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Abstract: As new energy integration increases, power grid load curves become steeper. Large logistics
parks, with their substantial cooling load, show great peak shaving potential. Leveraging this load
while maintaining staff comfort, product quality, and operational costs is a major challenge. This
paper proposes a two-stage robust optimization method for large logistics parks to participate in grid
peak shaving. First, a Cooling Load’s Economic Contribution (CLEC) index is introduced, integrating
the Predicted Mean Vote (PMV) and Sales Pressure Index (SPI). Then, an optimization model is
established, accounting for renewable energy uncertainties and maximizing large logistics parks’
participation in peak shaving. Results illustrate that the proposed method leads to a reduction in the
peak shaving pressure on the distribution network. Specifically, under the scenario tolerating the
maximum potential uncertainty in renewable energy output, the absolute peak-to-valley difference
and fluctuation variance of the park’s net load are decreased by 45.82% and 54.59%, respectively.
Furthermore, the PMV and the SPI indexes are reduced by 39.12% and 26.36%, respectively. In
comparison with the determined optimization method, despite a slight cost increase of 20.06%, the
proposed method significantly reduces EDR load shedding by 98.1%.

Keywords: peak shaving; smart grid; demand side response; robust optimization

1. Introduction
1.1. Background

As the proportion of renewable energy integration increases, the equilibrium and
symmetry between the supply side and demand side of the power system become pro-
gressively more disrupted. To maximize the utilization of renewable energy resources, it
becomes imperative to fully engage the demand-side components. Also, the intensifying
urban population aggregation in major cities leads to a steady surge in electricity demand,
especially in core urban areas. The distinct counter-peaking attributes associated with
the substantial integration of renewable energy sources further widen the peak-to-valley
disparities, thus exacerbating localized supply–demand imbalances and posing significant
risks to the stable operation of power grids.

1.2. Recent Works

The traditional method of managing peak loads, which involves adjustments to power
generation, is economically impractical due to its consequences of inefficient plant usage
and elevated pollution levels. Specifically, in recent years, the large-scale integration of inter-
mittent and uncertain renewable energy sources, such as wind power and photovoltaics, has
complicated the supply–demand balance within the electrical grid, subsequently augment-
ing the complexity of peak shaving. Under the above conditions, numerous contemporary
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studies focus on strategies to address the escalating peak shaving demands, particularly
examining responses from both the supply and demand sides.

In the electricity market environment, the participation of power plants in peak shav-
ing has significantly increased. Their active engagement in the scheduling and flexible
adjustment of power generation has effectively reduced the peak-to-valley difference in the
grid, alleviated operational pressures within the power system, and significantly enhanced
its safety. Reference [1] proposes a cost analysis model to address the economic and envi-
ronmental implications of deep peak shaving for coal-fired units. Reference [2] presents
an assessment method that reflects the marginal costs of peak and off-peak electricity
generation for combined heat and power plants engaged in peak shaving, discovering that
the use of electric heat pumps for waste heat recovery achieves a significant depth of peak
shaving. Reference [3] examines the complementary characteristics of wind power and nu-
clear power in peak shaving, proposing a multi-power dispatch model to optimize nuclear
power output. Reference [4] addresses the serious issue of wind curtailment, proposing an
optimal configuration method for power-to-heat equipment in combined heat and power
plants with a focus on static payback period. Reference [5] proposes a solution combining
typical peak shaving output curves with water abandonment adjustment strategies to
address the challenges of short-term peak shaving operation. In reference [6], the role
of carbon capture devices in peak shaving is explored. A virtual energy storage model
is constructed, and a joint peak shaving strategy for carbon capture devices and virtual
energy storage is proposed. Reference [7] proposes a model for pumped-storage power
stations to participate in the peak shaving ancillary service market, helping to share the
peak shaving pressure of thermal power units. Reference [8] explores the coordinated
operation of hydropower and renewable energy to mitigate fluctuations and facilitate peak
shaving, addressing the challenges posed by the intermittency and uncertainty of wind and
solar energy to grid dispatch. Reference [9] presents a new peak shaving model that utilizes
mixed integer linear programming without presupposing or fixing the peak shaving order
of power stations. Reference [10] proposes a multi-objective unit commitment model that
combines the concentration of solar power plants and wind farms for peak shaving, taking
operational risks into account.

On the other hand, providing compensation to the demand side through contracting
can effectively stimulate load-side resources and attract more load-side participation in the
peaking process. This mechanism not only significantly reduces the peak-to-valley differ-
ence but also further enhances the safety and stability of the power system by optimizing the
allocation of power resources. Reference [11] provides a comprehensive overview of peak
load reduction strategies, focusing on the impact of three major strategies: demand-side
management, energy storage systems, and grid-connected electric vehicles. Reference [12]
constructs a demand response model considering dual uncertainty to address carbon emis-
sions and supply–demand balance issues. In reference [13], a demand response energy
management strategy adopting a peak rebate program is proposed. Reference [14] presents
a joint peak shaving strategy for carbon capture equipment and virtual energy storage. It
establishes a two-stage peak shaving model for day-ahead and intra-day operations, aimed
at minimizing the peak-to-valley difference in the load and reducing system operating costs
to ensure economically efficient peak shaving. Reference [15] explores the application of
demand-side management in air conditioning and heat pumps, particularly focusing on the
heat pump sector. Reference [16] proposes a community-based home energy management
system that utilizes a particle swarm optimization algorithm and user-defined constraints
to achieve peak load reduction. Reference [17] addresses peak load issues in district heating
systems by employing a differential return water temperature adjustment strategy for peak
shaving. The aforementioned research indicates that the linkage between the power gener-
ation side and the demand side can effectively coordinate, flattening the load curve. As a
significant power load, the fluctuation of chillers significantly affects the safe and stable
operation of the grid. Consequently, incorporating chillers into peak shaving practices is of
great significance for enhancing the reliability and economy of power supply.
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Large chillers, due to their inherent controllability, can effectively reduce the load
pressure during peak hours through reasonable control strategies while ensuring the
satisfaction of daily living and production needs. On the other hand, buildings equipped
with chillers have a certain cold storage capacity, allowing for minor changes in operating
status without significantly affecting indoor environmental temperature, demonstrating
a high level of inertia. In large cities, air conditioning loads during summer peak hours
account for a significant proportion of the total load, becoming a major contributor to
peak loads, with significant adjustment potential. Reference [18] proposes a state queueing
model that utilizes a bidirectional information channel to collect thermostatically controlled
load information, and employs tracking curves and state prediction methods for the control
of thermostatically controlled load operations. Reference [19] converts the thermodynamic
equations of air conditioning loads into a finite-dimensional state-space model through
the finite difference method. Additionally, reference [20] develops a stochastic energy
storage charging parameter model for aggregated air conditioning loads. Reference [21]
presents a method for adjusting the power of aggregated air conditioning systems through
broadcasting temperature setpoints. The study in [22] proposes a comfort-constrained heat
pump load management method and realizes closed-loop control.

1.3. Motivations and Contributions

While the above methods have achieved the comprehensive optimization and regula-
tion of the chiller, most of them targeted distributed and autonomous air conditioning loads.
Currently, there is no large-scale practice involving large logistics parks in peak shaving,
mainly due to three reasons: (1) There is a concern that power outages or insufficient power
supply during peak shaving may lead to the damage of frozen products within the logistics
park. Cold storage facilities require continuous refrigeration to maintain the freshness of
frozen products, and any disruption to their stable operation caused by peak shaving may
result in product losses. (2) Logistics parks house a large number of office staff, whose office
buildings are also cold-consuming structures with high power consumption. However,
their demand for cooling loads differs significantly from that of cold storage facilities. It
is necessary to establish separate mathematical models for the comfort level of office staff
and the storage duration of frozen products, and incorporate them into a comprehensive
consideration framework under the same dimension. (3) With the increasing penetration
of renewable energy into distribution networks, the difficulty of forecasting new energy
sources has increased. The traditional “forecast value as the planned value” approach is
hardly applicable, and the challenge of peak shaving for cold storage facilities under such
uncertainties has significantly increased, potentially exposing logistics parks to additional
risks of frozen product damage. Therefore, a robust optimization approach is needed to
mitigate the impact of random errors.

To solve the problems above, this paper proposes a novel optimization method for
large logistics parks to participate in grid peak shaving in a two-stage robust manner. The
following contributions correspond to the motivations for this study:

(1) The inertial traits inherent in the substantial cooling load within the park are
exploited to engage in peak shaving, while adhering to temperature constraints. The
formulated objective function factors in the comfort of the office setting within the park
and the sales pressure associated with cold storage, thereby achieving an optimal balance
between operational efficiency, temperature tolerance, and peak shaving engagement.

(2) A composite metric, termed Cooling Load’s Economic Contribution (CLEC), is
devised. This metric integrates both the Predicted Mean Vote (PMV) for human comfort
and the Sales Pressure Index (SPI) for frozen goods, translating these factors into economic
costs for a unified optimization process.

(3) A two-stage robust optimization model, encompassing both day-ahead and intra-
day planning, is devised. This model aims to maximize the park’s cooling load participation
in the peak shaving efforts, while maintaining personnel comfort and ensuring the quality
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of frozen products. Additionally, it accounts for the uncertainties introduced by renewable
energy sources like wind and solar.

The structure of this paper is organized as follows. Section I introduces the research
background and primary research focus. Section II focuses on modeling a large logistics
park, establishing the CLEC index to ensure that the park participates in peak shaving while
maximizing the normal operational demand for cooling load. Section III provides a two-
stage robust optimization model for a large logistics park’s participation in peak shaving,
covering both day-ahead and intra-day periods. Section IV introduces the methodology to
solve the problem using the Column and Constraint Generation (C&CG) algorithm. Section
V outlines a group of case studies, creating robust optimization scenarios that consider
various levels of uncertainty. Pros and cons of the proposed method are compared and
summarized. Section VI presents the conclusions of this paper.

2. Modeling of Large Logistics Parks
2.1. Total Framework with Diverse Cooling Loads

Figure 1 depicts the park model constructed in this paper. The power supply consists
of photovoltaic and wind power, two representative renewable energy sources, integrated
into the park in a decentralized manner. The park is connected to the distribution network
through a PCC node, which includes a group of gas turbines that compensates for any
shortcomings in the park’s renewable energy generation capacity. This gas turbine unit also
has reserve capacity, providing backup when the power transmission pressure between the
park and the distribution network becomes excessive. Meanwhile, the park has a significant
amount of cooling load to meet the needs of frozen goods storage and the cooling demands
of staff within the buildings. Traditionally, parks control the output of chillers by adjusting
the temperature inside buildings to meet cooling load requirements. However, buildings
possess a “cold storage” characteristic, and to avoid “wasting” this stored cold inertia, the
CLEC index is employed in the park model, shown in Figure 1, to intelligently regulate the
output characteristics of the chillers. In this paper, EDR is activated when the peak shaving
pressure on the distribution network becomes too great, and the central optimization
controller removes some of the park’s electrical load.
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In this paper, the park’s central optimization controller takes into account the park’s
operating costs, the comfort level of cooling load users, the need to ensure the quality of
frozen goods in the park, and the requirement to participate in peak shaving.

The ambient temperature of a chiller can be adjusted by modifying its cooling load
(CL), thus varying the cooling capacity. Both humans and warehouses have specific
acceptable temperature ranges, with warehouses favoring lower temperatures for longer
food storage. As chiller-driven buildings have some heat storage capacity, CL changes do
not immediately affect indoor temperature [23]. Assuming that the heat balance between
the CL and the building is maintained for a short period when the outdoor temperature is
constant, the electric power consumed by the chiller is

Pac =
Tout − Tin

λR1
(1)

where Tin represents the indoor temperature, Tout is the outdoor temperature, and λ is the
energy efficiency ratio. R1 is the equivalent heat resistance. A cold-storage building model
can describe its temperature dynamic characteristics via a mathematical model that gives
the relationship between indoor and outdoor cold and heat sources and room temperature
changes. Its temperature dynamic characteristics can be described by an equivalent thermal
parameter (ETP) model, as shown in the following equation [24]:

T̃n,t = T̃w,t − QL,tR − [T̃w,t − QL,tR − T̃n,t−1]e−∆t/RC (2)

where QL,t is the total cooling load in the duration of t. R and C are the indoor equivalent
thermal resistance and equivalent thermal capacity of cold-storage buildings, respectively.
T̃n,t and T̃W,t are the indoor and outdoor temperatures, respectively. ∆t is the dispatching
duration. Depending on the needs of the user, the indoor temperature is usually limited to
a specific range [25], as shown in the following equation:

Tmin ≤ Tin(t) ≤ Tmax (3)

2.2. Modeling of Diverse Cooling Load’s Economic Contribution

Thermal comfort, which encapsulates individuals’ subjective assessments and sen-
sations regarding their thermal environment, serves as the primary indicator of users’
ambient temperature preferences. To objectively quantify the effect of temperature on user
comfort, this study employs the Predicted Mean Vote (PMV) index [26], as detailed in
Table 1. The mathematical form is given in Equation (4).

IPMV = (0.303e−0.036M + 0.028)
{

M − W − 3.05 × 10−3 × [5733 − 6.99(M − W)− Pa]−
0.42(M − W − 58.15)− 1.7 × 10−5M × (5867 − Pa)− 1.4 × 10−3M(34 − ta)−
3.96 × 10−8 fcl [(tcl + 273)4 − (tr + 273)4]− fclhc(tcl − ta)

} (4)

where M and W represent the human energy metabolic rate and mechanical power, respec-
tively. fcl is the ratio between the clothed body surface area and the naked body surface
area. hc is the convective heat transfer coefficient. Pa is the water vapor pressure of the
air around the human body. ta, tr and tcl represent the air temperature around the human
body, mean radiant temperature, and clothing surface temperature, respectively. This paper
mainly focuses on the cooling capacity, and temperature is the most intuitive perception of
indoor thermal comfort for humans. Therefore, except for the air temperature around the
human body, ta, it is assumed that other parameters are given values.

Table 1. PMV index.

PMV −3 −2 −1 0 1 2 3

Sensation Cold Cool Slightly cool Neutral Slightly warm Warm Hot
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For the chiller-driven warehouses, there are upper and lower limits for the ambient
temperature. For instance, frozen foods need to be stored below −18 ◦C, while refrig-
erated medicines require storage in a cold storage facility between 2 ◦C and 10 ◦C [27].
Additionally, the optimal refrigeration temperature for different frozen products should be
considered. To assess the negative impact caused by deviations from the optimal refrigera-
tion temperature, a Sales Pressure Index (SPI) is established. This index primarily focuses
on the quality and freshness retention of frozen products. A lower SPI indicates that the
actual temperature of the cold storage is closer to the ideal storage temperature, thereby
reducing product quality loss and sales pressure. In this paper, we only focus on the value
of frozen products at the end of the dispatching period, assuming no transfer of frozen
products during this period. The mathematical equation for the SPI at the end of the period
is as follows:

λSPI =

Ni
∑

i=1

NT
∑

t=1
ai
∣∣∣Ti

r,t − Ti
ideal,t

∣∣∣
NT ∗ Tdev

max
(5)

where λSPI represents the comprehensive SPI of the cold storage within the microgrid at
the end moment; the superscript i denotes the type of frozen product; Ti

r,t and Ti
ideal,t are

the actual and ideal storage temperatures, respectively, for type i frozen products at time t;
and αi is the sales weighting coefficient for type i frozen products. Tdev

max is the maximum
permitted temperature bias for frozen goods. The combination of PMV and SPI modeling
gives rise to the definition of CLEC, denoted as ICLEC, which quantifies the economic
impact of the microgrid’s cooling load.

ICLEC =
ωpmv

NT
∑

t=1
at |IPMV,t |

NT×|IPMV,max|
+ ωspiλSPI

1 + ek(|Tout−Topt |)
(6)

In Equation (6), at signifies the temperature sensitivity coefficient of the building’s
cooled occupants at a specific time t. This coefficient varies temporally, peaking during
typical rest periods such as 12:00 to 14:00 and 21:00 to 24:00. The term |IPMV,max| represents
the absolute maximum PMV index value recorded among the cooled individuals within
the premises. NT stands for the predetermined scheduling duration. Additionally, ωpmv
and ωspi are the weighted coefficients assigned to the cooling loads associated with the
building’s occupants and the frozen items in cold storage, respectively, during the park’s
operational hours. Meanwhile, Tout and Topt refer to the current outdoor temperature and
the ideal outdoor temperature, respectively. k serves as an adjustment coefficient that
regulates the sensitivity of the ICLEC index to fluctuations in external temperature, thereby
controlling its responsiveness to temperature variations.

The additional cost for using cooling loads is defined as

CCLEC = FCLEC ICLEC (7)

where FCLEC represents the cost conversion coefficient that comprehensively considers the
loss of human comfort and the sales value of frozen goods. Meanwhile, CCLEC denotes
the additional economic costs incurred due to the inefficient use of cooling load within
the park.

3. Methodology

To alleviate the peak shaving pressure on the grid side and leverage the significant
inertial cooling load present within the park, this study explores the utilization of economic
incentives to motivate the park’s participation in the grid’s peak shaving initiatives. Specif-
ically, the park receives economic compensation for actively engaging in peak shaving,
implemented through a two-stage robust optimization framework that encompasses both
day-ahead and intra-day timeframes.
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During the day-ahead phase, the system computes the minimum operating costs and
the associated peak shaving compensation, leveraging predicted values of photovoltaic
and wind power generation. Moving into the intra-day phase, the framework incorporates
backup resources from the distribution grid to mitigate any uncertainties within predefined
uncertainty sets, thereby ensuring consistent, economical, and reliable system operation.
The objective is to minimize daily operating costs while simultaneously reducing the peak
shaving pressure to its lowest possible level. The model’s objective function is articulated
as follows:

minC0 + max
U

minCS (8)

where C0 and CS denote the optimization objectives for the initial and subsequent stages, re-
spectively, while U signifies the comprehensive uncertainty set, encompassing uncertainties
inherent in photovoltaic and wind power generation.

3.1. Day-Ahead Stage
3.1.1. Objective Function

minC0 = min[
NT

∑
t=1

CG(t) + CCLEC − Cpls)] (9)

In Equation (9), NT represents the time period and CG(t) denotes the power distribution
network’s output cost during period t. Cpls represents the economic compensation received
by the park for participating in peak shaving.

(1) Gas Turbine

The power supply from the distribution network to the park primarily relies on gas
turbines. The generation cost of these turbines can be represented by a linear function,
taking into account the reserve capacity. Therefore, the cost function of the gas turbine is

CG(t) = ∆t
NG

∑
g=1

[FGP0
g,t + CR+

g R+
g,t + CR−

g R−
g,t] (10)

where CG(t) indicates the generation cost of the generator during period t; ∆t is the schedul-
ing step size, set to 1 h. NG stands for the number of generators. FG represents the cost
coefficient of the gas turbine. The superscript 0 designates the day-ahead stage. P0

g,t is the
output power of the g-th generator during period t; CR+

g and CR−
g are the upward and

downward reserve cost coefficients of the generator, respectively; and R+
g,t and R−

g,t are
the upward and downward reserve capacities provided by the generator during period
t. Reserve capacity constraints and output power limitation constraints are taken into
account, as shown in Equations (11)–(14):

R−
min ≤ R−

g,t ≤ R−
max ∀g, t (11)

R+
min ≤ R+

g,t ≤ R+
max ∀g, t (12)

P0
g,t + R+

g,t ≤ Pmax
g ∀g, t (13)

P0
g,t − R−

g,t ≤ Pmin
g ∀g, t (14)

where R+
max and R−

max represent the maximum upward and downward reserve capacities
that the unit can provide when transitioning from the first stage to the second stage.
Meanwhile, R+

min and R−
min denote the minimum upward and downward reserve capacities

required by the system from the unit. Pmax
g and Pmin

g indicate the maximum and minimum
output powers of the gas turbine, which are limited by the rated power and minimum load
rate of the generator set, respectively.
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(2) Evaluation of peak shaving performance

The effectiveness of peak shaving can be measured by the economic compensation Cfls
obtained by reducing the fluctuation in the grid’s net load and the peak–valley difference.
Cfls can be expressed as

C f ls = Fpd∆Ppd + Fvar∆Pvar (15)

∆Ppd = Pbe
pd − Ppd (16)

∆Pvar = ∆Pbe
var − ∆Pvar (17)

where ∆ppd represents the reduction in the peak–valley difference (PVD) of the net load;
Fpd is the compensation coefficient for peak–valley difference; ∆Pvar denotes the decrease
in fluctuation variance of the net load; and Fvar is the compensation coefficient for variance.
The superscript indicates the state of the grid’s net load before the park participates in
peak shaving. Ppd and Pvar are the PVD and variance of the microgrid’s net load after
peak shaving.

Ppd = Pmax − Pmin (18)

In Equation (18), Pmax is the maximum value of the net load during the scheduling
period and Pmin is the minimum value. The absolute PVD Ppd reflects the difference between
the extreme values of the load peaks and valleys.

Pvar =
NT

∑
t=1

(Pl.t −
NT

∑
t=1

Pl.t/NT)

2

/NT (19)

In Equation (19), NT is the total number of samples and Pl.t represents the load value
of the t-th sample. The fluctuation variance Pvar of the net load reflects the degree of
load dispersion. A smaller fluctuation variance of the net load indicates a lower degree
of dispersion.

3.1.2. Constraints

(1) Power-balance constraints

∑
g∈Gb

P0
g,t + ∑

g∈Wb

P0
W,t + ∑

g∈Pb

P0
PV,t + ∑

l=o1_b
P0

l,t = ∑
l=o2_b

P0
l,t + Lb,t ∀b, t (20)

In Equation (20), Gb, Wb, and Pb represent the sets of generators, wind farms, and
photovoltaic plants connected to node b, respectively. The notations l = o1_b and l = o2_b
denote the feeder-injecting and exporting power from node b, respectively. P0

W,t and P0
PV,t

refer to the actual consumption of wind and photovoltaic power at time t. P0
l,t represents

the transmission power of line l at time t. Lb,t signifies the load connected to node b at time
t, which comprises both the base electric load and the load from the chillers.

(2) Cooling load constraints

QAC,t = QL,t (21)

T̃min
in ≤ T̃in,t ≤ T̃max

in (22)

Herein, QAC,t represents the cooling power of the electric chiller in time period t, while
T̃min

in and T̃max
in are the lower and upper limits of the indoor temperature, respectively.

The indoor cooling constraints also include Equation (2), which describes the ETP
model of the thermal inertia of the cooling system.

(3) Chiller output constraints

QAC,t = ηACPAC,t (23)
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Qmin
AC ≤ QAC,t ≤ Qmax

AC (24)

PAC,t represents the electric power consumed by the electric chiller in time period t, ηAC
stands for the coefficient of performance (COP) of the electric chiller, and Qmin

AC /Qmax
AC

represent the lower/upper limits of the output of the electric chiller.

(4) Constraints on power flow

P0
l,t =

θ0
o1_l − θ0

o2_l
xl

∀l, t (25)

−Pmax
l ≤ P0

l,t ≤ Pmax
l ∀l, t (26)

θmin ≤ θ0
b,t ≤ θmax ∀b, t (27)

In the above equation, θ0
o1_l and θ0

o2_l represent the voltage phase angles at the ingress
and egress nodes of feeder l, respectively; xl is the reactance of transmission feeder l; Pmax

l
is the upper limit of power flow in feeder l, with positive and negative values indicating
direction; and θmin and θmax are the minimum and maximum limits of the node voltage
phase angles, respectively.

(5) Constraints of renewable energy outputs

0 ≤ P0
PV,t ≤ A0

PV,t ∀PV, t (28)

0 ≤ P0
W,t ≤ A0

W,t ∀W, t (29)

In the above equation, A0
PV,t and A0

W,t are the predicted outputs of the photovoltaic
and wind power in the time period t.

3.2. Uncertainty Set

In this paper, the uncertainty set in robust optimization consists of uncertainties in
the photovoltaic and wind power output, which can be expressed by Equations (30)–(35).
Here, NT represents the scheduling period of this paper, which is 24 h. Z+

W,t and Z−
W,t

are the status flags for upward and downward fluctuations of wind farm W in period t,
respectively. When the value is 1, it indicates the existence of fluctuations, and when it is 0,
there are no fluctuations. AS

W,t represents the second-stage wind power prediction, which
is composed of the first-stage wind power forecast superimposed with power fluctuations.
ut,pv and ut,w are the robustness indicators of this paper, representing the time uncertainty
limits of photovoltaic and wind power output, respectively.

AS
W,t = A0

W,t + Z+
W,t A+

W,t − Z−
W,t A−

W,t (30)

Z+
W,t + Z−

W,t ≤ 1 ∀W, t (31)

NT

∑
t=1

(Z+
W,t + Z−

W,t) ≤ ut,w (32)

AS
PV,t = A0

PV,t + Z+
PV,t A+

PV,t − Z−
W,t A−

PV,t (33)

Z+
PV,t + Z−

PV,t ≤ 1 ∀PV, t (34)

NT

∑
t=1

(Z+
W,t + Z−

W,t) ≤ ut,pv (35)
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3.3. Intra-Day Stage
3.3.1. Objectives

max
U

minCS = Cawp
NT
∑

t=1

NPV
∑

W=1
(AS

PV,t − PS
PV,t) + Caw

NT
∑

t=1

NW
∑

W=1
(AS

W,t − PS
W,t)

+
NT
∑

t=1

NG
∑

g=1
(CS,R+

g RS+
g,t + CS,R−

g RS−
g,t ) +

NB
∑

b=1
CEDRLS,EDR

b,t

(36)

In the above equation, the superscript S represents the second intra-day stage; Cawp
refers to the economic loss cost coefficient caused by the failure of the actual wind power
output to meet the expected value in the second stage; CS,R+

g and CS,R−
g represent the

upward and downward reserve dispatch rates of the unit in the second stage, respectively;
and RS+

g and RS−
g represent the actual upward and downward reserve dispatch capacities

of the unit in the second stage.

3.3.2. Remaining Constraints in the Intra-Day Stage

(1) Power balance

∑
g∈Gb

PS
g,t + ∑

g∈Wb

PS
W,t + ∑

g∈Pb

P0
P,t + ∑

l=o1_b
PS

l,t = ∑
l=o2_b

PS
l,t + Lb,t − LS,EDR

b,t ∀b, t (37)

where PS
g,t represents the actual output of the gas turbine in the second stage during time

period t, which is composed of the actual output of the generator in the first stage during
time period t and the actual reserve capacity dispatched for the unit during time period t.
This can be expressed as

PS
g,t = P0

g,t + RS+
g,t − RS−

g,t ∀g, t (38)

(2) Feeder power flow constraints

Ps
l,t =

θS
o1_l − θS

o2_l
xl

∀l, t (39)

−Pmax
l ≤ PS

l,t ≤ Pmax
l ∀l, t (40)

θmin ≤ θS
b,t ≤ θmax ∀b, t (41)

(3) Emergency demand response constraint

0 ≤ LS,EDR
b,t ≤ LS,EDR

max ∀b, t (42)

where LS,EDR
max represents the maximum amount of emergency demand response that each

node in the system can participate in during a given time period.

(4) Constraints of renewable energy outputs

0 ≤ PS
PV,t ≤ AS

PV,t ∀PV, t (43)

0 ≤ PS
W,t ≤ AS

W,t ∀W, t (44)
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The above indicates that the actual output of photovoltaic and wind power in the second
stage must not exceed the available forecast value after considering uncertainties.

The disparities between the model proposed in this paper and the existing models in
the literature are outlined as follows:

(1) Modeling differences: While Reference [28] also leverages the cold load for peak
shaving, its scope extends to an integrated energy system including cold, heat, electricity,
and gas. Conversely, the large logistics park examined in this paper solely includes electrical
and cold loads, thereby exhibiting a lower level of energy diversity. Consequently, this
model is more adept at illustrating and assessing the park’s peak shaving capacity in
scenarios where only electrical and cold loads are present.

(2) Indicator differences: Existing models that utilize cold load for peak shaving
typically consider only the costs of electrical and thermal power consumed for cooling. This
paper, however, refines the usage scenarios of cold loads by incorporating the PMV and
SPI, which are amalgamated into the CLEC index for peak shaving control. Additionally,
the emergency demand response is introduced to evaluate and compare the resilience to
uncertainties among different strategies.

(3) Method differences: Reference [29] employs fuzzy chance-constrained program-
ming for optimized peak shaving, adopting a relatively aggressive strategy that diverges
from robust optimization in terms of balancing risks and benefits. Conversely, the model in
this paper establishes a two-stage robust optimization framework that accounts for uncer-
tainties in actual wind and photovoltaic operations, while also considering the presence
of gas turbines (or steam turbines). The results demonstrate that the utilization of robust
optimization enhances the system’s capability to manage uncertain factors, rendering it
advisable to adopt this more conservative strategy when prioritizing grid security.

4. Model Solution

Similar to the Benders decomposition method, the C&CG algorithm decomposes the
original problem into a master problem and a max-min subproblem [30]. It then converts the
bi-level optimization subproblem into a single-level optimization form through the Karush–
Kuhn–Tucker (KKT) conditions or the strong duality theory (SDT). The optimal solution of
the original problem is then obtained by alternately solving the master problem and the
subproblem. The key difference between the two methods lies in the fact that during the
solution process of the C&CG algorithm, the subproblem continuously introduces relevant
variables and constraints into the master problem, resulting in a more compact lower bound
for the original objective function, improved efficiency, and effectively reduced iteration
times. The model constructed from Equations (8)–(44) can be written in the following
compact form:

min
x0∈β0

(c0)
T

x0 + max
z∈U

(bTuw + dTup + min
xS∈βS

(cS)
T

xS) (45)

β0 =
{

Ax0 ≤ α
}

(46)

βS =
{

ExS ≤ Fx0 + Gu0
w + Hu0

p + IZ + j
}

(47)

U =
{

Z
∣∣uw = u0

w + Z+
w ∆U+

w + Z−
w ∆U−

w , Bw(Z+
w + Z−

w ) ≤ ∏w,
up = u0

p + Z+
p ∆U+

p + Z−
p ∆U−

p , Bp(Z+
p + Z−

p ) ≤ ∏p

} (48)

where c0 represents the coefficient column vector corresponding to the objective function (9);
Equation (45) denotes the objective function of the two-stage robust optimization problem;
x0 and xS are the relevant control variables in the first-stage and second-stage objective
functions, respectively; and Equations (46) and (47) represent the constraint conditions for
the first and second stages, including Equations (10)–(29) and Equations (37)–(44), respec-
tively. Among them, A, E, F, G, H, I, and j are the constant column vectors corresponding
to the objective functions and constraint conditions. In Equation (48), U represents the
uncertainty set, where u0

w and u0
p are the available power generation from photovoltaic and
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wind power in the first stage, respectively, while uw and up represent the available wind
power in the second stage for photovoltaic and wind power, respectively.

After decomposition by the C&CG algorithm, the master problem includes the first-
stage model and the worst-case operating constraints identified by the subproblem:

min((c0)
Tx0 + η)

s.t. Ax0 ≤ α

η ≥ bTu∗
w,k + dTu∗

p,k + (cS)
TxS

k
ExS

k ≤ Fx0 + Gu0
w + Hu0

p + IZ∗
k + j

0 ≤ k ≤ m − 1

(49)

where m represents the current iteration number; u∗
w,k, u∗

p,k, and Z∗
k are the worst-case

operating conditions solved by the lower-level problem; and η is the solution of the
subproblem to be optimized. The subproblem is a two-level max-min problem. Through
the SDT, it can be transformed into a max form. The transformed subproblem form in the
m-th iteration is

max(bTuw + dTup + (Fx0
i + Gu0

w + Hu0
p + IZ + j)T

π)

s.t. ETπ ≤ cS

π ≤ 0
Z ∈ U

(50)

where π is the dual variable of the second-stage constraint conditions. Note that there exists
a bilinear term ZTπ in Equation (50), as Z is a 0–1 integer variable, resulting in a product
form of binary and continuous variables. Therefore, the auxiliary variable and related
constraints can be introduced to linearize it using the big M method [31], as shown below:

ω ≥ −MZ
ω ≥ π
ω ≤ π − M(Z − 1)
ω ≤ 0

(51)

where ω is the introduced continuous auxiliary variable, and M is a sufficiently large
constant vector. Thus, the solution process is outlined below:

(1) Initialization: Set the upper bound UB of the objective function under the final
scheduling plan as +∞, the lower bound LB as −∞, the iteration count m as 1, and the
convergence threshold as ε.

(2) Use a set of uncertain variables uw, up, and Z as the initial worst-case scenario.
(3) Solve the master problem (Equation (49)) based on the worst-case scenario. The

objective function of the master problem serves as the new lower bound LB = Km, and the
control variables x0

m of the first stage are obtained simultaneously.
(4) Substitute the solution x0

m of the master problem into Equation (50) to solve the
subproblem, obtaining its objective function Nm and the corresponding uncertain variables
u∗

w,k, u∗
p,k, and Z∗

k under the worst-case scenario. Update the upper bound of the objective

function as UB =
{

UB,
(
C0)Tx0

m + Nm

}
.

(5) If UB − LB ≤ ε, stop the iteration and set the objective function value as UB;
otherwise, continue the iteration, increment m by 1, and return to step (3).

The total methodology presented in this paper is illustrated in Figure 2.
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5. Case Studies

Utilizing the MATLAB R2018b platform and the YALMIP toolbox, this paper estab-
lishes a load model for large-scale logistics parks and optimizes the results by invoking
the Cplex solver. The case study employs the mirrored simulation of the IEEE-6 node
system [32], with the system structure illustrated in Figure 3. The system comprises
three gas turbine units and eleven transmission lines, with the parameters detailed in
Table 2.
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Table 2. System parameters.

Bus-i Pd Qd baseKV Vmax Vmin

1 0 0 230 1.05 1.05
2 0 0 230 1.05 1.05
3 0 0 230 1.07 1.05
4 70 80 230 1.05 0.95
5 80 74 230 1.05 0.95
6 90 79 230 1.05 0.95

5.1. Peak Shaving, Considering the Uncertainties

Data referencing the summer distribution network in southern China are utilized. The
forward iterative search method [33] is employed to select typical days from a large number
of previous scenarios as the predicted wind-power output values within a day. With a 24 h
scheduling period and a 1 h scheduling unit, four scenarios are established:

Scenario 1: Considering only the uncertainty of photovoltaic power, with robustness
indices ut,p and ut,w set to 8 and 0, respectively.

Scenario 2: Taking into account solely the uncertainty of wind power, where the
robustness indices ut,p and ut,w are set at 0 and 8, respectively.

Scenario 3: Accounting for the uncertainties of both photovoltaic and wind power, the
robustness indices ut,p and ut,w are both set to 8. In this scenario, the uncertainty set implies
that the total duration of fluctuations in photovoltaic and wind power does not exceed 8 h
within a scheduling period.

Scenario 4: Also addressing the uncertainties of photovoltaic and wind power, but
with robustness indices ut,p and ut,w both increased to 16.

Table 3 presents the optimization results under various scenarios, as well as the indices
and peak shaving performances of each scenario under their worst operating conditions.
CCLEC reflects the comprehensive satisfaction level of the two types of cooling loads used
within the park, with a lower CCLEC indicating higher satisfaction. C f ls reflects the peak
shaving effect of the park’s participation in the distribution network, with a higher C f ls
indicating better peak shaving performance.

Table 3. Performance under different levels of uncertainties.

Case Total Cost
[USD]

Backup Volume Used
[MW] CCLEC Cfls

EDR
[MW]

1 17,154.3 417 1725.1 5351.6 168.5
2 17,889.5 464 1811.6 4945.8 136.9
3 18,501.8 637 1904.9 4410.7 52.6
4 19,021.1 669 1991.2 4291.4 10

As evident from Table 3, there is minimal difference in various indices between
Scenario 2 and Scenario 1, with the emergency demand response participation in Scenario
2 being 18.7% less than that in Scenario 1. In comparison to Scenarios 1 and 2, Scenarios
3 and 4 exhibit significant reductions in both the reserve capacity utilization and EDR
participation. Figure 4 illustrates the reserve capacity utilization of power generators under
Scenario 3. When compared to Scenario 2, Scenario 3 considers the uncertainties of both
photovoltaic and wind power, resulting in an increase in total system cost and total reserve
capacity. Specifically, the CCLEC cost increased by 5%, while the Cfls compensation decreased
by 10%. However, the reduction in EDR load shedding reached 61%.

Both Scenarios 3 and 4 take into account the uncertainties in the actual operation of
photovoltaic and wind power, with the difference being that Scenario 4 incorporates greater
uncertainty and a more severe worst-case scenario. It can be observed that compared
to Scenario 3, Scenario 4 exhibits minimal differences in total operating cost, with slight
decreases in the CLEC index and peak shaving performance. However, under the worst-
case scenario, the emergency load shedding is reduced to 10 MW. Overall, Scenario 4
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demonstrates highest robustness in microgrid operation, with no emergency load shedding
even under the most severe conditions.
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Figure 4. Reserve capacity utilization under Scenario 3.

For this study, the robustness index under Scenario 4 is selected for peak shaving, and
the iteration count is set to 13 for system scheduling and control. The resulting convergence
criterion is illustrated in Figure 5. In this paper, the fluctuation deviations of wind power
and photovoltaic output are set based on historical maximum fluctuation deviations. By
observing the final data after the convergence of iterations, a comparison curve of the
actual and predicted outputs of wind power and photovoltaic is obtained, as shown in
Figure 6. The results of optimization are presented in Figures 7 and 8. Figure 7 depicts the
effectiveness of utilizing the CLEC index to engage chiller loads in peak shaving under
the final scheme. Figure 8, on the other hand, illustrates the electrical balance histogram
corresponding to this scheme.
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As evident in Figure 7, prior to peak shaving by the logistics park, the net load expe-
riences fluctuations in proximity to peak hours from 10:00 to 15:00, influenced by photo-
voltaic and wind turbine outputs alongside the inherent load curve. Conversely, during 
the early morning hours from 00:00 to 06:00, the net load remains at its nadir. However, 
once engaged in peak shaving activities, the net load curve undergoes smoothing, effec-
tively achieving peak shaving. A comparative analysis of various optimization metrics 
before and after the process is detailed in Table 4. 
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voltaic and wind turbine outputs alongside the inherent load curve. Conversely, during 
the early morning hours from 00:00 to 06:00, the net load remains at its nadir. However, 
once engaged in peak shaving activities, the net load curve undergoes smoothing, effec-
tively achieving peak shaving. A comparative analysis of various optimization metrics 
before and after the process is detailed in Table 4. 
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Figure 8. Electrical balance bar chart in Scenario 4.

As evident in Figure 7, prior to peak shaving by the logistics park, the net load
experiences fluctuations in proximity to peak hours from 10:00 to 15:00, influenced by
photovoltaic and wind turbine outputs alongside the inherent load curve. Conversely,
during the early morning hours from 00:00 to 06:00, the net load remains at its nadir.
However, once engaged in peak shaving activities, the net load curve undergoes smoothing,
effectively achieving peak shaving. A comparative analysis of various optimization metrics
before and after the process is detailed in Table 4.

Table 4. Performance of the optimization.

Indicator Before After Performance [%]

PVD 547.09 296.43 45.82
FV 2890.7 1312.9 54.59

PMV 0.9445 0.5750 39.12
SPI 0.9347 0.6883 26.36

In Table 4, the PVD and Fluctuation Variance (FV) are employed as key indicators
to gauge the net load variations within the park. Ideally, lower values of these indicators
signify reduce peak shaving pressure on the distribution network. Furthermore, the extent
of reduction in PVD and FV following optimization using the methodology outlined in this
study serves as a measure of the park’s effectiveness in participating in peak shaving (note
that PMV and SPI values have been normalized for ease of comparison). Notably, there
is a substantial decrease of 45.82% and 54.59% in PVD and FV, respectively, indicating a
significant alleviation of peak shaving pressure on the distribution network. Additionally,
the implementation of CLEC-based optimization has led to a 39.12% improvement in
human comfort levels and a 26.36% reduction in sales pressure for frozen goods stored in
cold storage facilities.
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5.2. Non-Domination Verification and Comparative Validation of Indicators

While considering the uncertainties in the actual operation of wind and solar power,
this paper also verifies the feasibility of the CLEC index in participating in peak shaving in
deterministic optimization.

With the objectives of minimizing the target value of fluctuation degree and minimiz-
ing the economic loss caused by the inadequate utilization of the cooling load, modeling
is conducted using the YALMIP toolbox in the MATLAB environment. To address the
nonlinear issues in the model, the Cplex toolbox is utilized for solving the problem, in-
putting equality and inequality constraints to obtain the optimal boundary of the Pareto
solution set. As the final decision support, the optimal compromise solution is selected
from the Pareto solution set using the fuzzy membership degree method [34–36]. The
specific expression of the fuzzy membership function is

µ
j
i =


1, Fi ≤ Fmin

i
Fmax

i −Fj
i

Fmax
i −Fmin

i
, Fi ≥ Fmin

i

0, Fi ≥ Fmax
i

(52)

where µ
j
i represents the membership function of the j-th solution for the i-th objective

function Fj
i , and Fmax

i and Fmin
i indicate the maximum and minimum values of the i-th ob-

jective function among all non-dominated solutions, respectively. The optimal compromise
solution set is

µ
j∗
i = maxj=1,··· ,M

{
n

∑
i=1

µ
j
i/

M

∑
j=h

n

∑
i=1

µh
i

}
(53)

where M represents the number of non-dominated solutions and n represents the number
of objective functions. Figure 9 depicts the impact of the CLEC index ICLEC on the indoor
cooling system in deterministic optimization. The colored dashed lines in Figure 9 represent
the fluctuation range of indoor temperatures in cooling buildings under corresponding
CLEC indices. As shown, the smaller the amplitude of the CLEC index, the stricter the
indoor temperature requirements, resulting in a more comfortable environment for humans.

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 23 
 

 

15

20

25

30

te
m

pe
ra

tu
re

 [℃
]

1 5 9 13 17 21 24
Time [h]

ICLEC≤0.5 (constraint)
ICLEC≤1.0 (constraint)
ICLEC≤1.5 (constraint)

−12

−10

−8

N
et

 lo
ad

 [M
W

]

1 5 9 13 17 21 24
Time [h]

ICLEC≤0.5 (constraint)
ICLEC≤1.0 (constraint)
ICLEC≤1.5 (constraint)

 
(a) Indoor temperature under different CLECs (b) Net load under different CLECs 

Figure 9. Impact of CLECs. 

The case study in this section for deterministic planning shares the same content pa-
rameters as the case study described in Section 5.1, except that it does not consider the 
uncertainties in the actual operation of wind and solar power. The Pareto frontier of the 
multi-objective optimization considering both CLEC and net load fluctuation is shown in 
the figure. As can be seen from Figure 10, the obtained Pareto solution set is concentrated 
and continuous on the frontier, which facilitates the selection of the most satisfactory so-
lution. It can also be observed from Figure 10 that load fluctuations and the CLEC index 
are mutually independent, with a higher CLEC index when the fluctuation is small, and 
vice versa. Continuing with the fuzzy membership function method to solve Figure 10, 
the optimal solution with the highest satisfaction value is obtained. Further solving under 
this optimal solution yields the peak shaving results shown in Figure 11. Table 5 compares 
the various optimization indicators under the deterministic optimization scenario with 
those under robust optimization Scenario 4 described in Section 5.1. 

0.2 0.4 0.6 0.8 1.0 1.2
0

0.2

0.4

0.6

0.8

1.0

1.2

Fluctuation degree

CL
EC

 
Figure 10. The Pareto frontiers between CLEC index and power fluctuation degree. 

N
et

 lo
ad

 [M
W

]

0:00 4:00 8:00 12:00 24:0020:0016:00
200

600

400

Time [h]

After
Before

 
Figure 11. Peak shaving performance using a deterministic environment. 

By integrating the data in Table 5 and comparing Figure 11 with Figure 7, it is ob-
served that after considering the uncertainties, ܥ௙௟௦ decreased from 5560.1 to 4291.4, indi-
cating a 22.8% reduction in the park’s contribution to the peak shaving. Simultaneously, 
஼௅ா஼ܥ  increased from 1516.8 to 1991.2, representing a 31% decrease in the satisfaction level 
of the park’s cooling load utilization. However, in Scenario 4, which incorporates robust 
optimization, even under the worst operating conditions, the amount of load shed 
through EDR was only 10 MW, significantly outperforming the 512.9 MW in deterministic 

Figure 9. Impact of CLECs.

The case study in this section for deterministic planning shares the same content
parameters as the case study described in Section 5.1, except that it does not consider
the uncertainties in the actual operation of wind and solar power. The Pareto frontier
of the multi-objective optimization considering both CLEC and net load fluctuation is
shown in the figure. As can be seen from Figure 10, the obtained Pareto solution set is
concentrated and continuous on the frontier, which facilitates the selection of the most
satisfactory solution. It can also be observed from Figure 10 that load fluctuations and the
CLEC index are mutually independent, with a higher CLEC index when the fluctuation is
small, and vice versa. Continuing with the fuzzy membership function method to solve
Figure 10, the optimal solution with the highest satisfaction value is obtained. Further
solving under this optimal solution yields the peak shaving results shown in Figure 11.
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Table 5 compares the various optimization indicators under the deterministic optimization
scenario with those under robust optimization Scenario 4 described in Section 5.1.
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Table 5. Comparison to the deterministic optimization method.

Case Total Cost
[USD]

Reserve Capacity Used
[MW] CCLEC Cfls

EDR
[MW]

The deterministic
optimization

method
15,842.6 0 1516.8 5560.1 512.9

Case 4 19,021.1 669 1991.2 4291.4 10

By integrating the data in Table 5 and comparing Figure 11 with Figure 7, it is observed
that after considering the uncertainties, C f ls decreased from 5560.1 to 4291.4, indicating
a 22.8% reduction in the park’s contribution to the peak shaving. Simultaneously, CCLEC
increased from 1516.8 to 1991.2, representing a 31% decrease in the satisfaction level of the
park’s cooling load utilization. However, in Scenario 4, which incorporates robust optimiza-
tion, even under the worst operating conditions, the amount of load shed through EDR
was only 10 MW, significantly outperforming the 512.9 MW in deterministic optimization.
This indicates that, although a scheduling scheme considering uncertainties may slightly
decrease the satisfaction level of the park’s cooling load utilization and diminish its role in
peak shaving, the park’s operation becomes safer and more robust due to the significant
decrease in load shedding through EDR to 10 MW and the 98.1% reduction in emergency
load shedding.

5.3. Comparison Study: Steam Turbine Replacement for Gas Turbine

Gas turbines are recognized for their swift start-up, flexible adjustment, high ramp
rates, and rapid response capabilities, enabling significant energy output within short
durations. Conversely, steam turbines excel in terms of efficiency, demonstrating higher
energy conversion rates and offering advantages in availability and cost. In this case study,
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the steam turbine is utilized to replace the gas turbine for supplying electrical power to the
park, facilitating a comprehensive comparison between the two technologies.

The steam turbine derives its energy from coal-fired and wood-fired boilers. The
generated high-temperature and high-pressure steam is then harnessed in a waste heat
boiler to drive the steam turbine for power generation. Considering the relatively slower
power response rate of steam turbines in comparison to hourly scheduling, it becomes
imperative to account for both their output power constraints and ramp rate constraints.
When the demand for thermal load utilization is disregarded, the constraints governing
the electrical power output of the steam turbine are outlined as follows:

P0
st,t = Pmin

st It
st + Fh

st,t × ηst,e × ηst,loss (54)

Fh
st,t = Qcoal

t × ηcoal + Qwood
t × ηwood (55)

Pmin
st ≤ P0

st,t ≤ Pmax
st (56)

where P0
st,t represents the output electric power of the steam turbine at time t in the first

stage; Pmin
st and Pmax

st are the minimum and maximum output powers of the steam turbine
during operation; It

st is the operation status indicator of the steam turbine in time period
t; Fh

st,t denotes the amount of steam consumed by the steam turbine in time period t; ηse,e
represents the power generation efficiency of the steam turbine; ηst,loss is the heat loss rate
of the steam turbine; Qcoal

t and Qwood
t are the heat generated by coal-fired and wood-fired

boilers in time period t; and ηcoal and ηwood are the working thermal efficiencies of the
waste heat boilers for coal-fired and wood-fired boilers, respectively. Ramp constraints are
as follows:

−RD
st ≤ P0

st,t+1 − P0
st,t ≤ RU

st , ∀t (57)

where RD
st and RU

st represent the downward and upward ramp rates of the steam turbine,
respectively. Due to the high ramp rate and weak reserve capacity of the steam turbine,
this section’s case study in the second stage considers that when the power supply demand
of the park cannot be met, the park can purchase electricity from the distribution network
to replace the reserve capacity of the gas turbine. To avoid excessive electricity purchases
from the distribution network by the park, which would weaken the peak-shaving effect of
electric refrigeration air conditioning in the park, power constraints are imposed on the
park’s electricity purchases from the distribution network:

0 ≤ Ps
buy,t ≤ Rmax

g,t , ∀t (58)

where Ps
buy,t represents the amount of electricity purchased by the park from the distribution

network in time period t of the second stage; Rmax
g,t is the sum of the upper limits of the

reserve capacities of all gas turbines in time period t under the gas turbine case study model
in this paper. Considering the uncertainties of photovoltaic and wind power simultaneously,
robustness indicators ut,p and ut,w are set to 16 and 16, respectively, for the solution. The
scheduling optimization results are shown in Figures 12 and 13.
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By comparing Figure 12 with Figure 7 and incorporating the optimization data from
various scenarios presented in Table 3, the comparative outcomes between gas turbine and
steam turbine outputs under identical uncertainty and robustness conditions are presented
in Table 6.

Table 6. Comparison results between gas and steam turbines.

Case Total Cost
[USD] CCLEC Cfls

EDR
[MW]

PVD
Enhancement

[%]

FV
Enhancement

[%]

Gas turbine 19,021.1 1991.2 4291.4 10 45.82 54.59
Steam turbine 15,617.5 2076.9 3945.8 191.9 31.08 42.27

As Table 6 indicates, employing a steam turbine for power supply to the park results
in a 17.89% reduction in the total operating cost, and this is the benefit of the steam turbine.
Figure 12 demonstrates that the steam turbine still achieves satisfactory peak clipping
and valley filling effects. However, when compared to scenarios utilizing gas turbines,
the improvement in the PVD metric decreases by 14.74%, and the enhancement in the FV
metric decreases by 12.32%. Furthermore, the CCLEC indicator under the steam turbine
power supply exhibits only a 4% increase compared to the gas turbine power supply,
suggesting a 4% rise in economic losses due to the suboptimal utilization of the park’s
cooling load. It is evident that using a steam turbine for power supply meets the park’s
normal operational requirements and satisfies certain peak shaving demands. However, in
emergency situations, the load shedding amount for demand response in the park reaches
191.9 MW, significantly higher than the 10 MW observed with gas turbines. Thus, while
the steam turbine may slightly reduce the park’s overall operating cost, it compromises the
ability to respond effectively to emergencies.

6. Conclusions

This paper proposes a novel optimization method for large logistics parks to participate
in grid peak shaving in a two-stage robust manner. The conclusions are as follows:

(1) This paper introduces a methodology for constructing the CLEC index, which
comprehensively integrates the cooling comfort level, measured by PMV, of occupants
within the park’s buildings, and the sales pressure, indicated by SPI, of frozen goods stored
in cold storage facilities. Furthermore, it takes into account the peak shaving demands of
the interconnected distribution network. Validation studies confirm that the CLEC index
and the park’s contribution to peak shaving operate independently, affirming the rationality
of this index.

(2) To address the inherent uncertainty in wind and solar power generation within
the park, a two-stage robust optimization approach is employed to assess the effectiveness
of the proposed method across various operational scenarios. The findings reveal that as
the uncertainty surrounding renewable energy output escalates, both the satisfaction level
associated with cooling load utilization and the park’s peak shaving capabilities decline
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by approximately 15.4% and 19.8%, respectively. Nonetheless, the amount of load shed
by EDR measures drops significantly from 168.5 MW to just 10 MW, showcasing the risk
mitigation capabilities of the proposed method.

(3) When juxtaposed against deterministic optimization techniques, the proposed
method, despite increasing the overall system operation costs by approximately 20.06%,
dramatically reduces EDR-related load shedding by 98.1%. This substantial decrease
underscores the method’s superior ability to withstand uncertainties and risks.

(4) One limitation of this paper is its focus solely on the suitable storage temperature
range for frozen products, neglecting the diversity among them. In reality, various frozen
products exhibit unique seasonality and optimal storage methods, the consideration of
which would reveal further nuanced differences in optimization scheduling results. Addi-
tionally, the use of a single indicator (PMV) to assess personnel comfort within the park,
without accounting for individual variations in the perception of “comfort,” constitutes
another limitation. These aspects require refinement in future research.
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