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Abstract: In this study, we derive multiple incomplete matrix Mittag-Leffler (ML) functions. We
systematically investigate several properties of these incomplete matrix ML functions, which include
some general properties and distinct representations of integral transforms. We further study the
properties of the Riemann–Liouville fractional integrals and derivatives related to the incomplete
matrix ML functions. Additionally, some interesting special cases of this work are highlighted. Finally,
we establish the solution to the kinetic equations as an application.
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1. Introduction

Gosta Mittag-Leffler (ML), a Swedish mathematician, introduced the given function in
1903 [1].

Eα(z) =
∞

∑
n=0

zn

Γ(αn + 1)
. (1)

The well-known Gamma function, represented by Γ, is involved in the definition of the ML
function, Eα(z), for a complex variable z. The variable α in this case is non-negative. When
α = 1, this function corresponds to the standard exponential function, which is a straight-
forward extension of the exponential function. It is estimated between the hypergeometric
function 1

1−z and the pure exponential function for 0 < α < 1. Its application in a number
of disciplines, such as engineering, biology, chemistry, physics, and applied sciences, has
increased its importance over the past 20 years. Whenever fractional order differential
equations or fractional order integral equations are obtained, the ML function naturally
appears. Understanding its characteristics and applications in a variety of domains has
been made possible by its generalisation, as Wiman first investigated in 1905. Re(z) and
Im(z) denote the real part and imaginary part, respectively, of a complex number z.

The two parametric Mittag-Leffler function is defined by [2]

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, (2)

where α, β ∈ C with Re(α) > 0 and Re(β) > 0.
In 1971, Prabhakar [3] introduced the function Eγ

α,β(z) in the form of

Eγ
α,β(z) =

∞

∑
n=0

(γ)n zn

Γ(αn + β)n!
, (3)
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where α, β, γ ∈ C and Re(α) > 0, Re(β) > 0, Re(γ) > 0, where (γ)n is the Pochhammer
symbol, as

(γ)n =

{
γ(γ + 1)...(γ + n − 1) = Γ(γ+n)

Γ(γ) , n ≥ 1,
1, n = 0.

(4)

Thus , it is clear that the following special cases holds.
Shukla and Prajapati [4] introduced the ML function generalized in 2007, as follows:

Eγ,k
α,β(z) =

∞

∑
n=0

(γ)nk zn

Γ(αn + β)n!
, (5)

where α, β, γ ∈ C and Re(α) > max{0, Re(k)− 1}, Re(β) > 0, Re(k) > 0.
After that, many other authors investigated and explored several properties and

applications of the generalized ML function in the solution of fractional order integral
and fractional order differential equations (see, e.g. [5–9]). Later on, a detailed and
comprehensive review was provided by Haubold et al. (see [10–12]).

The solutions for special matrix differential equations have become accessible in recent
years due to their special function with matrix parameters. These are systems of differential
equations as these matrix differential equations are each carried out by a corresponding
scalar special function. A corresponding scalar special function may fulfil the system of
equations that represent the other results for special matrix functions, including generating
functions, series definitions, recurrence relations, etc. (see [13–18]).

Additionally, the ML function with matrix arguments is equally as useful as its scalar
version, and it can be utilized successfully in a wide range of applications, such as control
theory and other related fields, the efficient and stable solution of systems of fractional
differential equations (FDEs), the estimation of the solution for particular multiterm FDEs,
and other related fields (see [19,20]).

At the present, the generalized version allows for matrices as arguments and provides
a powerful tool for solving fractional differential and integral equations in matrix form. In
2018, Garrappa et al. [21] computed the Mittag-Leffler function with matrix arguments,with
some applications in fractional calculus, and in 2023, Pal et al. [22] introduced a special
matrix analog of the four-parameter Mittag-Leffler function.

The main objective of this work is to develop various aspects of incomplete matrix ML
functions, which include certain fundamental properties and various representations of
integral transformations, and to analyse incomplete ML functions with matrix parameters
by means of the incomplete Pochhammer symbol. We investigate some of the features of
the Riemann–Liouville fractional integrals and derivatives associated with the incomplete
matrix ML functions. We additionally highlight some interesting particular examples of
our major results. In the conclusion, incomplete matrix ML functions are utilized as an
application to address the kinetic equations.

This work follows the following outline: in Section 2, we look at some of the most com-
mon definitions and basic applications of matrix arguments in special functions. A matrix
variation of the incomplete ML functions is presented and its convergence is investigated in
Section 3. In Section 4, representations based on the Euler-Beta and Laplace transforms for
the incomplete matrix ML functions are presented, in addition to some important theorems.
Utilizing incomplete matrix ML functions, we acquire several interesting characteristics of
the fractional calculus operators in Section 5. The implementation of ML functions in the
fractional kinetic equation solution will be discussed in Section 6. Finally, some concluding
remarks are collected in Section 7.



Symmetry 2024, 16, 963 3 of 14

2. Basic Definitions and Preliminaries

Consider Ch, which denotes a complex vector space of dimension h, and let Ch×h be
the set of all square complex matrices of order h. For any matrix T in Ch×h, σ(T) represents
the spectrum of T, which is the set containing all eigenvalues of T, referred to as T, then

a(T) = max{Re(z) : z ∈ σ(T)}, b(T) = min{Re(z) : z ∈ σ(T)}, (6)

where a(−T) = −b(T) and a(T) represent the spectral abscissa of T. The square matrix T
becomes positive stable if and only if b(T) > 0, and we refer to it as [16]

∥etT∥ ≤ eta(T)
h−1

∑
s=0

(∥T∥h
1
2 t)s

s!
; h ≥ 1; and t ∈ R (7)

and

∥nT∥ = ∥e(ln n)T∥ ≤ na(T)
h−1

∑
s=0

(∥T∥h
1
2 ln n)s

s!
; h ≥ 1; and t ∈ R. (8)

The Beta matrix function is described similarly (see, e.g. [23–25]), where T and U are
positive stable and commuting matrices in Ch×h, so that the matrices T + nI, U + nI, and
T + U + nI are invertible for any integer n ≥ 0. Now

B(T, U) =
∫ 1

0
tT−I(1 − t)U−Idt = Γ(T)Γ(U)[Γ(T + U)]−1, (9)

where

Γ(T) =
∫ ∞

0
e−ttT−Idt, tT−I = exp((T − I) ln t), (10)

is the matrix function of Gamma (see, for example, [26]). In addition, if for all integers
n ≥ 0, we have

T + nI is an invertible matrix, (11)

then, Γ(T) is proven to be invertible and its inverse is denoted by Γ−1(T). This leads to the
emergence of the Pochhammer symbol with a matrix argument, as detailed in references
such as [27].

(T)n =

{
T(T + I) . . . (T + (n − 1)I) = Γ(T + nI) Γ−1(T), n ≥ 1,
I, n = 0.

(12)

As described in Abdalla’s work [24], the Gamma matrix functions can be decomposed into
two incomplete Gamma matrix functions.

γ(T, z) =
∫ z

0
e−ttT−Idt, (13)

Γ(T, z) =
∫ ∞

z
e−ttT−Idt (14)

and

Γ(T) = γ(T, z) + Γ(T, z). (15)

where z ∈ C and T are a positive stable matrix in Ch×h.
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Consider that T represents any stable positive matrix within a complex system Ch×h.
In this context, for every non-negative x, the Pochhammer incomplete matrix (T; x)m, along
with its complement [T; x]m, as discussed in [28], is described as follows:

(T; x)m = γ(T + mI, x) Γ−1(T) (16)

and

[T; x]m = Γ(T + mI, x) Γ−1(T), (17)

satisfy the decomposition formula, respectively.

(T; x)m + [T; x]m = (T)m . (18)

The Laplace transform of the original ϕ(t) is [29]

ϕ̄(h) = L
[
ϕ(t)

]
(h) =

∫ ∞

0
e−ht ϕ(t) dt, Re(h) > 0, (19)

where ϕ̄(h) represents the Laplace transform of ϕ(t).
Moreover, the Euler-Beta transform (see [29]) of the function f (z) is given by

β{ f (z); a, b} =
∫ 1

0
za−1(1 − z)b−1 f (z) dz. (20)

Definition 1 ([22]). Let T and U be two positive stable matrices in Ch×h, such that U satisfys the
condition (11) . Then, the matrix ML function is as follows:

Eβ,T
α,U(z) = Γ−1(T)

∞

∑
m=0

Γ(T + βmI) Γ−1(U + αmI)
zm

m!

=
∞

∑
m=0

(T)βm Γ−1(U + αmI)
zm

m!
,

(21)

where α, β ∈ R+ .

3. Incomplete Matrix ML Functions

In this section, we discuss a matrix variant of the incomplete ML functions and develop
its convergence for |z| = 1, and we demonstrate some properties and differential relations.

Definition 2. Suppose T and U are positive stable matrices in Ch×h, such that U satisfies condition
(11); we can now define a matrix incomplete ML functions as

E
β,T
α,U(z) =

∞

∑
n=0

Γ−1(U + nαI) (T; x)βn
zn

n!

= Γ−1(T)
∞

∑
n=0

γ(T + nβI, x) Γ−1(U + nαI)
zn

n!

(22)

and

Eβ,T
α,U(Z) =

∞

∑
n=0

Γ−1(U + nαI) [T; x]βn
zn

n!

= Γ−1(T)
∞

∑
n=0

Γ(T + nβI, x) Γ−1(U + nαI)
zn

n!
,

(23)
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where α, β , x∈ R+, and we can find that

E
β,T
α,U(z) +Eβ,T

α,U(Z) = Eβ,T
α,U(z). (24)

Remark 1.

(i) For x = 0 in (22) and (23), we find the definition in (21)
(ii) By using (22) and (23), we find that

E
β,T
α,U(z) +Eβ,T

α,U(Z) = Eβ,T
α,U(z). (25)

Theorem 1. Suppose T and U are two positive constants if the following relation holds a(U) >
b(T) in Ch×h, then, the matrix of incomplete ML functions (22) converges completely for the given
|z| = 1.

Proof. Consider that relation a(U) > b(T) holds. Under this assumption, there exists a
positive number λ, such as

a(U)− b(T) = 2λ. (26)

Now, we can write

n1+λ

[
Γ−1(T) γ(T + βnI, x)Γ−1(U + αnI)

1
n!

]
=

nλ

(n − 1)!

(
n−T Γ−1(T) γ(T + βnI, x)

(n − 1)!

)
nT ×

(
n−U(n − 1)! Γ−1(U + αnI)

)
nU . (27)

From (8) and a(−U) = −b(U), we have

∥∥∥nT
∥∥∥∥∥∥n−U

∥∥∥ ≤ nb(T)−a(U)


r−1

∑
u=0

(
∥U∥r1/2 ln n

)u

u!

×


r−1

∑
u=0

(
∥T∥r1/2 ln n

)u

u!


≤ n−2λ


r−1

∑
u=0

(
max{∥U∥, ∥T∥}r1/2 ln n

)u

u!


2

. (28)

Letting n → ∞ in (27) and (28), for |z| = 1, we have

lim
n→∞

n1+λ

∥∥∥∥Γ−1(T) γ(T + βnI, x) Γ−1(U + αnI)
1
n!

∥∥∥∥
≤ lim

n→∞

nλ

(n − 1)!

∥∥∥∥n−T Γ−1(T) γ(T + βnI, x)
(n − 1)!

∥∥∥∥∥∥∥nT
∥∥∥∥∥∥nU(n − 1)! Γ−1(U + αnI)

∥∥∥∥∥∥n−U
∥∥∥

≤ lim
n→∞

n−λ

(n − 1)!

∥∥∥∥n−T Γ−1(T) γ(T + βnI, x)
(n − 1)!

∥∥∥∥∥∥∥nU(n − 1)! Γ−1(U + αnI)
∥∥∥

×


r−1

∑
u=0

(
max{∥U∥, ∥T∥}r1/2 ln n

)u

u!


2

= 0, (29)

on |z| = 1 the series (22) is convergent absolutely.
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Theorem 2. Assume T and U are positive stable matrices in Ch×h and U + nI is invertible for
every integer n ≥ 0. The incomplete matrix ML function defined by (23), with α, β > 0, satisfies

Eβ,T
α,U(z) = U Eβ,T

α,U+I(z) + αz
d
dz

Eβ,T
α,U+I(z). (30)

Proof. By using (23), we find that

U Eβ,T
α,U+I(z) + α z

d
dz

Eβ,T
α,U+I(z) = U Eβ,T

α,U+I(z) + α z
d
dz

∞

∑
n=0

Γ−1(U + (nα + 1)I) [T; x]βn
zn

n!

= U Eβ,T
α,U+I(z) +

∞

∑
n=0

Γ−1(U + (nα + 1)I) [T; x]βn (αnI + U − U)
zn

n!

= Eβ,T
α,U(z). (31)

The Theorem 2 proof has become complete.

Remark 2. For x = 0 in (30), we have

Eβ,T
α,U(z) = UEβ,T

α,U+I(z) + αz
d
dz

Eβ,T
α,U+I(z). (32)

Theorem 3. Suppose U, T in Ch×h is a positive stable matrix, such that U satisfies a condition (11).
Then, the derivative of matrix of the incomplete ML function can be represented by

(i)
(

d
dz

)m
Eβ,T

α,U(z) = (T)βm Eβ,T+βmI
α,U+mαI(z),

(ii)
(

d
dz

)m [
zU−IEβ,T

α,U(wzα)
]
= zU−(m+I)I Eβ,T

α,U−mI (wzα).

Proof. (i) By applying term-wise differentiation m times, (23) gives(
d
dz

)m
Eβ,T

α,U(z) =
∞

∑
n=m

Γ−1(U + nαI) [T; x]βn
zn−m

(n − m)!

=
∞

∑
n=0

Γ−1(U + (α(n + m)I) [T; x]β(n+m)
zn

n!

= (T)βm

∞

∑
n=0

Γ−1(U + α(n + m)I) [T + βmI; x]βn
zn

n!

= (T)βm Eβ,T+βmI
α,U+mαI(z).

(ii) By using (23), we obtain(
d
dz

)m [
zU−IEβ,T

α,U(wzα)
]
=

∞

∑
n=0

Γ−1(U + αnI) [T; x]βn
wn

n!

(
d
dz

)m[
zU+(αn−1)I

]
.

Differentiating term by term under the sign of summation, we find that

(
d
dz

)m[
zU−I Eβ,T

α,U(wzα)
]
=

∞

∑
n=0

Γ−1(U + (αn − m)I) [T; x]βn
wn

n!

[
zU+(αn−m−1)I

]
= zU−(m+I)I Eβ,T

α,U−mI .(wzα).

This complete the proof.
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Remark 3.

(i) Taking α and β = 1 in (ii), we obtain(
d
dz

)m [
zU−I

1Γ1
[
[T; x]; U; wz

]]
= Γ−1(U − mI) Γ(U) zU−(m+I)I

1Γ1
[
[T; x]; U − mI; wz

]
. (33)

(ii) Using x = 0 in Theorem 3, we obtain

(a)
(

d
dz

)m
Eβ,T

α,U(z) = (T)βm Eβ,T+kmI
α,U+mαI(z).

(b)
(

d
dz

)m[
zU−I Eβ,T

α,U(wzα)
]
= zU−(m+I)I Eβ,T

α,U−mI(wzα).

4. Some Integral Transforms of Matrix Incomplete ML Function

We establish the Euler-Beta and Laplace transform representations for the incomplete
matrix ML functions in this section. Utilizing incomplete Fox–Wright matrix functions, we
first established incomplete matrix ML functions as follows:

Definition 3. Let TP and Uq be positive stable matrices in Ch×h, such that Uq + nI is invertible
for every integer n ≥ 0; thus, we can defne the incomplete Fox–Wright matrix function as follows

pψ
(γ)
q

[
(T1, β1; x), (T2, β2)....(TP, βP)
(U1, α1)....(Uq, αq)

; z
]

= ∑
n≥0

γ(T1 + nβ1 I; x)
p

∏
l=2

Γ(Tl + nβl I)
q

∏
j=1

Γ−1(Uj + nαl I)
zn

n!
,

where p and q are finite positive integers.

Definition 4. Suppose T, U in Ch×h is positive stable matrices, as U satisfies Equation (11).
Using the incomplete Fox–Wright matrix, we can generate the incomplete matrix ML functions
as follows:

E
β,T
α,U(z) = Γ−1(T) 1ψ

(γ)
1

[
(T, β; x)
(U, α)

; z
]

(34)

and

Eβ,T
α,U(z) = Γ−1(T) 1ψ

(γ)
1

[
(T, β; x)
(U, α)

; z
]

. (35)

Theorem 4. Suppose A, T, and U in Ch×h are positive stable matrices, such that U holds in Equa-
tion (11). Then, the Laplace transform representation of the incomplete matrix ML function satisfies

L
{

zA−I Eβ,T
α,U(wzm)

}
= s−A Γ−1(T) 2ψ

(Γ)
1

[
(T, β; x), (A, m)
(U, α)

; ws−m
]

. (36)
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Proof. From (19) of the Laplace transform and utilizing Equation (23), we obtain

L
{

zA−I Eβ,T
α,U(wzm)

}
=
∫ ∞

0
zA−I e−sz Eβ,T

α,U(wzm)dz

=
∫ ∞

0
zA−I e−sz

(
∞

∑
n=0

Γ−1(U + αnI) [T; x]βm
ωnzmn

n!

)
dz

=
∞

∑
n=0

Γ−1(U + αnI) [T; x]βm
ωn

n!

∫ ∞

0
zA+(mn−1)I e−szdz

=
∞

∑
n=0

Γ−1(U + αnI) [T; x]βm

[
sA+mnI

]−1
Γ(A + mnI)

ωn

n!

= Γ−1(T) s−A
2ψ

(Γ)
1

[
(T, β; x), (A, m)
(U, α)

; ws−m
]

. (37)

Thus, the proof is completed.

Remark 4.

(i) If we put A = U, β = 1, and m = α in Equation (36), we have∫ ∞

0
zU−Ie−szE1,T

α,U(wzα) = s−U
1Γ0

[
(T; x);−;

w
sα

]
.

(ii) If putting x = 0 in Equation (36), we find that

L
{

zA−I Eβ,T
α,U(wzm)

}
= Γ−1(T) s−A

2ψ
(Γ)
1

[
(T, β), (A, m)
(U, α)

;
w
sm

]
.

Theorem 5. The Euler-Beta transform repression of incomplete matrix ML function is given
as follows:

β
{
Eβ,T

α,U(wzm); A, B
}
= Γ−1(T)Γ(B) 2ψ

(Γ)
2

[
(T, β; x), (A, m);
(U, α), (A + B, m);

w
]

, (38)

where A,B, T, and U are positive stable matrices in Ch×h, such that U + kI is invertible for all
k ≥ 0.

Proof. From Equation (20) of the Euler-Beta transform, one can easily obtain

β
{
Eβ,T

α,U(wzm); A, B
}
=
∫ ∞

0
zA−I(1 − z)B−IEβ,T

α,U(ωzm)dz

=
∫ 1

0
zA−I(1 − z)B−I

(
∞

∑
n=0

Γ−1(U + nαI) [T; x]βn
wnzmn

n!

)

=
∞

∑
n=0

Γ−1(U + nαI) [T; x]βn
wn

n!

(∫ 1

0
zA+(nm−1)I(1 − z)B−Idz

)
=

∞

∑
n=0

Γ−1(U + nαI) [T; x]βn Γ−1(A + B + nmI) Γ(B) Γ(A + nm)
wn

n!
,

which, in view of the definitions of 2ψ
(Γ)
2 in Definition 3, provide the proper representa-

tion (38).
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Remark 5.

(i) If putting A = U and α = m in (36), we obtain∫ ∞

0
zU−I(1 − z)B−I Eβ,T

m,U(wzm)dz = Γ(B) Eβ,T
m,U+B(w).

5. Fractional Calculus Operators with Incomplete Matrix ML Functions

We derive several interesting features of the fractional calculus operators with respect
to incomplete matrix ML functions in this section.

For an operator of fractional order µ and x > 0, the integral and derivatives of
Riemann–Liouville with respect to Re(µ) > 0 are presented in the subsequent form
(see [13,30])

(Iµa f )(x) = 0D−µ
t [ f (t)] =

1
Γ(µ)

∫ x

a
(x − t)µ−1 f (t)dt. (39)

Moreover,

Dµ
a f (x) = In−µ

a Dn f (x), D =
d

dx
. (40)

Bakhet [13] studied the fractional order integrals and derivatives using the operators
(39) and (40) as follows

Definition 5. Let T be a stable positive matrix in Ch×h with the properties Re(µ) > 0 and µ ∈ C.
The fractional integrals of order µ in the Riemann–Liouville sense is defined as

Iµ(xT) =
1

Γ(µ)

∫ x

0
(x − t)µ−1 tTdt. (41)

Lemma 1. Let T to be a positive stable matrix in Ch×h, such that Re(µ) > 0. Then, the Riemann–
Liouville integrals fractional of order µ can be written as

Iµ(xT−I) = Γ(T)Γ−1(T + µI) xT+(µ−1)I . (42)

Theorem 6. Suppose T and U are a positive stable matrices in Ch×h and Re(µ) > 0; then, the
fractional integration of incomplete matrix ML function can be denoted as

Iµ
[

xU−IEβ,T
α,U(wxα)

]
= xU+(µ−1)I Eβ,T

α,U+µI(wxα). (43)

Proof. From Definition (5) and (23),we obtain

Iµ
[

xU−I ET,k
α,U(wxα)

]
=

1
Γ(µ)

∫ x

0
(x − t)µ−1 tU−I ET,k

α,U(wxα)dt

=
∞

∑
m=0

[T; x]βm Γ−1(U + αmI)
βm

m!
× Iµ

(
xU+(αm−1)I

)
.

By using Lemma 1, we obtain
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Iµ
[

xU−I Eβ,T
α,U(wxα)

]
=

∞

∑
m=0

[T; x]βm Γ−1(U + αmI)
βm

m!

× xU+(αm+µ−1)I Γ(U + αmI) Γ−1(U + (αm + µI))

=
∞

∑
m=0

[T; x]βm Γ−1(U + (αm + µI))
βm

m!
× xU+(αm+µ−1)I .

Hence the Theorem 6 is proved.

Corollary 1. Suppose x = 0 is substituted in Theorem 6; then, the fractional integration of the
Mittag-Leffler matrix function will be

Iµ
[

xU−I Eβ,T
α,U(κxα)

]
= xU+(µ−1)IEβ,T

α,U+µI(κxα),

where Re(µ) > 0.

Theorem 7. Suppose U and T are a positive stable matrices in Ch×h and 0 < Re(µ). Then, the
fractional derivative of the incomplete matrix ML function denotes

Dµ
[

xU−IEβ,T
α,U(wxα)

]
= xU−(µ+1)I Eβ,T

α,U−µI(wxα). (44)

Proof. By using (40), we find

Dµ
[

xU−IEβ,T
α,U(wxα)

]
=

(
d

dx

)n[
In−µ

(
[xU−IEβ,T

α,U(wxα)
)]

.

Using Theorem 6 gives

Dµ
[

xU−I Eβ,T
α,U(wxα)

]
=

(
d

dx

)n[
xU−(n−µ−1)I Eβ,T

α,U−(n−µ)I(wxα)
]
.

By using (ii) in Theorem 7, this immediately yields the desired proof.

Corollary 2. When putting x = 0 in Theorem (7), we find the fractional derivative of matrix ML
function as

Dµ
[

xU−I Eβ,T
α,U(κxα)

]
= xU−(µ+1)I Eβ,T

α,U−µI(κxα).

where, Re(µ) > 0.

6. Application to the Solution of Fractional Kinetic Equation

The resolution of fractional kinetic equations (FKEs) has attracted significant attention
from researchers in a number of applied scientific domains, which include engineering,
dynamical systems, physics, and control systems. Its ability to support the development of
mathematical models for an extensive variety of physical procedures and mathematical
physics applications is the reason that it has attracted this attention. Kinetic equations (KEs)
are crucial for mathematical physics and natural science as they explain the continuity of
matter’s motion in a variety of astrophysical situations. As stated in references like [12,31],
recent research has discovered various fractional calculus operators that enable extending
and generalizing FKEs. Haubold and Mathai established a functional differential equation
in [12], which relates the rate of reaction change, decomposition rate, and production rate.
It appears as follows:

dN
dt

= −d(Nt) + p(Nt), (45)
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where N = N(t) represents the reaction rate, d = d(N) represents the destruction
rate , p = p(N) denotes the production rate, and Nt satisfies the function defined by
Nt(t∗) = N(t − t∗), t∗ > 0.

The differential equation given below is a particular case of (45) when spatial fluctua-
tions or inhomogeneities in the value N(t) are ignored.

dN
dt

= −m i Ni(t), (46)

The initial conditions specified for this differential equations are Ni(t = 0) = N0, where i
represents the number of density of species at time t = 0, mi > 0. If term i is ignored and
the specific kinetic Equation (46) is integrated, the following relation will be obtained

N(t)− N0 = −m 0D−1
t N(t). (47)

Within this context, m0 is a constant value, while D−1
t stands for the Riemann–Liouville

integral operator with a degree of µ = 1. The fractional kinetic equation (FKE) is redefined
by Haubold and Mathai as follows, as detailed in [12].

N(t)− N0 = −mµ
0D−µ

t N(t). (48)

where 0D−µ
t is given in (39).

In light of this, the solution for N(t) can be expressed as follows:

N(t) = N0

∞

∑
r=0

(−1)r

Γ(µr + 1)
(mt)µr = N0 Eµ(−mµtµ), (49)

where Eµ(−mµtµ) denotes the ML function (see [32,33]).
Furthermore, Saxena Kalla created an alternative FKE, as given in [31,34–36].

N(t)− N0 f (t) = −mµ
0D−µ

t N(t), m > 0, Re(µ) > 0, (50)

here, m is a constant, N(t) represents the species amount, which is initially N0 = N(0) at
time level t = 0; however, f is an integrable function at interval (0, ∞).

As discussed in [34,37–41], a variety of research articles have appeared recently in this
field utilising FKEs to solve different integral transforms, such as Fourier, Laplace, Sumudu,
and Mellin transforms, including special functions and matrix functions.

In this theorem, we examined the solutions for FKEs that require the extension of
incomplete matrix ML functions.

Theorem 8. Consider T, U, and R holds (11), where T, U, and R are positive stable matrices in
Ch×h. Then, for Re(v) > 0 and t, w ∈ C, the following generalized FK matrix equation of the
incomplete matrix ML functions satisfies the following equation

N(t)I − N0 Eβ,T
α,U(wt) = −Rν

0D−v
t N(t) (51)

has the solution

N(t) = N0

∞

∑
n=0

[T; x]βn Γ−1(U + αnI)× (wt)n Eν,β+1(−Rνtν), (52)

where Ev,β+1(−Rvtv) is called the generalized the Mittag–Leffler function (see [33]).

Proof. By using the Laplace transform and using incomplete matrix ML function, we have

N∗(s)I = N0

(∫ ∞

0
e−st Γ−1(U + αnI)[T; x]βn (wt)ndt

)
− Rvs−v N∗(s), (53)
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where N∗(s) = w{N(t); s} and(
1 +

(
R
s

)v)
N∗(s) = N0

∞

∑
n=0

[T; x]βn Γ−1(U + nαI) Γ((n + 1)I)
wn

sn+1 ,

we find that

N∗(s)I = N0

∞

∑
n=0

[T; x]βn
wn

sn+1 ; Γ−1(U + nαI)
(

1 +
(

R
s

)v)−1

= N0

∞

∑
n=0

[T; x]1n
Γ−1(U + nαI)

wn

sn+1 ×
∞

∑
h=0

(−1)h
(

R
s

)vh
. (54)

Employing the relation through the use of the inverse Laplace Transform

L−1(s−v, t
)
=

tv−1

Γ(v)
, (Re(v) > 0),

we have,

N(t)I = L−1{N∗(s), t}

= N0

∞

∑
n=0

[T; x]βnΓ−1(U + nαI)× (wt)n ×
∞

∑
h=0

(−1)h(Rt)νh

Γ(νh + β + 1)

= N0

∞

∑
n=0

[T; x]βnΓ−1(U + nαI)× (wt)n × Eν,n+1(−Rvtv).

The proof is now completed.

Corollary 3. Consider T, U and R holds (11), where T, U, and R are positive stable matrices in
Ch×h. Then, for Re(v) > 0 and t ∈ C, the generalized FK matrix equation of matrix ML functions
satisfies the following equation

N(t)I − N0 Eβ,T
α,U(wt) = −Rν

0D−v
t N(t) (55)

has the solution

N(t)I = N0

∞

∑
n=0

(T)βn Γ−1(U + αnI)× (wt)n Eν,β+1(−Rνtν). (56)

7. Conclusions

In conclusion, this paper has explored an incomplete Mittag-Leffler (ML) function
where matrix arguments were introduced. Some properties of these functions, such as
functional relations, convergent, integral formulas, and integral representations were inves-
tigated and the properties of the Riemann–Liouville fractional integrals and derivatives
related to the incomplete matrix ML function were studied. Additionally, some interesting
special cases of this work were highlighted. Also, we established a solution to the kinetic
equations involving the incomplete matrix ML function. Ultimately, these theoretical ad-
vancements find practical applications, particularly in theorem of the incomplete matrix
ML functions across diverse types, such as the k-incomplete matrix ML function. This
research opens avenues for further exploration and development within this intricate field
of study. Certain applications to other research subjects and investigation regarding other
properties of these newly introduced functions are left to the authors and the interested
researchers for future study.
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