Neutrinoless Double-Beta Decay Investigations of 82Se Using Three Shell Model Hamiltonians
Abstract
:1. Introduction
2. The Statistical Model Framework
3. Results, Discussions, and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSM | Beyond the Standard Model |
LNV | Lepton Number Violation |
PSF | Phase Space Factors |
NME | Nuclear Matrix Element(s) |
DBD | Double Beta Decay |
pn-QRPA | proton–neutron Quasiparticle Random Phase Approximation |
IBA | Interacting Boson Approximation |
TBME | Two-Body Matrix Elements |
KDE | Kernel Distribution Estimate |
Probability Distribution Function | |
JUN45 (jun) | name of nuclear effective Hamiltonian |
GCN28:50 (gcn) | name of nuclear effective Hamiltonian |
JJ44b (jj4) | name of nuclear effective Hamiltonian |
jj44 | nuclear valence space |
References
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Bühler, G.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.; et al. Measurement of the Rate of νe + d → p + p + e− Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [Google Scholar] [CrossRef]
- Pontecorvo, B. Mesonium and Antimesonium. Sov. J. Exp. Theor. Phys. 1958, 6, 429. [Google Scholar]
- Pontecorvo, B. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. J. Exp. Theor. Phys. 1968, 26, 984. [Google Scholar]
- Taroni, A. Nobel Prize 2015: Kajita and McDonald. Nat. Phys. 2015, 11, 891. [Google Scholar] [CrossRef]
- Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Barton, C.J.; Bhimani, K.H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T.S.; et al. Search for charge non-conservation and Pauli exclusion principle violation with the Majorana Demonstrator. Nat. Phys. 2024, 20, 1078–1083. [Google Scholar] [CrossRef]
- Barabash, A. Precise Half-Life Values for Two-Neutrino Double-beta Decay: 2020 Review. Universe 2020, 6, 159. [Google Scholar] [CrossRef]
- Agostini, M.; Benato, G.; Detwiler, J.A.; Menéndez, J.; Vissani, F. Toward the discovery of matter creation with neutrinoless ββ decay. Rev. Mod. Phys. 2023, 95, 025002. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J.W.F. Neutrinoless double-beta decay in SU(2)XU(1) theories. Phys. Rev. D 1982, 25, 2951. [Google Scholar] [CrossRef]
- Hirsch, M.; Kovalenko, S.; Schmidt, I. Extended Black box theorem for lepton number and flavor violating processes. Phys. Lett. B 2006, 642, 106. [Google Scholar] [CrossRef]
- Avignone, F.T., III; Elliott, S.R.; Engel, J. Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481. [Google Scholar] [CrossRef]
- Vergados, J.D.; Ejiri, H.; Simkovic, F. Theory of neutrinoless double-beta decay. Rep. Prog. Phys. 2012, 75, 106301. [Google Scholar] [CrossRef] [PubMed]
- Rodejohann, W. Neutrinoless double-beta decay and neutrino physics. J. Phys. G 2012, 39, 124008. [Google Scholar] [CrossRef]
- Agostini, M.; Araujo, G.R.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. Final Results of GERDA on the Search for Neutrinoless Double-beta Decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef] [PubMed]
- Arnquist, I.J.; Avignone, F.T.; Barabash, A.S.; Barton, C.J.; Barton, P.J.; Bhimani, K.H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; et al. Final Result of the Majorana Demonstrator’s Search for Neutrinoless Double-β Decay in 76Ge. Phys. Rev. Lett. 2023, 130, 062501. [Google Scholar] [CrossRef]
- Anton, G.; Badhrees, I.; Barbeau, P.S.; Beck, D.; Belov, V.; Bhatta, T.; Breidenbach, M.; Brunner, T.; Cao, G.F.; Cen, W.R.; et al. Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. Phys. Rev. Lett. 2019, 123, 161802. [Google Scholar] [CrossRef]
- Abe, S.; Asami, S.; Eizuka, M.; Futagi, S.; Gando, A.; Gando, Y.; Gima, T.; Goto, A.; Hachiya, T.; Hata, K.; et al. Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen. Phys. Rev. Lett. 2023, 130, 051801. [Google Scholar] [CrossRef]
- Doi, M.; Kotani, T.; Nishiura, H.; Takasugi, E. Double beta decay. Progr. Theor. Exp. Phys. 1983, 69, 602. [Google Scholar] [CrossRef]
- Doi, M.; Kotani, T.; Takasugi, E. Double-beta decay and Majorana neutrino. Prog. Theor. Phys. Suppl. 1985, 83, 1. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 1998, 300, 123. [Google Scholar] [CrossRef]
- Niţescu, O.; Ghinescu, S.; Sevestrean, V.A.; Horoi, M.; Šimkovic, F.; Stoica, S. Theoretical analysis and predictions for the double electron capture of 124Xe. arXiv 2024, arXiv:2402.13784. [Google Scholar]
- Niţescu, O.; Ghinescu, S.; Stoica, S.; Šimkovic, F. A Systematic Study of Two-Neutrino Double Electron Capture. Universe 2024, 10, 98. [Google Scholar] [CrossRef]
- Niţescu, O.; Dvornický, R.; Šimkovic, F. Atomic corrections for the unique first-forbidden β transition of Re187. Phys. Rev. C 2024, 109, 025501. [Google Scholar] [CrossRef]
- Niţescu, O.; Dvornický, R.; Stoica, S.; Šimkovic, F. Angular Distributions of Emitted Electrons in the Two-Neutrino ββ Decay. Universe 2021, 7, 147. [Google Scholar] [CrossRef]
- Nabi, J.U.; Ishfaq, M.; Niţescu, O.; Mirea, M.; Stoica, S. β−-Decay Half-Lives of Even-Even Nuclei Using the Recently Introduced Phase Space Recipe. Universe 2019, 6, 5. [Google Scholar] [CrossRef]
- Mirea, M.; Pahomi, T.; Stoica, S. Phase space factors for double beta decay: An up-date. Rom. Rep. Phys. 2015, 67, 872. [Google Scholar]
- Stoica, S.; Mirea, M. New calculations for phase space factors involved in double-beta decay. Phys. Rev. C 2013, 88, 037303. [Google Scholar] [CrossRef]
- Kotila, J.; Iachello, F. Phase-space factors for double-beta decay. Phys. Rev. C 2012, 85, 034316. [Google Scholar] [CrossRef]
- Caurier, E.; Poves, A.; Zuker, A.P. A full 0ℏω description of the 2νββ decay of 48Ca. Phys. Lett. B 1990, 252, 13. [Google Scholar] [CrossRef]
- Caurier, E.; Nowacki, F.; Poves, A.; Retamosa, J. Shell Model Studies of the Double Beta Decays of 76Ge, 82Se, and 136Xe. Phys. Rev. Lett. 1996, 77, 1954. [Google Scholar] [CrossRef]
- Caurier, E.; Martinez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427. [Google Scholar] [CrossRef]
- Horoi, M.; Stoica, S.; Brown, B.A. Shell-model calculations of two-neutrino double-beta decay rates of 48Ca with the GXPF1A interaction. Phys. Rev. C 2007, 75, 034303. [Google Scholar] [CrossRef]
- Horoi, M.; Stoica, S. Shell model analysis of the neutrinoless double-beta decay of Ca-48. Phys. Rev. C 2010, 81, 024321. [Google Scholar] [CrossRef]
- Horoi, M. Shell model analysis of competing contributions to the double-beta decay of Ca-48. Phys. Rev. C 2013, 87, 014320. [Google Scholar] [CrossRef]
- Horoi, M.; Brown, B.A. Shell-Model Analysis of the Xe-136 Double Beta Decay Nuclear Matrix Elements. Phys. Rev. Lett. 2013, 110, 222502. [Google Scholar] [CrossRef] [PubMed]
- Sen’kov, R.A.; Horoi, M. Accurate shell-model nuclear matrix elements for neutrinoless double-beta decay. Phys. Rev. C 2014, 90, 051301(R). [Google Scholar] [CrossRef]
- Neacsu, A.; Horoi, M. Shell model studies of the 130Te neutrinoless double-beta decay. Phys. Rev. C 2015, 91, 024309. [Google Scholar] [CrossRef]
- Horoi, M.; Neacsu, A. Shell model predictions for 124Sn double-β decay. Phys. Rev. C 2016, 93, 024308. [Google Scholar] [CrossRef]
- Horoi, M.; Neacsu, A. Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double-beta decay. Phys. Rev. C 2018, 98, 035502. [Google Scholar] [CrossRef]
- Simkovic, F.; Pantis, G.; Vergados, J.D.; Faessler, A. Additional nucleon current contributions to neutrinoless double-beta decay. Phys. Rev. C 1999, 60, 055502. [Google Scholar] [CrossRef]
- Stoica, S.; Klapdor-Kleingrothaus, H. Critical view on double-beta decay matrix elements within Quasi Random Phase Approximation-based methods. Nucl. Phys. A 2001, 694, 269. [Google Scholar] [CrossRef]
- Rodin, V.; Faessler, A.; Simkovic, F.; Vogel, P. Assessment of uncertainties in QRPA 0 nu beta beta-decay nuclear matrix elements. Nucl. Phys. A 2006, 766, 107–131. [Google Scholar] [CrossRef]
- Kortelainen, M.; Suhonen, J. Improved short-range correlations and 0 nu beta beta nuclear matrix elements of Ge-76 and Se-82. Phys. Rev. C 2007, 75, 051303(R). [Google Scholar] [CrossRef]
- Faessler, A.; Rodin, V.; Simkovic, F. Nuclear matrix elements for neutrinoless double-beta decay and double-electron capture. J. Phys. G 2012, 39, 124006. [Google Scholar] [CrossRef]
- Simkovic, F.; Rodin, V.; Faessler, A.; Vogel, P. 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration. Phys. Rev. C 2013, 87, 045501. [Google Scholar] [CrossRef]
- Barea, J.; Iachello, F. Neutrinoless double-beta decay in the microscopic interacting boson model. Phys. Rev. C 2009, 79, 044301. [Google Scholar] [CrossRef]
- Barea, J.; Kotila, J.; Iachello, F. Nuclear matrix elements for double-beta decay. Phys. Rev. C 2013, 87, 014315. [Google Scholar] [CrossRef]
- Rodriguez, T.R.; Martinez-Pinedo, G. Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless beta beta Decay. Phys. Rev. Lett. 2010, 105, 252503. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.K.; Chandra, R.; Chaturvedi, K.; Lohani, P.; Raina, P.K.; Hirsch, J.G. Neutrinoless beta beta decay transition matrix elements within mechanisms involving light Majorana neutrinos, classical Majorons, and sterile neutrinos. Phys. Rev. C 2013, 88, 064322. [Google Scholar] [CrossRef]
- Novario, S.; Gysbers, P.; Engel, J.; Hagen, G.; Jansen, G.R.; Morris, T.D.; Navrátil, P.; Papenbrock, T.; Quaglioni, S. Coupled-Cluster Calculations of Neutrinoless Double-β Decay in 48Ca. Phys. Rev. Lett. 2021, 126, 182502. [Google Scholar] [CrossRef]
- Yao, J.M.; Bally, B.; Engel, J.; Wirth, R.; Rodríguez, T.R.; Hergert, H. Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48Ca. Phys. Rev. Lett. 2020, 124, 232501. [Google Scholar] [CrossRef]
- Belley, A.; Payne, C.G.; Stroberg, S.R.; Miyagi, T.; Holt, J.D. Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for 48Ca, 76Ge, and 82Se. Phys. Rev. Lett. 2021, 126, 042502. [Google Scholar] [CrossRef]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef]
- Dolinski, M.J.; Poon, A.W.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Annu. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef]
- Retamosa, J.; Caurier, E.; Nowacki, F. Neutrinoless double beta decay of 48Ca. Phys. Rev. C 1995, 51, 371. [Google Scholar] [CrossRef]
- Balysh, A.; DeSilva, A.; Lebedev, V.I.; Lou, K.; Moe, M.K.; Nelson, M.A.; Piepke, A.; Pronskiy, A.; Vient, M.A.; Vogel, P. Double beta decay of Ca-48. Phys. Rev. Lett. 1996, 77, 5186. [Google Scholar] [CrossRef]
- Horoi, M.; Neacsu, A.; Stoica, S. Statistical analysis for the neutrinoless double-β-decay matrix element of 48Ca. Phys. Rev. C 2022, 106, 054302. [Google Scholar] [CrossRef]
- Horoi, M.; Neacsu, A.; Stoica, S. Predicting the neutrinoless double-β-decay matrix element of 136Xe using a statistical approach. Phys. Rev. C 2023, 107, 045501. [Google Scholar] [CrossRef]
- Jokiniemi, L.; Menéndez, J. Correlations between neutrinoless double-β, double Gamow-Teller, and double-magnetic decays in the proton-neutron quasiparticle random-phase approximation framework. Phys. Rev. C 2023, 107, 044316. [Google Scholar] [CrossRef]
- Honma, M.; Otsuka, T.; Mizusaki, T.; Hjorth-Jensen, M. New effective interaction for f5pg9-shell nuclei. Phys. Rev. C 2009, 80, 064323. [Google Scholar] [CrossRef]
- Menéndez, J.; Poves, A.; Caurier, E.; Nowacki, F. Disassembling the nuclear matrix elements of the neutrinoless ββ decay. Nucl. Phys. A 2009, 818, 139–151. [Google Scholar] [CrossRef]
- Cheal, B.; Mané, E.; Billowes, J.; Bissell, M.L.; Blaum, K.; Brown, B.A.; Charlwood, F.C.; Flanagan, K.T.; Forest, D.H.; Geppert, C.; et al. Nuclear Spins and Moments of Ga Isotopes Reveal Sudden Structural Changes between N = 40 and N = 50. Phys. Rev. Lett. 2010, 104, 252502. [Google Scholar] [CrossRef] [PubMed]
- Horoi, M. Improved Statistical Analysis for the Neutrinoless Double-Beta Decay Matrix Element of 136Xe. Universe 2024, 10, 252. [Google Scholar] [CrossRef]
- Qi, C.; Xu, Z.X. Monopole-optimized effective interaction for tin isotopes. Phys. Rev. C 2012, 86, 044323. [Google Scholar] [CrossRef]
- Zuker, A.P.; Retamosa, J.; Poves, A.; Caurier, E. Spherical shell model description of rotational motion. Phys. Rev. C 1995, 52, R1741–R1745. [Google Scholar] [CrossRef] [PubMed]
- Sen’kov, R.A.; Horoi, M.; Brown, B.A. Neutrinoless double-beta decay of Se-82 in the shell model: Beyond the closure approximation. Phys. Rev. C 2014, 89, 054304. [Google Scholar] [CrossRef]
- Kortelainen, M.; Suhonen, J. Ordinary muon capture as a probe of virtual transitions of double-beta decay. Europhys. Lett. 2002, 58, 666. [Google Scholar] [CrossRef]
- Kortelainen, M.; Suhonen, J. Microscopic study of muon-capture transitions in nuclei involved in double-beta-decay processes. Nucl. Phys. A 2003, 713, 501–521. [Google Scholar] [CrossRef]
- Zinatulina, D.; Brudanin, V.; Egorov, V.; Petitjean, C.; Shirchenko, M.; Suhonen, J.; Yutlandov, I. Ordinary muon capture studies for the matrix elements in ββ decay. Phys. Rev. C 2019, 99, 024327. [Google Scholar] [CrossRef]
- Bajpai, D.; Baudis, L.; Belov, V.; Bossio, E.; Cocolios, T.E.; Ejiri, H.; Sushenok, E.; Fomina, M.; Hashim, I.H.; Heines, M.; et al. The MONUMENT Experiment: Ordinary Muon Capture studies for neutrinoless double-beta decay. arXiv 2024, arXiv:2404.12686. [Google Scholar]
- Collaboration, L.; Abgrall, N.; Abt, I.; Agostini, M.; Alexander, A.; Andreoiu, C.; Araujo, G.R.; Avignone, F.T., III; Bae, W.; Bakalyarov, A.; et al. LEGEND-1000 Preconceptual Design Report. arXiv 2021, arXiv:2107.11462. [Google Scholar]
- Adhikari, G.; Kharusi, S.A.; Angelico, E.; Anton, G.; Arnquist, I.J.; Badhrees, I.; Bane, J.; Belov, V.; Bernard, E.P.; Bhatta, T.; et al. nEXO: Neutrinoless double beta decay search beyond 1028 year half-life sensitivity. J. Phys. G Nucl. Part. Phys. 2021, 49, 015104. [Google Scholar] [CrossRef]
Observable | Data | Error | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N/A | N/A | 2.942 | 3.326 | 2.835 | 2.960 | 0.204 | 3.322 | 0.220 | 2.829 | 0.184 | |
0.085 | 0.001 | 0.101 | 0.100 | 0.094 | 0.101 | 0.010 | 0.110 | 0.011 | 0.105 | 0.011 | |
P | 0.352 | 0.031 | 0.399 | 0.409 | 0.008 | 0.378 | 0.196 | 0.361 | 0.195 | 0.081 | 0.161 |
P | 0.252 | 0.008 | 0.133 | 0.130 | 0.143 | 0.131 | 0.005 | 0.129 | 0.007 | 0.141 | 0.006 |
P | 0.655 | 0.150 | 0.657 | 0.729 | 0.719 | 0.671 | 0.050 | 0.754 | 0.086 | 0.734 | 0.056 |
P | 1.735 | 0.150 | 1.721 | 1.848 | 2.002 | 1.736 | 0.079 | 1.880 | 0.129 | 2.016 | 0.089 |
P | 3.145 | 0.150 | 3.038 | 3.216 | 3.634 | 3.043 | 0.095 | 3.235 | 0.130 | 3.633 | 0.111 |
D | 0.012 | 0.005 | 0.031 | 0.042 | 0.000 | 0.034 | 0.024 | 0.045 | 0.026 | 0.008 | 0.018 |
D | 0.225 | 0.007 | 0.137 | 0.145 | 0.185 | 0.139 | 0.014 | 0.148 | 0.015 | 0.185 | 0.022 |
D | 0.777 | 0.150 | 0.791 | 0.882 | 0.808 | 0.794 | 0.058 | 0.881 | 0.060 | 0.803 | 0.060 |
D | 1.821 | 0.150 | 1.807 | 2.001 | 1.939 | 1.810 | 0.108 | 1.989 | 0.113 | 1.928 | 0.131 |
D | 2.920 | 0.150 | 2.709 | 2.995 | 3.205 | 2.722 | 0.143 | 2.996 | 0.182 | 3.178 | 0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neacsu, A.; Horoi, M. Neutrinoless Double-Beta Decay Investigations of 82Se Using Three Shell Model Hamiltonians. Symmetry 2024, 16, 974. https://doi.org/10.3390/sym16080974
Neacsu A, Horoi M. Neutrinoless Double-Beta Decay Investigations of 82Se Using Three Shell Model Hamiltonians. Symmetry. 2024; 16(8):974. https://doi.org/10.3390/sym16080974
Chicago/Turabian StyleNeacsu, Andrei, and Mihai Horoi. 2024. "Neutrinoless Double-Beta Decay Investigations of 82Se Using Three Shell Model Hamiltonians" Symmetry 16, no. 8: 974. https://doi.org/10.3390/sym16080974
APA StyleNeacsu, A., & Horoi, M. (2024). Neutrinoless Double-Beta Decay Investigations of 82Se Using Three Shell Model Hamiltonians. Symmetry, 16(8), 974. https://doi.org/10.3390/sym16080974