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Abstract: This paper explores bimodal skew-symmetric distributions, a versatile family of dis-
tributions characterized by parameters that control asymmetry and kurtosis. These distributions
encapsulate both symmetrical and well-known asymmetrical behaviors. A simulation study evaluates
the model’s estimation accuracy, detailing the score function and the robustness of the observed infor-
mation matrix, which is proven to be non-singular under specific conditions. We apply the bimodal
skew-normal model to protein data from cancer cells, comparing its performance against four estab-
lished distributions supported on the entire real line. Results indicate superior performance by the
proposed model, underscoring its potential for enhancing analytical precision in biological research.

Keywords: skew-normal distribution; statistical model; bimodality; observed information matrix;
protein in cancer cells; simulation

MSC: 60E05; 62E15; 62F10

1. Introduction

The family of skew-symmetric distributions has been increasingly recognized for
its flexibility and efficacy in modeling real-world data by transforming symmetric prob-
ability density functions (PDFs) with specific generators. This family is defined by the
following PDF:

2 f (z)G(w(z)), z ∈ R, (1)

where f is a symmetric PDF centered at 0 and G is the cumulative distribution function
(CDF) of a continuous random variable that is symmetric around 0. The function w is
required to be odd and continuous, meaning w(−z) + w(z) = 0.

This framework was initially developed by Azzalini [1,2], who introduced the skew-
normal distribution by setting f = G′ = ϕ, the PDF of the standard normal distribution,
and w(z) = λz. This construction allows the skew-symmetric distribution to encapsulate
both symmetric and skewed data through the parameter λ. Over time, various researchers
(e.g., Gupta et al. [3], Ma and Genton [4], and Arellano-Valle et al. [5]) have expanded this

model to include different forms of w, such as w(z) = λ1z+λ2z3 and w(z) = λ1z/
√

1+ λ2
2z2,

broadening its applicability within the skew-symmetric framework.
The general form (1) encompasses a wide range of submodels, from the symmetric

density f (when w(z) = 0) to the highly skewed half- f densities (as w(z) → ±∞). These
models can capture varying degrees of skewness in data, making them valuable in many
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statistical applications. For example, Pewsey [6] examined a subfamily where w(z) = λz
for λ ∈ R. However, the model 2η−1 f ((x − ξ)/η)G(λ(x − ξ)/η), x ∈ R, with location
parameter ξ and scale parameter η, encounters significant challenges in maximum like-
lihood estimation (MLE) when G′ = f = ϕ. Specifically, when λ = 0, the expected
information matrix becomes singular, complicating the estimation process. Pewsey also
noted that the observed information matrix fails to have an inverse for the CDF G when
G′′(0) = g′(0) = 0.

To address these challenges and further enhance the applicability of skew-symmetric
distributions, we propose a novel w function that not only avoids the singularity issues at
λ = 0 but also enables the modeling of bimodal data, which is crucial in many practical
fields, including medicine. Specifically, we consider w(z) = λz2 for z > 0 and w(z) =
−λz2 for z < 0. This function, equivalent to w(z) = λ sign(z)z2 ≡ λz|z|, where sign(·)
denotes the sign function, meets the necessary properties of w and introduces bimodality
into the model. Some models in the literature that do not present singularity issues in
the information matrix are as follows: Bakouch et al. [7] introduce a family of skewed
distributions and explore the bimodal skew-normal distribution; Salinas et al. [8] present a
two-piece normal distribution for modeling biaxial fatigue data; and Khorsheed et al. [9]
propose a flexible form of three-parameter skew-normal distributions, enhancing flexibility
for practical and industrial applications.

This proposed w function ensures that the model satisfies the regular conditions re-
quired for deriving the asymptotic distribution of the parameter vector. Importantly,
the observed information matrix remains non-singular when λ = 0, overcoming a sig-
nificant limitation of previous models. The motivation for introducing this function is to
address the non-singularity issue at λ = 0 and to incorporate bimodality, which enhances
the model’s capability to accurately represent complex data distributions, particularly in
fields such as medical research.

The primary objectives of the proposed bimodal skew-symmetric distributions are
to provide a flexible framework for accurately modeling data with bimodal and skewed
characteristics, which are common in various practical applications. The goals include
extending the existing skew-normal distributions to accommodate bimodal features, en-
hancing the ability to model asymmetric data, and developing practical tools for parameter
estimation and goodness-of-fit tests. Additionally, we aim to demonstrate the effectiveness
of the proposed model through empirical analyses, such as on protein data from cancer
cells, to illustrate its practical value and encourage its adoption in relevant fields.

These distributions are highly relevant in various fields where data exhibit bimodal
and skewed characteristics. For example, in biology, they can model the distribution of
protein expression levels in cancer cells, where distinct subpopulations of cells exhibit
different expression patterns. In finance, these distributions can describe the returns of
assets that have two predominant regimes, such as bullish and bearish market conditions,
while also accounting for skewness due to market asymmetries. In environmental science,
they are useful for modeling pollutant concentrations that show bimodal behavior due to
varying sources and conditions. By providing a flexible framework that captures these
complex data structures, the proposed distribution offers significant advantages for accurate
modeling and inference in real-world applications.

This paper is structured as follows. Section 2 defines the bimodal skew-symmetric
distribution and examines its key probabilistic properties as well as certain inferential issues.
Section 3 introduces the bimodal skew-normal (BSN) distribution as a special case of the
bimodal skew-symmetric family and discusses its properties and estimation. In Section 4,
we demonstrate the adaptability of this class of distributions by analyzing data on proteins
in cancer cells. Finally, Section 5 provides concluding remarks.

2. Bimodal Skew-Symmetric Family

In this paper, we investigate a family of distributions, called bimodal skew-symmetric
distributions, that is generated by Equation (1) using w(z) = λz|z|, where λ ∈ R. We start
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by presenting a lemma that characterizes this class of distributions and then proceed to
derive several important properties. These properties are relevant for understanding the
behavior of this family of distributions and for developing inferential procedures for fitting
the model to data.

Lemma 1. Let f be a symmetric PDF about 0 and let G be the CDF of a continuous random
variable that is symmetric around 0. We define the function

hZ(z; λ) = 2 f (z)G(λz|z|), z ∈ R, (2)

which is a PDF for any value of λ ∈ R. A random variable Z with a bimodal skew-symmetric
distribution and a PDF given by (2) is denoted by Z ∼ BS f (λ; G).

Proof. Let µ(λ) =
∫ ∞
−∞ 2 f (z)G(λz|z|)dz. We aim to prove that µ(λ) = 1 for all λ ∈ R.

In fact,

µ(λ) =
∫ 0

−∞
2 f (z)G(−λz2)dz +

∫ ∞

0
2 f (z)G(λz2)dz

=
∫ ∞

0
2 f (z)G(−λz2)dz +

∫ ∞

0
2 f (z)G(λz2)dz

=
∫ ∞

0
2 f (z)[G(−λz2) + G(λz2)]dz

=
∫ ∞

0
2 f (z)dz = 1

2.1. Cumulative Distribution Function

The cumulative distribution function corresponding to the density in (2) is given by

HZ(z; λ) =
∫ z

−∞
2 f (t)G(λt|t|)dt, z ∈ R. (3)

Proposition 1. Suppose HZ(z; λ) as given in (3), then the following properties are obtained:

(i) HZ(z; 0) = F(z), where F is the CDF of f .
(ii) HZ(−z; λ) = 1 − HZ(z;−λ).
(iii) lim

λ→+∞
HZ(z; λ) = (2F(z)− 1)I(z ≥ 0).

(iv) lim
λ→−∞

HZ(z; λ) = 2F(z)I(z < 0),

where I(·) is the indicator function.

Proof.

(i) HZ(z; 0) =
∫ z
−∞ 2 f (t)G(0)dt =

∫ z
−∞ f (t)dt = F(z), where F is the CDF of f .

(ii)

HZ(−z; λ) =
∫ −z

−∞
2 f (t)G(λt|t|)dt = −

∫ z

∞
2 f (−u)G(−λu| − u|)du

=
∫ ∞

z
2 f (u)G(−λu|u|)du = 1 −

∫ z

−∞
2 f (u)G(−λu|u|)du

= 1 − HZ(z;−λ).
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(iii) Suppose z ≥ 0, then

lim
λ→+∞

HZ(z; λ) = lim
λ→+∞

∫ z

−∞
2 f (t)G(λt|t|)dt

= lim
λ→+∞

[∫ 0

−∞
2 f (t)G(−λt2)dt +

∫ z

0
2 f (t)G(λt2)dt

]
=

∫ 0

−∞
2 f (t)G(−∞)dt +

∫ z

0
2 f (t)G(+∞)dt

= 2
∫ z

0
f (t)dt = 2

[∫ z

−∞
f (t)dt − 1/2

]
= 2F(z)− 1.

(iv) Suppose z < 0, then

lim
λ→−∞

HZ(z; λ) = lim
λ→−∞

∫ z

−∞
2 f (t)G(λt|t|)dt

= lim
λ→−∞

∫ z

−∞
2 f (t)G(−λt2)dt = lim

λ→−∞

∫ z

−∞
2 f (t)(1 − G(λt2))dt

=
∫ z

∞
2 f (t)dt −

∫ z

∞
2 f (t)G(−∞)dt = 2

∫ z

−∞
f (t)dt = 2F(z).

2.2. Properties
2.2.1. Basic Properties

The following properties are directly derived from Lemma 1.

Proposition 2. Using the previous notations, the following properties hold:

(i) hZ(z; 0) = f (z).
(ii) −Z ∼ BS f (−λ; G).
(iii) Y = Z2 ∼ y−1/2 f (y1/2)I(y ≥ 0).
(iv) Y = |Z| ∼ 2 f (y)I(y ≥ 0).
(v) lim

λ→+∞
hZ(z; λ) = 2 f (z)I(z ≥ 0).

(vi) lim
λ→−∞

hZ(z; λ) = 2 f (z)I(z < 0).

Proof. Property (i) of Proposition 2 shows that the f distribution belongs to the family of
BS f distributions. Properties (ii)–(iv) indicate the distributions of the variables −Z, Z2, and
|Z|, respectively. Properties (v) and (vi) show the distributions that follow by considering
the limiting values of λ.

2.2.2. Bimodality Property

The bimodality property of the random variable Z when it follows a BSf distribution
with λ ̸= 0 is presented in Proposition 3. To prove this, we differentiate Equation (2) with
respect to z and equate it to zero, which yields two different solutions, z1 and z2. The first
solution z1 corresponds to a negative modal point, and the second solution z2 corresponds
to a positive modal point. Thus, the random variable Z is a bimodal with two distinct
modes at z1 ∈ R− and z2 ∈ R+. This property is useful in modeling real-life situations that
exhibit two distinct peaks in their data distribution.

Proposition 3. Suppose Z ∼ BS f (λ; G), then the random variable Z is a bimodal for λ ̸= 0.
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Proof. Differentiating Equation (2) with respect to z and equating to zero implies

z1 =
f ′(z1){1 − G(λz2

1)}
2λ f (z1)g(λz2

1)
, if z1 < 0,

z2 = −
f ′(z2)G(λz2

2)

2λ f (z2)g(λz2
2)

, if z2 ≥ 0,

where G′ = g and λ ̸= 0. Therefore, z1 ∈ R− and z2 ∈ R+ are different modal points.
Therefore, the random variable Z is a bimodal.

2.3. Stochastic Representation of the Random Variable

Proposition 4. Suppose Z∼BS f (λ; G) with λ ∈ R. Then Z can be represented as Z = SY, where
S and Y are dependent random variables with fY(y) = 2 f (y)I(y ≥ 0) and P(S = 1|Y = y) =
1 − P(S = −1|Y = y) = G(λy2).

Proof. Let S and Y be defined as in the statement of the proposition. Using the joint
distribution of (Z, S) and the Jacobian method, the marginal distribution of Z is obtained
as follows:

If Z ≥ 0, then Z = Y and S = 1. Therefore, we have

hZ(z; λ) = fY(z)P(S = 1|Y = z) = fY(z)G(λz2) = 2 f (z)G(λz2). (4)

On the other hand, if Z < 0, then Z = −Y and S = −1,

hZ(z; λ) = fY(−z)P(S = −1|Y = −z) = fY(−z)(1 − G(λz2))

= 2 f (−z)G(−λz2) = 2 f (z)G(−λz2). (5)

Therefore, from (4) and (5), we obtain hZ(z; λ) = 2 f (z)G(λsgn(z)z2) = 2 f (z)G(λz|z|).

This proof shows that a random variable Z that follows a BSf distribution with location
parameter λ can be represented as a combination of two dependent random variables S
and Y. The variable Y has a density function that is twice the absolute value of the density
function of Z for positive values of Z and is zero for negative values of Z. The variable S
takes the value of 1 with the probability given by the value of the cumulative distribution
function of G evaluated at λY2, and the value of −1 with the complement of this probability.

This representation is useful because it provides a way to generate random samples
from the BSf distribution using the joint distribution of S and Y. Additionally, it allows for
the computation of various statistics and moments of the distribution using the properties
of S and Y.

2.4. Calculation of Moments for the BS f Distribution

The random variable Z can be represented as a combination of two dependent random
variables S and Y, as shown in Proposition 4. In this section, we derive a formula for
computing the r-th moment of a random variable X that follows the BS f (θ; G) distribution,
where θ = (ξ, η, λ)′ and X = ξ + ηZ, with Z ∼ BS f (λ; G).

Proposition 5. The r-th moment of X is given by

E(Xr) =
r

∑
k=0

(
r
k

)
ξr−kηkE(Zk), (6)
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where E(Zk) is given by

E(Zk) =

{
E(Yk), if k is even,
2E(YkG(λY2))−E(Yk), if k is odd,

(7)

and Y ∼ 2 f (y)I(y ≥ 0) is the random variable in the stochastic representation of Z as given in
Proposition 4.

Proof. By utilizing the stochastic representation provided in Proposition 4 and applying
the properties of conditional expectation, we can derive the required expression.

E(Zk) = E(E(Zk|Y))
= E(YkG(λY2) + (−1)kYk(1 − G(λY2)))

= E((1 − (−1)k)YkG(λY2) + (−1)kYk).

The above leads to the conclusion that if k is even, then E(Zk) = E(Yk). On the other
hand, if k is odd, then E(Zk) = 2E(YkG(λY2))−E(Yk). To obtain E(Xk), it is possible to
apply the binomial theorem along with the basic properties of the expectation.

The mean and variance of a random variable X with BSf distribution can be easily
calculated using the following corollary:

Corollary 1. Suppose Z ∼ BS f (λ; G) and X = ξ + ηZ ∼ BS f (θ; G). Then, the mean and
variance of X are given by

E(X) = ξ + η(2b1 − a1) and Var(X) = η2a2 − (2b1 − a1)
2, (8)

where ar =
∫ ∞

0 2yr f (y)dy and br =
∫ ∞

0 2yr f (y)G(λy2)dy for r = 1, 2.

This result provides a straightforward way to compute the expected value and vari-
ance of a BSf-distributed random variable X, where ξ, η, λ, and G are parameters of the
distribution. The integrals ar and br can be numerically evaluated, making the calculation
of E(X) and Var(X) feasible in practice.

2.5. Observed Information Matrix for the Location–Scale BSf Distribution

Proposition 6 states that if x is a random sample from a BS f (θ; G) distribution with
a continuous and differentiable symmetric univariate probability density function f and
cumulative distribution function G, where f = ϕ, then the solution to the score equations
is λ = 0, ξ = x, and η2 = ∑n

i=1(xi − x)2/n, and the observed information matrix is
non-singular when λ = 0 and f ′′ and G′′ are continuous functions.

Proposition 6. Let x = (x1, x2, . . . , xn)′ be a realization of the random sample X = (X1, X2, . . . , Xn)′,
where X1, X2, . . . , Xn are independent and identically distributed random variables following a BS f (θ; G)
distribution. Assume that f and G are continuous and a differentiable symmetric univariate probability
density function and cumulative distribution function, respectively, with f = ϕ.

(i) The solution to the score equations is λ = 0, ξ = x, and η2 = ∑n
i=1(xi − x)2/n.

(ii) When λ = 0, the observed information matrix is non-singular.
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Proof. (i) Let l(θ, x) be the log-likelihood function. Assuming f ′ exists, and denoting
G′ = g, the first-order partial derivatives of the log-likelihood are as follows:

∂l(θ, x)
∂ξ

= − 1
η

{
n

∑
i=1

f ′(zi)

f (zi)
+ 2λ

n

∑
i=1

sgn(zi)zi
g(λzi|zi|)
G(λzi|zi|)

}
,

∂l(θ, x)
∂η

= − 1
η

{
n +

n

∑
i=1

zi
f ′(zi)

f (zi)
+ 2λ

n

∑
i=1

sgn(zi)z2
i

g(λzi|zi|)
G(λzi|zi|)

}
,

∂l(θ, x)
∂λ

=
n

∑
i=1

sgn(zi)z2
i

g(λzi|zi|)
G(λzi|zi|)

,

where zi = (xi − ξ)/η and sgn(zi) = sign(zi), which is defined to be |zi|/zi. Note that
the log-likelihood function l(θ, x) depends on the parameter λ. Therefore, the partial
derivative ∂l

∂λ measures the sensitivity of the log-likelihood with respect to changes in
λ.
The score equations for the family SB f (θ; G) are given by

v + 2λsgn(z)zw = 0,

1 + zv + 2λsgn(z)z2w = 0,

sgn(z)z2w = 0,

where vi = f ′(zi)/ f (zi) and wi = g(λzi|zi|)/G(λzi|zi|).
Solving these equations yields zv = −1, η = ξv − vx, and λ = −v/2sgn(z)zw for
any solution. If λ = 0, then the score equations require v = 0. In this case, we have
w = 2g(0) and η = −vx. Thus, λ = 0, ξ = x, and η2 = ∑n

i=1(xi − x)2/n are a solution
to the score equations of the family SBϕ(θ; G), regardless of the choice of G.
We observe that the condition λ = 0 and η = −vx are a solution to the score equations
only if we can select a density f such that ∑n

i=1 f ′(zi)/ f (zi) = 0. Therefore, we
conclude that the estimators of the family BS f for λ = 0 and f = ϕ coincide with the
class 2η−1ϕ((x − ξ)/η)G(λ(x − ξ)/η) studied by Pewsey [6].

(ii) Assuming that G′′ = g′ and f ′′ exist, we can obtain the second-order partial derivatives
of the log-likelihood by defining ui = f ′′(zi)/ f (zi) and ti = g′(λzi|zi|)/G(λzi|zi|).
With these definitions, the partial derivatives can be computed as follows:

∂2l(θ, x)
∂ξ2 = − n

η2

{
v2 − u − 2λsgn(z)w + 4λ2(z2w2 − z2t)

}
,

∂2l(θ, x)
∂ξ∂η

= − n
η2

{
−v + zv2 − zu − 4λsgn(z)zw + 4λ2(z3w2 − z3t)

}
,

∂2l(θ, x)
∂ξ∂λ

= −n
η

{
2sgn(z)zw − 2λ(z3w2 − z3t)

}
,

∂2l(θ, x)
∂η2 = − n

η2

{
z2v2 − z2u − 2zv − 6λsgn(z)z2w − 4λ4(z4w2 − z4t)− 1

}
,

∂2l(θ, x)
∂η∂λ

= −n
η

{
2sgn(z)z2w − 2λ(z4w2 − z4t)

}
,

∂2l(θ, x)
∂λ2 = −n(z4w2 − z4t).

From the score equations, we can see that sgn(z)z2w = 0 and zv = −1. Moreover,
if there exists a solution to these equations such that λ = 0, then we have v = 0,
w = 2g(0), t = 2g′(0), and η = −vx for any solution.

∂2l(θ, x)
∂ξ2 = − n

η2

{
v2 − u

}
,

∂2l(θ, x)
∂ξ∂η

= − n
η2

{
zv2 − zu

}
,
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∂2l(θ, x)
∂ξ∂λ

= −4ng(0)
η

sgn(z)z,
∂2l(θ, x)

∂η2 = − n
η2

{
z2v2 − z2u + 1

}
,

∂2l(θ, x)
∂η∂λ

= 0,
∂2l(θ, x)

∂λ2 = −2n(2g2(0)− g′(0))z4.

Note that many symmetric densities around zero are differentiable at this point,
including popular ones such as the normal, logistic, and Student’s t densities. This
means that for these distributions, we have g′(0) = 0. However, there are exceptions
to this rule, such as the double exponential density, which is not differentiable at zero.
When we set λ = 0 and f = ϕ, we can calculate that ξ = x and η2 = ∑n

i=1(xi − x)2/n.
We can then define standardized scores as zi = (xi − x)/η, which have a mean of zero
and a variance of one: z = 0 and z2 = 1.
Using these standardized scores, we can express the first derivative of ϕ as vi =

ϕ′(zi)/ϕ(zi) = −zi. This gives us v = 0, v2 = 1, zv2 = z3, and z2v2 = z4.
Conversely, we can find the second derivative of ϕ by using the formula ui =

ϕ′′(zi)/ϕ(zi) = z2
i − 1. We can calculate that u2 − 1 = 0 and zu = z(z2 − 1) = z3 − z = z3.

Additionally, we have z2u = z4 − 1.
The second-order partial derivatives for this solution are given by

∂2l(θ, x)
∂ξ2 = − n

η2 ,
∂2l(θ, x)

∂ξ∂η
= 0,

∂2l(θ, x)
∂ξ∂λ

= −4ng(0)δ
η2 ,

∂2l(θ, x)
∂η2 = −2n

η2 ,
∂2l(θ, x)

∂η∂λ
= 0,

∂2l(θ, x)
∂λ2 = −2n(2g2(0)− g′(0))κ,

where δ = ∑n
i=1 |xi − x|/n is the mean absolute deviation and κ = n ∑n

i=1(xi − x)4/(∑n
i=1(xi −

x)2)2 is the kurtosis. This leads to the observed information matrix:

n


1

η2 0 4g(0)δ
η2

0 2
η2 0

4g(0)δ
η2 0 2(2g2(0)− g′(0))κ


which is always non-singular, except when g is not differentiable at the origin. This
result ensures the regularity conditions necessary to obtain the asymptotic distribution of
the MLE for θ. It should be noted that this condition was not met with the distribution
2η−1ϕ((x − ξ)/η)G(λ(x − ξ)/η) studied by Azzalini and others.

Remark 1. The functions discussed in Proposition 6 are crucial for addressing the singularity issue
in statistical models. They are designed to ensure the non-singularity of the observed information
matrix, which is essential for accurate parameter estimation and model performance.

The function introduced in this research paper, denoted as w(z), is defined as w(z) = λz2 for
z > 0 and w(z) = −λz2 for z < 0. This function is equivalent to w(z) = λ sign(z)z2 ≡ λz|z|,
where sign(·) denotes the sign function.

The significance of this function lies in its ability to introduce bimodality into the model while
avoiding singularity issues at λ = 0. By incorporating bimodality, the model can more accurately
represent complex data distributions, particularly in fields like medical research.

The proposed w function ensures that the model satisfies the regular conditions required for
deriving the asymptotic distribution of the parameter vector. It effectively overcomes the singularity
issue at λ = 0, a significant limitation in previous models.

These functions provide a robust solution to the singularity problem by maintaining the
non-singularity of the observed information matrix except when g is not differentiable at the origin.

By resolving the singularity issue, these functions enhance the model’s reliability and accuracy
in estimating parameters, making it a valuable tool for analyzing complex datasets, such as the
protein data from cancer cells studied in this research paper.
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Overall, these functions not only address the singularity problem but also contribute to the
model’s capability to handle bimodal data effectively, showcasing their significance in statistical
modeling and data analysis.

3. Bimodal Skew-Normal Model

In this section, we provide a detailed description of the BSN distribution and inves-
tigate some of its key properties. To evaluate the performance of the resulting estimate,
we conduct a simulation study that examines the basic inference obtained through the
maximum likelihood approach.

3.1. Shape Case

In the shape case, we can derive the probability density function using Lemma 1 with
f = G′ = ϕ, which yields

fZ(z; λ) = 2ϕ(z)Φ(λz|z|), z, λ ∈ R, (9)

where ϕ and Φ are the PDF and CDF of the standard normal distribution, respectively. The
PDF (9) can be represented as a composition of two functions, that is,

fZ(z; λ) =

{
2ϕ(z)(1 − Φ(λz2)), z < 0,

2ϕ(z)Φ(λz2), z ≥ 0,
(10)

where λ ∈ R.

Proposition 7. If Z ∼ BSN(λ), then the CDF is given by

FZ(z; λ) =

{
2Φ(z)− c−1

λ Φλ(z), z < 0,
c−1

λ (Φλ(0) +
∫ z

0 ϕλ(t)dt), z ≥ 0,
(11)

where

Φλ(z) =
∫ z

−∞
ϕλ(t)dt, ϕλ(t) = 2cλϕ(t)Φ(λt2) and c−1

λ =
∫ ∞

−∞
ϕλ(t)dt.

Proof. For z < 0,

FZ(z; λ) =
∫ z

−∞
2ϕ(t)dt −

∫ z

−∞
2ϕ(t)Φ(λt2)dt

= 2Φ(z)− c−1
λ

∫ z

−∞
ϕλ(t)dt

= 2Φ(z)− c−1
λ Φλ(z).

and for z ≥ 0,

FZ(z; λ) =
∫ 0

−∞
2ϕ(t)Φ(λt2)dt −

∫ z

0
2ϕ(t)Φ(λt2)dt

= c−1
λ Φλ(0)− c−1

λ

∫ z

0
ϕλ(t)dt

= c−1
λ (Φλ(0) +

∫ z

0
ϕλ(t)dt).

Figures 1 and 2 show different densities that can be derived from Equation (9).
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Figure 1. Plot of density function of BSN for different values of λ.
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Figure 2. Plot of density function of BSN for different values of λ.

The BSN distribution, denoted by Z ∼ BSN(λ), is a distribution that is gaining atten-
tion as a valid competitor to the skew-normal model (SN) [1]. This is because both models
control the degree of skewness using the same scalar parameter, λ ∈ R. If λ = 0, then the
model is reduced to the symmetric normal model. However, as demonstrated in this study,
a significant advantage of the BSN model over the SN model is that in the presence of the
location parameter, the BSN information matrix is non-singular at λ = 0. Consequently,
under the null hypothesis of normality given by H0 : λ = 0, the conventional regularity
conditions leading to the ordinary asymptotic normal distribution of the MLE hold.

3.2. Some Basic Properties

Proposition 2 yields several important properties of the BSN distribution. First, if Z ∼
BSN(λ), then −Z ∼ BSN(−λ). This means that the distribution is symmetric with respect
to the origin. Second, Z2 ∼ χ2

1, which indicates that the distribution of the squared
BSN variable follows a chi-squared distribution with one degree of freedom. Finally,
|Z| ∼ HN(0, 1), where HN denotes the half-normal distribution. This property implies
that the absolute value of a BSN variable follows an HN distribution with mean zero and
variance one. These properties are useful for analyzing and interpreting data modeled with
the BSN distribution.

3.2.1. Quantile Function

The quantile function of the BSN distribution is derived by inverting Equation (11),
as follows:

Qp = F−1
Z (p; λ), 0 < p < 1. (12)

This inverse does not have a closed expression and has to be calculated using some
suitable numerical method. Note that Q0.5, Q0.25, and Q0.75 stand for median, first quartile,
and third quartile of the BSN distribution, correspondingly.
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3.2.2. Moments, Skewness, and Kurtosis

The even moments of Z ∼ BSN(λ) are equal to the corresponding even moments of a
standardized normal random variable. The odd moments can be computed from the result
in Proposition 5, as follows:

E(Z2k+1) = 2E(Y2k+1Φ(λY2))− 21/2+k
√

π
Γ(k + 1), k ∈ {0, 1, 2, . . .}, (13)

where Y ∼ HN(0, 1). In particular, the first four moments are

E(Z) =
2
π

ρ(λ), E(Z2) = 1,

E(Z3) =
2

πλ2

[
λ +

4λ2 − 1
2

ρ(λ)

]
, E(Z4) = 3,

where

ρ(λ) =
sgn(λ)

ϕ
(

1
2|λ|

)(1 − Φ
(

1
2|λ|

))
.

By using the moments above and the standard definitions, we can calculate the
skewness and kurtosis of the BSN distribution directly.

3.2.3. Entropy

A measure of the uncertainty’s variation is the entropy of a random variable Z with
a certain PDF. Greater data uncertainty is indicated by a high entropy value. The Rényi
entropy [10], Rα(Z), for Z is defined as

Rα(Z) =
1

1 − α
log

{∫
R

f α
Z(z)dz

}
, (14)

where α > 0 and α ̸= 1. Suppose Z has the BSN distribution; then, by substituting (9) in
(14), we obtain∫

R
f α
Z (z)dz =

∫ 0

−∞
2αϕα(z)Φα(−λz2)dz +

∫ ∞

0
2αϕα(z)Φα(λz2)dz

=
∫ ∞

0
2αϕα(−z)Φα(−λz2)dz +

∫ ∞

0
2αϕα(z)Φα(λz2)dz

= 2α
∫ ∞

0
ϕα(z)(Φα(−λz2) + Φα(λz2))dz

So, one obtains the Rényi entropy as follows:

Rα(Z) =
α log(2)

1 − α
+

1
1 − α

log
{∫ ∞

0
ϕα(z)(Φα(−λz2) + Φα(λz2))dz

}
.

Shannon entropy [11] defined by Sα(Z) = E{− log( fZ(z))} is the particular case of
Equation (14) when α → 1+. Both Rα(Z) and Sα(Z) do not have closed expressions and
must be calculated using some suitable numerical method.

3.2.4. Order Statistics

Let Z ∼ BSN(λ) and Z1, Z2, . . . , Zn be a random sample of independent and iden-
tically distributed variables with CDF FZ given in (11) and PDF fZ given in (9). Define
the random variable Z(1) = min{Z1, Z2, . . . , Zn}. It is known that the CDF of the sample
minimum is given by

FZ(1)
(y) = 1 − (1 − FZ(y))n
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and its PDF is
fZ(1)

(y) = n(1 − FZ(y))n−1 fZ(y).

On the other hand, define the random variable Z(n) = max{Z1, Z2, . . . , Zn}. It is
known that the CDF of the sample maximum is given by

FZ(n)
(y) = (FZ(y))n

and its PDF is
fZ(n)

(y) = n(FZ(y))n−1 fZ(y).

In general, the PDF of the k-th-order statistic from a random sample of size n drawn
from the distribution of Z is

fZ(k)
(y) =

n!
(k − 1)!(n − k)!

(FZ(y))k−1(1 − FZ(y))n−k fZ(y).

3.2.5. Maximum Likelihood Estimates for λ

The log-likelihood function for λ can be defined for a random sample of size n from
Z ∼ BSN(λ), as given below:

l(λ, z) =
n
2

log
(

2
π

)
− 1

2

n

∑
i=1

z2
i +

n

∑
i=1

log(Φ(λzi|zi|)), (15)

where z denotes the sample data. This log-likelihood function helps to estimate the pa-
rameter λ of the BSN distribution. The likelihood equation induced from this function is
given by

dl(λ, z)
dλ

=
n

∑
i=1

zi|zi|
ϕ(λzi|zi|)
Φ(λzi|zi|)

= 0. (16)

The solution to this likelihood equation provides the MLE of λ for the bimodal skew-
normal distribution. The numerical values of λ̂ can be determined via any statistical software.

3.3. Simulation Study

In this section, we evaluate the effectiveness of the MLE method for estimating the
parameter λ in the BSN distribution. We generate random samples of various sizes: n = 50,
100, 150, and 200, keeping λ fixed.

3.3.1. Generating Samples from BSN(λ)

To generate random samples, follow these steps:

(i) Set the parameter λ and choose the sample size n.
(ii) Generate a standard normal random variable U ∼ N(0, 1).
(iii) Compute Y = |U|.
(iv) Generate a Bernoulli random variable S with success probability p = Φ(λY2).
(v) Set Z = Y if S = 1, otherwise Z = −Y.

3.3.2. Analyzing λ with MLE

After obtaining the samples, λ is estimated using the MLE method. We assess the
performance of this estimation by calculating the standard error (SE), bias, and mean square
error (MSE) in R programming language [12]:

(i) For a chosen λ, simulate a sample of size n as described.
(ii) Estimate λ using MLE.
(iii) Repeat the above steps 1000 times.
(iv) Compute the mean, SE, bias, and MSE of these 1000 estimates:
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The mean, SE, bias, and MSE of λ̂ are given by

λ̂ =
1

1000

1000

∑
i=1

λ̂i,

SE
λ̂

=

√√√√ 1
1000

1000

∑
i=1

(λ̂i − λ̂)2,

bias
λ̂

=
1

1000

1000

∑
i=1

(λ̂i − λ)

and

MSE
λ̂
=

1
1000

1000

∑
i=1

(λ̂i − λ)2,

respectively. Here, λ̂ represents the MLE of λ for the ith iteration under a specific sample

size n, λ̂ corresponds to the mean of the parameter estimates obtained, for example, λ̂i′s,
and λ denotes the actual value of the parameter.

Table 1 displays the mean estimates, SEs, biases, and MSEs of λ for various sample
sizes. The performance of the MLE was investigated for a wide range of initial values for λ,
and in all cases, the MLE converged well. The results in Table 1 were obtained by setting
the initial value of λ to 1.00, irrespective of its actual value. Thus, any choice of initial value
for λ is expected to yield similar results, as shown in Table 1.

Table 1. Simulation results.

Actual Value Estimates

λ n λ̂ SE
λ̂

bias
λ̂

MSE
λ̂

−0.45 50 −0.5181 0.2302 −0.0681 0.0576
100 −0.4867 0.1460 −0.0367 0.0226
150 −0.4736 0.1114 −0.0236 0.0130
200 −0.4658 0.0951 −0.0158 0.0093

−3.00 50 −3.7459 2.3316 −0.7459 5.9874
100 −3.2822 0.9619 −0.2822 1.0040
150 −3.1787 0.7434 −0.1787 0.5841
200 −3.1211 0.5792 −0.1211 0.3497

2.00 50 2.4008 1.2510 0.4008 1.7242
100 2.1520 0.6375 0.1520 0.4291
150 2.1191 0.4874 0.1191 0.2515
200 2.0999 0.3808 0.0999 0.1548

1.30 50 1.4952 0.6503 0.1952 0.4606
100 1.3923 0.3758 0.0923 0.1496
150 1.3534 0.2686 0.0534 0.0749
200 1.3426 0.2246 0.0426 0.0522

0.00 50 6 × 10−3 0.1333 6 × 10−3 0.0178
100 −1 × 10−3 0.0832 −1 × 10−3 0.0069
150 −1 × 10−3 0.0657 −1 × 10−3 0.0043
200 9 × 10−4 0.0544 9 × 10−4 0.0030

Overall, Table 1 reveals that as n increases, the SEs, biases, and MSEs decrease, indicat-
ing that the MLE provides consistent estimates.
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4. Practical Data Analysis

In this section, we illustrate the modeling capabilities of the BSN distribution by
fitting it to 118 observations of the Homo sapiens PIG7 data in Çankaya [13] using the
MLE method. To ensure computational stability, we scaled the data by −0.171 before
fitting the distributions. The data are left-skewed with the Pearson’s moment coefficient of
skewness of −0.356576 and appear to be bimodal, as seen in the empirical density plot in
Figure 3a. Some of the descriptive statistics of the data include a minimum value of −2.4971,
a maximum value of 1.4795, a mean value of −0.2512, a variance value of 0.8162, a median
value of −0.1930, a first quartile value of −0.8348, and a third quartile value of 0.4678.
The resulting MLE of λ is −0.3676782, with a corresponding SE of 0.1149803. To assess the
goodness-of-fit of the BSN distribution to the empirical data, we employed the Kolmogorov–
Smirnov (K-S) test, with a test statistic defined as Dn = max

1≤i≤k
(i/k− zi, zi − (i− 1)/k), where

zi is the ith data value. For large sample size n, the p-value of the K-S test is given by

P(
√

n Dn ≤ x) ≈
√

2π
F̂(z) ∑∞

k=1 exp
{
− (2k−1)2π2

8[F̂(z)]2

}
, where F̂(z) is the estimated CDF of the

theoretical distribution, see Kolmogorov [14] and Smirnov [15]. The K-S test measures the
disparity between the empirical and estimated cumulative distribution functions (CDFs),
with a smaller difference indicating a better fit. In general, if the p-value of the K-S test is
greater than 0.05, we conclude that the model provides a good fit for the data. The fitted
BSN distribution gives a K-S statistic of 0.10706 with a p-value of 0.1337 (>0.05). Therefore,
based on this evidence and visual inspection through the plot of the CDFs in Figure 3b, we
conclude that the one-parameter BSN distribution provides a good fit for the data.
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Figure 3. The plot of the empirical (rectangular bars) and estimated (blue line) PDF (a), estimated CDF
of the uncentered BSN distribution (blue line) with the empirical CDF (red line) (b), and estimated
CDF of the centered BSN distribution (blue line) with the empirical CDF (red line) (c).

We compare the fit of the BSN distribution with that of four other distributions,
namely, the normal distribution, double Lindley distribution [16], Laplace distribution,
and Student’s t-distribution. The PDFs of these distributions are as follows:

(i) Normal distribution with PDF given by

fX(x; ξ, η) =
1
η

ϕ

(
x − ξ

η

)
, x, ξ ∈ R, η > 0,

where ϕ(x) is the standard normal PDF.
(ii) Double Lindley distribution with PDF given by

fX(x; λ) =
λ2(1 + |x|)

2(λ + 1)
exp{−λ|x|}, x ∈ R, λ > 0.

(iii) Laplace distribution with PDF given by

fX(x; ξ, λ) =
1

2η
exp

{
−|x − ξ|

η

}
, x, ξ ∈ R, η > 0.
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(iv) Student’s t-distribution with PDF given by

fX(x; λ) =

(
1 + x2

λ

)− λ+1
2

√
λ B

(
1
2 , λ

2

) , x ∈ R, λ > 0,

where B(a, b) is the beta function.

We used the K-S test to compare the goodness-of-fit of these distributions with that of
the BSN distribution. The K-S test statistic measures the maximum distance between the
empirical CDF of the data and the CDF of the fitted distribution, with a smaller test statistic
indicating a better fit. The p-values of the K-S tests for each distribution were computed,
and if the p-value was larger than 0.05, we concluded that the distribution provided a good
fit for the data.

To ensure a fair comparison between the fits of the normal distribution, Laplace dis-
tribution, and BSN distribution, it is important to center the BSN distribution about the
mean (ξ), as both the normal and Laplace distributions are centered around the mean.
To accomplish this, we introduce an additional parameter ξ to the BSN distribution, result-
ing in a centered BSN distribution with PDF 2ϕ(x − ξ)Φ(λ(x − ξ)|x − ξ|) for x, ξ, λ ∈ R.
To determine the best-fitting model for the data, we use the information criteria listed below
along with the K-S test:

(i) Akaike information criterion (AIC), given by AIC = −2l(θ̂) + 2k.
(ii) Bayesian information criterion (BIC), given by BIC = −2l(θ̂) + k log(n).

(iii) corrected AIC (AICc), given by AICc = AIC + 2k(k+1)
n−k−1 .

Here, l(θ̂) denotes the estimated log-likelihood value, n represents the number of data
points, θ is the unknown parameter, and k indicates the number of parameters in the model.
A smaller value of the information criterion indicates a better fit. Tables 2 and 3 present the
results of the fitted distributions. Based on these tables, we can observe that the centered
BSN distribution outperformed all other considered distributions, with the smallest K-S
statistic, largest p-value of K-S, and smallest values of AIC, BIC, and AICc. This is also
evident from Figure 3c, where we can see that the CDF of the estimated centered BSN
distribution closely mimics the empirical CDF.

Table 2. Fit results for different distributions.

Parameter Estimate
[SE]

K-S Test

Distribution λ̂ ξ̂ η̂ D p-Value

Normal - −0.2512
[0.0828]

0.8996
[0.0586]

0.0998 0.1903

BSN −0.7720
[0.3029]

0.2444
[0.1130]

- 0.0837 0.3801

Double Lindley 1.7862
[0.1304]

- - 0.1480 0.0114

Laplace - −0.1293
[0.0331]

0.7521
[0.0692]

0.1170 0.0791

Student’s t 235, 670.6
[104.4868]

- - 0.1187 0.0721
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Table 3. Model fit discrimination.

Information Criteria

Distribution −l(λ̂) AIC BIC AICc

Normal 154.9475 313.8951 319.4365 313.9994
BSN 151.2718 306.5435 312.0849 306.6479
Double Lindley 164.4999 330.9998 333.7704 331.0342
Laplace 166.1680 336.3361 341.8774 336.4404
Student’s t 159.9040 321.8079 324.5786 321.8424

In Table 4, descriptive statistics obtained from the empirical distribution and the
estimated centered BSN distribution are compared. From the results, we can conclude
that the fitted centered BSN distribution accurately captured the important features of the
empirical distribution, as the first three moments and the standard deviation (std) of the
estimated centered BSN distribution are similar to those of the empirical distribution. It
is noteworthy that the direction of skewness is the same for both distributions. However,
a slight difference in skewness values is observed, which may be due to rounding errors
in the numerical integration of the k-th-order moments. The R code used to compute the
descriptive statistics is provided in Appendix A.

Table 4. Some descriptive statistics for the empirical and centered BSN distributions.

Moments

µ′
1 µ′

2 µ′
3 Std Skewness

Empirical −0.2512142 0.8723585 −0.8886568 0.903419 −0.356576
BSN −0.2645494 0.8109423 −0.7589403 0.860788 −0.238893

5. Concluding Remarks

In this study, we introduced a new family of continuous distributions known as bimodal
skew-symmetric distributions. The BSN distribution, which is essential to this family, is
distinguished by the single parameter that causes its asymmetry. The statistical properties of
this distribution have been thoroughly discussed, emphasizing its flexibility and applicability.

Utilizing the MLE method, we estimated this sole asymmetry parameter, demonstrat-
ing the practicality and effectiveness of the BSN model when applied to real-world data.
The analysis highlights the BSN distribution’s capability to adeptly model data features,
such as skewness and bimodality, which are often encountered in practical datasets but are
challenging to address with more traditional models.

To enhance the utility of the BSN distribution and facilitate its comparison with more
conventional distributions like the normal and Laplace distributions, both of which are
two-parameter models centered about the mean, we plan to extend the BSN distribution
by centering it about the mean in future applications. This adjustment will allow the
BSN distribution to be directly comparable to these models, providing a fair basis for
performance evaluation.

The results from this study are promising, showing that the two-parameter BSN
distribution not only meets but exceeds the performance of the four considered competing
distributions for the dataset in question. This superior performance underscores the
potential of the BSN distribution as a robust and versatile tool in statistical modeling,
particularly suitable for complex real-world data that exhibit asymmetry and bimodality.

This study contributes to an application of bimodal skew-symmetric distributions to
the analysis of cancer cell protein data, addressing the inherent bimodality and asymmetry
of such data. The proposed model enhances the flexibility and accuracy of statistical
representations, leading to improved parameter estimation and robust analysis even in
the presence of noise. By incorporating regularization techniques to prevent singularity
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issues and leveraging the model’s adaptability to capture complex biological variability,
this research provides an effective tool for identifying subpopulations and characterizing
protein profiles in cancer cells. These contributions not only advance the field of statistical
modeling in bioinformatics but also have practical implications for biomarker discovery
and proteomics analysis, paving the way for more precise and meaningful insights into
cancer biology.

The implications of these findings are significant, suggesting that the BSN distribution
can serve as an alternative to traditional models, offering enhanced flexibility and better
fit for specific types of data. Future studies will focus on further developing this model,
improving its statistical inference procedures, and extending its application to a broader
range of datasets.
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Appendix A

R Codes

k−order ordinary moments for the centered BSN distribution

moments<-function(z,k)
{
lambda<--0.7720
xi<-0.2444
f<-function(z)z^k*2*dnorm(z-xi)*pnorm(lambda*(z-xi)*abs(z-xi))
out<-integrate(f,lower=-Inf,upper=Inf)$value
out
}
first<-moments(z,1)
second<-moments(z,2)
third<-moments(z,3)
variance<-second-first^2
std<-sqrt(var)
skew<-(third-3*first*variance-first^3)/std^3
cbind(first,second,third,variance,std,skew)

Simulation

sim<-function(lambda,nn,N)
{
m<-length(nn)
esthat<-0
sdhat<-0
bias<-0
mse<-0
for(n in 1:m)
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{
loop<-function(nn,N)
{
t<-0
result<-matrix(0,N,1)
while(t<N)
{
t<-t+1

sim<-function(lambda,n)
{
t<-0
z<-0
while(t<n)
{
t<-t+1
u<-rnorm(1)
y<-abs(u)
p<-pnorm(lambda*y^2)
s<-rbinom(1,1,p)
if(s==1)
{
z[t]<-y
}else{
z[t]<--y
}
}
z
}
x<-sim(lambda,nn[n])

ff=function (q)
{
tt=1.0e20
lambda=q[1]
tt=-sum(log(2*dnorm(x)*pnorm(lambda*x*abs(x))))#MLE
if (is.na(tt)) tt=1.0e20
if (abs(tt)>1.0e20) tt=1.0e20
return(tt)
}

est=nlm(ff,p=c(1))
result[,1][t]=est$estimate[1]#lambda

}
result
}
est<-loop(nn,N)[,1]
esthat[n]=mean(est)
sdhat[n]=sd(est)
bias[n]=mean(est-lambda)
mse[n]=mean((est-lambda)**2)
}

data.frame(nn,esthat,sdhat,bias,mse)
}
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