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Abstract: In this paper, we present certain complete solutions in the dilatation theory of elasticity.
This model can be derived as a special case of Eringen’s linear theory of microstretched elastic
solids when microrotations are absent. It is also a version of the theory of materials with voids.
The dilatation theory can be considered the simplest theoretical model of microstructured materials
and is suitable for investigating various phenomena that occur in engineering, geomechanics, and
biomechanics. We establish three complete solutions to the displacement equations of equilibrium
that are the counterpart of the Green–Lamé (GL), Boussinesq–Papkovich–Neuber (BPN), and Cauchy–
Kowalevski–Somigliana (CKS) solutions of classical elasticity. The links between these BPN and
CKS solutions are established. Then, we present a representation of the BPN solution in the case of
axisymmetry. The results presented here are useful for solving axisymmetric problems in semi-infinite
and infinite domains.

Keywords: dilatation elasticity; complete solutions; Boussinesq–Papkovich–Neuber solution;
Green–Lamé solution; Cauchy–Kowalevski–Somigliana solution; axial symmetry

1. Introduction

The paper is concerned with the linear dilatation theory of elasticity. In this model, the
basic independent kinematic variables are the components of the field u of the body point
displacement and the scalar dilatation function φ. In contrast with the classical continuum
theory, where all of the deformation characteristics depend on the displacement field u, in
this microstructural model, the dilatation of a small volume of the body does not depend
on its centroidal motion, i.e., the relation φ = divu is rejected and φ is considered as an
independent characteristic of deformation. This assumption leads to the theory of materials
with voids proposed by Nunziato and Cowin [1,2]. This model can be also considered a
special case of Eringen’s microstretch theory [3], when the microrotations of the micro-
particles are absent. This theory has been investigated in detail regarding its fundamentals
and applications (see, e.g., the works of Markov [4], Lakes [5], Iesan [6,7], De Cicco [8],
and Birsan [9]). The increased interest in this topic is due to its suitability for investigating
various phenomena occurring in engineering, geomechanics, and biomechanics. It is
also useful for studying problems concerning the mechanical behaviour and fracturing
of materials containing a large number of point defects or microvoids (see Ramizani and
Jeany’s work [10]). A review of theoretical advances and references to relevant contributions
can be found in the book by Svanadze [11]. Recently, this field of theory has broadened
its domain to include more complex models, including multi-porosity materials, chiral
media, strain gradient elasticity and viscoelasticity, stress-driven elasticity, and non-local
elasticity [12–18].

Studies determining the general analytic solutions of the governing equations in
elastostatics and elastodynamics have been a core issue of the mathematical theory of
elasticity. Outlines of the historical achievements in this topic can be found in the works
of Gurtin [19], Sternberg [20], and Teodorescu [21]. The main theoretical efforts thus far
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have been directed at finding a unified method to derive the general solutions and a
unified scheme to prove the related issue of completeness and uniqueness (see [22–24]).
Further investigations have been devoted to extending the general elastic solutions to a
variety of fields, such as thermoelasticity, piezoelasticity, anisotropic solids, fluent media,
and so on (see, e.g., [25–27]). More recently, various studies have addressed the fields
of generalized media, which are largely characterized by taking into account multifield
coupling effects. In [28], Cowin established a complete solution to the displacement
equations of equilibrium for linear Cosserat elasticity. A representation of this solution in
terms of complex potentials in the context of microstretch elasticity was given by Iesan
and Nappa [29]. Chandrasekaraiah and Cowin [30] presented a complete solution to Biot’s
poroelastic theory. A representation of a Galerkin-type solution in the theory of microfluids
was established by Nappa in [31]. Xinsheng and Minzhong [32] derived general solutions
in the case of axisymmetric Stokes flow. Other contributions are due to Ike [33], Fetecan
and Vieru [34], and Markus and Mead [35]. For recent advances in the study of complete
solutions for 3D problems, the reader is referred to the review article by M.Z. Wang et al. [36]
and the references therein.

In this paper, complete solutions of the field equations of linear elastic dilatation theory
are obtained. These solutions are analogous and include, as special cases, the BPN, GL, and
CKS solutions of classical elastostatics. A connection between the BPN and CKS solutions
is established. Then, we present the basic equations of the dilatation theory in the case of
axisymmetry. The BPN solution of the displacement equilibrium system is particularized
in the case of axisymmetry. This result is particularly useful for solving axisymmetric
problems involving semi-infinite and infinite domains. The last section of this paper is
devoted to discussions and conclusions.

2. Basic Equations

We consider a regular region B of a three-dimensional Euclidean space occupied by
a linearly elastic material with voids. The region B is referred to as a system of Cartesian
coordinates O{e1, e2, e3}. We denote by ∂B the boundary of B and by n the outward unit
normal vector of ∂B. We assume that the mass density ρ, in the deformed configuration,
has the decomposition ρ = σρ̂, where ρ̂ is density of the matrix material and σ is the
volume fraction field. In the non-deformed state, we have ρ0 = σ0ρ̂0, where ρ0, æ̂0, and
σ0 are the mass density, the density of the matrix material, and the volume fraction field
in the reference configuration, respectively. We introduce the notation φ = σ − σ0. The
independent kinematic variables are the components of the displacement ui(i = 1, 2, 3) and
the change in volume fraction φ. The governing equations of the linear theory of elastic
materials with voids are as follows:

Geometrical equations:

eij =
1
2
(ui,j + uj,i) (1)

Equilibrium equations:
tij,i + bj = 0, hi,i − p + q = 0 (2)

where tij is the stress tensor, bj is the body force, hi is the equilibrated stress vector, p is the
intrinsic equilibrated stress vector, and q is the intrinsic body force. The physical meaning
and specific interpretations of hi, p, and q have been discussed in [8].

Constitutive equations:

tij = 2µeij + λerr + βφ, hi = αφ,i,

p = βuj,j + ζφ, (3)

where µ, λ, β, α, and ζ are constitutive coefficients. We assume that the internal energy
density is a positive definite. This assumption implies that
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µ > 0, α > 0, ζ > 0, 2µ + 3λ > 0, (2µ + 3λ)ζ > 3β2. (4)

The boundary conditions at a regular point ∂B are expressed as

tjinj = ti, h = hini , (5)

where ti is the surface traction and h is the equilibrated surface force. With the help of
Equations (1) and (3), the equilibrium Equation (2) can be rewritten in the following form:

µ∆u + (µ + λ)∇divu + β∇φ + b = 0

α∆φ − ζφ − βdivu + q = 0. (6)

In the following analysis, we study certain general solutions of the differential system
of Equation (6).

3. Complete Solutions

We assume that all functions appearing in this discussion are continuous and differen-
tiable up to the required order on B. We introduce the following notations:

c2 = 2µ + λ, a2 =
µ + λ

2c2 , D = (α∆ − ζ)c2 + β2 (7)

Theorem 1. Boussinesq –Papakovich–Neuber-type solution.

Let

u = G − a2∇(x · G + H),

βφ = c2a2(x · ∆G + ∆H), (8)

where x is the vector position of the generic point P, and G and H are arbitrary functions
defined on B that satisfy

∆G = − 1
µ

b

D∆H =
β2(1 − 2a2)

a2 divG − D(x · ∆G)− βq
a2 . (9)

Then, u and φ are a solution of the system of Equation (6).

Proof.

µ∆u + (µ + λ)∇divu + β∇φ + b = µ∆G − a2c2∇∆(x · G) + a2c2∇(x · ∆G)

+ 2a2c2∇divG + b = µ∆G + b = 0,

when we have used the relation

∆(x · G) = x · ∆G + 2divG. (10)

Moreover, we have

α∆φ − ζφ − βdivu + q =
a2

β
[(α∆ + ζ)c2 + β2]x · ∆G + 2a2βdivG−

βdivG +
a2

β
[(α∆ − ζ)c2 + β2]∆H + q =

a2

β
[D(x · ∆G)− (1 − 2a2)β2

a2 divG + D∆H + q
β

a2 ] = 0.
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In most applications of elastostatics, the Boussinesq–Papkovich–Neuber solution is
preferred over the Boussinesq–Somigliana–Galerkin solution. The reasons for this are
discussed by Gurtin (see [18], p. 142). As a corollary of Theorem 1, we obtain the follow-
ing result:

(i) If b = 0 and q = 0, the relations in Equation (8) reduce to

u = G − a2∇(x · G + H)

βφ = c2a2∆H, (11)

where G and H satisfy

∆G = 0, D∆H =
β2(1 − 2a2)

a2 divG. (12)

(ii) Let e be a given unit vector. If we take

G = Ge, (13)

then Equation (11) becomes

u = Ge − a2∇(H + zG)

βφ = c2a2∆H, (14)

where z = x · e is the coordinate in direction of e. The conditions in Equation (12) take the
following form:

∆G = 0, D∆H =
β2(1 − 2a2)

a2 div(Ge). (15)

The representations in Equations (14) and (15) are known as Boussinesq’s solutions.
Both solutions (i) and (ii) are extremely useful in axisymmetric problems. The next step is
to establish the Green–Lamé-type representation of the solution. As in classical elasticity,
we assume that b admits the Helmotz decomposition

b = −(∇η + curlγ), (16)

where η and γ are arbitrary functions defined on B,

Theorem 2. Green–Lamé-type solution.

Let

u = ∇Ψ + curlΦ

βφ = η − c2∆Ψ, (17)

where Ψ and Φ are functions that satisfy

µ∆Φ = γ

D∆Ψ = (α∆ − ζ)η + βq. (18)

Then, u and φ are a solution of the system in Equation (6).

Proof.

µ∆u + (µ + λ)∇divu + β∇φ + b = (2µ + λ)∇∆Ψ+

µcurl∆Φ +∇η − c2∇∆Ψ −∇η − curlγ = curl(µ∆Φ − γ) = 0

Substituting Equation (17) in the second equation of Equation (6), we have
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α∆φ − ζφ − βdivu + q =

1
β
(α∆ − ζ)η − 1

β
(α∆ − ζ)c2∆Ψ − β∆Ψ + q =

1
β
{(α∆ − ζ)η + βq − [(α∆ − ζ)c2 + β2]∆ψ} = 0.

The proof of Theorem 2 is thus complete. In the next theorem, we obtain a representa-
tion of u and φ that is called Cauchy–Kowalevski–Somigliana solution. We introduce the
following notation:

D∗ = 2(α∆ − ζ)c2 +
β2

a2 . (19)

Theorem 3. Cauchy–Kowalevski–Somigliana-type solution.

Let

u =
1
α
[D∆P − a2∇(D∗divP + βQ)]

φ =
1
α

∆(a2c2Q + µβdivP) (20)

where P and Q are functions defined on B that satisfy

D∆2P =− αb
µ

D∆Q =− αQ
a2 (21)

Then, u and φ are solution of the system of Equation (6).

Proof.

∆u + (µ + λ)∇divu + β∇φ + b =

1
α
{µD∆2P − [(2µ + λ)a2D∗ − (µ + λ)D − µβ2]∆∇divP − [βa2(2µ + λ)− a2c2β]∆∇Q + αb} =

1
α
{µD∆2P − [(µ + λ)(α∆ − ζ)c2 +

(µ + λ)β2

2a2 − (µ + λ)(α∆ − ζ)c2−

(µ + λ)(α∆ − ζ)c2 − (µ + λ)β2 − µβ2]∆∇divP + αb} =

1
α
(µD∆2P + αb) = 0

and

α∆φ − ζφ − βdivu + q =

1
α
{[(α∆ − ζ)c2 + β2]a2∆Q + β[µ(α∆ − ζ)− D + a2D∗]∆divP + qα} =

1
α
{a2D∆Q + β[(α∆ − ζ)(µ − c2 + 2a2c2)− β2 + a2 β2

a2 ]∆divP + qα} =

1
α
(a2D∆Q + qα) = 0.

The complete solutions established in this section are the counterpart of the analogous
complete solutions of the classical elasticity theory. The completeness of these solutions
can be proven following the method of classical elasticity.
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4. Links between the BPN and CKS Solutions

We introduce the following notations:

s2 =
1
α
(ζ − β2

2µ + λ
), d2 =

1
α
(ζ − β2

µ + λ
)

l2 =
2µβ2

α(µ + λ)(2µ + λ)
, a1 =

2β

α(µ + λ)
,

a2 =
1

µ(2µ + λ)
, a3 =

2
µ + λ

. (22)

Equation (9) related to the BPN-type solution can be rewritten in the following form:

∆G = − 1
µ

b

(∆ − s2)∆H = −(∆ − s2)∆(x · G)− 2d2divG − a1q. (23)

If we let b = 0, q = 0, then Equation (23) takes the following form:

∆G = 0, (∆ − s2)∆H = l2divG. (24)

Similarly, the version of Equation (21) related to the CKS-type solution becomes

(∆ − s2)∆∆P = −a2b,

(∆ − s2)∆Q = −a3q. (25)

When b = 0 and q = 0, Equation (25) reduces to

(∆ − s2)∆∆P = 0, (∆ − s2)∆Q = 0. (26)

Straightforward calculations lead to the following relations between the two solutions:

G = c2(∆ − s2)∆P,

H =
1
α
(βQ − D∗divP)− x · G. (27)

In the same way, it is not difficult to determine links between the GL solution and the
BPN and CKS solutions.

5. Axially Symmetric Problems

We assume that the region B refers to the half-space x3 > 0. We are interested in
axially symmetric problems with the displacement field u and the volume fraction φ being
specified in cylindrical coordinates as follows:

ur = u(r, z), uθ = 0, uz = w(r, z)

φ = φ(r, z). (28)

The geometrical equations become

err =
∂u
∂r

, eθθ =
u
r

, ezz =
∂w
∂z

erθ = 0, eθz = 0, ezz =
1
2
(

∂u
∂z

+
∂w
∂r

). (29)
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The constitutive equations are given by

τrr = 2µerr + λe + βφ,

τθθ = 2µ
u
r
+ λe + βφ,

τzz = 2µezz + λe + βφ,

τrz = 2µerz, τrθ = τθz = 0,

hr = α
∂φ

∂r
, hθ = 0, hz = α

∂φ

∂z
,

p = −βe − ζφ, (30)

where

e =
1
r

∂

∂r
(ru) +

∂w
∂z

. (31)

The equilibrium equations take the form

∂τrr

∂r
+

∂τrz

∂z
+

1
r
(τrr − τθθ) + br = 0,

∂τrz

∂r
+

∂τzz

∂z
+

1
r

τrz + bz = 0,

1
r

∂

∂r
(rhr) +

∂hz

∂z
− p + q = 0. (32)

Equation (32) can be expressed in terms of u, w, and φ, as follows:

µ(∆ − 1
r2 )u + (λ + µ)

∂e
∂r

+ β
∂φ

∂r
+ br = 0,

µ∆w + (λ + µ)
∂e
∂z

+ β
∂φ

∂z
+ bz = 0,

α∆φ − βe − ζφ + q = 0, (33)

where ∆ =
∂2

∂r2 +
1
r

∂

∂r
+

∂2

∂z2 .

The Boussinesq–Papkovich–Neuber-Type Representation for Axisymmetry

In the system of Equation (8), we express the functions G and H in cylindrical coordi-
nates. We assume that

Gr = ξ(r, z), Gθ = 0, Gz = ψ(r, z) H = χ(r, z). (34)

From Equations (8), (28) and (34), we have

u = ξ − a2 ∂Γ
∂r

, w = ψ − a2 ∂Γ
∂z

, βφ = a2c2(∆Γ − 2κ), (35)

where

Γ = rξ + zψ + χ. (36)

We introduce the following notation:

κ =
1
r

∂

∂r
(rξ) +

∂ψ

∂z
. (37)

From Equations (31) and (36), we obtain
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e = κ − a2∆Γ. (38)

If ξ, ψ, and χ satisfy the following equations

(∆ − 1
r2 )ξ = − br

µ
, ∆ψ = − bz

µ
,

D∆Γ − D∗κ = −q
β

a2 (39)

then u, w, and φ are a solution of the system in Equation (33).
In what follows, we will use the following relation:

∆Γ = r(∆ − 1
r2 )ξ + z∆ψ + ∆χ + 2κ. (40)

Now, we consider the case in which br = bz = 0, q = 0.
The relation in Equation (40) reduces to

∆Γ = ∆χ + 2κ, (41)

and from Equation (35), we have

βφ = a2c2∆χ. (42)

Then, Equation (39) becomes

(∆ − 1
r2 )ξ = 0, ∆ψ = 0,

D∆χ =
β2(1 − 2a2)

a2 κ. (43)

6. Discussion and Conclusions

1. The dilatation theory has been interpreted as a theory for an elastic solid containing
a large number of microvoids. The theoretical advantage of this theory is that it is
able to account for the non-local interactions between voids solely by means of the
first gradient of the void ratio. Moreover, the constitutive equations contain only five
material constants, which can be calculated based on certain requirements of equiv-
alence for two single solutions for microporous and dilatation bodies, respectively.
In recent decades, this theory has been widely discussed and criticized. The main
objection concerns the balance equation of equilibrated forces that appears obscure
from a physical point of view (see R. de Boer’s work [37]). Several interpretations
of these equilibrated forces have been given and this theory is now accepted by the
scientific community.

2. In the BPN solution, the displacement field u and the dilatation field φ are represented
by means of two auxiliary functions G and H. The displacement u is expressed as a
linear combination of the first derivative of G and H, while φ is a linear combination of
the second derivative of G and H. The coefficients in both of these linear combinations
depend on the spatial variable x. If we put β = 0 into Equations (8) and (9), we have
φ = 0 and

u = G − a2∇(x · G + H), (44)

∆G = − 1
µ

b, ∆H =
1
µ

x · b. (45)

Equations (44) and (45) are the BPN solution in classical elasticity.
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3. In a similar way, by equalizing β to 0 in the GL solution in Equations (17) and (18), the
function φ disappears and

u = ∇Ψ + curlΦ, (46)

µ∆Φ = γ, c2∆Ψ = η. (47)

Equations (46) and (47) show the representation of the GL solution in classical elasticity.
4. In the theory under discussion, the CKS representation of the solution is expressed

in terms of two auxiliary functions P and Q, in contrast with the classical elasticity
solution, where the displacement u depends on one auxiliary function.
If we let β = 0 and ζ = 0, Equations (20) and (21) reduce to

u = c2∆p − 2a2c2∇divp, (48)

∆p = − b
µc2 , (49)

where we have set ∆P = p. Equations (48) and (49) give the well-known CKS solution
in classical elastostatics.

5. In Section 3, we have established a connection between the BPN and CKS solutions. By
introducing appropriate notations, we have obtained analytical formulas that are more
suitable for dealing with topics like fundamental solutions and steady vibrations.

6. Some theoretical aspects are still open and have not been addressed in this study. It
might be useful to present a heuristic method of obtaining a general solution via the
Boussinesq–Somigliana–Galerkin solution. It is also interesting to establish a con-
structive scheme for the study of general elastic solutions. Problems in transversally
isotropic elasticity, planar problems, and axisymmetric problems can be investigated
under the framework of this scheme. The results presented in the paper are useful for
the determination of the stress and displacement fields in three fundamental three-
dimensional axisymmetric elasticity problems: the Kelvin problem of a concentrated
force in the interior of an infinite space, the Boussinesq problem of a concentrated force
orthogonal to the boundary of a half-space, and the Mindlin problem of a concentrated
force in the interior of a half-space.
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