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Abstract: The accurate evaluation of green innovation efficiency is a critical prerequisite for enterprises
to achieve sustainable development goals and improve environmental performance and economic
efficiency. This paper evaluates the green innovation efficiency of 72 new-energy enterprises by
using a hybrid method of Data Envelopment Analysis (DEA) and a random forest model. The
non-parametric DEA model is combined with the parametric SFA model to analyze the real green
innovation efficiency on the basis of removing environmental factors and random factors. Then, the
random forest model based on a nonlinear relationship is used to evaluate factors impacting green
innovation efficiency. This paper proposes a comprehensive evaluation method designed to assess
the green innovation efficiency of new-energy enterprises. By applying this method, companies can
gain a comprehensive understanding of the current performance in green innovation, facilitating
informed decision-making and accelerating sustainable development.

Keywords: three-stage DEA model; random forest method; green innovation efficiency; new-
energy companies

1. Introduction

With the increasing global emphasis on sustainable development, corporate green
innovation has emerged as a crucial driver for economic growth and environmental pro-
tection. However, accurately assessing the efficiency of corporate green innovation faces
numerous challenges, among which the issue of data asymmetry is particularly prominent.
The diversity and difficulty in quantifying the input–output indicators of green innovation,
the nonlinearity of the innovation process, as well as the complexity of firm heterogeneity
and external environments have all led to difficulties in data collection, processing, and
analysis for measuring green innovation efficiency.

The asymmetry of corporate data stems from various factors such as different business
areas, market competition, economic cycle fluctuations, differences in management levels,
and external environments, resulting in unbalanced performance across various indicators.
This complexity reflects the diversity and challenges of the business environment, necessi-
tating a comprehensive consideration to better understand and address the asymmetry of
corporate data, thereby supporting effective decision making and management. In dealing
with asymmetric data, the DEA (Data Envelopment Analysis) model exhibits significant
advantages, making it a powerful tool for evaluating efficiency. DEA model is applicable
to situations with multiple inputs and outputs. As a non-parametric method, it does not
require assumptions about probability distribution of data or the form of production func-
tions, thus being more suitable for handling various types of data, including asymmetric
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data. DEA assesses the performance level of units by comparing their relative efficiency
rather than relying on a specific mathematical model. This allows DEA to effectively handle
asymmetric data and provide judgments of relative efficiency, making it more flexible and
widely applicable in practical settings.

DEA is a non-parametric efficiency evaluation method used to assess the efficiency
of decision-making units. DEA was first proposed by Charnes, Cooper, and Rhodes in
1978 [1], leading to the CCR model. Nowadays, this model has been used in numerous
applications [2–4]. Subsequently, Banker, Charnes, and Cooper (1984) further expanded on
the DEA method, introducing the BCC model [5], which addressed the issue of constant
returns to scale present in CCR model. However, Fried et al. pointed out that [6] enter-
prises’ inefficiency is not only impacted by internal mismanagement but also by external
environments and random errors, thus proposing a three-stage DEA model. Nevertheless,
traditional three-stage DEA models also have shortcomings. The efficiency measurement
in the first stage of traditional three-stage DEA model operates under the premise of equal
contraction proportions for every input [7]. In reality, however, different inputs exhibit
different elasticities and do not decrease proportionally, ignoring the slackness in resource
utilization. This can lead to biases in evaluation results and the failure to fully reflect on
decision-making units’ efficiency level. A model based on slack variables, SBM model
introduced by Tone [8], can effectively address this deficiency.

According to the above analysis, this article embeds SBM model into three-stage DEA
model, adopting a non-parametric and non-oriented SBM model in the first and third
stages of the three-stage DEA model. By considering slackness in resource utilization, it
evaluates the efficiency level of DMU more comprehensively and provides more accurate
evaluation results. In practical applications, many regression problems exhibit nonlinear
relationships, and traditional linear regression models often have difficulties effectively
capturing the complex patterns in data. As a powerful ensemble learning method, random
forests demonstrate significant advantages in handling nonlinear regression problems due
to their non-parametric, highly flexible, and robust nature. This article will delve into the
application of random forests in studying the factors impacting green innovation efficiency,
aiming to provide decision makers with more detailed and comprehensive information
that can aid in taking appropriate actions.

This paper’s remaining sections are arranged as follows: A summary of previous
research on green innovation efficiency is given in Section 2. The formulas for three-stage
DEA model and random forest model utilized in this article are presented in Section 3. In
Section 4, green innovation efficiency measured by three-stage DEA model is examined and
elements that influence green innovation are discussed. The study findings are outlined in
Section 5, along with the paper’s limitations and future directions.

2. Literature Review

The rapid evolution of the modern economy has brought environmental concerns
to the forefront, prompting a heightened societal focus on ecological issues. Green in-
novation has emerged as a critical research area attracting growing scholarly attention.
Green innovation, rooted in the idea of “sustainable development,” was initially used in
the 1980 “World Conservation Strategy Report.” [9]. Subsequently, literature related to
sustainable innovation [10,11], eco-innovation [12,13], green innovation [14–17], and envi-
ronmental innovation [18] has gradually increased. Scholars hold different views on the
understanding of green innovation. Chen et al. [19] defined “green innovation” as advance-
ments in hardware or software that contribute to eco-friendly products or processes. These
innovations encompass areas such as sustainable product design, and environmentally
responsible corporate management practices. Wu et al. [20] believed that green innovation
is a product of the combination of innovation theory and ecological views, which aims to
maximize economic benefits while obtaining new knowledge and technologies to reduce
environmental pollution. Rennings [21] argued that green innovation has a “double ex-
ternality,” with spillover effects both in the production stage and in the diffusion stage,
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resulting in a certain degree of reduction in internal costs and external environmental costs.
Bernauer et al. [22] discussed the concept of green innovation as being within the same
category as environmental innovation and eco-innovation. Zhang [23] and Schiederig [14],
among other scholars, conducted detailed literature reviews and comparative analyses of
definitions, revealing that green innovation, eco-innovation, environmental innovation,
and sustainable innovation share a high degree of consistency in their core concerns and
goals. Disregarding the subtle differences in their definitions, they are often interchange-
ably used or even equated in many literature sources. Currently, there are three major
interpretations of green innovation definition in academia: equating green innovation
with innovations that contribute positively to the ecological environment, equating green
innovation with innovations that introduce environmental performance, and equating
green innovation with environmental innovation or the optimization and innovation of
environmental performance [23].

When evaluating green innovation efficiency and its influencing factors, numerous
scholars have adopted diverse strategies. Most input–output indicators are constructed
using Stochastic Frontier Analysis (SFA) [24,25], DEA [26–29], and related methods. Some
scholars have also comprehensively assessed green innovation efficiency through spatial
econometrics [30] and evaluated it using the entropy method [31]. Xiao et al. [32] used an
improved SFA model to conduct a thorough assessment of green innovation efficiency in
Yangtze River Economic Belt. However, SFA model application requires the presetting of a
production function, which, to a certain extent, increases the subjectivity of the evaluation.
In contrast, DEA model operates without requiring assumptions regarding the production
function form and can make evaluation results more objective and accurate. Thus, DEA
has become the mainstream method for scholars to study green innovation efficiency. The
following Table 1 presents relevant studies that use the DEA model to measure green
innovation efficiency.

Table 1. Relevant DEA studies on green innovation efficiency.

Author Research Method Research Object

Wang and Ren (2022) [33] Dynamic Network SBM
Model 30 provinces in China

Li et al. (2023) [34] Slack-Based Measure (SBM)
Model Construction enterprises

Xu et al. (2023) [35] Bounded Concave Cone (BCC)
Model 42 listed textile enterprises

Xiao et al. (2021) [36] Two-Stage Network DEA
Model 84 resource-based cities

Xu et al. (2022) [37] Super-efficiency SBM Model 79 cities

Wang et al. (2022) [38]
Epsilon-Based

Measure–Geometric
Mean (EBM-GML) Model

2177 listed companies

Regarding the evaluation index system, the existing literature primarily constructs
such a system from the following two aspects: input and output. This encompasses the
following three dimensions: green innovation efficiency input variable, desirable output,
and undesirable output, as illustrated in Table 2. Tian et al. [39] divided the input–output
indicators into the following two stages: scientific and technological research and develop-
ment (R&D) and achievement transformation. For R&D stage, the input–output indicators
include the number of R&D personnel, whereas for achievement transformation stage,
indicators encompass technology introduction and transformation expenditure, sales rev-
enue of new products, etc. Zhang et al. [40] categorized inputs into human, material, and
financial resources, while the selected innovation output indicators are broadly divided
into the following two types: scientific and technological outcomes and economic benefits.
Ma and Zhu [41] distinguished innovation inputs into R&D investment and production
investment. R&D investment is represented by R&D funding and personnel, while pro-
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duction investment is expressed by employee compensation. For output indicators, they
selected the number of patent applications and intangible assets.

Table 2. Overview of research on green innovation efficiency indicator systems.

Grade I GradeII Source of Literature

Input variable

Number of R&D personnel Tian et al. (2023) [39]
R&D expenditure Wang et al. (2022) [42]

Expenditure on technology
import Kang (2017) [43]

Expenditure on new product
development Wu (2020) [44]

Employee compensation Ma et al. (2023) [41]

Desirable output

Turnover of technology
market Tao and Dai (2018) [45]

Sales revenue of new products Tian et al. (2023) [46]
Number of patent applications Lv and Qiao (2019) [47]

Undesirablele output
Industrial wastewater and

waste gas emissions Li et al. (2020) [48]

Solid waste discharge Wang and Wang (2023) [49]

When examining factors impacting green innovation efficiency, scholars have primarily
focused on two levels: macro-environment and micro-level factors. The macro-environment
encompasses the institutional landscape [50–52], market industry [34,53], and related in-
ternational trade relations [54]. At the micro-level, internal factors related to enterprises
mainly include the level of awareness of enterprise personnel [55], enterprise costs [56,57],
and social responsibility [58,59]. It is observable that empirical research on green inno-
vation efficiency differs depending on research questions. Hong et al. [60] analyzed the
influencing factors of innovation efficiency in China’s pharmaceutical manufacturing in-
dustry and found that two external macro-factors, namely, market competition intensity
and government policy support, as well as the internal micro-factor of the enterprise size,
are essential for achieving higher levels of innovation efficiency. Wenbo [61] studied the
impact of production factors, economic benefits, internal management, and the social
environment on green innovation. Kang et al. [62] examined whether and how environ-
mental regulations drive green innovation, aiming to explore the influencing mechanism
of green innovation efficiency. Yalabik [63] found that factors such as market competition,
consumption, and environmental protection pressure can significantly affect firms’ green
technology innovation efficiency. Gong et al. [64] provided a detailed analysis of how
factors such as the agglomeration effect of outward foreign direct investment influence
industrial green innovation efficiency. Kuang et al. [65] tested the influencing mechanism
of green innovation efficiency from the perspective of the shadow economy, exploring
potential pathways to enhance green innovation efficiency.

Regarding research methods for influencing factors, the random forest model, as an
integrated learning method, exhibits good robustness and generalization capabilities, and
is suitable for various types of datasets and problems. In 1995, Ho [66] first proposed the
concept of random decision forests. He suggested creating a classifier based on decision
trees that contained an infinite number of decision trees, which were combined in a com-
plementary or weighted manner to construct a new classifier, namely, the random decision
forest. Random decision forests address the issue of overfitting that can occur with single
decision trees. In 2001, Breiman [67] integrated bagging algorithms, random subspace
algorithms, and classification and regression trees to propose the traditional random forest.
Subsequently, the traditional random forest has been widely applied in numerous fields
such as ecology [68–70], medicine [71–73], management [74,75], and economics [76,77],
and has achieved good results in solving routine classification or regression problems. Xu
et al. [78] applied the random forest to observe data from gastric cancer patients to predict
their postoperative survival status and assist doctors in assessing treatment decisions. Xie
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et al. [75] integrated sampling techniques and cost penalties into the random forest and
used bank customer data as an example to predict customer churn. Susana et al. [79]
applied the random forest method to unbalanced samples to enable public institutions
to direct public investment subsidies to identified groups of enterprises based on this
identification.

The traditional DEA model has limitations in efficiency evaluation, which does not
consider the impact of environmental variables and random factors on the green innovation
efficiency, resulting in bias in efficiency evaluation results. The measurement of green
innovation efficiency mainly stays at the macro-level, such as the province and industry,
and there are few studies on the enterprise level. As an important force to promote green
low-carbon transformation and achieve sustainable development, research on measuring
green innovation efficiency in new-energy companies using DEA model remains limited.
The research on the influencing factors of green innovation efficiency is mainly based on
linear regression models, which cannot effectively analyze nonlinear relationships. There is
a gap in the research on the nonlinear influence relationship, and it is difficult to accurately
evaluate the factors affecting the green innovation efficiency.

Against this backdrop, this paper establishes a research framework that combines a
three-stage DEA model with an SBM model, excluding environmental and random factors,
to provide a accurate measure of green innovation efficiency. Considering the advantages
of random forest model in exploring influencing factors, this paper selects the random
forest model to analyze the influencing factors of green innovation efficiency. The main
contributions of this paper are as follows:

Firstly, by embedding SBM model into the three-stage DEA, this paper comprehen-
sively evaluates the efficiency level of DMUs by considering the slackness of resource
utilization, providing more accurate evaluation results. By combining the parametric SFA
model with the non-parametric DEA model, this paper fully utilizes their respective ad-
vantages to better handle asymmetric data, thereby more comprehensively assessing the
efficiency level of units and proposing improvement suggestions.

Secondly, unlike other linear regression methods, the random forest model adopted in
this paper can not only provide rankings of influencing factors but can also visually demon-
strate the nonlinear characteristics of influencing factors on green innovation efficiency by
plotting partial dependence plots. This facilitates a deeper understanding of how various
factors influence green innovation efficiency.

3. Research Methodology
3.1. The Three-Stage DEA Model

The three-stage DEA model framework for analyzing green innovation efficiency is
illustrated in Figure 1.
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3.1.1. The First Stage: SBM Model

To assess efficiency from both input and output perspectives, this paper utilizes the
non-oriented SBM model. The SBM model formula is as follows:

min ρ =
1− 1

m ∑m
i=1

s−i
xik

1+ 1
s1+s2

(
∑

s1
r=1

sg
r

yg
rk
+∑

s2
r=1

sb
r

yb
rk

)

s.t.


xk = Xλ + s−

yg
k = Ygλ − sg

yb
k = Ybλ + sb

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

The SBM model incorporates slack variables to account for differences in input and
output levels. s− ∈ Rm represents slack in input resources, sb ∈ Rs2 reflects slack in
undesirable outputs, and sg represents slack in desirable outputs. The model considers
m input variables, s1 desirable output variables, and s2 non-desirable output variables.(

xk, yg
k , yb

k

)
represents the input, desirable output, and non-desirable output values for the

k-th decision-making unit. The collective data for all decision-making units is represented
by
(

X, Yg, Yb
)

. The weights assigned to each of the n decision-making units are represented
by λ ∈ Rn.

The efficiency value of the evaluated DMU is denoted by ρ. Technical efficiency (TE) is
determined under the assumption of constant returns to scale (CRS), while pure technical
efficiency (PTE) is calculated assuming variable returns to scale (VRS). Scale efficiency (SE)
is calculated as the ratio of TE to PTE (SE = TE/PTE).

3.1.2. The Second Stage: SFA Model

In the second stage, this paper decomposes input slack variables into components
representing environmental factors, random factors, and managerial inefficiency. By ex-
cluding the environmental and random factors, this paper obtains the input redundancy
attributable solely to managerial inefficiency. This can be expressed as:

Snk = f n(Zk; βn) + Vnk + Unk
n = 1, 2, . . . , N; k = n = 1, 2, . . . , K

In this expression, Snk denotes the slack variable associated with the n-th input of
the k-th decision-making unit. The influence of environmental factors is denoted by
f n(Zk; βn), typically calculated as f n(Zk; βn) = Zkβn, where Zk represents observed envi-
ronmental variables and βn is the corresponding parameter vector. The mixed error term
Vnk + Unk incorporates both random factors Vnk ∈ N

(
0, σ2

vn
)

and managerial inefficiency
Unk ∈ N

(
µu, σ2

un
)
.

Frontier 4.1 software is used to perform SFA regression analysis, yielding estimates for
βn, σ2, and the parameter γ. These estimates are then used to calculate σvn and σun using
the formulas below:

σ2 = σ2
vn + σ2

un, γ =
σ2

vn
σ2

vn + σ2
un

The parameter γ quantifies the proportion of variance attributed to managerial in-
efficiency within the total variance. When γ is close to 1, managerial inefficiency has a
more significant impact. Conversely, when γ is close to 0, random factors have a greater
influence.

The managerial inefficiency term can be isolated using the following formula:

E[Unk|Vnk + Unk] =
σλ

1 + λ2

 φ
(

ελ
σ

)
Φ
(

ελ
σ

) +
ελ

σ
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The mixed error term is represented by ε = Vnk + Unk, with λ = σun/σvn. φ denotes
the probability density function and Φ denotes the distribution function of the standard
normal distribution.

After isolating the managerial inefficiency term U, the random factor term V can be
calculated using the following formula:

E[Vnk|Vnk + Unk]= Snk − f n(Zk; βn)− E[Unk|Vnk + Unk]

Next, the input variables are adjusted using the SFA model to derive new input values,
which are calculated as follows:

X∗
nk = Xnk + [max(Zkβn)− Zkβn] + [max(Vnk)− Vnk]

n = 1, 2, . . . , N; k = n = 1, 2, . . . , K

In this formula, X∗
nk represents the adjusted input, while Xnk denotes the original input.

The term [max(Zkβn)− Zkβn] accounts for the adjustment to the influence of environmental
factors. The term [max(Vnk)− Vnk] accounts for the adjustment of random factors influence,
ensuring that all decision-making units are evaluated under equivalent conditions.

3.1.3. The Third Stage: The SBM Model after Adjusting the Input Variables

By reintroducing adjusted inputs X∗
nk and original outputs into the SBM model, this

paper can re-evaluate efficiency. This approach removes the influence of environmental and
random factors, resulting in a more accurate representation of green innovation efficiency.

3.2. Random Forest Model

In this paper, a random forest model is used to analyze the factors influencing new-
energy companies’ green innovation efficiency. The random forest model is generally
implemented through the following steps:

The bootstrap method is used to extract subsamples with sample size n from
the original data, and m feature variables are determined to form the dataset D =
{xi1, xi2, xi3, . . . , xin, yi}(i ∈ [1, m]).

A regression tree is constructed for each subsample, denoting the regression tree
as tj(x).

The results of all regression trees are summarized to obtain the optimal estimate,
t(x) = ∑j tj(x).

Compared with the traditional multiple regression analysis, the advantages of the
random forest are very obvious. Not only does it not need to set the function form, it
can also rank the importance of the independent variables and further give the partial
correlation graph.

4. Research Results
4.1. Variable Selection and Data Sources

Input variables are chosen based on three aspects: labor, capital, and energy. Labor
input: Selecting the number of R&D personnel as an indicator can directly reflect the
human resource investment of enterprises in green innovation. Capital investment: R&D
expenditure, as a measure of capital investment, reflects the financial support of enterprises
in green technology research and development. Energy input: The comprehensive energy
consumption can reflect the energy consumption level of the enterprise in the production
and operation process, and is an important indicator to measure the energy utilization
efficiency and green development level. The selection of these three indicators takes
into account the characteristics of green innovation and can better reflect the enterprises’
investment in green innovation.

Output variables are categorized as either desirable or undesirable. Desirable outputs
are selected based on technological and economic factors. Technological output is mea-
sured by the number of green patent applications. These patents represent innovations in
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environmentally friendly technologies, products, or solutions, reflecting a company’s com-
mitment to sustainable development. Main business income serves as the economic output
variable, representing the sales revenue generated through core operations. Greenhouse
gas emissions are chosen as the undesirable output variable, reflecting the new-energy
companies’ contribution to advancing the dual carbon target.

A detailed description of input and output variables, environmental factors, and data
sources employed in the study is presented in Table 3.

Table 3. Green innovation efficiency index system.

Primary Index Secondary Index Three-Level Index Data Source

Input variable
Labor input The number of R&D

personnel Annual report

Capital input R&D expenditure Annual report

Energy input Comprehensive
energy consumption

ESG Report/Social
responsibility reports

Desirable output
Technological output The number of green

patent applications CNRDS database

Economic output The main business
income Annual report

Undesirable output Environmental
pollution

Greenhouse gas
emissions

ESG Report/Social
responsibility reports

Environmental factor

Environmental
regulation intensity

Investment in
industrial pollution

control

Statistical yearbook

Technological market
environment

Technology market
turnover

Educational
environment

Local education
expenditure

Economic
development level Per capita GDP

Regional openness Foreign investment

Data Source Description: This paper analyzes A-share listed companies in the new-
energy sector. Companies with ST or *ST designations, those without disclosed ESG or
social responsibility reports, and those with missing indicators are excluded. This resulted
in a sample of 72 new-energy listed companies. Data for 2022 is collected from company
annual reports, ESG reports, CNRDS database, and statistical yearbooks.

4.2. Three-Stage DEA Model for Green Innovation Efficiency Analysis
4.2.1. Green Innovation Efficiency Analysis in the First Stage

As seen in Figure 2 and Table 4, the first stage green innovation efficiency of 72 new-
energy enterprises in 2022 was determined using the MAXDEA software, which was based
on SBM model. Environmental and random factors are not excluded in this calculation.

Table 4. Green innovation efficiency in the first stage.

Efficiency
Interval

Technical Efficiency Pure Technical Efficiency Scale Efficiency

Quantity Proportion Quantity Proportion Quantity Proportion

<0.2 40 55.56% 31 43.06% 4 5.56%
[0.2,0.5) 17 23.61% 17 23.61% 11 15.28%
[0.5,0.8) 1 1.39% 0 0.00% 27 37.50%
[0.8,1) 0 0.00% 0 0.00% 16 22.22%

1 14 19.44% 24 33.33% 14 19.44%
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Figure 2. The efficiency mean of the first stage.

Figure 2 indicates a relatively low mean technical efficiency of 0.309 for the 72 new-
energy companies. Pure technical efficiency, also averages 0.445, suggesting a low level
for technology and management within the sample. Scale efficiency, representing the
rationality of company size and its influence on efficiency, averages 0.702. This suggests
that scale efficiency is higher than pure technical efficiency within the sample.

According to Table 4, both technical efficiency and pure technical efficiency have a
large number of enterprises in the range of less than 0.5, followed by a large number of
enterprises with an efficiency value of 1, and a small number of enterprises in the range
of 0.5–1. The scale efficiency is the largest number of enterprises in the range of 0.5–0.8,
accounting for the largest proportion. It shows that different new-energy enterprises have
a large gap in green innovation efficiency.

DEA is a non-parametric efficiency evaluation method which evaluates the relative
efficiency of each DMU by constructing the efficiency front of the DMU. DEA does not need
to set the weight of the input–output index in advance, thereby avoiding the influence of
subjective factors on the weight setting. The relative importance of each input and output
index can be indirectly reflected through the analysis of slack variables.

Table 5 reveals that input improvement values are negative across labor, capital, and
energy inputs, indicating excessive resource utilization. Companies appear to use more
resources than necessary to achieve outputs. While economic output is relatively close
to the target value, suggesting a focus on economic benefits, there’s a significant gap
between target and actual values for technical output. DMUs have a large improvement
in the output index of green patent applications, which indicates that the output has a
great impact on the efficiency of DMUs. Through the analysis of the slack variables, the
improvement direction for efficiency is provided.

Table 5. Slack variable analysis in the first stage.

Variable Original Value Slack Value Projection Value Improvement Ratio

The number of R&D
personnel 3684.833 −997.660 2687.173 −27.07%

R&D expenditure 217,692.420 −63,610.829 154,081.591 −29.22%
Comprehensive energy

consumption 1,285,105.964 −261,737.918 1,023,368.046 −20.37%

The number of green
patent applications 47.708 39.570 87.279 82.94%

The main business
income 5,614,479.023 22,079.575 5,636,558.599 0.39%

Greenhouse gas
emissions 4,432,341.918 −902,530.917 3,529,811.001 −20.36%
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4.2.2. SFA Regression Analysis in the Second Stage

The input slack variables from the first stage are used as dependent variables in a
regression analysis and environmental factors are as independent variables. The SFA
regression analysis, conducted using Frontier 4.1, is summarized in Table 6.

Table 6. Regression results of the SFA model.

Variable.
Slack Variable of the

Number of R&D
Personnel

Slack Variable of
R&D Expenditure

Slack Variable of
Comprehensive

Energy Consumption

Constant term −1770.583 *** −7814.858 *** 128073.570 ***
Environmental

regulation intensity −0.000062 0.015838 0.387586 ***

Technological market
environment −0.000009 0.000077 0.002989 ***

Educational
environment 0.219 2.936 *** −117.948 ***

Economic
development level 0.011 * 0.027 −1.163 ***

Regional openness −0.009 −1.173 *** −1.023
Sigma-squared 14687403 38875426000 1064423000000

Gamma 1 1 1
LR test of the

one-sided error 63.28 *** 65.71 *** 66.27 ***

Note: *** and * represent the significance levels of 1% and 10%, respectively.

Table 6 shows that the one-sided error LR test is significant at the 1% level, rejecting
the hypothesis of no managerial inefficiency. This implies that the slack variables of the
three inputs are impacted by management inefficiency. The gamma value of 1 indicates
that managerial inefficiency dominates, while random factors have a limited impact on
green innovation efficiency. These findings support the use of the SFA model. Although
the regression coefficients of the environmental variables on the slacks of the individual
input variables are not significant, the LR one-sided error test passes at the 1% significance
level. Therefore, the adjustment of the input variables still needs to take into account all
five of the environmental variables mentioned above.

Environmental regulation intensity is positively correlated with comprehensive energy
consumption slack variable at the 1% significance level. The increased intensity of envi-
ronmental regulations may require companies to adjust or improve production processes,
which may lead to some energy consumption increases.

A positive correlation is observed between technological market environment and the
slack variable for comprehensive energy consumption at the 1% significance level. The im-
provement of the technological market environment may encourage new-energy companies
to undergo technological updates and transformations, accompanied by a certain increase
in energy consumption. However, as technology gradually matures, companies are ex-
pected to ultimately achieve a reduction in energy consumption through new technologies
and more efficient production methods.

At the 1% level of significance, the educational environment is positively correlated
with the slack variable of R&D expenditure, but negatively correlated with the slack
variable of comprehensive energy consumption. Increased competition in technological
innovation, often driven by a higher local education level, may prompt companies to boost
R&D expenditure to remain competitive. The increase in local educational expenditure may
offer new energy companies better access to talent and technological support, facilitating
the transition from high-energy-consumption stages to more efficient and sustainable
production modes.

Economic development level exhibits a positive correlation (p < 0.10) with R&D per-
sonnel slack variable and a negative correlation (p < 0.01) with comprehensive energy
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consumption slack variable. This suggests that as regional economies grow, more in-
vestment opportunities and innovative projects arise, leading to increased demand for
R&D personnel. With the gradual advancement of technological progress, production
optimization, and economic structural adjustments, a trend towards a reduction in energy
consumption may be observed.

Regional openness exhibits a negative correlation (p < 0.01) with R&D expenditure
slack variable. This suggests that open regions, with the favorable innovation ecosystems,
facilitate more efficient utilization of R&D funds by fostering external cooperation, bringing
in advanced technology, innovative management practices, and R&D resources.

4.2.3. Green Innovation Efficiency Analysis in the Third Stage

The SBM model was used to re-evaluate the green innovation efficiency of new-energy
companies, using adjusted input variables in place of the originals while keeping output
variables constant. This re-evaluation, illustrated in Figure 3 and Table 7, provides a more
accurate assessment of efficiency by eliminating the influence of environmental and random
factors.
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Table 7. Green innovation efficiency in the third stage.

Efficiency
Interval

Technical Efficiency Pure Technical Efficiency Scale Efficiency

Quantity Proportion Quantity Proportion Quantity Proportion

<0.2 37 51.39% 31 43.06% 4 5.56%
[0.2,0.5) 20 27.78% 17 23.61% 7 9.72%
[0.5,0.8) 1 1.39% 0 0.00% 16 22.22%
[0.8,1) 0 0.00% 0 0.00% 31 43.06%

1 14 19.44% 24 33.33% 14 19.44%

A comparison of the green innovation efficiencies in the first and third stages reveals
that all efficiency types have improved after removing environmental and random factors.
The average technical efficiency increased from 0.309 to 0.337, the average pure technical
efficiency increased from 0.445 to 0.454, and the average scale efficiency increased from
0.702 to 0.796. This suggests that the initial assessment of green innovation efficiency was
underestimated due to environmental impacts, highlighting the constraints imposed on
new-energy companies by external conditions. While improvements were observed after
adjustment, significant room for further improvement remains.

In the third stage, the number of companies achieving DEA effectiveness remains at 14.
Technical efficiency and pure technical efficiency are still the largest number of enterprises
in the range of less than 0.5, accounting for more than half, while scale efficiency is the
largest number of enterprises in the range of 0.8–1. This shows that the level of technical
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efficiency and pure technical efficiency of most enterprises is low, but the level of scale
efficiency is high, so the emphasis should be placed on the improvement of the enterprise
technology and management level.

As can be seen from Table 8, the improvements in slack variables in the third stage
are similar to those in the first stage, where both input variables have redundant phenom-
ena, the number of green patent applications in the output variable has a large room for
improvement, and economic output closely approaches the target value.

Table 8. Slack variable analysis in the third stage.

Variable Original Value Slack Value Projection Value Improvement
Ratio

The number of
R&D personnel 4160.857 −1036.586 3124.272 −24.91%

R&D
expenditure 225,664.976 −63951.125 161,713.851 −28.34%

Comprehensive
energy

consumption
1,425,256.872 −297,192.427 1,128,064.446 −20.85%

The number of
green patent
applications

47.708 44.970 92.679 94.26%

The main
business income 5,614,479.023 131,797.358 5,746,276.382 2.35%

Greenhouse gas
emissions 4,432,341.918 −709,067.834 3,723,274.084 −16.00%

Analyzing input redundancy and output insufficiency allows for an evaluation of
resource utilization efficiency and provides insights into improving both input and out-
put inefficiencies. The insights can empower managers to make informed decisions that
promote rational resource allocation, improve green innovation efficiency, and drive sus-
tainable development.

After the removal of environmental factors and random factors, 72 new-energy com-
panies are classified into four groups according to their pure technical efficiency and scale
efficiency levels. The scatter points on the graph represent sample companies. Taking scale
efficiency as the Y-axis and pure technical efficiency as the X-axis, and bounded by the
mean value (0.454, 0.796), it is divided into the following four types: high-tech high-scale,
high-tech low-scale, low-tech high-scale, and low-tech low-scale, as shown in Figure 4.
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High-tech High-scale: There are 14 enterprises, accounting for 19.44% of the total, and
PTE and SE of these 14 enterprises are one, reaching the forefront of efficiency. Although a
business has reached the DEA efficiency frontier, it can still achieve further development
by looking for new growth opportunities, maintaining sensitivity to competitive dynamics,
and adapting strategies to capitalize on new opportunities.

High-tech Low-scale: Including 11 enterprises, accounting for 15.28% of the total, the
PTE is at a high level, but the SE is low. Therefore, these enterprises should focus on scale
efficiency, consider multiple factors such as strategy, market demand, capital and resources,
and risk assessment, and reasonably control the scale of enterprises and provide efficient
products and services at an appropriate scale.

Low-tech High-scale: Including 32 enterprises, accounting for 44.44% of the total,
accounting for the largest proportion, its PTE is low, while the SE is at a higher level. There-
fore, these enterprises should focus on pure technical efficiency, and improve the level of
enterprise technology, management, and resource utilization by rationally allocating R&D
resources, optimizing management processes, and improving the professional competence
and innovation consciousness of employees.

Low-tech Low-scale: Including 15 enterprises, accounting for 20.83% of the total, their
PTE and SE are at a low level. These enterprises should not only focus on enhancing
technological capabilities, management practices, and resource utilization but also consider
the optimal size for operations.

4.3. Analysis of Influencing Factors of Green Innovation Efficiency Based on Random Forest Model

This paper analyzes the importance of factors influencing new-energy companies’
green innovation efficiency based on the random forest model. To further enhance the
interpretability of the random forest model, the influencing factors are analyzed based
on partial dependence plots. Traditional regression analysis methods only represent the
influence of independent variables on dependent variables in terms of average trends
through regression coefficients, but the random forest model can intricately demonstrate
the effects of independent variables on the dependent variable at different levels through
partial dependence plots.

The mean square error is 0.039, the root mean square error is 0.198, and the average
absolute error is 0.157. All three of these values are small, indicating that the error between
the actual value and the predicted value is small, and the prediction effect of the model is
better.

Figure 5 presents the ranking of the importance of the factors influencing green
innovation efficiency based on the random forest model. It is evident that, among these
influencing factors, ownership concentration, R&D personnel structure, and operational
capacity hold the top three positions in terms of importance, exerting significant influence
on new-energy companies’ green innovation efficiency.

The relationship between the ownership concentration and green innovation efficiency
is illustrated in Figure 6. When the concentration of ownership is high, the resources of
an enterprise are more likely to be concentrated in the hands of a few major shareholders.
These large shareholders usually have a stronger decision-making ability and resource
allocation ability, and can promote the implementation of green innovation projects more
efficiently. High ownership concentration means that the interests of major shareholders
are more consistent with the interests of the enterprise as a whole. In this case, major
shareholders have more incentive to promote green innovation because it not only helps to
enhance the social image and brand value of the company, but also can bring long-term
economic benefits.
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The relationship between the R&D personnel structure and green innovation efficiency
is illustrated in Figure 7. Initially, the newly added R&D personnel require time to adapt to
the company’s working environment, products, and technology, leading to a temporary
decrease in efficiency. Over time, the company’s R&D team gradually establishes a more
mature collaborative mechanism and accumulates experience in green innovation, resulting
in an increase in green innovation efficiency. Overall, this change may stem from the devel-
opmental process of the R&D team, starting from the initial adaptation period to subsequent
synergistic effects, ultimately leading to improved efficiency in green innovation.
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The relationship between operational capability and green innovation efficiency is
illustrated in Figure 8. The enhancement of a company’s operational capability necessi-
tates optimizing resource allocation to improve production efficiency and accelerate asset
turnover. Such changes in resource allocation may have a short-term impact on the input
and efficiency of green innovation. However, with the continuous optimization of resource
allocation and the adoption of new technologies, green innovation efficiency is expected to
gradually increase and achieve long-term improvements.
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5. Conclusions and Discussion
5.1. Conclusions

The three-stage DEA model reveals that, after the second stage of SFA adjustments, TE,
PTE, and SE all demonstrate some improvement. However, significant potential for further
enhancement remains, highlighting the impact of external environmental constraints on
new-energy companies’ green innovation efficiency. Despite adjustments, SE consistently
surpasses PTE. The number of enterprises in the state of low-tech high-scale is the largest,
accounting for the largest proportion. Therefore, improving green innovation efficiency
requires a focus on increasing pure technical efficiency through advancements in technology
and management practices.
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The factors affecting green innovation efficiency of new-energy companies are studied
based on random forest model. Meanwhile, so as to further improve the interpretability
of random forest model, important influencing factors are analyzed based on partial de-
pendence plots. The study found that, among these influencing factors, the ownership
concentration, R&D personnel structure, and operational capacity hold the top three po-
sitions in terms of importance, exerting important influence on new-energy companies’
green innovation efficiency.

In order to improve the green innovation efficiency, it is necessary to work together on
the following:

At the enterprise level, strengthen technological innovation capacity building, increase
investment in research and development, strengthen key core technologies, and develop
more efficient, clean, and low-carbon new-energy technologies and products. Optimize
the energy management system, actively promote clean production, and reduce pollutant
emissions. Strengthen the construction of the talent team, introduce and cultivate green
innovation talents, and enhance the talent support ability of green innovation in enterprises.

At the government level, improve the policy support system and increase the policy
support for the green innovation of new-energy enterprises. Strengthen industry super-
vision, establish a sound green innovation standard system, strengthen the supervision
and management of green innovation activities, and guide the green and healthy develop-
ment of enterprises. Foster a favorable environment for innovation, strengthen intellectual
property protection, and create a market environment for fair competition.

5.2. Discussion

In the field of new energy, the green innovation efficiency serves as a pivotal indicator
for measuring sustainable development ability and competitiveness of enterprises. With
the enhancement of global environmental awareness and the transformation of energy
structures, the new-energy industry is facing unprecedented opportunities and challenges,
and improving green innovation efficiency is crucial to promoting the high-quality devel-
opment of the new-energy industry. Green innovation efficiency is the key for new-energy
enterprises to achieve win–win economic and environmental benefits. China’s new-energy
industry is developing rapidly, but it also faces challenges such as tight resource and envi-
ronmental constraints and the need for the breakthrough of core technologies. Improving
the efficiency of green innovation can promote the development of the new-energy industry
into the high-end, intelligent, and green direction, thereby getting rid of the dependence on
traditional resources and achieving sustainable development.

The managerial implications of this study for new-energy companies lies in the fol-
lowing. (1) Pointing out the improvement direction and improving the performance of
green innovation: The research results can help management to find the shortcomings
of enterprises in green innovation, such as a low resource allocation efficiency and poor
control of undesirable output, and take targeted improvement measures to improve green
innovation performance of enterprises. (2) The research results can help management
to deeply understand the factors affecting the green innovation efficiency, identify the
advantages and disadvantages of enterprises, and provide a scientific basis for formulating
green transformation and upgrading strategies, thereby optimizing resource allocation and
enhancing enterprises competitiveness. (3) Promote the change in management concepts
and strengthening the awareness of green development: This study emphasizes the im-
portance of green innovation and sustainable development, and encourages enterprises to
fully integrate green development principles into management practices.

This research also needs to be further explored from the following aspects: (1) Due to
the limited years in which green data, such as the comprehensive energy consumption and
greenhouse gas emissions of enterprises, can be obtained, this study only selects 2022 as the
research period. It is suggested that the research time scope should be further expanded in
future studies to explore the dynamic evolution trend of the green innovation efficiency of
enterprises. (2) The selected index system is not complete enough, which affects the depth
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and breadth of the conclusion. In future studies, qualitative indicators can be added on
the basis of quantitative indicators, and the two can be combined for the research so as to
further improve the index system.
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