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Abstract: Normalizing flows have emerged as a powerful brand of generative models, as they not only
allow for efficient sampling of complicated target distributions but also deliver density estimation by
construction. We propose here an in-depth comparison of coupling and autoregressive flows, both
based on symmetric (affine) and non-symmetric (rational quadratic spline) bijectors, considering
four different architectures: real-valued non-Volume preserving (RealNVP), masked autoregressive
flow (MAF), coupling rational quadratic spline (C-RQS), and autoregressive rational quadratic
spline (A-RQS). We focus on a set of multimodal target distributions of increasing dimensionality
ranging from 4 to 400. The performances were compared by means of different test statistics for two-
sample tests, built from known distance measures: the sliced Wasserstein distance, the dimension-
averaged one-dimensional Kolmogorov–Smirnov test, and the Frobenius norm of the difference
between correlation matrices. Furthermore, we included estimations of the variance of both the
metrics and the trained models. Our results indicate that the A-RQS algorithm stands out both in
terms of accuracy and training speed. Nonetheless, all the algorithms are generally able, without too
much fine-tuning, to learn complicated distributions with limited training data and in a reasonable
time of the order of hours on a Tesla A40 GPU. The only exception is the C-RQS, which takes
significantly longer to train, does not always provide good accuracy, and becomes unstable for
large dimensionalities. All algorithms were implemented using TENSORFLOW2 and TENSORFLOW

PROBABILITY and have been made available on GITHUB.

Keywords: machine learning; generative models; density estimation; normalizing flows

1. Introduction

The modern data science revolution has opened a great window of opportunities for
scientific and societal advancement. In particular, machine learning (ML) technologies are
being applied in a wide variety of fields from finance to astrophysics. It is thus crucial
to carefully study the capabilities and limitations of ML methods in order to ensure their
systematic usage. This is particularly pressing when applying ML to scientific research,
for instance in a field such as high-energy physics (HEP), where one often deals with
complicated high-dimensional data and high levels of precision are needed.

In this paper, we focus on normalizing flows (NFs) [1–4], a class of neural density
estimators that for one, offers a competitive approach to generative models, such as genera-
tive adversarial networks (GANs) [5] and variational autoencoders (VAEs) [6,7], for the
generation of synthetic data and, for another, opens up a wide range of applications due to
its ability to directly perform density estimation. Even though we have in mind applications
of NFs to HEP, in this paper, we remain agnostic with respect to the applications and only
performed a general comparative study of the performances of coupling and autoregressive
NFs when used to learn high-dimensional multi-modal target distributions. Nevertheless,
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it is worth mentioning some of the applications of NFs to HEP can also be extended to
several other fields of scientific research.

While applications of the generative direction of NFs is rather obvious in a field such as
HEP, which bases its foundations on Monte Carlo simulations, it is interesting to mention some
of the possible density estimation applications. The ability to directly learn the likelihood,
or the posterior in a Bayesian framework, has applications ranging from analysis, inference,
reinterpretation, and preservation to simulation-based likelihood-free inference [8–13], un-
folding of HEP analyses [14], generation of effective priors for Bayesian inference [15–20],
systematic uncertainty estimation and parametrization, generation of effective proposals
for sequential Monte Carlo [21–28], numerical integration based on importance sampling
algorithms [29–32], and probabilistic programming applied to fast inference [33,34].

The basic principle behind NFs is to perform a series of invertible bijective transforma-
tions on a simple base probability density function (PDF) to approximate a complicated PDF
of interest. The optimal parameters of the transformations, often called “bijectors”, are derived
from training neural networks (NNs) that directly take the negative log-likelihood of the
true data computed with the NF distribution as the loss function. As it turns out, PDFs are
everywhere in HEP: from the likelihood function of an experimental or a phenomenological
result to the distribution that describes a particle-collision process. Thus, NFs have found
numerous applications in HEP: they have been used for numerical integration and event
generation [35–42], anomaly detection [43–45], detector unfolding [46,47], etc.

The growing interest in NFs implies the urgency of testing state-of-the-art architectures
against complex data to ensure their systematic usability and to assess their expected
performances. The purpose of this work was then to evaluate the performance of NFs
against generic complicated distributions of increasing dimensionality. By performing
this study, we aimed to make a concrete step forward in the general understanding of the
realistic performances and properties of NFs, especially in high-precision scenarios. This
work comprises a substantial upgrade with respect to our early study of Ref. [48], as we
now have included more NF architectures, extended the dimensionality of the distributions,
and significantly improved the testing strategy.

Our strategy was the following. We implemented in PYTHON, using TENSORFLOW2
with TENSORFLOW PROBABILITY, four of the most commonly used NF architectures of
the coupling and autoregressive type: real-valued non-volume preserving (RealNVP) [49],
masked autoregressive flow (MAF) [50], coupling rational quadratic spline (C-RQS) [51],
and autoregressive rational quadratic spline (A-RQS) [51].

We tested these NF architectures considering correlated mixture of Gaussian (CMoG)
multi-modal distributions with dimensionalities ranging from 4 to 400. We also performed a
small-scale hyperparameter scan, explicitly avoiding the fine-tuning of the models and gen-
erating the best result for each NF architecture and target distribution.

The performances were measured by means of different test statistics for two-sample
testing built from known distance measures: the sliced Wasserstein distance, the dimension-
averaged one-dimensional Kolmogorov–Smirnov statistic, and the Frobenius norm of the
difference between correlation matrices. The analyses were performed by comparing a
test sample, drawn from the original distribution, with an NF-generated one. Moreover,
all test-statistics calculations were cross-validated, and an error was assigned both to the
evaluation procedure, with repeated calculations of the metrics on different instances of the
test and NF-generated samples, and to the training procedure, with repeated calculations
on models trained with different instances of the training sample.

This paper is organized as follows. In Section 2, we describe the concept of NFs in more
detail, focusing on the coupling and autoregressive types. In Section 3, we introduce the
specific NF architectures under investigation. In Section 4, we present the metrics used in our
analysis, and in Section 5, we discuss our results. Finally, we provide our concluding remarks
in Section 6, with emphasis on the several prospective research avenues that we plan to follow.
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2. Normalizing Flows

Normalizing Flows are made of series of bijective, continuous, and invertible trans-
formations that map a simple base PDF to a more complicated target PDF. The purpose
of NFs is to estimate the unknown underlying distribution of some data of interest and
to allow for the generation of samples approximately following the same distribution.
Since the parameters of both the base distribution and the transformations are known,
one can generate samples from the target distribution by drawing samples from the base
distribution and then applying the proper transformation. This is known as the generative
direction of the flow. Furthermore, since the NF transformations are invertible, one can also
obtain the probability density of the true samples via inverse transformations from the
target to the base PDF. This is known as the normalizing direction of the flow. It is called
“normalizing” because the base distribution is often Gaussian even though this is not a
requirement, and this is also the origin of the name “normalizing flows”.

The basic idea behind NFs is the change of variable formula for a PDF. Let X, Y ∈ RD

be random variables with PDFs pX , pY : RD → R. Let us define a bijective map g : X → Y,
with inverse f = g−1. The two densities are then related by the well known formula

pY(y) = pX(g−1(y)) | det Jg |−1= pX(f(y)) | det J f | (1)

where J f = ∂f
∂y is the Jacobian of f(y), and Jg = ∂g

∂x is the Jacobian of g(x). (Throughout
the paper we always interpret X as the base distribution and Y as the target distribution,
i.e., the data. We also always model flows in the generative direction, from base to data).

Let us now consider a set of parameters {ϕ} characterizing the chosen base density
pX (typically the mean vector and covariance matrix of a multivariate Gaussian) and
parametrize the map g by another set of parameters {θ}. One can then perform a maximum
likelihood estimation of the parameters Φ = {ϕ, θ} given some measured data D = {yI}N

I=1
distributed according to the unknown PDF py. The log-likelihood of the data is given by
the following expression:

log p(D | Φ) =
N

∑
I=1

log pY(yI | Φ)

=
N

∑
I=1

log pX(fθ(yI) | θ, ϕ) + log | det J f |
(2)

where we make the dependence of f on θ explicit through the notation fθ . Then, the best
estimate of the parameters Φ is given by

Φ̂ = arg max
Φ

log p(D | Φ) (3)

Once the parameters Φ̂ have been estimated from the data, the approximated target
distribution can be sampled by applying the generative map g to samples obtained from the
base PDF. The normalizing direction f can instead be used to perform density evaluation
by transforming the new data of interest into sample generated by the base PDF, which is
easier to evaluate.

Beside being invertible, the map g should satisfy the following properties:

• It should be sufficiently expressive to appropriately model the target distribution;
• It should be computationally efficient, meaning that both f (for training, this means

computing the likelihood) and g (for generating samples), as well as their Jacobian
determinants, must be easily calculable.

The composition of invertible bijective functions is also an invertible bijective function.
Thus, g can be generalized to a set of Nt transformations as g = gNt ◦ gNt−1 ◦ . . . g1 with
inverse f = f1 ◦ . . . fNt−1 ◦ fNt and det J f = ∏Nt

n=1 det J fn , where each fn = g−1
n depends on

a yn intermediate random variable. This is a standard strategy to increase the flexibility of
the overall transformation.



Symmetry 2024, 16, 942 4 of 23

Typically, but not mandatorily, NF models are implemented using NNs to determine
the parameters of the bijectors. The optimal values are obtained by minimizing a loss
function corresponding to minus the log-likelihood defined as in Equation (2). This is a
natural approach when the samples from the target density are available but the density
itself cannot be evaluated, a common occurrence in fields, such as HEP, that heavily rely on
Monte Carlo simulations. (Approaches beyond maximum likelihood, which use different
loss functions, have also been considered in the literature, such as in Refs [52–57]. In this pa-
per we always use the maximum likelihood approach and minus the log-likelihood as loss
function.) This makes the models extremely flexible, with a usually stable training, at the
cost of a potentially large number of parameters. Nonetheless, the flow transformation must
be carefully designed; for instance, even if a given map and its inverse, with their respective
Jacobians, are computable, one direction might be more efficient than the other, leading to
models that favor sampling over evaluation (and training) or vice versa. Among the wide
and growing variety of NF architectures available (see Ref. [58] for an overview), we focus
in this work on coupling [4] and autoregressive flows [59], arguably the most widely used
implementations of NFs, particularly in HEP.

2.1. Coupling Flows

Coupling flows, originally introduced in Ref. [4], are made of stacks of so-called cou-
pling layers, in which each sample with dimension D is partitioned into two samples A
and B with dimensions d and D − d, respectively. The parameters of the bjiector trans-
forming the sample A are modeled by a NN that uses B as input, effectively constructing
the p(yd|xd−D) conditional probability distributions. At each coupling layer in the stack,
different partitionings are applied, usually by shuffling the dimensions before partitioning,
so that all dimensions are properly transformed.

In other words, starting from a disjoint partition of a random variable Y ∈ RD such that
(yA, yB) ∈ Rd ×RD−d and a bijector h( · ; θ) : Rd → Rd, a coupling layer maps g : X → Y
as follows:

yA = h(xA; Θ(xB)) ,

yB = xB
(4)

where the parameters θ are defined by a generic function Θ(xB) only defined on the RD−d

partition, generally modeled by an NN. The function Θ(xB) is called a conditioner, while the
bijectors h and g are called coupling function and coupling flow, respectively. The necessary
and sufficient condition for the coupling flow g to be invertible is that the coupling function
h is invertible. In this case, the inverse transformation is given by

xA = h−1(yA; Θ(xB)) ,

xB = yB
(5)

Notice that despite the presence of a NN, whose inverse is unknown, to parametrize
the conditioner, the invertibility of h is guaranteed by the fact that such a conditioner is a
function of the unchanged dimensions only. The Jacobian of g is then a two-block triangular
matrix. The dimensions {1 : d} are given by the Jacobian of h, and the dimensions {d : D}
is the identity matrix. Thus, the Jacobian determinant is simply the following:

det Jg =
d

∏
i=1

∂hi

∂xA
i

. (6)

Note that the choice of the partition is arbitrary. The most common choice is to split the
dimensions in half, but other partitions are possible [58]. Obviously, even when dimensions
are halved, the way in which they are halved is not unique and can be implemented in
several different ways, for instance through random masks, or through random shuffling
before dividing the first and last half.
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2.2. Autoregressive Flows

Autoregressive flows, first introduced in Ref. [59], can be viewed as a generaliza-
tion of coupling flows. Now, the transformations of each dimension i are modeled by an
autoregressive DNN according to the previously transformed dimensions of the distri-
bution, resulting in the p(yi|y1:i−1) conditional probability distributions, where y1:i−1 is a
shorthand notation to indicate the list of variables y1, . . . yi−1. After each autoregressive
layer, the dimensions are permuted to ensure the expressivity of the bijections over the full
dimensionality of the target distribution.

Let us consider a bijector h( · ; θ) : R → R, parametrized by θ. We can define an
autoregressive flow function g such that

y1 = x1 ,

yi = h(xi; Θi(y1:i−1)) , i = 2, . . . , D
(7)

The resulting Jacobian of g is again a triangular matrix, whose determinant is easily
computed as

det Jg =
D

∏
i=1

∂hi
∂xi

. (8)

where ∂hi/∂xi are the diagonal terms of the Jacobian.
Given that the structure of the bijector is similar to that of the coupling flow, also,

in this case, the bijector is referred to as a coupling function. Note that Θj can also be
alternatively determined with the precedent untransformed dimensions of X [59] such that

y1 = x1 ,

yi = h(xi; Θi(x1:i−1)) , i = 2, . . . , D
(9)

The choice of variables used to model the conditioner may depend on whether the NF
is intended for sampling or density estimation. In the former case, Θ is usually chosen to
be modeled from the base variable X so that the transformations in the generative direction
would only require one forward pass through the flow. The transformations in the normalizing
direction would instead require D iterations trough the autoregressive architecture. This case
is referred to as inverse autoregressive flow [59] (Notice that in Ref. [58], parametrizing the flow
in the normalizing direction (the opposite of our choice), apparently uses the inverse of our
formulas for direct and inverse flows. Our notation (and nomenclature) is consistent with that
of Ref. [50]) and corresponds to the transformations in Equation (9). Conversely, in the case of
density estimation, it is convenient to parametrize the conditioner using the target variable Y
since transformations would be primarily in the normalizing direction. This case is referred
to as direct autoregressive flow and corresponds to the transformations in Equation (7). In any
case, when training the NFs, one always needs to perform the normalizing transformations to
estimate the log-likelihood of the data, as in Equation (2). In our study, we only consider the
direct autoregressive flow described by Equation (7).

3. Architectures

In the previous section, we describe NFs, focusing on the two most common choices
for parametrizing the bijector g in terms of the coupling function h. The only missing
ingredient to make NFs concrete, remains the explicit choice of h. For this study, we have
chosen four of the most popular implementations of coupling and autoregressive flows:
the real-valued non-volume preserving (RealNVP) [49], the masked autoregressive flow
(MAF) [50], and the coupling and autoregressive rational-quadratic neural spline flows
(C-RQS and A-RQS) [51]. (Reference [51] refers to coupling and autoregressive RQS flows as
RQ-NSF (C) and RQ-NSF (AR), where RQ-NSF stands for rational-quadratic neural spline
flow, and A and C for autoregressive and coupling, respectively). We discuss them in turn
in the following subsections and give additional details about our specific implementation
in Appendices A.1–A.4.



Symmetry 2024, 16, 942 6 of 23

3.1. The RealNVP

The RealNVP [49] is a type of coupling flow whose coupling functions h are affine
functions with the following form:

yi = xi , i = 1, . . . , d ,

yi = xiesi−d(x1:d) + ti−d(x1:d) , i = d + 1, . . . , D
(10)

where the s and t functions, defined on Rd → RD−d, respectively correspond to the scale
and translation transformations modeled by NNs. The product in Equations (10) is intended
elementwise for each i so that, xd+1 is multiplied by s1, xd+2 by s2 and so on up to xD,
which is multiplied by sD−d. The Jacobian of this transformation is a triangular matrix with
diagonal diag(Id, diag(exp(si−d(x1:d)))) with i = d + 1, . . . , D, so that its determinant is
independent of t and is simply given by

det J =
D−d

∏
i=1

esi(x1:d) = exp

(
D−d

∑
i=1

si(x1:d)

)
(11)

The inverse of Equation (10) is given by

xi = yi , i = 1, . . . , d ,

xi = (yi − ti−d(y1:d))e
−si−d(y1:d) , i = d + 1, . . . , D

(12)

A crucial property of the affine transformation (10) is that its inverse (12) is again an
affine transformation depending only on s and t, and not on their inverse. This implies
that the s and t functions can be arbitrarily complicated (indeed they are parametrized by a
DNN), still leaving the RealNVP equally efficient in the forward (generative) and backward
(normalizing) directions.

3.2. The MAF

The MAF algorithm was developed starting from the masked autoencoder for dis-
tribution estimation (MADE) [60] approach for implementing an autoregressive neural
network through layers masking (see Appendix A.2).

In the original MAF implementation [50], the bijectors are again affine functions described as

y1 = x1 ,

yi = xiesi−1(y1:i−1) + ti−1(y1:i−1) , i = 2, . . . , D
(13)

The functions s and t are now defined on RD−1 → RD−1. The determinant of the
Jacobian is simply

det J =
D−1

∏
i=1

esi(y1:i) = exp

(
D−1

∑
i=1

si(y1:i)

)
(14)

and the inverse transformation is
x1 = y1 ,

xi = (yi − ti−1(y1:i−1))e−si−1(y1:i−1) , i = 2, . . . , D .
(15)

As in the case of the RealNVP, the affine transformation guarantees that the inverse
transformation only depends on s and t and not on their inverse, allowing for the choice of
arbitrarily complicated functions without affecting computational efficiency.

3.3. The RQS Bijector

The bijectors in a coupling or masked autoregressive flow are not restricted to affine
functions. It is possible to implement more expressive transformations as long as they
remain invertible and computationally efficient. This is the case of the so-called rational-
quadratic neural spline flows [51].

The spline bijectors are made of K bins, where in each bin one defines a monotonically
increasing rational-quadratic function. The binning is defined on an interval B = [−B, B],
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outside of which the function is set to the identity transformation. The bins are defined by
a set of K + 1 coordinates {(x(k)i , y(k)i )}K

k=0, called knots, strictly monotonically increasing

between {(x(0)i , y(0)i ) = (−B,−B) and {(x(K)i , y(K)i ) = (B, B). We use the bracket index
notation to denote knots’ coordinates, which are defined for each dimension of the vectors
xi and yi. It is possible to construct a rational-quadratic spline bijector with the desired
properties with the following procedure [61].

Let us define the quantities

h(k)i = x(k+1)
i − x(k)i ,

∆(k)
i = (y(k+1)

i − y(k)i )/h(k)i .
(16)

Obviously, ∆(k)
i represents the variation of yi with respect to the variation of xi within

the k-th bin. Moreover, since we assumed strictly monotonically increasing coordinates, ∆(k)
i

is always positive or zero. We are interested in defining a bijector g(xi) and mapping the B
interval to itself, such that g(x(k)i ) = y(k)i , and with derivatives d(k)i = dy(k)i /dx(k)i satisfying the
following conditions:

d(k)i = d(k+1)
i = 0 for ∆(k)

i = 0 ,

d(k)i , d(k+1)
i > 0 for ∆(k)

i > 0
(17)

Such condition is necessary and also sufficient, in the case of a rational quadratic function,
to ensure monotonicity [61]. Moreover, for the boundary knots, we set d(0)i = d(K)i = 1 to
match the linear behavior outside the B interval.

For xi ∈ [x(k)i , x(k+1)
i ], we define

θi = (xi − x(k)i )/h(k)i (18)

such that θi ∈ [0, 1]. Then, for xi in each of the intervals [x(k)i , x(k+1)
i ] with k = 0, . . . , K − 1,

we define
yi = P(k)

i (θi)/Q(k)
i (θi) (19)

with the functions P and Q defined by

P(k)
i (θi) = ∆(k)

i y(k+1)
i θ2

i + ∆(k)
i y(k)i (1 − θi)

2

+(y(k)i d(k+1)
i + y(k+1)

i d(k)i )θi(1 − θi) ,

Q(k)
i (θi) = ∆(k)

i + (d(k+1)
i + d(k)i − 2∆(k)

i )θi(1 − θi)

(20)

The ratio in Equation (19) can then be written in the simplified form

yi = y(k)i +
(y(k+1)

i − y(k)i )(∆(k)
i θ2

i + d(k)i θi(1 − θi))

∆(k)
i + (d(k+1)

i + d(k)i − 2∆(k)
i )θi(1 − θi)

(21)

The Jacobian Jg = ∂yi/∂xj is then diagonal, with entries given by

(∆(k)
i )2(d(k+1)

i θ2
i + 2∆(k)

i θi(1 − θi) + d(k)i (1 − θi)
2)

(∆(k)
i + (d(k+1)

i + d(k)i − 2∆(k)
i )θi(1 − θi))2

(22)

for i = 1, . . . , D. The inverse of the transformation (19) can also be easily computed by
solving the quadratic Equations (19) with respect to xi.

In practice, B and K are hyperparameters, while {(x(k)i , y(k)i )}K
k=0 and {d(k)i }K−1

k=1 are
2(K+ 1) plus K− 1 parameters, modeled by an NN, which determine the shape of the spline
function. The different implementations of the RQS bijector, in the context of coupling and
autoregressive flows, are determined by the way in which such parameters are computed.
We briefly describe them in turn in the following two subsections.



Symmetry 2024, 16, 942 8 of 23

3.4. The C-RQS

In the coupling flow case (C-RQS), one performs the usual partitioning of the D
dimensions in the two sets composed of the first d and last D − d dimensions. The first
d dimensions are then kept unchanged yi = xi for i = 1, . . . , d, while the parameters
describing the RQS transformations of the other D − d dimensions are determined from
the inputs of the first d dimensions, denoted by x1:d. Schematically, we could write

x(k)i = x(k)i (x1:d) ,

y(k)i = y(k)i (x1:d) ,

d(k)i = d(k)i (x1:d)

(23)

for i = d + 1, . . . , D.
A schematic description of our implementation of the C-RQS is given in Appendix A.3.

3.5. The A-RQS

The RQS version of the MAF, which we call A-RQS, is instead obtained by leaving
unchanged the first dimension y1 = x1 and determining the parameters of the transforma-
tion of the i-th dimension from the output of all preceding dimensions, denoted by y1:i−1.
Schematically, this is given by

x(k)i = x(k)i (y1:i−1) ,

y(k)i = y(k)i (y1:i−1) ,

d(k)i = d(k)i (y1:i−1)

(24)

for i = 2, . . . , D.

4. Non-Parametric Quality Metrics

We assessed the performance of our trained models using three distinct metrics: the
dimension-averaged 1D Kolmogorov–Smirnov (KS) two-sample test statistic Dy,z, the sliced
Wasserstein distance (SWD) Wy,z, and the Frobenius norm (FN) of the difference between
the correlation matrices of two samples ∥C∥F. With a slight abuse of nomenclature, we
refer to these three different distance measures with vanishing optimal value simply as
KS, SWD, and FN, respectively. Each of these metrics served as a separate test statistic in
a two-sample test, where the null hypothesis assumed that both samples originate from
the same target distribution. For each metric, we established its distribution under the
null hypothesis by drawing both samples from the target distribution. We then compared
this distribution with the test-statistic calculated from a two-sample test between samples
drawn from the target and NF distributions to assign each model a p-value for rejecting the
null hypothesis.

To quantify the uncertainty on the test-statistics computed for the test vs NF-generated
samples, we performed the tests 10 times using differently seeded target- and NF-generated
samples. We calculated p-values based on the mean test statistic and its ±1 standard deviation.

For model comparison and to assess the uncertainty on the training procedure, we
trained 10 instances of each model configuration, defined by a set of hyperparameter values.
Rather than selecting the single best-performing instance to represent the best architecture,
we averaged the performances across these instances and identified the architecture with
the best average performance. After selecting this top-performing model, which we called
the “best” model, we reported both its average and peak performances.

When computing the test-statistics distributions under the null hypothesis and eval-
uating each model’s p-values, we found that the discriminative power of the KS metric
was larger than that of the SWD and FN ones. For this reason, we used the result of
the KS-statistic to determine the best model and then showed results also for the other
two statistics. Nevertheless, even though the best model could vary depending on the
metric used, no qualitative difference in the conclusions would arise from choosing FN or
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SWD as the ranking metric; i.e., results were not identical but were consistent among the
three metrics.

It is important to stress that despite our insistence on using non-parametric quality metrics,
we actually know the target density, and we used this information for bootstrapping uncertain-
ties and computing p-values. In real-world examples, the target density is generally not known,
and depending on the number of available samples, our procedure for evaluation needs to be
adapted or may end up being unusable. Nevertheless, this well-defined statistical approach is
crucial for us since we aim to draw rather general conclusions, which strongly depend on the
ability to estimate the uncertainties and should rely on robust statistical inference.

In the following, we briefly introduce the three aforementioned metrics. To do so,
we employ the following notation: we indicate with N the number of D-dimensional
points in each sample and use capital indices I, J to run over N and lowercase indices i, j
to run over D (We warn the reader not to confuse the dimensionalityD with the KS test-
statistic Dx,y.). We also use Greek letters indices α, β to run over slices (random directions).

• Kolmogorov–Smirnov test
The KS test is a statistical test used to determine whether or not two 1D samples are
drawn from the same unknown PDF. The null hypothesis is that both samples come
from the same PDF. The KS test statistic is given by

Dy,z = supx | Fy(x)− Fz(x) | , (25)

where Fy,z(x) are the empirical distributions of each of the samples {yI} and {zI},
and sup is the supremum function. For characterizing the performances of our results,
we computed the KS test-statistic for each of the 1D marginal distributions along the
D dimensions and took the average as follows:

Dy,z =
1
D

D

∑
i=1

Di
y,z . (26)

The actual test statistic that we consider in this paper is the scaled version of Dy,z,
given by

tKS =

√
N
2

Dy,z (27)

The
√

N/2 factor comes from the known
√

m · n/(m + n) factor in the scaled KS
statistic with different-sized samples of sizes m and n, respectively.
Notice that even though the test statistic√

m · n
m + n

Dy,z (28)

is asymptotically distributed according to the Kolmogorov distribution [62–66], the same
is not true for our tKS statistic due to correlations among dimensions. Nevertheless,
our results seem to suggest that the asymptotic distribution of tKS for large D (that
means when the average is taken over many dimensions) has a reasonably universal
behavior, translating into almost constant rejection lines (solid gray lines with different
thicknesses) in the upper panels of Figure 1.

• Sliced Wasserstein Distance
The SWD [67,68] is a distance measure for comparing two multidimensional distributions
based on the 1D Wasserstein distance [69,70]. The latter distance between two univariate
distributions is given as a function of their respective empirical distributions as follows

Wy,z =
∫
R

dx | Fy(x)− Fz(x) | (29)

Intuitively, the difference between the WD and the KS test statistic is that the latter
considers the maximum distance, while the former is based on the integrated distance.
Our implementation of the SWD is defined as follows. For each model and each
dimensionality D, drew 2D random directions v̂i

α, with i = 1, . . . D and α = 1, . . . , 2D,
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uniformly distributed on the surface of the unit N-sphere (This can be done by nor-
malizing the D-dimensional vector obtained by sampling each components from an
independent standard normal distribution [71]). Given two D-dimensional samples
{yI} = {yi

I} and {zI} = {zi
I}, we considered the 2D projections

{yα
I } =

{
D

∑
i=1

yi
I v̂

α
i

}
, {zα

I } =

{
D

∑
i=1

zi
I v̂

α
i

}
(30)

and computed the corresponding 2D Wasserstein distances as follows:

Wα
y,z =

∫
R

dx | Fyα(x)− Fzα(x) | (31)

was

Wy,z =
1

2D

2D

∑
α=1

Wα
y,z . (32)

In analogy with the scaled KS test statistic, we defined the scaled SWD test statistic as
follows:

tSWD =

√
N
2

Wy,z (33)

• Frobenius norm
The FN of a matrix M is given by

∥M∥F =
√

∑
i,j

| mij |2, (34)

where mij are the elements of M. By defining C = Cy −Cz, where Cy, Cz are the two N × N
correlation matrices of the samples {yI} = {yi

I} and {zI} = {zi
I}, its FN, given by

∥C∥F =
√

∑
i,j

| cy,ij − cz,ij |2 (35)

is a distance measure between the two correlation matrices. In analogy with the
previously defined test statistics, we defined the scaled FN test statistic as follows:

tFN =

√
N
2
∥C∥F

D
, (36)

where we also divided by the number of dimensions D to remove the approximately
linear dependence of the FN distance on the dimensionality of the samples.
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Figure 1. Performance comparison between the average (left panel) and absolute (right panel) best
models obtained with RealNVP, MAF, C-RQS, and A-RQS architectures when learning the CMoG
distributions. The figures show the value of the test statistic with its uncertainty, computed as
explained in the text. The KS, SWD, and FN test statistics, as defined in Section 4, are shown in
the upper, middle, and lower panel, respectively. The gray lines with different widths represent,
from thinner to ticker, the 1, 2, 3σ thresholds for the test statistics, as obtained from the test-statistic
distributions under the null hypothesis, evaluated with 104 pseudo-experiments.

5. Testing the Normalizing Flows

We tested the four architectures discussed above on CMoG distributions defined as
a mixture of n = 3 components and D = 4, 8, 16, 32, 64, 100, 200, 400 dimensional multi-
variate Gaussian distributions with diagonal covariance matrices, parametrized by means
randomly generated in the [0, 10] interval and standard deviations randomly generated
in the [0, 1] interval (The values for the means and standard deviations were chosen so
that the different components could generally be resolved). The components were mixed
according to an n dimensional categorical distribution (with random probabilities). This
meant that a different probability was assigned to each component, while different dimen-
sions of the same component multivariate Gaussian were assigned the same probability.
The resulting multivariate distributions had random order-one off-diagonal elements in
the covariance matrix and multi-modal 1D marginal distributions (see, for illustration,
Figures A1 and A2).

In our analysis, we considered a training set of 105 points, a validation set of 3× 104 points,
and a test set equal in size to the training set, with 105 points. It is important to note that the
chosen size of the test set corresponds to the most stringent condition for evaluating the NF
models. This is because the NF cannot be expected to approximate the real target distribution
more accurately than the uncertainty determined by the size of the training sample.

In practical terms, the most effective NF would be indistinguishable from the target
distribution when tested on a sample size equivalent to the training set. In our analysis, we
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found that models tested with 105 samples often led to rejection at the 2σ/3σ level, at least
with the most powerful KS test. However, this should not be viewed as a poor outcome.
Rather, it suggests that one needs to utilize a test set as large as the training set to efficiently
discern the NF from the true model, while smaller samples are effectively indistinguishable
from those generated with the target distribution.

An alternative approach, which we did not adopt due to computational constraints,
involves calculating the sample size required to reject the null hypothesis at a given
confidence level. This approach offers a different but equally valid perspective, potentially
useful for various applications. Nevertheless, our approach was efficient for demonstrating
that NFs can perform exceptionally well on high-dimensional datasets and for comparing,
among each other, the performances of different NF architectures.

For each of the four different algorithms described above and for each value of N, we
performed a small scan over some of the free hyperparameters. Details on the choice of the
hyperparameters are reported in Appendix B. All models were trained on Nvidia A40 GPUs.

The performances of the best NF architectures are reported in Figure 1 and
Tables A2 and A3.

Figure 1 shows the values of the three test statistics (vertical panels) for the average (left
panels) and absolute (right panels) best models obtained with the four different architectures.
The three gray lines with different thicknesses represent the values of the test statistics
corresponding to 1σ, 2σ, and 3σ rejection (p-values of 0.68, 0.95, and 0.99, respectively) of
the null hypothesis that the two samples (test and NF-generated) are drawn from the same
PDF. These rejection lines were obtained through 104 pseudo-experiments. The curve for the
best C-RQS models stops at 64D since the training becomes unstable and the model does not
converge. The situation could likely be improved by adding regularization and by fine-tuning
the hyperparameters. However, to allow for a fair comparison with the other architectures,
where regularization and fine-tuning are not necessary for a reasonable convergence, we
avoided pushing C-RQS beyond 64D. Also notice that the uncertainty shown in the point at
64D for the C-RQS is artificially very small since only a small fraction of the differently seeded
runs converged. This uncertainty should therefore be considered unreliable.

All plots in Figure 1 include uncertainties. As already mentioned, the best model
was chosen as the one with best architecture on average, and therefore, over 10 different
trainings were performed with differently seeded training samples. For the selection of the
best model, the left plots show the performances averaged over the 10 trainings, with error
bands representing the corresponding standard deviations, while the right plots show the
performances of the absolute best instance among the 10 trained replicas, with the error
band representing the standard deviation over the 10 replicas generated for testing (test and
NF-generated samples). In other words, we can say that the uncertainties shown in the left
plots are the standard deviations due to repeated training, while the uncertainties shown in
the right plots are the standard deviations due to repeated generation/evaluation (testing).

Figure 1 clearly highlights the distinct characteristics that establish the A-RQS as the
top-performing algorithm:

• Its performances are almost independent of the data dimensionality;
• The average best model is generally not rejected at 3σ level when evaluated with a

number of points equal to the number of training points;
• The absolute best model is generally not rejected at 2σ level when evaluated with a

number of points equal to the number of training points;
• The uncertainties due to differently seeded training and testing are generally compara-

ble, while for all other models, the uncertainty from training is generally much larger
than the one from evaluation.

All values shown in Figure 1 are reported in Tables A2 and A3 for the average and
absolute best models, respectively. In the tables, we also show the total number of trainable
parameters, the average number of epochs, training time, and prediction time. It is interest-
ing to look at the training and prediction times. Indeed, while for the coupling flows, even
though training time is much larger than prediction time, both times grow with a similar
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rate; for the autoregressive flows, the prediction time grows faster than does the training
time, which is almost constant. This is because, as we have already mentioned, the MAF
is a “direct flow”, very fast for density estimation and therefore for training (single pass
through the flow) but slower for generation and therefore for testing (N passes through the
flow, with N the dimensionality of the target distribution). Still, testing was reasonably fast,
considering that each test actually consisted of 10 tests with three metrics and 105 points
per sample. All trainings/tests took less than a few hours (sometimes, especially in small
dimensionality, a few minutes), which means that all models, expect the C-RQS in large
dimensionalities, are fairly fast both in training and inference (Notice that even though
the training/testing times do not go beyond a few hours, we trained and tested 10 replicas
of four architectures in eight different dimensionalities (apart from C-RQS) and with a few
different values of the hyperparameters for a total of about 1360 runs (see Table A1). This
took several months of GPU time, showing how resource demanding is to reliably estimate
uncertainties of ML models, even in relatively simple cases.) Another interesting number
in the tables is the total number of trainable parameters. Such number makes clear how the
autoregressive architectures are more expressive than are the simple coupling ones, giving
better results with relatively fewer parameters. It is also clear from the table that the im-
provement stepping from a simple linear affine bijector to a rational quadratic spline based
on the same architecture is much larger for autoregressive architectures and less evident for
the simplest coupling ones. The large number of parameters needed to obtain reasonable
results from C-RQS may be the origin of its training instability at large dimensionality.

6. Conclusions and Outlook

Normalizing flows have shown many potential applications in a wide variety of
research fields including HEP, both in their normalizing and generative directions. However,
to ensure a standardized usage and to match the required precision, their application to
high-dimensional datasets need to be properly evaluated. This paper makes a step forward
in this direction by quantifying the ability of coupling and autoregressive flow architectures
to model distributions of increasing complexity and dimensionality.

Our strategy consisted in performing statistically robust tests utilizing different figures
of merits and including estimates of the variances induced both by the training and the
evaluation procedures.

We focused on the most widely used NF architectures in HEP, the coupling (RealNVP
and C-RQS) and the autoregressive flows (MAF and A-RQS), and compared them against
generic multimodal distributions of increasing dimensionality.

As the main highlight, we found that the A-RQS is highly capable of precisely learning
all the high-dimensional complicated distributions it was tested against, always within
a few hours of training on a Tesla A40 GPU and with limited training data. Moreover,
the A-RQS architecture, showed great generalization capabilities, obtaining almost constant
results over a very wide range of dimensionalities, ranging from 4 to 400.

As for the other tested architectures, our results show that reasonably good results
can be obtained with all of them but the C-RQS, which ended up being the least capable
in generalizing to large dimensionality, with unstable and longer trainings, especially in
high dimensionality.

Our analysis was performed implementing all architectures in TENSORFLOW2 with
TENSORFLOW PROBABILITY using PYTHON. The code is available in Ref. [72], while a
general-purpose user-friendly framework for NFs in TensorFlow2 named NF4HEP is
under development and can be found in Ref. [73]. Finally, a code for statistical inference
and two-sample tests, implementing the metrics considered in this paper (and others) in
TENSORFLOW2, is available in Ref. [74].

We stress that the intention of this study was to secure generic assessments of how
NFs perform in high dimensions. For this reason, the target distributions were chosen
independently of any particular experimentally driven physics dataset. An example of
application to a physics dataset, in the direction of building an unsupervised DNNLikeli-
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hood [75], is presented in Ref. [76]. Nonetheless, these studies represent the firsts of a series
to come. Let us briefly mention, in turn, the research directions we aim to follow starting
from the present paper.

• Development of reliable multivariate quality metrics, including approaches based
on machine learning [77,78]. We note the importance of performing statistically
meaningful tests on generative models, ideally including uncertainty estimation.
A thorough study of different quality metrics against high dimensional data is on its
way. Moreover, new results [79–81] suggest that classifier-based two-sample tests have
the potential to match the needs of the HEP community when paired with a careful
statistical analysis. These tests can leverage different ML models to provide high
flexibility and sensitivity together with short training times, especially when based
on kernel methods [81]. On the other hand, further studies are needed to investigate
their efficiency and scalability to high dimensions.

• Study of the dependence of the NF performances on the size of the training sample [82].
In the present paper, we always kept the number of training points to 105. It is clear
that such a number is fairly large in small dimensionality, such as N = 4 dimensions,
and undersized for large dimensionality, such as N ≥ 100. It is important to study the
performances of the considered NF architectures in the case of scarce or very abundant
data and to assess the dependence of the final precision on the number of training
samples. This can also be related to developing techniques to infer the uncertainty of the
NF models.

• Studies on how NFs can be used for statistical augmentation. For instance, NFs
can be used for normalizing direction to build effective priors and proposals to en-
hance (in terms of speed and convergence time) known sampling techniques, such as
Markov chain Monte Carlo, whose statistical properties are well established.

• The ability to preserve and distribute pretrained NF-based models. A final issue that
needs to be addressed to ensure a widespread use of NFs in HEP is the ability to
preserve and distribute pretrained NF-based models. This is, for the time being, not
an easy and standard task, and support from the relevant software developers in the
community is crucial to achieving this goal.
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Appendix A. Implementation of NF Architectures

Appendix A.1. The RealNVP

We are given a collection of vectors {yI
i } with i = 1, . . . , D representing the dimension-

ality and I = 1, . . . , N the number of samples representing the unknown PDF pY. For all
samples yI , we consider the half partitioning given by the two sets ŷI = {yI

1, . . . , yI
D/2}

and ỹI = {yI
D/2+1, . . . , yI

D} (For simplicity, we assume D is even and therefore D/2 integer.
In case D = 2d + 1 is odd the “half-partitioning” could be equally done by taking the first
d + 1 and the last d dimensions, or vice versa. This does not affect our implementation).
We then use the ŷI samples as inputs to train a fully connected MLP (a dense DNN) giving
as output the vectors of ti and si, with i = 1, . . . , D/2 in Equation (10). These output
vectors are provided by the DNN through two output layers, which are dense layers with
linear and tanh activation functions for ti and si, respectively, and are used to implement
the transformation in Equation (12), which outputs the (inversely) transformed samples.
Moreover, in order to transform all dimensions and to increase the expressivity of the
model, we use a series of such RealNVP bijectors, feeding the output of each bijector as
input for the next one and inverting the role of the two partitions at each step. After the
full transformation is performed, one obtains the final {xI

i } with i = 1, . . . , D vectors and
the transformation Jacobian (the product of the inverse of Equation (11) for each bijector).
With these ingredients, and assuming a normal base distribution pX, one can compute
the negative of the log-likelihood in Equation (2), which is used as loss function for the
DNN optimization.

As is clear from the implementation, the RealNVP NF, i.e., the series of RealNVP bijec-
tors, is trained in the normalizing direction, taking data samples as inputs. Nevertheless,
since the si and ti vectors only depend, at each step, on untransformed dimensions, once
the DNN is trained, they can be used both to compute the density by using Equation (12)
and to generate new samples, with equal efficiency, by using Equation (10). This shows
that the RealNVP is equally efficient in both the normalizing and generative directions.

Appendix A.2. The MAF

As in the case of the RealNVP, for the MAF, the forward direction represents the
normalizing direction. In this case, the vectors si and ti of dimension D − 1 describing
the affine bijector in Equation (13) are parametrized by an autoregressive DNN with D
inputs and 2(D − 1) outputs, implemented through the MADE [60] masking procedure
according to the TENSORFLOW PROBABILITY implementation (see Ref. [83]). The procedure
is based on binary mask matrices that define which connections (weights) are kept and
which are dropped to ensure the autoregressive property. (The binary mask matrices are
simple transition matrices between pairs of layers of dimension (K′, K), with K′ being the
number of nodes in the forward layer (closer to the output) and K being the number of
nodes in the backward layer (closer to the input). Obviously K = D is for the input layer,
and K′ = 2(D − 1) is for the output layer.) Mask matrices are determined from numbers
(degrees) assigned to all nodes in the DNN: each node in the input layer is numbered
sequentially from 1 to D; each node in each hidden layer is assigned a number between 1
and D, possibly with repetition; the first half output nodes (representing si) are numbered
sequentially from 1 to D − 1, and the same is done for the second half (representing ti).
Once all degrees are assigned, the matrix elements of the mask matrices are 1 if two
nodes are connected and 0 if they are “masked”, i.e., not connected. The mask matrices
are determined by connecting the nodes of each layer with index k with all nodes in the
preceding layer that have an index smaller or equal than k. As for the RealNVP, a series
of MAF bijectors is used, by feeding each with the {xI

i }, with i = 1, . . . , D, according
to Equation (15) computed from the previous one. The last bijector computes the final
{xI

i }, with i = 1, . . . , D, according to Equation (15) and the transformation Jacobian (the
product of the inverse of Equation (14) for each bijector), used to compute and optimize the
log-likelihood as defined in Equation (2).
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The efficiency of the MAF in the normalizing and generative directions is not the
same as in the case of the RealNVP. Indeed, computing the log-likelihood for density
estimation requires a single forward pass of {yi} through the NF. However, generating
samples requires a start from {xi}, randomly generated from the base distribution. Then,
one needs the following procedure to compute the corresponding {yi}:

• Define the first component of the required yinput
i as youtput

1 = yinput
1 = x1, where yinput

i
is the NF input;

• Start with a yinput
i = xi and pass it through the NF to determine youtput

2 as a function
of youtput

1 ;

• Update yinput
i with yinput

2 = youtput
2 and pass through the NF to determine youtput

3 as a
function of youtput

1 and youtput
2 ;

• Iterate until all the youtput
i components are computed.

It is clear to see that the procedure requires D to pass through the NF to generate
a sample, and so the generation in the MAF is D times less efficient than is the density
estimation. The inverse autoregressive flow (IAF) [59] is an implementation similar to the
MAF that implements generation in the forward direction (obtained by exchanging x and
y in Equations (13) and (15). In the case of IAF, computing the log-likelihood (which is
needed for training) requires D steps, while generation only requires a single pass through
the flow. The IAF is therefore much slower in training and much faster in generating
new samples.

Table A1. Hyperparameter values used in our analysis. The last row shows the total number of runs
for each architecture, with the 10 replicas and the different dimensionalities being taken into account.

Hyperparameter Values

Hyperpar. MAF RealNVP A-RQS C-RQS

Number of 5, 10 5, 10 2 5, 10
bijectors

Number of 3 × 128 3 × 128 3 × 128 3 × 128
hidden 3 × 256 3 × 256 3 × 256 3 × 256
layers

Number of – – 8, 12 8, 12
spline knots

Total number 320 320 320 400
of runs

Appendix A.3. The C-RQS

The C-RQS parameters are determined by the following procedure [51].

1. A dense DNN takes x1, . . . , xd as inputs and outputs an unconstrained parameter
vector θi of length 3K − 1 for each i = d + 1, . . . , D dimension.

2. The vector θi is partitioned as θi = [θw
i , θh

i , θd
i ], where θw

i and θh
i have length K, while

θd
i has length K − 1.

3. The vectors θw
i and θh

i are each passed through a softmax and multiplied by 2B; the
outputs are interpreted as the widths and heights of the K bins, which must be positive
and span the B interval. Then, the cumulative sums of the K bin widths and heights,
each starting at −B, yield the K + 1 knot parameters {(x(k)i , y(k)i )}K

k=0.
4. The vector θd

i is passed through a softplus function and is interpreted as the values of

the derivatives {d(k)i }K−1
k=1 at the internal knots.

As for the RealNVP, in order to transform all dimensions, a series of RQS bijectors is
applied, inverting the role of the two partitions at each step.
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Appendix A.4. The A-RQS

In the autoregressive implementation, we follow the same procedure used in the MAF
implementation and described in Appendix A.2, but instead of obtaining the 2(D − 1)
outputs determining the affine parameters, we obtain the 3K − 1 parameters needed to
compute the values of the knots parameters and derivatives. Once these are determined,
the procedure follows steps 2 to 4 of the C-RQS implementation described in the previ-
ous subsection.

Appendix B. Hyperparameters

For all models, we used a total of 105 trainings, 3 × 104 validations, and 105 test points.
We employed ReLu activation function with no regularization. All models were trained for
up to 1000 epochs, with the ADAM optimizer, with the initial learning rate set to 10−3. (For
unstable trainings in large dimensionality, when the training with this initial learning rate
failed with a “nan” loss, we reduced the learning rate by a factor 1/3 and retried until either
the training succeeded or the learning rate was smaller than 10−6.) The learning rate was
then reduced by a factor of 0.5 after 50 epochs without improvement better than 10−4 on
the validation loss. Early stopping was used to terminate the learning after 100 epochs
without the same amount of improvement. The batch size was set to 256 for RealNVP and
to 512 for the other algorithms. For the two neural spline algorithms, we also set the range
of the spline equal to [−16, 16]. The values of all hyperparameters on which we performed
a scan are reported in Table A1.

Appendix C. Results Summary Tables

Table A2. Values of the most relevant hyperparameters and metrics for the average best models
obtained for the CMoG distributions. The number of training epochs and the training and prediction
times are averages. The columns KS, Sliced WD, and Frobenius Norm contain the values of the
corresponding test statistics shown in the left panels of Figure 1. The row corresponding to the best
model for each dimension, that is, the one with the minimum KS test statistic, is shown in bold.

Results for Average Best Models

Hidden # of Algorithm Spline Trainable KS Sliced Frobenius # of Training Prediction
Layers Bijec. Knots Parameters WD Norm Epochs Time (s) Time (s)

4D

3 × 128 10 MAF – 346,960 1.5 ± 0.4 3.1 ± 0.7 0.9 ± 0.3 442 5301 17
3 × 256 5 RealNVP – 666,900 1.6 ± 0.5 3.7 ± 0.9 1.0 ± 0.4 616 8777 8
3 × 128 2 A-RQS 8 91,064 1.2 ± 0.1 2.6 ± 0.4 0.7 ± 0.2 670 7606 54
3 × 128 5 C-RQS 8 196,710 1.4 ± 0.2 3.3 ± 0.3 1.0 ± 0.5 483 12,346 26

8D

3 × 128 5 MAF – 181,200 1.3 ± 0.2 3.3 ± 0.7 0.8 ± 0.3 713 5757 11
3 × 128 10 RealNVP – 346,960 2.2 ± 0.5 5.2 ± 1.1 1.4 ± 0.4 340 8242 12
3 × 128 2 A-RQS 12 140,592 1.6 ± 0.5 4.7 ± 2.1 1.0 ± 0.4 477 5516 315
3 × 128 5 C-RQS 8 227,660 2.4 ± 0.6 6.1 ± 1.9 1.6 ± 0.5 294 11, 500 27

16D

3 × 128 5 MAF – 196,640 1.6 ± 0.2 3.7 ± 0.6 7.1 ± 1.9 479 3410 16
3 × 128 5 RealNVP – 181,200 2.6 ± 0.3 6.4 ± 1.3 12 ± 3 366 4263 8
3 × 128 2 A-RQS 12 214,880 1.8 ± 0.3 3.1 ± 0.5 2.2 ± 1.0 327 3705 65
3 × 128 10 C-RQS 8 579,120 2.0 ± 0.6 3.9 ± 1.3 4.6 ± 2.0 558 64,056 53

32D

3 × 128 5 MAF – 227,520 1.7 ± 0.3 4.5 ± 0.9 2.1 ± 0.6 595 4193 24
3 × 128 10 RealNVP – 393,280 2.6 ± 0.5 6.8 ± 1.6 3.0 ± 0.8 676 16,946 12
3 × 128 2 A-RQS 8 264,384 1.9 ± 0.3 4.4 ± 1.0 1.7 ± 0.4 375 4705 97
3 × 256 10 C-RQS 12 2,798,560 2.0 ± 0.5 5.2 ± 1.7 2.3 ± 0.8 750 75,606 83



Symmetry 2024, 16, 942 18 of 23

Table A2. Cont.

Results for Average Best Models

Hidden # of Algorithm Spline Trainable KS Sliced Frobenius # of Training Prediction
Layers Bijec. Knots Parameters WD Norm Epochs Time (s) Time (s)

64D

3 × 128 10 MAF – 578,560 2.1 ± 0.6 7 ± 3 1.3 ± 0.5 537 5289 89
3 × 256 10 RealNVP – 1,564,800 2.3 ± 0.4 6.5 ± 1.7 1.5 ± 0.3 711 13,871 16
3 × 128 2 A-RQS 8 462,464 1.5 ± 0.2 4.0 ± 0.7 0.9 ± 0.1 523 6197 332
3 × 256 5 C-RQS 12 2,139,360 2.4 ± 0.9 6.4 ± 2.7 2.6 ± 0.8 813 36,608 53

100D

3 × 128 10 MAF – 717,520 2.2 ± 0.8 7 ± 4 2.1 ± 1.2 778 7824 144
3 × 256 10 RealNVP – 1,703,400 3.2 ± 1.3 10 ± 6 2.9 ± 1.9 991 23,500 19
3 × 128 2 A-RQS 12 994,904 1.4 ± 0.2 4.0 ± 0.9 1.0 ± 0.2 588 6219 1027

200D

3 × 128 10 MAF – 1,103,520 3.7 ± 1.4 12 ± 6.0 3.4 ± 2.4 612 6149 393
3 × 256 10 RealNVP – 2,088,400 6.3 ± 2.3 19 ± 11 5.4 ± 2.2 1000 22,704 25
3 × 128 2 A-RQS 12 1,923,504 1.3 ± 0.2 3.3 ± 1.1 1.0 ± 0.5 703 9943 4900

400D

3 × 128 10 MAF – 1,875,520 4.3 ± 1.8 14 ± 8 8 ± 6 600 4612 1242
3 × 256 0 RealNVP – 2,858,400 8.4 ± 2.4 21 ± 11 24 ± 10 824 23,705 38
3 × 128 2 A-RQS 8 2,542,304 2.2 ± 0.9 6.9 ± 1.8 11 ± 4 796 9970 9738

Table A3. Values of the most relevant hyperparameters and metrics for the absolute best models
obtained for the CMoG distributions. The number of training epochs and the training and prediction
times are averages. The columns KS, Sliced WD, and Frobenius Norm contain the values of the
corresponding -statistics shown in the right panels of Figure 1. The row corresponding to the best
model for each dimension, that is, the one with the minimum KS test statistic, is shown in bold.

Results for Absolute Best Models

Hidden # of Algorithm Spline Trainable KS Sliced Frobenius # of Training Prediction
Layers Bijec. Knots Parameters WD Norm Epochs Time (s) Time (s)

4D

3 × 128 10 MAF – 346,960 1.1 ± 0.1 2.0 ± 0.5 0.5 ± 0.1 442 5301 17
3 × 256 5 RealNVP – 666,900 1.1 ± 0.2 2.3 ± 0.6 0.7 ± 0.3 616 8777 8
3 × 128 2 A-RQS 8 91,064 1.1 ± 0.2 2.2 ± 0.6 0.5 ± 0.2 670 7606 54
3 × 128 5 C-RQS 8 196,710 1.2 ± 0.2 2.8 ± 0.7 0.6 ± 0.2 483 12,346 26

8D

3 × 128 5 MAF – 181,200 1.1 ± 0.2 2.7 ± 0.4 0.6 ± 0.1 713 5757 11
3 × 128 10 RealNVP – 346,960 1.3 ± 0.2 3.2 ± 1.0 0.6 ± 0.1 340 8242 12
3 × 128 2 A-RQS 12 140,592 1.1 ± 0.1 2.6 ± 0.8 0.6 ± 0.2 477 5516 315
3 × 128 5 C-RQS 8 227,660 1.4 ± 0.1 3.1 ± 0.8 1.0 ± 0.2 294 11,500 27

16D

3 × 128 5 MAF – 196,640 1.3 ± 0.1 2.8 ± 0.9 2.4 ± 0.9 479 3410 16
3 × 128 5 RealNVP – 181,200 2.2 ± 0.1 4.6 ± 0.6 6.3 ± 0.9 366 4263 8
3 × 128 2 A-RQS 12 214,880 1.4 ± 0.1 2.4 ± 0.5 1.1 ± 0.2 327 3705 65
3 × 128 10 C-RQS 8 579,120 1.1 ± 0.1 2.3 ± 0.3 1.9 ± 0.3 558 64,056 53

32D

3 × 128 5 MAF – 227,520 1.2 ± 0.1 2.8 ± 0.7 0.9 ± 0.2 595 4193 24
3 × 128 10 RealNVP – 393,280 1.7 ± 0.2 4.0 ± 1.4 1.8 ± 0.5 676 16,946 12
3 × 128 2 A-RQS 8 264,384 1.3 ± 0.1 2.9 ± 0.4 1.2 ± 0.2 375 4705 97
3 × 256 10 C-RQS 12 2,798,560 1.4 ± 0.2 2.9 ± 0.5 1.2 ± 0.1 750 75,606 83

64D

3 × 128 10 MAF – 578,560 1.5 ± 0.1 3.1 ± 0.7 0.8 ± 0.1 537 5289 89
3 × 256 10 RealNVP – 1,564,800 1.8 ± 0.1 3.7 ± 0.8 1.1 ± 0.2 711 13,871 16
3 × 128 2 A-RQS 8 462,464 1.1 ± 0.2 3.1 ± 0.8 0.6 ± 0.1 523 6197 332
3 × 256 5 C-RQS 12 2,139,360 1.5 ± 0.1 3.7 ± 0.5 1.8 ± 0.1 813 36,608 53
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Table A3. Cont.

Results for Absolute Best Models

Hidden # of Algorithm Spline Trainable KS Sliced Frobenius # of Training Prediction
Layers Bijec. Knots Parameters WD Norm Epochs Time (s) Time (s)

100D

3 × 128 10 MAF – 717,520 1.3 ± 0.1 3.7 ± 0.7 0.8 ± 0.2 778 7824 144
3 × 256 10 RealNVP – 1,703,400 1.9 ± 0.1 3.1 ± 0.5 1.4 ± 0.1 991 23,500 19
3 × 128 2 A-RQS 12 994,904 1.1 ± 0.2 2.8 ± 0.8 0.8 ± 0.3 588 6219 1027

200D

3 × 128 10 MAF – 1,103,520 2.2 ± 0.3 5.9 ± 1.3 1.0 ± 0.1 612 6149 393
3 × 256 10 RealNVP – 2,088,400 4.0 ± 0.2 8.8 ± 1.2 2.9 ± 0.2 1000 22,704 25
3 × 128 2 A-RQS 12 1,923,504 1.0 ± 0.1 2.3 ± 0.7 0.6 ± 0.1 703 9943 4900

400D

3 × 128 10 MAF – 1,875,520 1.7 ± 0.2 13.2 ± 1.3 12.0 ± 0.7 600 4612 1242
3 × 256 10 RealNVP – 2,858,400 5.3 ± 0.1 10.1 ± 0.2 8.3 ± 0.1 824 23,705 38
3 × 128 2 A-RQS 8 2,542,304 1.2 ± 0.1 3.3 ± 0.7 2.7 ± 0.6 796 9970 9738

Appendix D. Correlation Matrix
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Figure A1. Visual representation of the correlation matrix of our CMoG model in N = 100 dimensions.
Despite the different multivariate Gaussian components being uncorrelated, the resulting mixture
model features random, order-one, off-diagonal elements in the full correlation matrix.
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Appendix E. Corner Plots

Figure A2. Visual representation of the 1D and 2D marginal distributions for 17 randomly chosen
dimensions of the N = 100 dimensional CMoG distribution obtained with 105 points. The red
and blue curves and points represent the test samples and the NF-generated samples obtained
with the A-RQS best model, respectively. Given the high dimensionality, the non-trivial structure
of the distribution, the limited number of training samples, and the low level of tuning of the
hyperparameters, the result can be considered very accurate.
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