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Abstract: Neutrinoless double-beta decay is considered one of the most promising processes that
would help clarify some of the symmetry-breaking problems in our understanding of the observable
universe. Recent studies of neutrinoless double-beta decay matrix elements have employed statistical
approaches based on modified shell model effective Hamiltonians for 48Ca (Phys. Rev. C 106, 054302
(2022)) and 136Xe (Phys. Rev. C 107, 045501 (2023)). The analyses rely on inducing perturbations in
the starting effective Hamiltonians to observe the behavior of a wide range of observables, besides
the 0νββ) NME, that are compared with experimental data. Following a Bayesian model averaging
approach, the range of probable values for the neutrinoless double-beta decay matrix elements
is presented. In this paper, we present a similar study for 82Se, which is described in the same
model space as 76Ge that is under experimental observation. Due to its faster calculation time
compared to 76Ge, 82Se can be used as an appropriate substitute in our complex statistical study.
Using the calculations performed for the statistical analysis of the neutrinoless double-beta decay
matrix elements, we also search for the correlations between the observables that we can compare to
experimental data.

Keywords: shell model; double beta decay; nuclear matrix elements; statistical analysis

1. Introduction

Our currently accepted model of the laws governing the nuclear structure, nuclear
reactions, elementary particles, and fundamental fields, called the Standard Model, requires
in its current formulation the conservation of the lepton number and the lepton flavor.
The experimental confirmation of neutrino oscillations [1,2], which were predicted by
theoretical models a few decades before [3,4], has demonstrated that lepton flavor is not a
fundamental symmetry. The significance of this discovery was recognized with the Nobel
Prize in 2015 [5]. In beta decay (β−/+), an electron/positron is emitted from a nucleus.
Thus, an accompanying (anti)neutrino needs to emerge, to satisfy the symmetry that is
required to balance out the production of leptons and antileptons in this transition. On a
fundamental level, the symmetry between particles and anti-particles that can be generated
has been verified experimentally with high precision, but this poses a problem for our
understanding of the observed universe composed mostly of matter, with antimatter being
found in insignificant amounts and for very a brief time, like in the case of positrons
emitted from β+ reactions, that quickly annihilate with surrounding electrons which
are abundant. To solve this so-called “asymmetry problem”, many theories have been
proposed over the last decades that aim to extend the standard model, including the
prediction of processes that can violate some of its fundamental symmetries. Experiments
are dedicated to the study of such symmetry-breaking processes, such as the MAJORANA
Collaboration, aiming at charge non-conservation and Pauli exclusion principle violation [6].
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The neutrinoless double-beta (0νββ) decay is a yet unobserved nuclear process competing
with the known two-neutrino double-beta transition that was observed for 11 isotopes [7],
but with the emission of only two electrons sharing the entire energy, not accompanied
by their respective antineutrinos. This decay violates lepton number conservation by two
units, making it a unique and interesting phenomenon in nuclear and particle physics [8].
The observation of 0νββ decay would provide strong evidence for new physics beyond the
Standard Model (BSM) and support the existence of Majorana neutrinos. The implications
of such a discovery could reveal many of the unknown properties of neutrinos [9,10] and
would provide a path to the extension of the SM Lagrangian [11,12]. Theoretical models
suggest that if Majorana neutrinos exist and neutrino masses originate from a type of
seesaw mechanism called Type I or Type II seesaw, then neutrinoless double-beta decay
should occur naturally. The detection of 0νββ decay could also indicate the existence of
right-handed currents, which would suggest that right-handed neutrino currents play a
role in mediating weak interactions, as it is predicted in the left–right symmetric model [13].
If neutrinoless double beta decay was observed, then this could also have implications
on other areas such as dark matter searches or even grand unified theories (GUTs). For
example, GUT models often predict new particles beyond those already known from
experiments at CERN’s Large Hadron Collider; however, these predictions are usually
very difficult to test experimentally due to their high energies involved. The possibility
of neutrinoless double-beta decay would open a path for us to study these predictions
at low energies. The results from ongoing experiments provide increasingly stringent
limits on the rate at which 0νββ decay might occur, helping to narrow down theoretical
models for its non-observation. The search for 0νββ decay continues with collaborative
efforts worldwide [14–17], using larger and more sensitive detectors in hopes of finally
confirming or refuting this enigmatic phenomenon. So far, the most stringent results come
from 76Ge [14] and 136Xe [17] with half-life limits of the order of 2 · 1026 years.

In the case of the light left-handed Majorana neutrino exchange scenario, theoretical
studies of this process describe the decay rate as a product of leptonic phase-space factors
(PSF) of the outgoing electrons, nuclear matrix elements (NME) that depend on the nuclear
structure of the parent and the daughter nuclei, and a lepton number violating parameter
(LNV) related to the effective Majorana neutrino mass [18–20]. Since the LNV values are
expected to be extracted from an eventual experimental observation of the 0νββ decay and
the PSF have been already calculated with reliable and very accurate methods employed
for a wide variety of transitions [21–28], the greatest uncertainty remains from the values of
the NME that are calculated with various nuclear structure methods, most commonly: the
interacting shell model methods [29–39], the proton–neutron quasiparticle random phase
approximation (pn-QRPA) methods [20,40–45], the interacting boson approximation (IBA)
methods [46,47], the energy density functional method [48], the projected Hartree Fock
Bogoliobov (PHFB) method [49], the coupled-cluster method (CC) [50], the in-medium
generator coordinate method (IM-GCM) [51], and the valence-space in- medium similarity
renormalization group method (VS-IMSRG) [52]. Each of these methods has its own
advantages and disadvantages, mainly related to the difficulty of the numerical calculations,
the amount of correlations considered, and harmonic oscillator shells that can be accessed.
Since these methods all rely on various parameters and approximation, the results they
provide span over wide ranges [53], and the consensus is difficult to reach, sometimes
even within the confines of a specific model. Another recent review of the status of the
theoretical studies of 0νββ decay, together with a Bayesian discovery probability of future
experiments is found in Ref. [54].

Of the popular nuclear structure models listed, the interacting shell model (ISM)
presents the most stable framework, without the need to adjust parameters, and with
predictions from different groups using different effective Hamiltonians that encode the
nucleon–nucleon interaction generally in agreement. Additionally, ISM calculations [55]
have predicted the 2νββ decay half-life before the experimental confirmation [56]. As such,
we find ISM as the preferred method for the calculation of NME.
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Section 2 presents the statistical model framework in which we conduct the study
presented in this paper. We describe our methodology and explain our setup. In the last
section, Section 3, we present our results for the 0νββ NME of 82Se as they emerge from the
Bayesian Model Averaging statistical study, together with our comments and conclusions.
In previous works (see, for example, Refs. [37,38]), we performed validations of the effective
Hamiltonians in the jj55 model space. Our work presented here elevates those studies by
also performing a thorough analysis of the correlations that appear in the calculations of
the observables that we compare to the experimental data in the jj44 model space.

2. The Statistical Model Framework

Continuing in the trend of Ref. [57] and Ref. [58] for 48Ca in the fp model space and
132Xe in the jj55 model space, respectively, we turn our attention to the jj44 model space, also
called f5 pg9, that is relevant for 76Ge and 82Se. The jj44 model space comprises of a 56Ni core
and the 1p3/2, 1p1/2, 0 f5/2, and 0g9/2 valence orbitals. The recipe of Ref. [58] involves the
use of three starting effective Hamiltonians that are modified into sets of 1000 Hamiltonians
by randomly varying the values for each of their two-body matrix elements (TBME) within
±10% of their original values. The single-particle energies (SPE) are kept at their initial
values. Since the calculations for 76Ge are more difficult, we perform this statistical study
for the decay of 82Se in the same model space. No truncation of the model space is
employed in this analysis, similar to our previous studies. Following the interest generated
by Ref. [57], other statistical studies have been performed, such as searching for correlations
between neutrinoless double-β, double Gamow–Teller, and double-magnetic decays in the
pnQRPA [59], where the authors found linear correlations between 0νββ decays and both
double Gamow–Teller and M1M1 transition probabilities.

In this paper, our three starting Hamiltonians are JUN45 [60], GCN:2850 [61], and JJ44b [62].
These effective Hamiltonians are obtained by starting with a theoretical Hamiltonian derived
from a microscopic interaction from the Bonn-C potential that is further fitted and improved
with experimental data. Ref. [60] provides a very detailed description of how JUN45 and similar
effective Hamiltonians are obtained, how they differ in terms of single-particle energies and
two-body matrix elements, how they deal with missing orbitals, and the Ikeda sum rule not
being satisfied. In the particular case of the jj44 model space, the 56Ni core is considered “soft”,
leading to the yrast states in 57Ni not being pure single-particle states. Thus, the single-particle
energies can not simply be taken from experimental energy levels of one-hole or one-particle
states over the 56Ni core and need to be fitted when constructing the effective Hamiltonians.

For our study, with each modified Hamiltonian, we calculate a set of observables that
enter the statistical model. These observables, besides the 0νββ NME, are: 2νββ NME,
energies of the first 2+, 4+, and 6+ states in 82Se and 82Kr, B(E2)↑ transition probabilities
of 82Se and 82Kr to the first 2+ states, the Gamow–Teller transition probability from 82Se
and from 82Kr to the 1+ excited state in 82Br. In Ref. [58], proton occupancies and neutron
vacancies were also used in the analysis. For the case of 82Se and 82Kr, we could not
identify reliable data to compare against, thus these are excluded from the present study.
The correlations of the variations between pairs of these observables are carefully studied,
bringing more insight into the consistency of the calculations, but also searching for non-
trivial connections. This comprehensive treatment of the observables could peak interest
and open a path to further developments of new effective Hamiltonians where more
experimental data could be fed into the fit procedures. Seeing how these observables
correlate in the calculations could prove useful for reducing the number of fit parameters
and providing optimal coverage of the affected observables.

The thorough details of the calculation of these observables are found in Refs. [57,58,63].
It is worth mentioning that for the calculations of the Gamow–Teller transition probabilities
and for the 2νββ NME, we use a quenching value q = 0.74 that is typical in the fp model
space for 48Ca with most Hamiltonians and very close to the one we use in the jj55 model
space for 124Sn, 130Te, and 136Xe with the SVD Hamiltonian [64]. The effects of varying
the quenching factor q in the statistical study of 136Xe are found in Ref. [63]. For M0ν, we
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use the closure approximation that replaces the energy of the intermediate states with
an average energy, and the result is presented without quenching. The choice for the
short-range correlation parametrization is Jastrow with CD-Bonn constants, which is quite
soft and provides very similar results to UCOM, which is equally popular. Since we do not
fine-tune any model parameters to fit the data available, we use the standard values in the
case of all three starting Hamiltonians and their derived ones. While careful fine-tuning the
model parameters and the interaction would improve the results for a specific case that one
is interested in, the practice of over-fitting decreases the universality of the Hamiltonian,
puts its prediction power into question, and most importantly, can have hidden effects on
observables that were not considered in the process of fine-tuning, such as changing the
shape of the nucleus or altering its magicity.

3. Results, Discussions, and Conclusions

To establish a baseline for our statistical study, we calculate the observables using the
three original starting Hamiltonians and compare them to the experimental data. With this
information, we can proceed to present the statistical data from our calculations using
1000 variations of each original Hamiltonian that is used in the Bayesian Model Averaging.

In Table 1, the first column presents the name of the observable, where the leading
letters “P” and “D” denote the parent 82Se and daughter 82Kr nuclei, respectively. M0ν is
the 0νββ NME, M2ν the 2νββ NME, GT denotes the Gamow–Teller transition probabilities
to the first 1+ state in the intermediate nucleus 82Br, BE(2) ↑ are the quadupole transition
probabilities to the first 2+ state, and E2+ , E4+ , and E6+ are the energies of the first 2+,
4+, and 6+ states, respectively. Columns 2 and 3 represent the experimental data and the
error. In the case of the energy levels, an error value of 150 keV was chosen, as discussed in
Refs. [57,58,63]. Columns 4–6 show the values obtained using the starting Hamiltonians
gcns, juns, and juns, followed by the average value after 1000 iterations , µgcn, µjun, µgcn
and their corresponding standard deviation σgcn, σjun, and σjj44.

Reading the data in Table 1, it appears that the average values for the observables are
very close to those obtained with the starting Hamiltonians and the standard deviations are
reasonable, indicating no dramatic “phase-transition”-like behavior or hidden domination
of the very specific TBME. We consider this a very good thing, lending credibility to the
stability of the shell model calculations and their general power of prediction. One should
bear in mind that despite the results being so similar between the starting Hamiltonians,
they are actually quite different with differences in the order of MeV between some of their
SPE for the same orbitals and also MeV differences between some of their TBME, both
diagonal and off-diagonal.

Figure 1 displays a “heat map”-type plot of the Pearson correlation coefficient between
pairs of observables. Also shown are the values of the Pearson coefficient ranging from 1, a
perfect correlation, to −1, a perfect anti-correlation, and 0 being totally uncorrelated. We
consider the variation of a pair of observables as correlated when the Pearson coefficient is
above 0.5 or below −0.5. Similar to the cases of 48Ca and 136Xe, the variations in M0ν and
M2ν correlate with a factor greater than 0.8, indicating a very strong correlation between
these observables. This is not actually trivial, since the details of their calculation are quite
different, with M2ν depending on the 1+ states in the intermediary nucleus, with M0ν going
through all the virtual states permitted by the neutrino momentum. Expected correlations
appear among the energies of the excited states and between the 1+ states and the BE(2) ↑
probabilities. One can notice a strong correlation between the energy levels in the parent
and in the daughter nuclei, offering some confidence for future calculations for a transition
involving excited states.
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Table 1. The experimental data, the calculated values with the starting Hamiltonians, and the statistics
for the relevant 12 observables.

Observable Data Error gcns juns jj4s µgcn σgcn µjun σjun µjj4 σjj4

M0ν N/A N/A 2.942 3.326 2.835 2.960 0.204 3.322 0.220 2.829 0.184
M2ν 0.085 0.001 0.101 0.100 0.094 0.101 0.010 0.110 0.011 0.105 0.011
PGT 0.352 0.031 0.399 0.409 0.008 0.378 0.196 0.361 0.195 0.081 0.161
PBE2 0.252 0.008 0.133 0.130 0.143 0.131 0.005 0.129 0.007 0.141 0.006
PE2+ 0.655 0.150 0.657 0.729 0.719 0.671 0.050 0.754 0.086 0.734 0.056
PE4+ 1.735 0.150 1.721 1.848 2.002 1.736 0.079 1.880 0.129 2.016 0.089
PE6+ 3.145 0.150 3.038 3.216 3.634 3.043 0.095 3.235 0.130 3.633 0.111
DGT 0.012 0.005 0.031 0.042 0.000 0.034 0.024 0.045 0.026 0.008 0.018
DBE2 0.225 0.007 0.137 0.145 0.185 0.139 0.014 0.148 0.015 0.185 0.022
DE2+ 0.777 0.150 0.791 0.882 0.808 0.794 0.058 0.881 0.060 0.803 0.060
DE4+ 1.821 0.150 1.807 2.001 1.939 1.810 0.108 1.989 0.113 1.928 0.131
DE6+ 2.920 0.150 2.709 2.995 3.205 2.722 0.143 2.996 0.182 3.178 0.195

M0 PE2 + PE4 + M2 DE6 + DE4 + DE2 + PE6 + DGT DBE2 PGT PBE2
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0.81 0.97 1 0.68 0.88 0.82 0.76 0.93 0.39 0.41 0.33 -0.66

0.8 0.72 0.68 1 0.71 0.65 0.61 0.53 0.78 0.17 0.68 -0.66
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0.77 0.83 0.82 0.65 0.88 1 0.87 0.72 0.32 0.093 0.28 -0.48

0.71 0.78 0.76 0.61 0.74 0.87 1 0.66 0.35 -0.082 0.32 -0.49

0.62 0.82 0.93 0.53 0.85 0.72 0.66 1 0.32 0.46 0.29 -0.44

0.37 0.41 0.39 0.78 0.39 0.32 0.35 0.32 1 0.038 0.93 -0.56

0.36 0.35 0.41 0.17 0.42 0.093 -0.082 0.46 0.038 1 0.026 -0.099

0.28 0.33 0.33 0.68 0.3 0.28 0.32 0.29 0.93 0.026 1 -0.43
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Figure 1. The heatmap for all 12 observables when using the GCN28:50 effective Hamiltonian. Very
similar representations are obtained with the JUN45 and JJ44b Hamiltonians.
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For the interesting cases where the absolute value of the Pearson correlation coefficient
is larger than 0.5, we present the reader with an easy-to-visualize correlation matrix in
Figure 2, where the contour plots show the density gradient of the calculated values and the
bubble plot shows the spread of values with a dataset reduced by a factor of 10, such that it
is legible. Since the diagonal would show only a straight line for the perfect correlation
between an observable and itself, we utilize that space to display the histogram of that
observable. For all of the observables, the distribution of the values follows a Gaussian
shape, which is expected in calculations that are not strongly dependent on a specific value
of a parameter.
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Figure 2. Correlation matrix for observables that have correlation factor greater than 0.5, when using
the GCN28:50 Hamiltonian.
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From a visualisation perspective, the closer the contour lines or the scattered bubbles
come to a diagonal, like in Figure 2, the more correlated the pair of observables is. Very
clear examples can be seen with the 4+ and 2+ energies of the parent and daughter, but also
with the M0ν and M2ν. Examples of anti-correlation come from the parent BE(2) ↑ and
several observables where the values cluster along the other diagonal line.

Figure 3 presents, in blue bins and blue lines, the distributions for the calculated
values of the 12 observables, and with red lines, the experimental data. The width of the
experimental distributions corresponds to the experimental error presented in Table 1. A
green vertical line with no width denotes the original values calculated with the starting
Hamiltonian. Like in the case of Figures 1 and 2, for the other two types of Hamiltonians,
the images are quite similar and would not provide further value to the reader.
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Figure 3. Distributions based on experimental data (in red) compared with the KDE (in blue) obtained
from the GCN28:50 starting Hamiltonian. The green bars indicate the values of the observables for
the starting effective Hamiltonians.

In the case of the JUN45 starting effective Hamiltonian, we present the calculated
distributions for the 12 observables and a comparison of the experimental data in Figure 4.
The obtained distributions are similar to those of GCN28:50 and JJ44b. JUN45 is fitted with
different experimental data than GCN28:50, and the small impact on the 12 observables
can be noted when carefully comparing the results.

In Figure 5, we show our results for the distributions of the 12 when using the JJ44b
starting Hamiltonian. Again, a careful inspection reveals the small differences when
compared to the other starting Hamiltonians. One more noticeable impact is on the very
low values of the GT probabilities, where the changes to the TBME of the Hamiltonian can
suppress the results close to 0. It is to be noted that the experimental data also show small
values, and this leaves very little room for theoretical results before they fail. Just like in
the case of GCN28:50 and JUN45, the BE(2) ↑ results do not overlap with the experimental
value and its associated error, when calculating using the canonical charges.
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Figure 4. Similar to Figure 3, the distributions based on experimental data (in red) compared with the
KDE (in blue) obtained from the JUN45 starting Hamiltonian.
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Figure 5. Similar to Figures 3 and 4, the distributions based on experimental data (in red) compared
with the KDE (in blue) obtained from the JJ44b starting Hamiltonian.

The authors of Ref. [60] remark that many nuclei situated in the jj44 model space
are deformed, with large experimental values for BE(2) ↑ for transitions along low-lying
states. Due to the lack of the f (7/2) and g(7/2) orbitals, the jj44 model space is not
sufficient enough to describe large quadrupolar collectivity [65]. In the case of the BE(2) ↑
calculations for the parent and daughter nuclei, there is a way to make the results fit
the experimental data by using recommended values for the neutron and proton charges
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instead of the canonical ones that we employed. That would make our results look much
better, but it is outside the purpose of our study as it does not change anything in the
statistical analysis in our paper. The correlations between the observables stay exactly the
same, and the results and conclusions about the 0νββ NME remain the same. The authors
of Ref. [60] provide the values 0.8 and 1.8 for the neutron and proton charge, respectively,
but that is only relevant when the focus is on BE(2) ↑ calculations. We can confirm that
this choice of effective charges works very well for all three Hamiltonians used here, not
just for JUN45. For the convenience of the reader, we list the BE(2) ↑ values for the
starting Hamiltonians with the modified charges as: PBE2gcns = 0.2127, PBE2juns = 0.2075,
PBE2jj4s = 0.2291, and DBE2gcns = 0.2311, DBE2juns = 0.2446, DBE2jj4s = 0.3099.

Similar to Ref. [58], we performed an analysis using Bayesian model averaging, where
the data from the three sets of 1000 effective Hamiltonians was fed into the calculation
to provide a probability distribution of the 0νββ NME, with a mean value, a standard
deviation, and a total range. The results of the Bayesian model indicate the set of weights
WH to be used for the KDE distributions PH , where H denotes the GCN28:50, JUN45,
and JJ44b starting Hamiltonians [58,63],

P(M0ν) =WGCN28:50PGCN28:50(M0ν) + WJUN45PJUN45(M0ν) + WJ J44bPJ J44b(M0ν) . (1)

The weights WH were obtained using the so-called evidence integrals, Equations (4)
and (5) of Ref. [58] assuming equal prior probabilities, 1/3, for all three distributions PH .
The direct result of this analysis favors the GCN28:50 staring Hamiltonian with weight 1,
the others being 0. This comes mainly from the accuracy of the spectra and the fact that JJ44b
provided quite poor values of the Gamow–Teller transition probabilities. However, as in
Refs. [58,63], we consider for the weights WH , an average between the prior probabilities
1/3 each and the posterior probabilities 1, 0, 0 for GCN28:50, JUN45, and JJ44b, respectively.
The final weights, WH , are 4/6 for GCN28:50, 1/6 for JUN45, and 1/6 for JJ44b. Since
the values of the 0νββ NME were similar between the three sets of Hamiltonians and
the GCN28:50 values sit between the JUN45 and the JJ44b ones, the the weighted sum
of the 0νββ NME also resembles the GCN28:50 distribution. This makes it look like a
democratic distribution of the weights despite being very influenced by the GCN28:50
results. One could infer that, unlike in other model spaces, in the jj44 one, the choice of
effective Hamiltonian does not play a major role in the disagreement on the NME values
that is still present in the literature. Previous works [37,38,66] have shown that the effects
of missing spin-orbit partners can only account for about 20% of the NME value, thus not
being of a major concern compared to the factor of 5 difference for 130Te in Refs. [53,54].

Figure 6 presents our probability distribution function (PDF) of the 0νββ NME using
results of the Bayesian model averaging analysis labeled “weighted sum”, together with
the PDF coming from the tree sets of Hamiltonians. The three probability distributions
corresponding to each starting Hamiltonian are the kernel density estimation (KDE) ob-
tained from the statistical sampling. They are the same distributions that appear in the
upper left panel in Figures 3–5. They have been obtained using the standard data analysis
Pandas package for Python, and they are properly normalized to one. The weighted sum
curve in Figure 6 is a linear combination of the other three with weight normalized to
unity, and therefore, this PDF is also normalized to one. In the same fashion, we calculated
the mean value of the weighted sum, corresponding to the expectation value of the NME,
and its standard corresponds to the error in the NME. To find a range of values for the
NME at 90% confidence level, we performed numerical integration of the weighted PDF
from left and right, until we reach 5% in each case. The units for the PDFs in Figure 4 are
units of a density distribution that are the inverse of the units of the variable, the NME in
this case, which is dimensionless. There is a significant overlap between the final result
(“weighted sum”) and the distributions from the individual Hamiltonians, indicating that
shell model calculations provide consistent and reliable results for the 0νββ NME in the
jj44 model space, regardless of the Hamiltonians used or any specific optimization that was
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employed during the calculation. This is in contrast to calculations using other methods, as
can be clearly seen in Figure 5 of Ref. [53], where the QRPA results of different groups can
have very significant differences, mainly attributed to parameters such as gpp that need to
be adjusted for every specific calculation.

2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
M0

0.0

0.5

1.0

1.5

2.0
JUN45

JJ44b

GCN28:50

weighted sum

Figure 6. PDFs of the 0νββ NME distributions for the JUN45 jj44b and GCN28:50 Hamiltonians and
their weighted sum (red curve, see text for details).

The weighted sum result presented in Figure 6 can now be used to provide a more
realistic extraction of the experimental sensitivity to the neutrino mass. Placing a known
and controlled uncertainty on the theoretical calculations would enable better predictions
for the amount of expensive isotopes that are needed to expand the current experiments
that can only access the inverted mass hierarchy into the next generation ones that would
delve into the much lower normal mass hierarchy. This PDF can also replace the “error bars”
that we sometimes plot between several points corresponding to calculations with specific
choices for short-range correlation parameters, finite size effects, higher-order corrections
to the nucleon currents, different effective Hamiltonians, etc.

In conclusion, we present the 0νββ NME of 82Se using a shell model statistical analysis
employing Bayesian model averaging, with 3000 effective Hamiltonians derived from three
starting Hamiltonians (GCN28:50, JUN45, and JJ44b), providing a 0νββ NME expectation
value of 3, standard deviation of 0.47, and a range of 2.55 to 3.6 at the 90% confidence level.
The starting Hamiltonians were altered by randomly changing the values of their two-body
matrix elements by ±10%, then 12 observables were calculated, including the 0νββ NME,
11 of which were compared to the experimental data. We found the shell model results
to be very resilient to the changes of the Hamiltonians within ±10% and stable across a
wide range of observables. A study of the correlations between the 12 observables was
performed, and the results were similar for all three sets of 1000 effective Hamiltonians.
The 0νββ NME and the 2νββ NME were found to correlate with a Pearson coefficient
value of over 0.8, the excited energies were highly correlated, and the BE(2) ↑ transition
probabilities of the first 2+ excited state in the parent were found to anti-correlate with
the 0νββ NME, the 2νββ NME, the first excited 2+, 4+ and 6+ in both the parent and the
daughter nuclei. One should bear in mind that the calculations of the 0νββ NME are unlike
those for any other observables that we can test with experimental data, but correlations
seen between the 0νββ NME and the others add confidence in the reliability of the 0νββ
NME predictions. This type of analysis opens up the possibility to study other processes
and observables through similar statistical analyses and to search for correlations between
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calculations that were not considered here, such as the ordinary muon capture [67–69] that
is also of experimental interest in MONUMENT [70], LEGEND [71], and nEXO [72].
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