses the HNSW algorithm to construct encrypted indexes and perform
searches, improving the efficiency of retrieval among massive high-dimensional vectors.

Future work includes: (1) investigating how to achieve more efficient and convenient
data updating capabilities under the level I security mode, (2) exploring the application of
homomorphic encryption techniques in key parts to further enhance security and examining
alternatives to Intel SGX to reduce the risk of data leakage due to hardware attacks, (3)
researching more robust end-to-end encryption schemes and secure key management
protocols to strengthen communication security among various entities, and (4) exploring
how to construct a unified dataset containing more media types to realize a more powerful
cross-modal retrieval system.
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