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1. Introduction and Preliminaries

Since the pioneering establishment of the famous Banach contraction principle [1] and
Brouwer fixed point theorem [2–5], fixed point theory and its applications have developed
rapidly in the past one hundred years, and have been applied to study its uses in nonlinear
analysis, economics, game theory, integral differential equations, optimization theory,
dynamic system theory, signal and image processing and other related fields of applied
mathematics. For more details, we refer the reader to the research monographs and
papers [2–20] and the references quoted therein.

Let A be a selfmapping from a metric space (X, d) into itself. A point z ∈ X is called
a fixed point of A if Az = z. Let us recall the concepts of Meir–Keeler contraction and
L-function.

Definition 1 (see [20,21]). A selfmapping A on X is said to be a Meir–Keeler contraction if the
condition (MK) holds, where

(MK) for each β > 0, there exists κ = κ(β) > 0 such that for x, y ∈ X,

d(x, y) ∈ [β, β +κ) implies d(Ax, Ay) < β.

Definition 2 (see [15,20]). A function τ : [0, ∞) → [0, ∞) is called an L-function if τ(0) = 0,
τ(t) > 0 for t > 0, and for every x > 0, there exists c > 0 such that τ(t) ≤ x for all t ∈ [x, x + c].

In [15], Lim used L-functions to characterize Meir–Keeler contractions.

Theorem 1 (see [15]). A is a Meir–Keeler contraction if and only if there exists an (nondecreasing,
right continuous) L-function τ, such that

d(Tx, Ty) < τ(d(x, y)) for all x, y ∈ X with x ̸= y.

In 1969, Meir and Keeler established an interesting fixed point theorem (the so-called
Meir–Keeler’s fixed point theorem) as follows:
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Theorem 2 (see [21]). Let (X, d) be a complete metric space and A : X → X be a Meir–Keeler
contraction. Then A admits a unique fixed point in X.

It is worth noting that Meir–Keeler’s fixed point theorem is a real generalization of
the Banach contraction principle (see, e.g., [15,16,18,21,22]). Several authors have studied
various types of generalized Meir–Keeler contractions to establish new Meir–Keeler-type
fixed point theorems. For a more comprehensive understanding of the advances in the Meir–
Keeler’s fixed point theorem, interested readers are encouraged to consult the remarkable
monographs and papers [2,3,5,6,8–10,12,13,15,17,21].

The main purpose of this work is to establish new fixed point theorems for generalized
Meir–Keeler type nonlinear mappings and their applications to fixed point theory. The
paper is divided into four sections. In Section 2, we first establish a fixed point theorem
for generalized Meir–Keeler type nonlinear mappings, satisfying the condition (DH) (see
Theorem 3 below). As applications to fixed point theory, we obtain many new fixed point
theorems in Section 3. An example (see Example 1) is given to illustrate that our new fixed
point theorem (see Theorem 8) is a real simultaneous generalization of Banach contraction
principle, Kannan’s fixed point theorem and Chatterjea’s fixed point theorem. The paper
concludes by summarizing the results achieved and outlining future research directions in
Section 4.

2. New Fixed Point Theorem for Generalized Meir–Keeler Type Mappings

The following theorem is one of the main results of this paper.

Theorem 3. Let (X, d) be a metric space and A : X → X be a selfmapping. Define a mapping
U : X × X → [0, ∞) by

U(x, y) = max
1≤i≤10

fi(x, y)

where
f1(x, y) = d(x, y),

f2(x, y) =
d(x, Ax) + d(y, Ay)

2
,

f3(x, y) =
d(x, Ay) + d(y, Ax)

2
,

f4(x, y) =
2d(x, Ax) + d(y, Ax)

3
,

f5(x, y) =
2d(x, Ax) + d(y, Ay)

3
,

f6(x, y) =
d(x, y) + 2d(y, Ay)

3
,

f7(x, y) =
2d(x, Ax) + d(y, Ax) + d(y, Ay)

4
,

f8(x, y) =
2d(x, y) + d(x, Ax) + d(y, Ax)

4
,

f9(x, y) =
d(x, Ax) + d(x, Ay) + 2d(y, Ax)

4
,

and

f10(x, y) =
2d(x, y) + d(x, Ax) + d(y, Ax) + d(y, Ay)

5
,

for x, y ∈ X. Suppose that

(DH) for each β > 0, there exists κ = κ(β) > 0 such that for x, y ∈ X,

U(x, y) ∈ [β, β +κ) implies d(Ax, Ay) < β.
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Given z ∈ X. Let {cn}n∈N be a sequence defined by c1 = z , cn+1 = Acn for all n ∈ N. If
cn+1 ̸= cn for all n ∈ N, then {cn}n∈N is Cauchy in X.

Proof. Since cn+1 ̸= cn for all n ∈ N, we obtain

U(cn, cn+1) ≥ f1(cn, cn+1) = d(cn, cn+1) > 0, ∀ n ∈ N.

For any n ∈ N, the following hold:

• f1(cn, cn+1) = d(cn, cn+1),

• f2(cn, cn+1) =
d(cn ,cn+1)+d(cn+1,cn+2)

2 ,

• f3(cn, cn+1) =
d(cn ,cn+2)

2 ≤ d(cn ,cn+1)+d(cn+1,cn+2)
2 ,

• f4(cn, cn+1) =
2d(cn ,cn+1)

3 ,

• f5(cn, cn+1) =
2d(cn ,cn+1)+d(cn+1,cn+2)

3 ,

• f6(cn, cn+1) =
d(cn ,cn+1)+2d(cn+1,cn+2)

3 ,

• f7(cn, cn+1) =
2d(cn ,cn+1)+d(cn+1,cn+2)

4 ,

• f8(cn, cn+1) =
3d(cn ,cn+1)

4 ,

• f9(cn, cn+1) =
d(cn ,cn+1)+d(cn ,cn+2)

4 ≤ 2d(cn ,cn+1)+d(cn+1,cn+2)
4 ,

• f10(cn, cn+1) =
3d(cn ,cn+1)+d(cn+1,cn+2)

5 .

Suppose that there exists k ∈ N, such that d(ck, ck+1) ≤ d(ck+1, ck+2). Hence, through the
above, we obtain

U(ck, ck+1) = max
1≤i≤10

fi(ck, ck+1) ≤ d(ck+1, ck+2).

For γ := U(ck, ck+1) > 0, through condition (DH), we acquire

d(ck+1, ck+2) = d(Ack, Ack+1) < γ = U(ck, ck+1) ≤ d(ck+1, ck+2),

which leads to a contradiction. Therefore, it must be d(cn+1, cn+2) < d(cn, cn+1) for all
n ∈ N. Consequently, we arrive at

U(cn, cn+1) = max
1≤i≤10

fi(cn, cn+1) = d(cn, cn+1) for all n ∈ N. (1)

Since {d(cn+1, cn)}n∈N is a strictly decreasing sequence in [0, ∞), we deduce that

ℓ := lim
n→∞

d(cn+1, cn) = inf
n∈N

d(cn+1, cn) exists. (2)

We now need to prove ℓ = 0. Suppose on the contrary that ℓ > 0. For δ > 0, by using (1)
and (2), we have

ℓ ≤ U(cp+1, xp) = d(cp+1, cp) < ℓ+ δ for some p ∈ N.

Hence, the condition (DH) yields

d(cp+2, cp+1) < ℓ = inf
n∈N

d(cn+1, cn) ≤ d(cp+2, cp+1),

a contradiction. So we conclude that

ℓ = inf
n∈N

d(cn+1, cn) = lim
n→∞

d(cn+1, cn) = 0. (3)
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We shall demonstrate that {cn}n∈N is Cauchy in X. Given β > 0, take ζ > 0 satisfying
β > 3ζ. Using (DH), there exists 0 < κ(ζ), satisfying the following implication:

U(x, y) ∈ [ζ, ζ +κ(ζ)) =⇒ d(Ax, Ay) < ζ. (4)

Choose κ′ = min{1, ζ,κ(ζ)}. Clearly, (4) also holds if κ(ζ) is replaced with κ′. From (3),
there exists j0 ∈ N such that

d(cn+1, cn) <
κ′

6
, ∀ n ≥ j0. (5)

Let

W =

{
a ∈ N : a ≥ j0 and d(ca, cj0) < ζ +

κ′

2

}
.

Clearly, j0 ∈ W . So W ̸= ∅. We want to prove that b ∈ W implies b + 1 ∈ W . Let b ∈ W
be given. Thus b ≥ j0 and

d(cb, cj0) < ζ +
κ′

2
.

If b = j0, then, using (5), we obtain b + 1 ∈ W . If b > j0, we need to use the following two
possible cases to verify b + 1 ∈ W :

Case (i). Assume that ζ ≤ d(cb, cj0) < ζ + δ′
2 . Since

f1(cb, cj0) = d(cb, cj0) < ζ +
κ′

2
< ζ +κ′,

f2(cb, cj0) =
1
2
(
d(cb, cb+1) + d(cj0 , cj0+1)

)
<

1
2

(
κ′

6
+

κ′

6

)
< ζ +κ′,

f3(cb, cj0) =
1
2
(
d(cb, cj0+1) + d(cj0 , cb+1)

)
≤ 1

2
(
2d(cb, cj0) + d(cj0 , cj0+1) + d(cb, cb+1)

)
<

1
2

(
2
(

ζ +
κ′

2

)
+

κ′

6
+

κ′

6

)
< ζ +κ′,

f4(cb, cj0) =
1
3
(
2d(cb, cb+1) + d(cj0 , cb+1)

)
≤ 1

3
(
3d(cb, cb+1) + d(cj0 , cb)

)
<

1
3

(
1
2
κ′ + ζ +

κ′

2

)
< ζ +κ′,
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f5(cb, cj0) =
1
3
(
2d(cb, cb+1) + d(cj0 , cj0+1)

)
<

1
3
(

1
3
κ′ +

κ′

6
)

< ζ +κ′,

f6(cb, cj0) =
1
3
(
d(cb, cj0) + 2d(cj0 , cj0+1)

)
<

1
3

(
ζ +

κ′

2
+

κ′

3

)
=

1
3

ζ +
5

18
κ′

< ζ +κ′,

f7(cb, cj0) =
1
4
(
2d(cb, cb+1) + d(cj0 , cb+1) + d(cj0 , cj0+1)

)
≤ 1

4
(
3d(cb, cb+1) + d(cj0 , cb) + d(cj0 , cj0+1)

)
<

1
4

(
1
2
κ′ + ζ +

κ′

2
+

κ′

6

)
< ζ +κ′,

f8(cb, cj0) =
1
4
(
2d(cb, cj0) + d(cb, cb+1) + d(cj0 , cb+1)

)
≤ 1

4
(
3d(cb, cj0) + 2d(cb, cb+1)

)
<

1
4

(
3(ζ +

κ′

2
) +

κ′

3

)
< ζ +κ′,

f9(cb, cj0) =
1
4
(
d(cb, cb+1) + d(cb, cj0+1) + 2d(cj0 , cb+1)

)
≤ 1

4
(
2d(cb, cb+1) + 2d(cb, cj0) + d(cj0 , cj0+1)

)
<

1
4

(
κ′

3
+ 2
(

ζ +
κ′

2

)
+

κ′

6

)
=

1
2

ζ +
3
8
κ′

< ζ +κ′,

and

f10(cb, cj0) =
1
5
(
2d(cb, cj0) + d(cb, cb+1) + d(cj0 , cb+1) + d(cj0 , cj0+1)

)
≤ 1

5
(
3d(cb, ψj0) + 2d(cb, cb+1) + d(cj0 , cj0+1)

)
<

1
5

(
3(ζ +

κ′

2
) +

κ′

3
+

κ′

6

)
< ζ +κ′,
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we obtain
ζ ≤ d(cb, cj0) ≤ U(cb, cj0) < ζ +κ′.

By virtue of (DH), we have

d
(
cb+1, cj0+1

)
= d

(
Acb, Acj0

)
< ζ. (6)

Combining (5) with (6) reveals

d
(
cb+1, cj0

)
≤ d

(
cb+1, cj0+1

)
+ d
(
cj0+1, cj0

)
< ζ +

κ′

6
< ζ +

κ′

2
,

which implies b + 1 ∈ W .

Case (ii). Assume that φ(ψb, ψj0) < ζ. Then we have

φ
(
ψb+1, ψj0

)
≤ φ(ψb+1, ψb) + φ

(
ψb, ψj0

)
< ζ +

κ′

6
< ζ +

κ′

2
,

which means that b + 1 ∈ W .

Consequently, from Cases (i) and (ii), we show that b ∈ W =⇒ b + 1 ∈ W . Hence, the
finite induction principle implies

W = {b ∈ N : b ≥ j0}

and

d(cb, cj0) < ζ +
κ′

2
for all b ≥ j0.

For m, n ∈ N with m ≥ n ≥ j0, the inequality (2.6) yields

d(cm, cn) ≤ d(cm, cj0) + d(cj0 , cn) < 2ζ +κ′ ≤ 3ζ < β,

which concludes that {cn}n∈N is Cauchy in X. The proof is completed.

Now, we establish the following new fixed point theorem for generalized Meir–Keeler
type nonlinear mappings, satisfying condition (DH).

Theorem 4. Let (X, d) be a complete metric space. Let A, { fi}10
i=1 and U be the same as in

Theorem 3. Assuming that the condition (DH) holds, then A admits a unique fixed point in X.

Proof. Let z ∈ X be given. Let {cn}n∈N be a sequence defined by c1 = z , cn+1 = Acn
for all n ∈ N. In order to verify that A has a fixed point in X, we consider two separate
cases below:

Case 1. Assume that cα = cα+1 = Acα for some α ∈ N. Therefore cα is a fixed point of A.

Case 2. Assume that cn+1 ̸= cn for all n ∈ N. By applying Theorem 3, {cn}n∈N is a Cauchy
sequence in X. Therefore the completeness of X guarantees that cn → s as n → ∞ for
some s ∈ X. We now show that s ∈ F (A) (the set of fixed points of A). For any n ∈ N,
straightforward computation yields

• f1(cn, s) = d(cn, s),

• f2(cn, s) = d(cn ,cn+1)+d(s,As)
2 ,

• f3(cn, s) = d(cn ,As)+d(s,cn+1)
2 ,

• f4(cn, s) = 2d(cn ,cn+1)+φ(s,cn+1)
3 ,

• f5(cn, s) = 2d(cn ,cn+1)+d(s,As)
3 ,
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• f6(cn, s) = d(cn ,s)+2d(s,As)
3 ,

• f7(cn, s) = 2d(cn ,cn+1)+d(s,cn+1)+d(s,As)
4 ,

• f8(cn, s) = 2d(cn ,s)+d(cn ,cn+1)+d(s,cn+1)
4 ,

• f9(cn, s) = d(cn ,cn+1)+d(cn ,As)+2d(s,cn+1)
4 ,

• f10(cn, s) = 2d(cn ,s)+d(cn ,cn+1)+d(s,cn+1)+d(s,As)
5 .

Since cn+1 ̸= cn for all n ∈ N, we know d(cn, cn+1) > 0. So

U(cn, s) ≥ f1(cn, s) =
d(cn, cn+1) + d(s, As)

2
> 0 for all n ∈ N.

Using (DH), we obtain

d(cn+1, As) < U(cn, s) for all n ∈ N. (7)

Since cn → s as n → ∞, we obtain

lim
n→∞

d(cn+1, As) = d(s, As)

and
lim

n→∞
U(cn, s) = lim

n→∞
max

1≤i≤10
fi(cn, s) =

2
3

d(s, As).

Therefore, using (7), we conclude

d(s, As) = lim
n→∞

d(cn+1, As) ≤ lim
n→∞

U(cn, s) =
2
3

d(s, As)

which implies that d(s, As) = 0. Thus, we show As = s and hence s ∈ F (A). Finally, we
claim that F (A) = {s}. Suppose there exists w ∈ F (A) with w ̸= s. Then, d(w, s) > 0.
Since

f2(w, s) = f5(w, s) = 0,

f1(w, s) = f3(w, s) = d(w, s),

f6(w, s) = f4(w, s) =
1
3

d(w, s),

f7(w, s) =
1
4

d(w, s)

f8(w, s) = f9(w, s) =
3
4

d(w, s),

and
f10(w, s) =

3
5

d(w, s),

we obtain
U(w, s) = max

1≤i≤10
fi(w, s) = d(w, s) > 0.

So, by virtue of (DH), we have

d(w, s) = d(Aw, As) < U(w, s) = d(w, s),

which is a contradiction. Accordingly, F (A) = {s}. Therefore, we prove that A admits a
unique fixed point s in X. The proof is completed.

In this article, we cannot directly apply Theorem 4 to prove Meir–Keeler’s fixed point
theorem. Concerning conditions (MK) and (DH), we would like to propose the following
open problems:
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• Open problem 1. Is the condition (DH) a real generalization of the condition (MK)?
Or are these two conditions independent?

• Open problem 2. Is Theorem 4 a real generalization of Meir–Keeler’s fixed point
theorem? Or are these two theorems independent?

3. Applications to Fixed Point Theory

In this section, unless otherwise specified, we shall assume that (X, d) is a complete
metric space and A : X → X is a selfmapping.

We first recall the Banach contraction principle, Kannan’s fixed point theorem and
Chatterjea’s fixed point theorem as follows:

Theorem 5 (Banach contraction principle [1]). Suppose that there exists λ ∈ [0, 1) such that

d(Ax, Ay) ≤ λd(x, y) for all x, y ∈ X.

Then A has a unique fixed point in X.

Theorem 6 (Kannan’s fixed point theorem [23]). Suppose that there exists λ ∈
[
0, 1

2

)
such that

d(Ax, Ay) ≤ λ(d(x, Ax) + d(y, Ay)) for all x, y ∈ X.

Then A has a unique fixed point in X.

Theorem 7 (Chatterjea’s fixed point theorem [24]). Suppose that there exists λ ∈
[
0, 1

2

)
such that

d(Ax, Ay) ≤ λ(d(x, Ay) + d(y, Ax)) for all x, y ∈ X.

Then A has a unique fixed point in X.

By virtue of Theorem 4, we present the following simultaneous generalization of
the Banach contraction principle, Chatterjea’s fixed point theorem, Kannan’s fixed point
theorem and some known fixed point theorems in the literature.

Theorem 8. Let U be the same as in Theorem 3. Suppose that there exists ρ ∈ [0, 1) such that

d(Ax, Ay) ≤ ρU(x, y) for all x, y ∈ X. (8)

Then A admits a unique fixed point in X.

Proof. Let β > 0 be given. Take κ ∈ (ρ, 1) and define

κ(β) = β

(
1
κ
− 1
)

.

If β ≤ U(x, y) < β +κ(β), then, using (8), we have

d(Ax, Ay) ≤ ρU(x, y) < κ(β +κ(β)) = β.

Hence, we verify that the condition (DH) holds. By applying Theorem 4, A admits a unique
fixed point in X.

Here, we give an example to illustrate that Theorem 8 is a real simultaneous gener-
alization of Banach contraction principle, Kannan’s fixed point theorem and Chatterjea’s
fixed point theorem.
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Example 1. Let X = [0, 2] with the metric d(x, y) = |x − y| for x, y ∈ X. Then (X, d) is a
complete metric space. Define a mapping A : X → X by

Ax =

{
1 , if 0 ≤ x < 2,
0 , if x = 2.

Obviously, 1 is the unique fixed point of A. It is worth noting the following facts:

(a) Since d(A(1), A(2)) = 1 > λd(1, 2) for any λ ∈ [0, 1), T is not a contraction. Hence, the
Banach contraction principle is not applicable here.

(b) Since d(A(1), A(2)) = 1 and d(1, A(1)) + d(2, A(2)) = 2, we have

d(A(1), A(2)) > λ(d(1, A(1)) + d(2, A(2))) for any λ ∈
[

0,
1
2

)
.

Hence, Kannan’s fixed point theorem is not applicable here.
(c) Since d(A(1), A(2)) = 1 and d(1, A(2)) + d(2, A(1)) = 2, we have

d(A(1), A(2)) > λ(d(1, A(2)) + d(2, A(1))) for any λ ∈
[

0,
1
2

)
.

Hence, Chatterjea’s fixed point theorem is not applicable here.

We now claim that d(Ax, Ay) ≤ 4
5 U(x, y) for all x, y ∈ X. In order to verify this fact, we

consider the following four possible cases:

Case 1. For x, y ∈ [0, 2), we have d(Ax, Ay) = 0 ≤ 4
5 U(x, y).

Case 2. For x ∈ [0, 2) and y = 2, we have d(Ax, Ay) = 1. Since

f6(x, y) =
d(x, y) + 2d(y, Ay)

3
=

|x − 2|+ 4
3

,

we obtain 4
3 < f6(x, y) ≤ 2. Hence

d(Ax, Ay) = 1 <
4
5
× 4

3
<

4
5

f6(x, y) ≤ 4
5

U(x, y).

Case 3. For x = 2 and y ∈ [0, 2), we have d(Ax, Ay) = 1. Since

f4(x, y) =
2d(x, Ax) + d(y, Ax)

3
=

4 + y
3

,

we obtain 4
3 ≤ f4(x, y) < 2. Hence

d(Ax, Ay) = 1 <
4
5
× 4

3
≤ 4

5
f4(x, y) ≤ 4

5
U(x, y).

Case 4. For x = y = 2, we have d(Ax, Ay) = 0 ≤ 4
5 U(x, y).

Hence, by Cases 1, 2, 3 and 4, we prove that d(Ax, Ay) ≤ 4
5 U(x, y) for all x, y ∈ X. Therefore,

all the assumptions of Theorem 8 are satisfied. Applying Theorem 8, we also prove that A has a
unique fixed point in X.

The following result is a direct consequence of Theorem 8.

Corollary 1. Let ρ ∈ [0, 1). Suppose that

d(Ax, Ay) ≤ ρ max
{

d(x, y),
d(x, Ax) + d(y, Ay)

2
,

d(x, Ay) + d(y, Ax)
2

}
(9)
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for all x, y ∈ X. Then A admits a unique fixed point in X.

Proof. It is obvious that (9) implies

d(Ax, Ay) ≤ ρ max
1≤i≤10

fi(x, y) = ρU(x, y) for all x, y ∈ X,

where U(x, y) := max
1≤i≤10

fi(x, y) for x, y ∈ X. Hence the desired conclusion follows immedi-

ately from Theorem 8.

Remark 1. Corollary 1 is also a simultaneous generalization of the Banach contraction principle,
Kannan’s fixed point theorem and Chatterjea’s fixed point theorem.

Theorem 9. Let { fi}10
i=1 be the same as in Theorem 3. Suppose that there exists {λi}10

i=1 ⊆ [0, ∞),

satisfying
10

∑
i=1

λi < 1, such that

d(Ax, Ay) ≤
10

∑
i=1

λi fi(x, y) for all x, y ∈ X. (10)

Then A admits a unique fixed point in X.

Proof. Let ρ :=
10

∑
i=1

λi and U(x, y) := max
1≤i≤10

fi(x, y) for x, y ∈ X. Then ρ ∈ [0, 1). Since (10)

yields

d(Ax, Ay) ≤
10

∑
i=1

λi fi(x, y) ≤
(

10

∑
i=1

λi

)
max

1≤i≤10
fi(x, y) = ρU(x, y) for all x, y ∈ X,

the desired conclusion follows immediately from Theorem 8.

Theorem 10. Let { fi}10
i=1 be the same as in Theorem 3. Suppose that A satisfies one of the

following conditions:

(1) d(Ax, Ay) ≤ ρ
n

10

∑
i=1

fi(x, y) for all x, y ∈ X;

(2) d(Ax, Ay) ≤ ρ 10

√
10

∏
i=1

fi(x, y) for all x, y ∈ X, where
10

∏
i=1

fi(x, y) := f1(x, y)× f2(x, y)×

· · · × f10(x, y) for x, y ∈ X.

Then A admits a unique fixed point in X.

Proof. By using the arithmetic mean–geometric mean (AM-GM) inequality, we obtain

d(Ax, Ay) ≤ ρ 10

√√√√ 10

∏
i=1

fi(x, y)

≤ ρ

n

10

∑
i=1

fi(x, y)

≤ ρ max
1≤i≤10

fi(x, y)

= ρU(x, y) for all x, y ∈ X,
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where U(x, y) := max
1≤i≤10

fi(x, y) for x, y ∈ X. Therefore, by using any condition and

applying Theorem 8, we can prove the desired conclusion.

Finally, applying Theorem 8, we can easily establish the following new fixed point
theorems.

Corollary 2. Assume that ρ ∈ [0, 1) and A satisfies one of the following conditions:

(1) d(Ax, Ay) ≤ ρ max
{

d(x,Ax)+d(y,Ay)
2 , 2d(x,Ax)+d(y,Ay)

3

}
for all x, y ∈ X;

(2) d(Ax, Ay) ≤ ρ max
{

2d(x,Ax)+d(y,Ax)
3 , 2d(x,Ax)+d(y,Ax)+d(y,Ay)

4

}
for all x, y ∈ X;

(3) d(Ax, Ay) ≤ ρ max
{

d(x,Ax)+d(x,Ay)+2d(y,Ax)
4 , 2d(x,y)+d(x,Ax)+d(y,Ax)+d(y,Ay)

5

}
for all x, y ∈ X.

Then A admits a unique fixed point in X.

Corollary 3. Assume that ρ ∈ [0, 1) and A satisfies one of the following conditions:

(1) d(Ax, Ay) ≤ ρ max
{

2d(x,Ax)+d(y,Ax)
3 , 2d(x,Ax)+d(y,Ay)

3 , d(x,y)+2d(y,Ay)
3

}
for all x, y ∈ X;

(2) d(Ax, Ay) ≤ ρ max
{

2d(x,Ax)+d(y,Ax)+d(y,Ay)
4 , 2d(x,y)+d(x,Ax)+d(y,Ax)

4 ,
d(x,Ax)+d(x,Ay)+2d(y,Ax)

4

}
for all x, y ∈ X;

(3) d(Ax, Ay) ≤ ρ max
{

d(x, y), 2d(x,Ax)+d(y,Ay)
3 , 2d(x,y)+d(x,Ax)+d(y,Ax)+d(y,Ay)

5

}
for all x, y ∈ X.

Then A admits a unique fixed point in X.

Corollary 4. Assume that ρ ∈ [0, 1) and A satisfies one of the following conditions:

(1) d(Ax, Ay) ≤ ρ max
{

d(x, y), d(x,Ax)+d(y,Ay)
2 , d(x,Ay)+d(y,Ax)

2 , d(x,y)+2d(y,Ay)
3

}
for all x, y ∈ X;

(2) d(Ax, Ay) ≤ ρ max
{

d(x,Ay)+d(y,Ax)
2 , 2d(x,Ax)+d(y,Ax)

3 ,
2d(x,y)+d(x,Ax)+d(y,Ax)

4 , 2d(x,y)+d(x,Ax)+d(y,Ax)+d(y,Ay)
5

}
for all x, y ∈ X;

(3) d(Ax, Ay) ≤ ρ max
{

d(x, y), d(x,y)+2d(y,Ay)
3 , d(x,Ax)+d(x,Ay)+2d(y,Ax)

4 ,
2d(x,y)+d(x,Ax)+d(y,Ax)+d(y,Ay)

5

}
for all x, y ∈ X.

Then A admits a unique fixed point in X.

4. Conclusions

In this paper, we establish the main result about fixed point theorems for generalized
Meir–Keeler type nonlinear mappings as follows:

• (See Theorem 4):
Let (X, d) be a complete metric space and A : X → X be a selfmapping. Define a
mapping U : X × X → [0, ∞) by

U(x, y) = max
1≤i≤10

fi(x, y)

where
f1(x, y) = d(x, y),

f2(x, y) =
d(x, Ax) + d(y, Ay)

2
,
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f3(x, y) =
d(x, Ay) + d(y, Ax)

2
,

f4(x, y) =
2d(x, Ax) + d(y, Ax)

3
,

f5(x, y) =
2d(x, Ax) + d(y, Ay)

3
,

f6(x, y) =
d(x, y) + 2d(y, Ay)

3
,

f7(x, y) =
2d(x, Ax) + d(y, Ax) + d(y, Ay)

4
,

f8(x, y) =
2d(x, y) + d(x, Ax) + d(y, Ax)

4
,

f9(x, y) =
d(x, Ax) + d(x, Ay) + 2d(y, Ax)

4
,

and

f10(x, y) =
2d(x, y) + d(x, Ax) + d(y, Ax) + d(y, Ay)

5
,

for x, y ∈ X. Suppose that

(DH) for each β > 0, there exists κ = κ(β) > 0 such that for x, y ∈ X,

U(x, y) ∈ [β, β +κ) implies d(Ax, Ay) < β.

Then A admits a unique fixed point in X.

As applications, some new fixed point theorems are presented in Section 3. Our new
results will assist us in obtaining novel fixed point theorems for other generalized types of
Meir–Keeler type nonlinear mappings as well as their proof techniques in future research.
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