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Abstract: In the paper, (1) in view of a general formula for any derivative of the quotient of two
differentiable functions, (2) with the aid of a monotonicity rule for the quotient of two power
series, (3) in light of the logarithmic convexity of an elementary function involving the exponential
function, (4) with the help of an integral representation for the tail of the power series expansion of the
exponential function, and (5) on account of Čebyšev’s integral inequality, the authors (i) expand the
logarithm of the normalized tail of the power series expansion of the exponential function into a power
series whose coefficients are expressed in terms of specific Hessenberg determinants whose elements
are quotients of combinatorial numbers, (ii) prove the logarithmic convexity of the normalized tail of
the power series expansion of the exponential function, (iii) derive a new determinantal expression of
the Bernoulli numbers, deduce a determinantal expression for Howard’s numbers, (iv) confirm the
increasing monotonicity of a function related to the logarithm of the normalized tail of the power
series expansion of the exponential function, (v) present an inequality among three power series
whose coefficients are reciprocals of combinatorial numbers, and (vi) generalize the logarithmic
convexity of an extensively applied function involving the exponential function.
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1. Motivations

It is well-known that
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+
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+
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6!
+ · · · , |u| ∈ R (1)

and
u
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=

∞
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Bj
uj
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2
+

∞

∑
j=1

B2j
u2j

(2j)!

= 1 − u
2
+

u2

12
− u4

720
+

u6

30240
− u8

1209600
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(2)

The generating function u
eu −1 of the classical Bernoulli numbers Bj for j ∈ N0, its generalized

expression u
βu−αu for β > α > 0, and their reciprocals have been being systematically
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investigated and extensively applied by Qi and his coauthors from the late 1990s to the
present. The first two papers about this topic are [1,2], while the first author of these two
papers was a PhD student at the University of Science and Technology of China. The latest
papers are [3,4].

In this paper, we start out from the logarithm of the reciprocal of the generating
function u

eu −1 of the Bernoulli numbers Bj for j ∈ N0.

1.1. First Series Expansion

For u ∈ R, let

F1(u) =

ln
eu −1

u
, u ̸= 0;

0, u = 0.

From ([5] Theorem 2.1) and Article 5 at the site http://rgmia.org/v11n1.php (accessed on
6 July 2024), we deduce that the function F1(u) is convex on (−∞, ∞) (see also Lemma 3
below), is 3-convex (that is, F′′′

1 (u) ≥ 0) on (−∞, 0), and is 3-concave (that is, F′′′
1 (u) ≤ 0)

on (0, ∞).
A simple differentiation yields

F′
1(u) = 1 − 1

u
+

1
eu −1

=
1
2
+

∞

∑
j=1

B2j
u2j−1

(2j)!
, |u| < 2π,

where we used the Maclaurin power series expansion (2). Integrating on both sides yields

F1(u) =
u
2
+

∞

∑
j=1

B2j

2j
u2j

(2j)!

=
u
2
+

u2
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− u4
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+

u6
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− u8
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+ · · · , |u| < 2π.

(3)

The first Maclaurin power series expansion is achieved.

1.2. Second Series Expansion

Let

F2(u) =

ln
2(eu −1 − u)

u2 , u ̸= 0;

0, u = 0.

The reciprocal of the exponent of the function F2(u), that is, the function u2

2
1

eu −1−u , is
a generating function of the Howard numbers Aj for j ∈ N0; see the paper ([6] p. 979,
Equation (2.9)). In other words,

u2

2
1
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=
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uj

j!
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3
+
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+
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+ · · · , |u| < |u0|,

(4)

where u0 ̸= 0 is the zero, closest to the origin u = 0, of the equation eu −1 − u = 0 on the
complex plane C. In ([7] Theorem 2.1), a closed-form expression for Aj was provided by

Aj =
1

(2j)!!

j
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m )

,

(5)

http://rgmia.org/v11n1.php
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where the shifting or falling factorial ⟨ρ⟩j is defined by

⟨ρ⟩j =
j−1

∏
k=0

(ρ − k) =

{
ρ(ρ − 1) · · · (ρ − j + 1), j ∈ N
1, j = 0

for ρ ∈ C and the second kind of Stirling numbers S(j, k) for j ≥ k ∈ N0 can be analytically
generated by (

et −1
t

)ℓ

=
∞

∑
j=0

S(j + ℓ, ℓ)

(j+ℓ
ℓ )

tj

j!
, ℓ ∈ N0.

It is clear that the closed-form formula (5) is not simple and beautiful. In Remark 2 below,
we will derive a beautiful, symmetric, and determinantal expression for the Howard
numbers Aj.

Direct differentiating results in

F′
2(u) = 1 − 2

u
+

u
eu −1 − u

=
1
3
+ 2

∞

∑
j=1

Aj+1

(j + 1)!
uj.

Accordingly, we arrive at

F2(u) =
u
3
+ 2

∞

∑
j=1

Aj+1

j + 1
uj+1

(j + 1)!

=
u
3
+

u2

36
+

u3

810
− u4

12960
− u5

68040
− u6

12247200
+

u7

6123600
+ · · · .

(6)

The second Maclaurin power series expansion is attained.

1.3. Motivations and Problems

It is known that, for n ∈ N and u ∈ R, the quantity

Rn(u) = eu −
n−1

∑
k=0

uk

k!

is called the nth tail of the Maclaurin power series expansion (1). In what follows, we
consider the function

fn(u) =


n!
un

(
eu −

n−1

∑
j=0

uj

j!

)
, u ̸= 0

1, u = 0

(7)

for n ∈ N. We call this quantity the nth normalized tail of the Maclaurin power series
expansion (1).

Motivated by the new Maclaurin power series expansions (3) and (6), we now propose
the following problems.

1. What is the Maclaurin power series expansion of the logarithm of the nth normal-
ized tail

Fn(u) =


ln

[
n!
un

(
eu −

n−1

∑
k=0

uk

k!

)]
, u ̸= 0

0, u = 0

(8)

around u = 0 for n ∈ N? What about the monotonicity and convexity of Fn(u) on
(−∞, ∞)?
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2. For n ∈ N, is the function

Rn,0(u) =


Fn(u)

u
, u ̸= 0

1
n + 1

, u = 0
(9)

increasing on (−∞, ∞)?
3. For n > m ∈ N, does the function

Rn,m(u) =


Fn(u)
Fm(u)

, u ̸= 0

m + 1
n + 1

, u = 0

have a unique minimum on (−∞, ∞)?

In this paper, we will provide solutions regarding the first two problems, but we leave
the third problem as an open problem.

2. Preliminaries

For solving the first two problems mentioned above, we now prepare the following
six lemmas.

Lemma 1 ([8]). For a real variable z ∈ I ⊆ R and a fixed integer j ∈ N0, let ϕ(z) and φ(z) ̸= 0
be two j-time differentiable functions, where I denotes an interval on R. Then, the jth derivative of
the quotient ϕ(z)

φ(z) is

dj

dzj

[
ϕ(z)
φ(z)

]
= (−1)j

∣∣W(j+1)×(j+1)(z)
∣∣

φj+1(z)
, j ∈ N0, (10)

where the (j + 1)× (j + 1) order matrix W(j+1)×(j+1)(z) is defined by

W(j+1)×(j+1)(z) =
(

U(j+1)×1(z) V(j+1)×j(z)
)
(j+1)×(j+1)

,

the (j + 1)× 1 order matrix U(j+1)×1(z) is of elements uk,1(z) = ϕ(k−1)(z) for 1 ≤ k ≤ j + 1, the

(j + 1)× j order matrix V(j+1)×j(z) is of elements vℓ,m(z) = ( ℓ−1
m−1)φ(ℓ−m)(z) for 1 ≤ ℓ ≤ j + 1

and 1 ≤ m ≤ j, and the quantity |W(j+1)×(j+1)(z)| is the determinant of the (j + 1)× (j + 1)
order matrix W(j+1)×(j+1)(z).

The Formula (10) is a higher-order derivative formula for the ratio of two differentiable
functions in terms of the determinant of a specific Hessenberg matrix. Sergei M. Sitnik
(Voronezh Institute of the Ministry of Internal Affairs of Russia) provided the Formula (10)
and related references to Qi via e-mails on 25 September 2014 and thereafter. Qi first applied
the Formula (10) in the paper [9]. Hereafter, Qi and his coauthors have been employing the
Formula (10) for extensively studying many mathematical problems. The latest two papers
applying the Formula (10) by Qi are [3,10].

Lemma 2 ([11]). Let Aj, Bj ∈ R for j ∈ N ∪ {0} be two real sequences and let the Maclaurin
power series

U(z) =
∞

∑
j=0

Ajzj and V(z) =
∞

∑
j=0

Bjzj
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be convergent on (−R, R) for some positive number R > 0. If Bj > 0 and the quotient
Aj
Bj

is

increasing for j ∈ N0, then the quotient U(z)
V(z) is also increasing on (0, R).

Lemma 2 is called the monotonicity rule for the quotient of two Maclaurin power
series. There exists a nice article [12] for reviewing, surveying, retrospecting, explaining,
correcting, and generalizing several monotonicity rules.

Lemma 3 ([5] Theorem 2.1). For two fixed numbers α and β such that β > α > 0, define
the function

hα,β(u) =


βu − αu

u
, u ̸= 0

ln
β

α
, u = 0

for u ∈ R. Then, the function hα,β(u) is logarithmically convex on (−∞, ∞).

Lemma 4 ([13] p. 502). For u ∈ R and m ∈ {0} ∪N, we have

Rm+1(u) = eu −
m

∑
j=0

uj

j!
=

um+1

(m + 1)!

[
1 + u

∫ 1

0
vm+1 eu(1−v) dv

]
.

Lemma 5 (Čebyšev’s integral inequality [14] p. 239, Chapter IX). Let f , h : [α, β] → (−∞, ∞)
be two integrable functions, either both increasing or both decreasing. Moreover, let q : [α, β] →
[0, ∞) be a non-negative and integral function. Then,∫ β

α
q(v)dv

∫ β

α
q(v) f (v)h(v)dv ≥

∫ β

α
q(v) f (v)dv

∫ β

α
q(v)h(v)dv. (11)

If one of the functions f and h is non-increasing and the other non-decreasing, then the inequality
in (11) is reversed. The equality in (11) validates if and only if one of the functions f and h reduces
to a scalar.

Lemma 6 ([15,16]). Let the functions U(y), V(y) > 0, and W(y, t) > 0 be integrable in
y ∈ (α, β).

1. If the quotients ∂W(y,t)/∂t
W(y,t) and U(y)

V(y) are both increasing or both decreasing in y ∈ (α, β), then
the quotient

R(t) =

∫ β
α W(y, t)U(y)dy∫ β
α W(y, t)V(y)dy

is increasing in t.
2. If one of the quotients ∂W(y,t)/∂t

W(y,t) or U(y)
V(y) is increasing and another one of them is decreasing

in y ∈ (α, β), then the quotient R(t) is decreasing in t.

Lemma 6 is a new monotonicity rule, not included in the nice article [12], which was
established and applied in recent years, and has been generalized in the paper [17].

There have been several independent developments of the monotonicity rules for
the ratios between two differentiable functions, two Maclaurin power series, two Laplace
transforms, two integrals, and the like. For more details, please refer to the newly pub-
lished papers [18–24], ([25] Lemma 4), the arXiv preprints [26,27], and closely related
references therein.

In July 2023, a Chinese mathematician Zhen-Hang Yang drafted a review and survey
work about the monotonicity rules for many various ratios and reported it at Guangdong
University of Education.
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3. A New General Maclaurin Power Series Expansion

After preparing necessary knowledge, in what follows in this section, we will establish
a new general Maclaurin power series expansion of the logarithmic expression Fn(t) defined
by (8).

Theorem 1. For n ∈ N, the function Fn(t) defined in (8) can be expanded into the Maclaurin
power series

Fn(t) =
∞

∑
ℓ=1

(−1)ℓ−1Dℓ(n)
tℓ

ℓ!
, (12)

where the determinant Dℓ(n) is defined by

Dℓ+1(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(n+1

1 )

(0
0)

(n
0)

0 0 0 · · · 0 0

1
(n+2

2 )

(1
0)

(n+1
1 )

(1
1)

(n
0)

0 0 · · · 0 0

1
(n+3

3 )

(2
0)

(n+2
2 )

(2
1)

(n+1
1 )

(2
2)

(n
0)

0 · · · 0 0

1
(n+4

4 )

(3
0)

(n+3
3 )

(3
1)

(n+2
2 )

(3
2)

(n+1
1 )

(3
3)

(n
0)

· · · 0 0

1
(n+5

5 )

(4
0)

(n+4
4 )

(4
1)

(n+3
3 )

(4
2)

(n+2
2 )

(4
3)

(n+1
1 )

· · · 0 0

...
...

...
...

...
. . .

...
...

1
(n+ℓ−1

ℓ−1 )

(ℓ−2
0 )

(n+ℓ−2
ℓ−2 )

(ℓ−2
1 )

(n+ℓ−3
ℓ−3 )

(ℓ−2
2 )

(n+ℓ−4
ℓ−4 )

(ℓ−2
3 )

(n+ℓ−5
ℓ−5 )

· · · (ℓ−2
ℓ−2)

(n
0)

0

1
(n+ℓ

ℓ )

(ℓ−1
0 )

(n+ℓ−1
ℓ−1 )

(ℓ−1
1 )

(n+ℓ−2
ℓ−2 )

(ℓ−1
2 )

(n+ℓ−3
ℓ−3 )

(ℓ−1
3 )

(n+ℓ−4
ℓ−4 )

· · · (ℓ−1
ℓ−2)

(n+1
1 )

(ℓ−1
ℓ−1)

(n
0)

1
(n+ℓ+1

ℓ+1 )

(ℓ0)

(n+ℓ
ℓ )

(ℓ1)

(n+ℓ−1
ℓ−1 )

(ℓ2)

(n+ℓ−2
ℓ−2 )

(ℓ3)

(n+ℓ−3
ℓ−3 )

· · · ( ℓ
ℓ−2)

(n+2
2 )

( ℓ
ℓ−1)

(n+1
1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣Aℓ+1,1(n) Bℓ+1,ℓ(n)

∣∣
(ℓ+1)×(ℓ+1)

for n ∈ N and ℓ ∈ N0, in which the matrices Aℓ+1,1(n) and Bℓ+1,ℓ(n) are defined by

Aℓ+1,1(n) =
(
αi,j(n)

)
1≤i≤ℓ+1,j=1, αi,1(n) =

1

(n+i
i )

and

Bℓ+1,ℓ(n) =
(

βi,j(n)
)

1≤i≤ℓ+1,1≤j≤ℓ
, βi,j =


0, ℓ ≥ j > i ∈ N;

(i−1
j−1)

(n+i−j
i−j )

, 1 ≤ j ≤ i ≤ ℓ+ 1.

First proof. A direct differentiation provides

F′
n(t) =

1
t
[
(t − n) et +n + ∑n−1

r=1 (n − r) tr

r!
]

et −∑n−1
r=0

tr

r!

=
1

tn+1

[
(t − n) et +n + ∑n−1

r=1 (n − r) tr

r!
]

1
tn

(
et −∑n−1

r=0
tr

r!
)

=
∑∞

r=0
(r+1)!

(n+r+1)!
tr

r!

∑∞
r=0

r!
(n+r)!

tr

r!

=
∑∞

r=0 Cn,r+1
tr

r!

∑∞
r=0 Cn,r

tr

r!

=
ϕn(t)
φn(t)

,
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where we denote

ϕn(t) =
∞

∑
r=0

(r + 1)!
(n + r + 1)!

tr

r!
=

∞

∑
r=0

Cn,r+1
tr

r!
,

φn(t) =
∞

∑
r=0

r!
(n + r)!

tr

r!
=

∞

∑
r=0

Cn,r
tr

r!
,

and
Cn,r =

r!
(n + r)!

, r ∈ N0, n ∈ N. (13)

Therefore, it is easy to see that

F′
n(0) =

1
n + 1

, ϕ
(r)
n (0) = Cn,r+1, φ

(r)
n (0) = Cn,r

for n ∈ N and r ∈ N0.
Employing the derivative formula (10) and simplifying leads to

F(ℓ+1)
n (0) = lim

t→0

[
ϕn(t)
φn(t)

](ℓ)

=
(−1)ℓ

φℓ+1
n (0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕn(0) φn(0) 0 0 · · · 0
ϕ′

n(0) φ′
n(0) (1

1)φn(0) 0 · · · 0
ϕ′′

n (0) φ′′
n(0) (2

1)φ′
n(0) (2

2)φn(0) · · · 0
ϕ
(3)
n (0) φ

(3)
n (0) (3

1)φ′′
n(0) (3

2)φ′
n(0) · · · 0

ϕ
(4)
n (0) φ

(4)
n (0) (4

1)φ
(3)
n (0) (4

2)φ′′
n(0) · · · 0

...
...

...
...

. . .
...

ϕ
(ℓ)
n (0) φ

(ℓ)
n (0) (ℓ1)φ

(ℓ−1)
n (0) (ℓ2)φ

(ℓ−2)
n (0) · · · ( ℓ

ℓ−1)φ′
n(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)ℓ

Cℓ+1
n,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cn,1 Cn,0 0 0 · · · 0
Cn,2 Cn,1 (1

1)Cn,0 0 · · · 0
Cn,3 Cn,2 (2

1)Cn,1 (2
2)Cn,0 · · · 0

Cn,4 Cn,3 (3
1)Cn,2 (3

2)Cn,1 · · · 0
Cn,5 Cn,4 (4

1)Cn,3 (4
2)Cn,2 · · · 0

...
...

...
...

. . .
...

Cn,ℓ+1 Cn,ℓ (ℓ1)Cn,ℓ−1 (ℓ2)Cn,ℓ−2 · · · ( ℓ
ℓ−1)Cn,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)ℓ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cn,1
Cn,0

Cn,0
Cn,0

0 0 0 · · · 0
Cn,2
Cn,0

Cn,1
Cn,0

(1
1)

Cn,0
Cn,0

0 0 · · · 0
Cn,3
Cn,0

Cn,2
Cn,0

(2
1)

Cn,1
Cn,0

(2
2)

Cn,0
Cn,0

0 · · · 0
Cn,4
Cn,0

Cn,3
Cn,0

(3
1)

Cn,2
Cn,0

(3
2)

Cn,1
Cn,0

(3
3)

Cn,0
Cn,0

· · · 0
Cn,5
Cn,0

Cn,4
Cn,0

(4
1)

Cn,3
Cn,0

(4
2)

Cn,2
Cn,0

(4
3)

Cn,1
Cn,0

· · · 0
...

...
...

...
...

. . .
...

Cn,ℓ+1
Cn,0

Cn,ℓ
Cn,0

(ℓ1)
Cn,ℓ−1

Cn,0
(ℓ2)

Cn,ℓ−2
Cn,0

(ℓ3)
Cn,ℓ−3

Cn,0
· · · ( ℓ

ℓ−1)
Cn,1
Cn,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)ℓ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(n+1

1 )

(0
0)

(n
0)

0 0 0 · · · 0 0

1
(n+2

2 )

(1
0)

(n+1
1 )

(1
1)

(n
0)

0 0 · · · 0 0

1
(n+3

3 )

(2
0)

(n+2
2 )

(2
1)

(n+1
1 )

(2
2)

(n
0)

0 · · · 0 0

1
(n+4

4 )

(3
0)

(n+3
3 )

(3
1)

(n+2
2 )

(3
2)

(n+1
1 )

(3
3)

(n
0)

· · · 0 0

1
(n+5

5 )

(4
0)

(n+4
4 )

(4
1)

(n+3
3 )

(4
2)

(n+2
2 )

(4
3)

(n+1
1 )

· · · 0 0

...
...

...
...

...
. . .

...
...

1
(n+ℓ−1

ℓ−1 )

(ℓ−2
0 )

(n+ℓ−2
ℓ−2 )

(ℓ−2
1 )

(n+ℓ−3
ℓ−3 )

(ℓ−2
2 )

(n+ℓ−4
ℓ−4 )

(ℓ−2
3 )

(n+ℓ−5
ℓ−5 )

· · · (ℓ−2
ℓ−2)

(n
0)

0

1
(n+ℓ

ℓ )

(ℓ−1
0 )

(n+ℓ−1
ℓ−1 )

(ℓ−1
1 )

(n+ℓ−2
ℓ−2 )

(ℓ−1
2 )

(n+ℓ−3
ℓ−3 )

(ℓ−1
3 )

(n+ℓ−4
ℓ−4 )

· · · (ℓ−1
ℓ−2)

(n+1
1 )

(ℓ−1
ℓ−1)

(n
0)

1
(n+ℓ+1

ℓ+1 )

(ℓ0)

(n+ℓ
ℓ )

(ℓ1)

(n+ℓ−1
ℓ−1 )

(ℓ2)

(n+ℓ−2
ℓ−2 )

(ℓ3)

(n+ℓ−3
ℓ−3 )

· · · ( ℓ
ℓ−2)

(n+2
2 )

( ℓ
ℓ−1)

(n+1
1 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)ℓDℓ+1(n)

for ℓ ∈ N0. Consequently, from the fact that Fn(0) = 0, we arrive at

Fn(t) =
∞

∑
ℓ=1

F(ℓ)
n (0)

tℓ

ℓ!
=

∞

∑
ℓ=1

(−1)ℓ−1Dℓ(n)
tℓ

ℓ!
.

The first proof of Theorem 1 is thus complete.

Second proof. The function fn(u) defined in (7) can be formulated as

fn(u) = n!
∞

∑
j=0

uj

(j + n)!
, n ∈ N.

Then

F′
n(u) = [ln fn(u)]′ =

∑∞
j=1

juj−1

(j+n)!

∑∞
j=0

uj

(j+n)!

=
∑∞

j=0
(j+1)uj

(j+n+1)!

∑∞
j=0

uj

(j+n)!

. (14)

Let

ϕn(u) =
∞

∑
j=0

(j + 1)uj

(j + n + 1)!
and φn(u) =

∞

∑
j=0

uj

(j + n)!
.

Then, for m ∈ N0,

ϕ
(m)
n (0) =

(m + 1)!
(n + m + 1)!

and φ
(m)
n (0) =

m!
(n + m)!

.

Accordingly, utilizing the derivative formula (10), we obtain

F(ℓ+1)
n (0) = lim

u→0

[
ϕn(u)
φn(u)

](ℓ)

=
(−1)ℓ

φℓ+1
n (0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕn(0) φn(0) 0 0 · · · 0 0
ϕ′

n(0) φ′
n(0) (1

1)φn(0) 0 · · · 0 0
ϕ′′

n (0) φ′′
n(0) (2

1)φ′
n(0) (2

2)φn(0) · · · 0 0
ϕ
(3)
n (0) φ

(3)
n (0) (3

1)φ′′
n(0) (3

2)φ′
n(0) · · · 0 0

...
...

...
...

. . .
...

...
ϕ
(ℓ−1)
n (0) φ

(ℓ−1)
n (0) (ℓ−1

1 )φ
(ℓ−2)
n (0) (ℓ−1

2 )φ
(ℓ−3)
n (0) · · · (ℓ−1

ℓ−2)φ′
n(0) (ℓ−1

ℓ−1)φn(0)

ϕ
(ℓ)
n (0) φ

(ℓ)
n (0) (ℓ1)φℓ−1

n (0) (ℓ2)φ
(ℓ−2)
n (0) · · · ( ℓ

ℓ−2)φ′′
n(0) ( ℓ

ℓ−1)φ′
n(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)ℓ(n!)ℓ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1!
(n+1)!

0!
n! 0 0 · · · 0 0

2!
(n+2)!

1!
(n+1)! (1

1)
0!
n! 0 · · · 0 0

3!
(n+3)!

2!
(n+2)! (2

1)
1!

(n+1)! (2
2)

0!
n! · · · 0 0

4!
(n+4)!

3!
(n+3)! (3

1)
2!

(n+2)! (3
2)

1!
(n+1)! · · · 0 0

...
...

...
...

. . .
...

...
ℓ!

(n+ℓ)!
(ℓ−1)!

(n+ℓ−1)! (ℓ−1
1 ) (ℓ−2)!

(n+ℓ−2)! (ℓ−1
2 ) (ℓ−3)!

n+ℓ−3 · · · (ℓ−1
ℓ−2)

1!
(n+1)! (ℓ−1

ℓ−1)
0!
n!

(ℓ+1)!
(n+ℓ+1)!

ℓ!
(n+ℓ)! (ℓ1)

(ℓ−1)!
(n+ℓ−1)! (ℓ2)

(ℓ−2)!
(n+ℓ−2)! · · · ( ℓ

ℓ−2)
2!

(n+2)! ( ℓ
ℓ−1)

1!
(n+1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)ℓDℓ+1(n)

for ℓ ∈ N0. The second proof of Theorem 1 is complete.

Remark 1. If taking n = 1 in Theorem 12, we derive

D1(1) =
∣∣∣ 1
(2

1)

∣∣∣ = 1
2

, D2(1) =

∣∣∣∣∣∣∣
1
(2

1)

(0
0)

(1
0)

1
(3

2)

(1
0)

(2
1)

∣∣∣∣∣∣∣ = − 1
12

,

D3(1) =

∣∣∣∣∣∣∣∣∣∣∣

1
(2

1)

(0
0)

(1
0)

0

1
(3

2)

(1
0)

(2
1)

(1
1)

(1
0)

1
(4

3)

(2
0)

(3
2)

(2
1)

(2
1)

∣∣∣∣∣∣∣∣∣∣∣
= 0, D4(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(2

1)

(0
0)

(1
0)

0 0

1
(3

2)

(1
0)

(2
1)

(1
1)

(1
0)

0

1
(4

3)

(2
0)

(3
2)

(2
1)

(2
1)

(2
2)

(1
0)

1
(5

4)

(3
0)

(4
3)

(3
1)

(3
2)

(3
2)

(2
1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1
120

,

and

D5(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(2

1)

(0
0)

(1
0)

0 0 0

1
(3

2)

(1
0)

(2
1)

(1
1)

(1
0)

0 0

1
(4

3)

(2
0)

(3
2)

(2
1)

(2
1)

(2
2)

(1
0)

0

1
(5

4)

(3
0)

(4
3)

(3
1)

(3
2)

(3
2)

(2
1)

(3
3)

(1
0)

1
(6

5)

(4
0)

(5
4)

(4
1)

(4
3)

(4
2)

(3
2)

(4
3)

(2
1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Then, we have

F1(t) = D1(1)t − D2(1)
t2

2
+ D3(1)

t3

6
− D4(1)

t4

24
+ D5(1)

t5

120
+ · · ·

=
t
2
+

t2

24
− t4

2880
+ · · ·

which coincides with the first three terms of the Maclaurin power series expansion (3).
Comparing the Maclaurin power series expansion (3) with the Maclaurin power series expan-

sion (12) for n = 1 reveals two equalities

D2k+1(1) = 0 and B2k = −2kD2k(1)

for k ∈ N. The last equality presents a new determinantal expression of the Bernoulli number B2k,
or the last equality provides a computation of the determinant Dk for k ∈ N0.

Regarding the Bernoulli numbers B2k, Qi and his coauthors have investigated many years
and obtained a number of significant results such as explicit and closed-form expressions, recursive
relations, determinantal expressions, a two-side inequality for the quotient of B2k+2

B2k
, identities,

logarithmic convexity and increasing monotonicity of the Bernoulli numbers B2k and their quotients
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B2k+2
B2k

, signs of several Toeplitz–Hessenberg determinants of elements involving the Bernoulli
numbers Bk, generalizations, and the like. In the paper [3], there was a concise review and survey
on these results.

Remark 2. If setting n = 2 in Theorem 12, we acquire

D1(2) =
∣∣∣ 1
(3

1)

∣∣∣ = 1
3

, D2(2) =

∣∣∣∣∣∣∣
1
(3

1)

(0
0)

(2
0)

1
(4

2)

(1
0)

(3
1)

∣∣∣∣∣∣∣ = − 1
18

,

D3(2) =

∣∣∣∣∣∣∣∣∣∣

1
(3

1)

(0
0)

(2
0)

0

1
(4

2)

(1
0)

(3
1)

(1
1)

(2
0)

1
(5

3)

(2
0)

(4
2)

(2
1)

(3
1)

∣∣∣∣∣∣∣∣∣∣
=

1
135

, D4(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(3

1)

(0
0)

(2
0)

0 0

1
(4

2)

(1
0)

(3
1)

(1
1)

(2
0)

0

1
(5

3)

(2
0)

(4
2)

(2
1)

(3
1)

(2
2)

(2
0)

1
(6

4)

(3
0)

(5
3)

(3
1)

(4
2)

(3
2)

(3
1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1
540

,

and

D5(2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(3

1)

(0
0)

(2
0)

0 0 0

1
(4

2)

(1
0)

(3
1)

(1
1)

(2
0)

0 0

1
(5

3)

(2
0)

(4
2)

(2
1)

(3
1)

(2
2)

(2
0)

0

1
(6

4)

(3
0)

(5
3)

(3
1)

(4
2)

(3
2)

(3
1)

(3
3)

(2
0)

1
(7

5)

(4
0)

(6
4)

(4
1)

(5
3)

(4
2)

(4
2)

(4
3)

(3
1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

567
.

Accordingly, we obtain

F2(u) = D1(2)
u
1!

− D2(2)
u2

2!
+ D3(2)

u3

3!
− D4(2)

u4

4!
+ D5(2)

u5

5!
+ · · ·

=
u
3
+

u2

36
+

u3

810
− u4

12960
− u5

68040
− · · ·

which are coincident with the first five terms of the power series expansion (6).
Comparing the Maclaurin power series expansion (6) and the Maclaurin power series expan-

sion (12) for n = 2 yields
An = (−1)n−1 n

2
Dn(2), n ≥ 2. (15)

This surprisingly establishes a connection between the sequence An and the determinant Dn, and
presents a determinantal formula of the quantities An studied in the papers [6,7]. It is clear that the
determinantal expression (15) for An is more beautiful and symmetric than the one expressed in
Equation (5).

4. Increasing Monotonicity and Logarithmic Convexity

In this section, we prove the increasing property of the functions Rn,0(u) in (9) on
(−∞, ∞) and derive logarithmic convexity of the function Fn(u).

Theorem 2. For n ∈ N, the function Rn,0(u) in (9) is increasing on (−∞, ∞).

Proof. A straightforward calculation results in

R′
n,0(u) =

uF′
n(u)− Fn(u)

u2
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and
[uF′

n(u)− Fn(u)]′ = uF′′
n (u).

Hence, in order to prove the increasing property of Rn,0(u) on (−∞, ∞), it is sufficient to
show that the function uF′

n(u)− Fn(u) is positive on R. Since the limit

lim
u→0

[uF′
n(u)− Fn(u)] = 0

is valid, it is sufficient to show that the second derivative F′′
n (u) is positive on (−∞, ∞).

Therefore, it suffices to prove that the first derivative

F′
n(u) =

∑∞
j=0 Cn,j+1

uj

j!

∑∞
j=0 Cn,j

uj

j!

(16)

is increasing on (−∞, ∞), where Cn,j is defined by (13). It is apparent that the sequence
Cn,j+1

Cn,j
= j+1

n+j+1 is increasing in j ∈ N0. This can also be verified from (14). Making use of

Lemma 2 results in the increasing property of F′
n(u), that is, F′′

n (u) > 0, on the interval
[0, ∞). Consequently, the function Rn,0(u) with n ∈ N is thus increasing on the interval
[0, ∞).

The function Rn,0(u) can be reformulated as

Rn,0(u) =
1
u

∫ u

0
F′

n(t)dt =
∫ 1

0
F′

n(uv)dv.

In order to prove the increasing property of Rn,0(u) on (−∞, ∞), it is enough to show that
the function Fn(u) is convex on (−∞, ∞). Lemma 3 for α = 1 and β = e means that the
function F1(u) is convex on (−∞, ∞). Hence, the function R1,0(u) is increasing on (−∞, ∞).

From the first derivative (16), we find

F′′
n (u) =

[
∑∞

j=0 Cn,j+1
uj

j!

∑∞
j=0 Cn,j

uj

j!

]′
=

(
∑∞

j=0 Cn,j+2
uj

j!
)(

∑∞
j=0 Cn,j

uj

j!
)
−
(
∑∞

j=0 Cn,j+1
uj

j!
)2(

∑∞
j=0 Cn,j

uj

j!
)2 .

In order to prove F′′
n (u) > 0 on (−∞, ∞), it suffices to prove that its numerator is positive,

that is, the inequality[
∞

∑
j=0

1

(n+j+2
n )

uj

j!

][
∞

∑
j=0

1

(n+j
n )

uj

j!

]
≥
[

∞

∑
j=0

1

(n+j+1
n )

uj

j!

]2

, n ∈ N (17)

is valid on (−∞, ∞), which is equivalent to

fn(u) f ′′n (u) ≥ [ f ′n(u)]
2, n ∈ N (18)

on (−∞, ∞), where fn(u) defined by (7) satisfies the recursive relation

fn+1(u)
n + 1

=
fn(u)− 1

u
=
∫ 1

0
f ′n(ut)dt.

From Lemma 4 and by integration by parts, we derive

fn(u) = 1 + u
∫ 1

0
vn eu(1−v) dv

= 1 −
∫ 1

0
vn deu(1−v)

dv
dv
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= n
∫ 1

0
vn−1 eu(1−v) dv,

f ′n(u) = n
∫ 1

0
vn−1(1 − v) eu(1−v) dv,

f ′′n (u) = n
∫ 1

0
vn−1(1 − v)2 eu(1−v) dv

for n ∈ N. Then, the inequality (18) becomes

∫ 1

0
vn−1 eu(1−v) dv

∫ 1

0
(1 − v)2vn−1 eu(1−v) dv ≥

[∫ 1

0
(1 − v)vn−1 eu(1−v) dv

]2

for n ∈ N and u ∈ (−∞, ∞). This integral inequality follows from an immediate application
of Lemma 5 with q(v) = vn−1 eu(1−v) ∈ N0 and f (v) = h(v) = 1 − v on the interval
[α, β] = [0, 1]. Consequently, the second derivative F′′

n (u) is positive, and then the function
Rn,0(u) is increasing, on (−∞, ∞). The proof of Theorem 2 is thus complete.

Corollary 1. The function fn(u) in (7) is increasing and logarithmically convex on (−∞, ∞).
Equivalently, the function Fn(u) in (8) is increasing and convex on (−∞, ∞).

First proof. It is general knowledge that

eu =
n−1

∑
j=0

uj

j!
+

1
(n − 1)!

∫ u

0
(u − v)n−1 ev dv =

n−1

∑
j=0

uj

j!
+

un

(n − 1)!

∫ 1

0
(1 − v)n−1 euv dv.

As a result, we arrive at

Fn(u) = ln
[

n
∫ 1

0
(1 − v)n−1 euv dv

]
, n ∈ N,

which is increasing in u ∈ (−∞, ∞). Then, we obtain the integral representation

F′
n(u) =

∫ 1
0 (1 − v)n−1v euv dv∫ 1
0 (1 − v)n−1 euv dv

, n ∈ N.

Applying Lemma 6 to W(v, u) = euv, U(v) = (1 − v)n−1v, and V(v) = (1 − v)n−1 such
that both ∂W(v,u)/∂u

W(v,u) = v and U(v)
V(v) = v are increasing on (0, 1), we derive that the first

derivative F′
n(u) for n ∈ N is increasing in u ∈ (−∞, ∞). As a result, the function Fn(u) for

n ∈ N is convex in u ∈ (−∞, ∞).

Second proof. This comes from reorganizing a part of the proof of Theorem 2.

Corollary 2. The inequality (17) is valid on (−∞, ∞).

Proof. This follows from reorganizing a part of the proof of Theorem 2.

Remark 3. Corollary 1 generalizes Lemma 3 with α = 1 and β = e.

5. Conclusions

In this paper, we obtained the following interesting and significant results.

1. For n ∈ N, the new general Maclaurin power series expansion (12) of the function
Fn(t) defined by (8) was established in Theorem 1, from which two special Maclaurin
power series expansions (3) and (6) can be derived immediately.

2. A new determinantal expression B2k = −2kD2k(1) of the Bernoulli numbers B2k for
k ∈ N was deduced in Remark 1.
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3. A determinantal expression (15) for Howard’s numbers An for n ≥ 2, which are
generated by (4), was deduced in Remark 2.

4. For n ∈ N, the function Rn,0(u) defined in (9) was proved in Theorem 2 to be increasing
on (−∞, ∞).

5. For n ∈ N, the function fn(u) defined in (7), the tail of the Maclaurin power series
expansion of the exponential function eu, was proved in the proof of Theorem 2 to be
increasing and logarithmically convex on (−∞, ∞).

6. For n ∈ N, the function Fn(u) defined in (8) was proved in the proof of Theorem 2 to
be increasing and convex on (−∞, ∞).

7. The inequality (17) is valid on (−∞, ∞).
8. Lemma 3 with α = 1 and β = e was generalized in the proof of Theorem 2.

By the way, we point out that the ideas of constructing the function Fn(u) and studying
its properties can be further concluded in the following ways. Suppose that a real function
f (u) has a formal Maclaurin power series expansion

f (u) =
∞

∑
j=0

f (j)(0)
uj

j!
. (19)

If f (n+1)(0) ̸= 0 for some integer n ∈ N0, we can consider the function

(n + 1)!
f (n+1)(0)

1
un+1

[
f (u)−

n

∑
j=0

f (j)(0)
uj

j!

]
,

call it the nth normalized tail of the formal Maclaurin power series expansion (19), study
its monotonicity and its (logarithmic) convexity or concavity, expand its logarithm into a
Maclaurin power series around u = 0, and investigate the monotonicity and (logarithmic)
convexity or concavity of the quotient of two functions with consecutively different values
of n. Concretely speaking, we can take f (u) as any one of the elementary functions such as
ln u, sin u, cos u, tan u, cot u, arcsin u, arccos u, and their integer powers (ln u)m, (sin u)m,
(cos u)m, (tan u)m, (cot u)m, (arcsin u)m, and (arccos u)m for m ∈ N. More significantly, we
can take f (u) as any one of the generating functions

u
eu −1

,
2 eu

e2u +1
, [ln(1 + u)]m,

(
eu −1

u

)m

,
2

1 +
√

1 − 4u
,

1√
1 − 6u + u2

of the Bernoulli numbers Bj, the Euler numbers Ej, the Stirling numbers of the first kind
s(j, k), the Stirling numbers of the second kind S(j, k), the Catalan numbers Cj, and the
central Delannoy numbers D(j) for j ∈ N0.

So far, Qi and his coauthors have initially investigated several of the simple functions
mentioned above and published the papers [28–34] and ([35] Remark 7), for example. In
particular, by the study of the normalized tails associated with the generating function u

eu −1
of the Bernoulli numbers Bj in [33], Qi and his coauthors derived an interesting problem on
the monotonic properties of the ratios of any two Bernoulli polynomials Bj(x) and arrived
at many significant and novel results in ([33] Proposition 1) and the arXiv preprint at the
site https://doi.org/10.48550/arxiv.2405.05280; see also ([31] Remarks 5 and 6). These
events demonstrated that the normalized tails, also known as the normalized remainders,
associated with the Maclaurin or formal power series expansions of analytic or generating
functions in analysis and combinatorial number theory, firstly and creatively designed by
Qi, deserve to be extensively and deeply investigated by mathematicians.

We believe that the ideas and techniques used in this paper will attract more and more
mathematicians to conduct increasingly better research in mathematics.

https://doi.org/10.48550/arxiv.2405.05280
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