Enhancing User Perception of Reliability in Computer Vision: Uncertainty Visualization for Probability Distributions
Abstract
:1. Introduction
2. Related Works
2.1. Uncertainty Visualization
2.2. Visualization of Probability Distributions
2.3. Visualization Forms
- Density strips: A density strip is a shaded band in which the depth of shading at any given point indicates the probability density of a continuous variable or an estimated parameter. The visual characteristic of ambiguity inherent in density strips is considered to convey probability more naturally. First, density strips visually emphasize the continuity of probability density, avoiding the potential for misinterpretation of confidence intervals as binary ‘in or out’ thresholds. By examining gradients and color intensities, density strips aid in understanding the regional imagery of probability density functions [36]. Furthermore, they offer considerable flexibility in use, functioning both as descriptive tools and inferential devices for hypothesis testing or confidence intervals [65]. Several studies have employed density strips or similar fuzzy visualizations for expressing uncertainty probabilities, such as visualizing observational data with point estimates sized by sample, providing uncertainty analogies based on user priors, and predictive posterior visualizations [66]. When presenting estimates of expected mileage with diffused color density strips, drivers reported improved driving experiences and reduced anxiety, maintaining trust in the vehicle [67]. Using density strips to provide the overall distribution of clinical measurements offers a more comprehensive view for descriptive visualization and inferential estimation [65].
- Violin plots: Analogous to bell curves, violin plots represent distributions by correlating the probability of specific values with their corresponding width. These plots provide an instinctive understanding of predictive variance in aspects such as value, central tendency (such as the mean), and the form of the distribution (such as normal or skewed). Additionally, they enhance an intuitive evaluation of probabilities or unexpected outcomes in a way that is more consistent with traditional statistical interpretations [7]. Research indicates that violin plots or similar representations of probability density allow users to understand underlying distributions more accurately than those showing predictions or confidence intervals [49], and are more suitable for visualizing point and probability estimates [68]. They have been shown to improve user intuition, particularly with regards to misconceptions about probability distributions and relationships [69], resulting in higher accuracy [15] and better-quality decision-making [70].
- Error bars: Resembling box plots, error bars are summary displays that convey distribution information with minimal graphical representation [4]. Typically, error bars represent a range of standard deviations, standard errors, or confidence intervals [7]. Widely used in scientific publications and other domains when representing uncertainty, error bars may be the most recognized method for visualizing a range of potential statistical values [56]. Studies have found that error bars or box plots are powerful tools for presenting distributions, producing more accurate results than histograms, dot plots, and band plots, and are not adversely affected by increased sample sizes [15]. In probability estimation tasks, error bars have consistently outperformed other plot types that depict underlying distribution shapes and are simpler to understand and use [10].
3. Experiment 1: Visualization Form Comparison
3.1. Procedure
- How confident are you that the actual reflection value of the object is higher than the red point v?
- What is the likelihood that the actual reflection value equals the measured value v?
- Do you think this system is reliable?
3.2. Measures and Hypotheses
3.3. Stimuli and Trial Generation
3.4. Participants
3.5. Experimental Results
3.5.1. Analysis of Question 1
3.5.2. Analysis of Question 2
3.5.3. Analysis of Question 3
3.5.4. Response Time
3.5.5. Pupil Diameter
4. Experiment 2: Effects of Distribution Types
4.1. Purpose of the Experiment
4.2. Stimuli and Trial Generation
4.3. Procedure
4.4. Experimental Results
5. Discussion
5.1. Visualization Methods
5.1.1. Density Strips
5.1.2. Violin Plots
5.1.3. Error Bars
5.2. Reliability Perception and Risk Management
5.3. Interval Division
5.4. Innovative Discussion
5.4.1. CV Systems and Perceived Reliability
5.4.2. Uncertainty Visualization Research
5.5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, Y.; Sang, N.; Gao, C.; Ma, L. Spatial and Class Structure Regularized Sparse Representation Graph for Semi-Supervised Hyperspectral Image Classification. Pattern Recognit. 2018, 81, 81–94. [Google Scholar] [CrossRef]
- Pi, Z.; Shao, Y.; Gao, C.; Sang, N. Instance-Based Feature Pyramid for Visual Object Tracking. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 3774–3787. [Google Scholar] [CrossRef]
- Jiang, J.; Karran, A.J.; Coursaris, C.K.; Léger, P.-M.; Beringer, J. A Situation Awareness Perspective on Human-AI Interaction: Tensions and Opportunities. Int. J. Hum.–Comput. Interact. 2023, 39, 1789–1806. [Google Scholar] [CrossRef]
- Kusumastuti, S.A.; Pollard, K.A.; Oiknine, A.H.; Dalangin, B.; Raber, T.R.; Files, B.T. Practice Improves Performance of a 2D Uncertainty Integration Task Within and Across Visualizations. IEEE Trans. Vis. Comput. Graph. 2023, 29, 3949–3960. [Google Scholar] [CrossRef] [PubMed]
- Matzen, L.E.; Howell, B.C.; Trumbo, M.C.S.; Divis, K.M. Numerical and Visual Representations of Uncertainty Lead to Different Patterns of Decision Making. IEEE Comput. Graph. Appl. 2023, 43, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Kale, A.; Nguyen, F.; Kay, M.; Hullman, J. Hypothetical Outcome Plots Help Untrained Observers Judge Trends in Ambiguous Data. IEEE Trans. Vis. Comput. Graph. 2019, 25, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Franconeri, S.L.; Padilla, L.M.; Shah, P.; Zacks, J.M.; Hullman, J. The Science of Visual Data Communication: What Works. Psychol. Sci. Public Interest 2021, 22, 110–161. [Google Scholar] [CrossRef] [PubMed]
- Ślusarski, M.; Jurkiewicz, M. Visualisation of Spatial Data Uncertainty. A Case Study of a Database of Topographic Objects. ISPRS Int. J. Geo-Inf. 2020, 9, 16. [Google Scholar] [CrossRef]
- Ripberger, J.; Bell, A.; Fox, A.; Forney, A.; Livingston, W.; Gaddie, C.; Silva, C.; Jenkins-Smith, H. Communicating Probability Information in Weather Forecasts: Findings and Recommendations from a Living Systematic Review of the Research Literature. Weather Clim. Soc. 2022, 14, 481–498. [Google Scholar] [CrossRef]
- Heltne, A.; Frans, N.; Hummelen, B.; Falkum, E.; Germans Selvik, S.; Paap, M.C.S. A Systematic Review of Measurement Uncertainty Visualizations in the Context of Standardized Assessments. Scand. J. Psychol. 2023, 64, 595–608. [Google Scholar] [CrossRef]
- Padilla, L.M.K.; Castro, S.C.; Hosseinpour, H. Chapter Seven—A Review of Uncertainty Visualization Errors: Working Memory as an Explanatory Theory. In Psychology of Learning and Motivation; Federmeier, K.D., Ed.; The Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 2021; Volume 74, pp. 275–315. [Google Scholar]
- Srabanti, S.; Veiga, C.; Silva, E.; Lage, M.; Ferreira, N.; Miranda, F. A Comparative Study of Methods for the Visualization of Probability Distributions of Geographical Data. Multimodal Technol. Interact. 2022, 6, 53. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, L.; Ran, T.; Peng, S.; Tao, Q.; Xiao, W.; Cui, J. A Dynamic Detection and Data Association Method Based on Probabilistic Models for Visual SLAM. Displays 2024, 82, 102663. [Google Scholar] [CrossRef]
- Nguyen, H.D.; McLachlan, G.J. Maximum Likelihood Estimation of Triangular and Polygonal Distributions. Comput. Stat. Data Anal. 2016, 102, 23–36. [Google Scholar] [CrossRef]
- Newburger, E.; Elmqvist, N. Comparing Overlapping Data Distributions Using Visualization. Inf. Vis. 2023, 22, 291–306. [Google Scholar] [CrossRef]
- Brasse, J.; Broder, H.R.; Förster, M.; Klier, M.; Sigler, I. Explainable Artificial Intelligence in Information Systems: A Review of the Status Quo and Future Research Directions. Electron. Mark. 2023, 33, 26. [Google Scholar] [CrossRef]
- Jean, V.; Boucher, M.-A.; Frini, A.; Roussel, D. Uncertainty in Three Dimensions: The Challenges of Communicating Probabilistic Flood Forecast Maps. Hydrol. Earth Syst. Sci. 2023, 27, 3351–3373. [Google Scholar] [CrossRef]
- Correll, M.; Gleicher, M. Error Bars Considered Harmful: Exploring Alternate Encodings for Mean and Error. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2142–2151. [Google Scholar] [CrossRef]
- Pérez-Messina, I.; Ceneda, D.; El-Assady, M.; Miksch, S.; Sperrle, F. A Typology of Guidance Tasks in Mixed-Initiative Visual Analytics Environments. Comput. Graph. Forum 2022, 41, 465–476. [Google Scholar] [CrossRef]
- Xiong, C.; Setlur, V.; Bach, B.; Koh, E.; Lin, K.; Franconeri, S. Visual Arrangements of Bar Charts Influence Comparisons in Viewer Takeaways. IEEE Trans. Vis. Comput. Graph. 2022, 28, 955–965. [Google Scholar] [CrossRef]
- Ceneda, D.; Andrienko, N.; Andrienko, G.; Gschwandtner, T.; Miksch, S.; Piccolotto, N.; Schreck, T.; Streit, M.; Suschnigg, J.; Tominski, C. Guide Me in Analysis: A Framework for Guidance Designers. Comput. Graph. Forum 2020, 39, 269–288. [Google Scholar] [CrossRef]
- Woelmer, W.M.; Moore, T.N.; Lofton, M.E.; Thomas, R.Q.; Carey, C.C. Embedding Communication Concepts in Forecasting Training Increases Students’ Understanding of Ecological Uncertainty. Ecosphere 2023, 14, e4628. [Google Scholar] [CrossRef]
- Spiegelhalter, D.; Pearson, M.; Short, I. Visualizing Uncertainty About the Future. Science 2011, 333, 1393–1400. [Google Scholar] [CrossRef]
- Cila, N. Designing Human-Agent Collaborations: Commitment, Responsiveness, and Support. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–18. [Google Scholar]
- Carr, R.H.; Semmens, K.; Montz, B.; Maxfield, K. Improving the Use of Hydrologic Probabilistic and Deterministic Information in Decision-Making. Bull. Am. Meteorol. Soc. 2021, 102, E1878–E1896. [Google Scholar] [CrossRef]
- Shulner-Tal, A.; Kuflik, T.; Kliger, D. Enhancing Fairness Perception—Towards Human-Centred AI and Personalized Explanations Understanding the Factors Influencing Laypeople’s Fairness Perceptions of Algorithmic Decisions. Int. J. Hum.–Comput. Interact. 2023, 39, 1455–1482. [Google Scholar] [CrossRef]
- Benjamin, J.J.; Berger, A.; Merrill, N.; Pierce, J. Machine Learning Uncertainty as a Design Material: A Post-Phenomenological Inquiry. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–14. [Google Scholar]
- Stephanidis, C.; Salvendy, G.; Antona, M.; Chen, J.Y.C.; Dong, J.; Duffy, V.G.; Fang, X.; Fidopiastis, C.; Fragomeni, G.; Fu, L.P.; et al. Seven HCI Grand Challenges. Int. J. Hum.–Comput. Interact. 2019, 35, 1229–1269. [Google Scholar] [CrossRef]
- Abdul, A.; Vermeulen, J.; Wang, D.; Lim, B.Y.; Kankanhalli, M. Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–18. [Google Scholar]
- Theron, R.; Padilla, L.M. Editorial: Uncertainty Visualization and Decision Making. Front. Comput. Sci. 2021, 3, 758406. [Google Scholar] [CrossRef]
- Bancilhon, M.; Liu, Z.; Ottley, A. Let’s Gamble: How a Poor Visualization Can Elicit Risky Behavior. In Proceedings of the 2020 IEEE Visualization Conference (VIS), Salt Lake City, UT, USA, 25–30 October 2020; pp. 196–200. [Google Scholar]
- Andrienko, N.; Andrienko, G.; Chen, S.; Fisher, B. Seeking Patterns of Visual Pattern Discovery for Knowledge Building. Comput. Graph. Forum 2022, 41, 124–148. [Google Scholar] [CrossRef]
- McNutt, A. What Are Table Cartograms Good for Anyway? An Algebraic Analysis. Comput. Graph. Forum 2021, 40, 61–73. [Google Scholar] [CrossRef]
- Korporaal, M.; Ruginski, I.T.; Fabrikant, S.I. Effects of Uncertainty Visualization on Map-Based Decision Making Under Time Pressure. Front. Comput. Sci. 2020, 2, 32. [Google Scholar] [CrossRef]
- Cassenti, D.N.; Kaplan, L.M. Robust Uncertainty Representation in Human-AI Collaboration. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III; SPIE: Bellingham, WA, USA, 2021; Volume 11746, pp. 249–262. [Google Scholar]
- Zhao, W.; Wang, G.; Wang, Z.; Liu, L.; Wei, X.; Wu, Y. A Uncertainty Visual Analytics Approach for Bus Travel Time. Vis. Inform. 2022, 6, 1–11. [Google Scholar] [CrossRef]
- Guk, A.P.; Khlebnikova, E.P.; Shlyakhova, M.M. Technology of Regional and Global Water Monitoring Objects According to Remote Sensing Data. In Proceedings of the 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russian, 1–5 July 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11208, pp. 1117–1121. [Google Scholar]
- Song, M.; Wang, S.; Zhao, P.; Chen, Y.; Wang, J. Modeling Kelvin Wake Imaging Mechanism of Visible Spectral Remote Sensing. Appl. Ocean Res. 2021, 113, 102712. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, Q.; Li, J.; Wang, L.; Plaza, A. Geographic Optimal Transport for Heterogeneous Data: Fusing Remote Sensing and Social Media. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6935–6945. [Google Scholar] [CrossRef]
- Gao, G.; Liu, Q.; Hu, Z.; Li, L.; Wen, Q.; Wang, Y. PSGCNet: A Pyramidal Scale and Global Context Guided Network for Dense Object Counting in Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5619412. [Google Scholar] [CrossRef]
- Li, J.; Liao, Y.; Zhang, J.; Zeng, D.; Qian, X. Semi-Supervised DEGAN for Optical High-Resolution Remote Sensing Image Scene Classification. Remote Sens. 2022, 14, 4418. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Shi, H.; Cui, J.; Wang, W.; Ma, H.; Chen, N. Modeling Salinized Wasteland Using Remote Sensing with the Integration of Decision Tree and Multiple Validation Approaches in Hetao Irrigation District of China. CATENA 2022, 209, 105854. [Google Scholar] [CrossRef]
- Bawa, A.; Senay, G.B.; Kumar, S. Satellite Remote Sensing of Crop Water Use across the Missouri River Basin for 1986–2018 Period. Agric. Water Manag. 2022, 271, 107792. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.-H.; Wu, Y.; et al. Assimilation of Remote Sensing into Crop Growth Models: Current Status and Perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Irani Rahaghi, A.; Lemmin, U.; Sage, D.; Barry, D.A. Achieving High-Resolution Thermal Imagery in Low-Contrast Lake Surface Waters by Aerial Remote Sensing and Image Registration. Remote Sens. Environ. 2019, 221, 773–783. [Google Scholar] [CrossRef]
- Levin, I.; Hershkovitz, T.; Rotman, S. Hyperspectral Target Detection Using Cluster-Based Probability Models Implemented in a Generalized Likelihood Ratio Test. In Proceedings of the Image and Signal Processing for Remote Sensing XXV, Strasbourg, France, 9–12 September 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11155, pp. 174–185. [Google Scholar]
- Deng, C.; Cen, Y.; Zhang, L. Learning-Based Hyperspectral Imagery Compression through Generative Neural Networks. Remote Sens. 2020, 12, 3657. [Google Scholar] [CrossRef]
- Bajić, M. Modeling and Simulation of Very High Spatial Resolution UXOs and Landmines in a Hyperspectral Scene for UAV Survey. Remote Sens. 2021, 13, 837. [Google Scholar] [CrossRef]
- van der Bles, A.M.; van der Linden, S.; Freeman, A.L.J.; Mitchell, J.; Galvao, A.B.; Zaval, L.; Spiegelhalter, D.J. Communicating Uncertainty about Facts, Numbers and Science. R. Soc. Open Sci. 2019, 6, 181870. [Google Scholar] [CrossRef]
- Ben-Moshe, N.; Levinstein, B.A.; Livengood, J. Probability and Informed Consent. Theor Med Bioeth 2023, 44, 545–566. [Google Scholar] [CrossRef] [PubMed]
- Klockow-McClain, K.E.; McPherson, R.A.; Thomas, R.P. Cartographic Design for Improved Decision Making: Trade-Offs in Uncertainty Visualization for Tornado Threats. Ann. Am. Assoc. Geogr. 2020, 110, 314–333. [Google Scholar] [CrossRef]
- Preston, A.; Ma, K.-L. Communicating Uncertainty and Risk in Air Quality Maps. IEEE Trans. Vis. Comput. Graph. 2023, 29, 3746–3757. [Google Scholar] [CrossRef]
- Glaser, M.; Lengyel, D.; Toulouse, C.; Schwan, S. How Do We Deal with Uncertain Information? Effects of Verbal and Visual Expressions of Uncertainty on Learning. Educ. Psychol. Rev. 2022, 34, 1097–1131. [Google Scholar] [CrossRef]
- Dimara, E.; Bezerianos, A.; Dragicevic, P. Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support. IEEE Trans. Vis. Comput. Graph. 2018, 24, 749–759. [Google Scholar] [CrossRef]
- Hopster-den Otter, D.; Muilenburg, S.N.; Wools, S.; Veldkamp, B.P.; Eggen, T.J.H.M. Comparing the Influence of Various Measurement Error Presentations in Test Score Reports on Educational Decision-Making. Assess. Educ. Princ. Policy Pract. 2019, 26, 123–142. [Google Scholar] [CrossRef]
- Hofman, J.M.; Goldstein, D.G.; Hullman, J. How Visualizing Inferential Uncertainty Can Mislead Readers About Treatment Effects in Scientific Results. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–12. [Google Scholar]
- Mulder, K.J.; Lickiss, M.; Black, A.; Charlton-Perez, A.J.; McCloy, R.; Young, J.S. Designing Environmental Uncertainty Information for Experts and Non-Experts: Does Data Presentation Affect Users’ Decisions and Interpretations? Meteorol. Appl. 2020, 27, e1821. [Google Scholar] [CrossRef]
- Kale, A.; Kay, M.; Hullman, J. Visual Reasoning Strategies for Effect Size Judgments and Decisions. IEEE Trans. Vis. Comput. Graph. 2021, 27, 272–282. [Google Scholar] [CrossRef]
- Dy, B.; Ibrahim, N.; Poorthuis, A.; Joyce, S. Improving Visualization Design for Effective Multi-Objective Decision Making. IEEE Trans. Vis. Comput. Graph. 2022, 28, 3405–3416. [Google Scholar] [CrossRef]
- Millet, B.; Majumdar, S.J.; Cairo, A.; McNoldy, B.D.; Evans, S.D.; Broad, K. Exploring the Impact of Visualization Design on Non-Expert Interpretation of Hurricane Forecast Path. Int. J. Hum.–Comput. Interact. 2022, 40, 425–440. [Google Scholar] [CrossRef]
- Taieb-Maimon, M.; Ya’akobi, E.; Itzhak, N.; Zaltsman, Y. Comparing Visual Encodings for the Task of Anomaly Detection. Int. J. Hum.–Comput. Interact. 2022, 40, 357–375. [Google Scholar] [CrossRef]
- Kale, A.; Wu, Y.; Hullman, J. Causal Support: Modeling Causal Inferences with Visualizations. IEEE Trans. Vis. Comput. Graph. 2022, 28, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Alves, T.; Delgado, T.; Henriques-Calado, J.; Gonçalves, D.; Gama, S. Exploring the Role of Conscientiousness on Visualization-Supported Decision-Making. Comput. Graph. 2023, 111, 47–62. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, C.; Wong, J.K.; Wu, A.; Qu, H. Explaining with Examples: Lessons Learned from Crowdsourced Introductory Description of Information Visualizations. IEEE Trans. Vis. Comput. Graph. 2023, 29, 1638–1650. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.J.; Bowman, A.W. Density Strips: Visualisation of Uncertainty in Clinical Data Summaries and Research Findings. BMJ Evid.-Based Med. 2022, 27, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Kayongo, P.; Grunde-McLaughlin, M.; Hullman, J. Bayesian-Assisted Inference from Visualized Data. IEEE Trans. Vis. Comput. Graph. 2021, 27, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.F.; Sirkin, D.; Gür, T.M.; Steinert, M. Displayed Uncertainty Improves Driving Experience and Behavior: The Case of Range Anxiety in an Electric Car. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 2201–2210. [Google Scholar]
- Zhao, W.; Jiang, H.; Tang, K.; Pei, W.; Wu, Y.; Qayoom, A. Knotted-Line: A Visual Explorer for Uncertainty in Transportation System. J. Comput. Lang. 2019, 53, 1–8. [Google Scholar] [CrossRef]
- Kalinowski, P.; Lai, J.; Cumming, G. A Cross-Sectional Analysis of Students’ Intuitions When Interpreting CIs. Front. Psychol. 2018, 9, 112. [Google Scholar] [CrossRef]
- Fernandes, M.; Walls, L.; Munson, S.; Hullman, J.; Kay, M. Uncertainty Displays Using Quantile Dotplots or CDFs Improve Transit Decision-Making. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–12. [Google Scholar]
- Qin, C.; Joslyn, S.; Savelli, S.; Demuth, J.; Morss, R.; Ash, K. The Impact of Probabilistic Tornado Warnings on Risk Perceptions and Responses. J. Exp. Psychol.-Appl. 2023, 30, 206–239. [Google Scholar] [CrossRef]
- Toet, A.; van Erp, J.B.; Boertjes, E.M.; van Buuren, S. Graphical Uncertainty Representations for Ensemble Predictions. Inf. Vis. 2019, 18, 373–383. [Google Scholar] [CrossRef]
- Yang, F.; Hedayati, M.; Kay, M. Subjective Probability Correction for Uncertainty Representations. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–17. [Google Scholar]
- Panagiotidou, G.; Vandam, R.; Poblome, J.; Moere, A.V. Implicit Error, Uncertainty and Confidence in Visualization: An Archaeological Case Study. IEEE Trans. Vis. Comput. Graph. 2022, 28, 4389–4402. [Google Scholar] [CrossRef] [PubMed]
- Boukhelifa, N.; Perrin, M.-E.; Huron, S.; Eagan, J. How Data Workers Cope with Uncertainty: A Task Characterisation Study. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 3645–3656. [Google Scholar]
- Lin, H.; Akbaba, D.; Meyer, M.; Lex, A. Data Hunches: Incorporating Personal Knowledge into Visualizations. IEEE Trans. Vis. Comput. Graph. 2023, 29, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Blastland, M.; Freeman, A.L.J.; van der Linden, S.; Marteau, T.M.; Spiegelhalter, D. Five Rules for Evidence Communication. Nature 2020, 587, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Purificato, E.; Lorenzo, F.; Fallucchi, F.; De Luca, E.W. The Use of Responsible Artificial Intelligence Techniques in the Context of Loan Approval Processes. Int. J. Hum.–Comput. Interact. 2023, 39, 1543–1562. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Basirian, S.; Li, Z. Vulnerability of the Rip Current Phenomenon in Marine Environments Using Machine Learning Models. Results Eng. 2024, 21, 101704. [Google Scholar] [CrossRef]
- Kumar, M.; Samui, P.; Kumar, D.R.; Asteris, P.G. State-of-the-Art XGBoost, RF and DNN Based Soft-Computing Models for PGPN Piles. Geomech. Geoengin. 2024, 1–16. [Google Scholar] [CrossRef]
- Cousineau, D.; Goulet, M.-A.; Harding, B. Summary Plots with Adjusted Error Bars: The Superb Framework with an Implementation in R. Adv. Methods Pract. Psychol. Sci. 2021, 4, 25152459211035109. [Google Scholar] [CrossRef]
- Hullman, J. Why Authors Don’t Visualize Uncertainty. IEEE Trans. Vis. Comput. Graph. 2020, 26, 130–139. [Google Scholar] [CrossRef]
- Han, W.; Schulz, H.-J. Providing Visual Analytics Guidance through Decision Support. Inf. Vis. 2023, 22, 140–165. [Google Scholar] [CrossRef]
References | Visualization Forms | |||
---|---|---|---|---|
Dimara et al. (2018) [54] | Parallel Coordinated Plot | Scatterplot Matrix | Tabular Chart | |
Hopster-den Otter et al. (2019) [55] | Error Bar | Color Value | Blur | Omitting Error |
Jurkiewicz, (2020) [8] | Color Hue | Glyphs | Contour | Grain Density |
Hofman et al. (2020) [56] | Error Bar—95% Prediction Intervals | Error Bar—95% Confidence Intervals | Error Bar—Rescaled 95% Confidence Intervals | Hypothetical Outcome Plots |
Mulder et al. (2020) [57] | Worded Probability | Spaghetti Plot | Fan Plot | Box Plot |
Kale et al. (2021) [58] | Bell Curves | Error Bar | Hypothetical Outcome Plots | Quantile Dot Plots |
Srabanti et al. (2022) [12] | Distribution Dot Map | Hypothetical Outcome Map | Distribution Interaction Map | |
Dy et al. (2022) [59] | Parallel Coordinates Plots | Scatter Plot Matrices | Heat Maps | Radar Charts |
Millet et al. (2022) [60] | Probability Density Shading | Uniform, Diffuse Gray Shading | Cone Of Uncertainty | |
Taieb-Maimon et al. (2022) [61] | Color Saturation | Position | Size | Tabular |
Kale et al. (2022) [62] | Bar Charts | Icon Arrays | Text Tables | |
Xiong et al. (2022) [20] | Vertically Juxtaposed Bar | Horizontally Juxtaposed Bar | Overlaid Bar | Stacked Bar |
Preston and Ma, (2023) [52] | Dot Map | Small Multiple | Standard Contour | Sensor-Based Map |
Alves et al. (2023) [63] | Parallel Coordinated Plot | Scatterplot Matrix | ||
Kusumastuti et al. (2023) [4] | Interlace | Scatter | Ellipse | |
Yang et al. (2023) [64] | Parallel Coordinated Plot | Connected Scatter Plot | Chord Diagram | Mekko Chart |
Form | Slope, k | Intercept | Coefficient (R2) |
---|---|---|---|
Density strips | 0.9785 | 0 | 0.9879 |
Violin plots | 0.9588 | 0 | 0.9846 |
Error bars | 0.9382 | 0 | 0.9737 |
Form | Slope, k | Intercept | Coefficient (R2) |
---|---|---|---|
Density strips | 2.6100 | −0.0953 | 0.9920 |
Violin plots | 2.5662 | −0.0738 | 0.9948 |
Error bars | 2.4256 | −0.0077 | 0.9904 |
Form | Response Time (s) | Pupil Diameter (mm) |
---|---|---|
Density strips | 225.4 | 3.453 |
Violin plots | 232.6 | 3.402 |
Error bars | 248.5 | 3.366 |
Form | Slope, k | Intercept | Coefficient (R2) |
---|---|---|---|
Symmetric | 1.0834 | −0.0867 | 0.9127 |
Positive Skew | 1.0699 | −0.0754 | 0.8852 |
Negative Skew | 1.0898 | −0.0856 | 0.9108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hu, R.; Xue, C. Enhancing User Perception of Reliability in Computer Vision: Uncertainty Visualization for Probability Distributions. Symmetry 2024, 16, 986. https://doi.org/10.3390/sym16080986
Wang X, Hu R, Xue C. Enhancing User Perception of Reliability in Computer Vision: Uncertainty Visualization for Probability Distributions. Symmetry. 2024; 16(8):986. https://doi.org/10.3390/sym16080986
Chicago/Turabian StyleWang, Xinyue, Ruoyu Hu, and Chengqi Xue. 2024. "Enhancing User Perception of Reliability in Computer Vision: Uncertainty Visualization for Probability Distributions" Symmetry 16, no. 8: 986. https://doi.org/10.3390/sym16080986
APA StyleWang, X., Hu, R., & Xue, C. (2024). Enhancing User Perception of Reliability in Computer Vision: Uncertainty Visualization for Probability Distributions. Symmetry, 16(8), 986. https://doi.org/10.3390/sym16080986