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Abstract: Some recent published works have provided an exhaustive characterization of the plasma
dynamics during magnetic reconnections in the presence of a magnetic guide field in MRX laboratory
plasmas, including an assessment of the mechanisms that convert from magnetic energy to plasma
kinetic energy. Among other results, the measurements indicate the existence of a correlation
between the electron temperature and the generation of a spectrum of electric oscillations during the
reconnection. In this work, we adapt to MRX conditions the well-known stochastic particle heating
mechanism, frequently adopted in the astrophysical literature to justify ion heating by low-frequency
large-amplitude electromagnetic waves. We show that, under MRX conditions. it may potentially
provide a relevant contribution to electron energization.

Keywords: magnetic reconnection; electron heating; electron–wave interaction; Hamiltonian model;
laboratory plasmas; MRX device; non-adiabatic dynamics

1. Introduction

Reconnections are ubiquitous processes in magnetized plasmas: laboratory, stellar, and
planetary ones [1]. They involve sudden changes in the topology of the magnetic field, that
rearranges into a state of lower energy. Part of the initial free energy is traveled away from
the reconnection region by waves, or converted into the kinetic energy of ions and electrons.
Reconnection is a complex process, which defies a unique description, since it is heavily
dependent upon the geometry of the magnetic field and the physical conditions existing; it
is, therefore, a topic still actively studied [2]. During reconnection, a lot of electromagnetic
activity is produced in the form of quasi-steady fields, broadband turbulence, or coherent
waves, which can interact with the ions and/or the electrons, delivering energy to the
kinetic component of the plasma. A topic of current investigation concerns the mechanisms
that allow energy to flow towards particles.

The Magnetic Reconnection eXperiment (MRX) is a device to study the fundamental
physics issues of magnetic reconnection in a well-controlled laboratory environment [3]. We
consider in this work the studies summarized in two recent papers by the MRX team [4,5],
reporting a detailed campaign of measurements of plasma dynamics during reconnections
in the presence of a guide magnetic field perpendicular to the reconnecting one. Mea-
sures were taken using a full 2D probe array for magnetic field reconstruction parallel
to the (x, z) reconnection plane. Furthermore, an electrostatic probe, inserted near the
reconnection region, allowed fast measurements of the electron density, temperature, and
electric field. During reconnection, a quasi-steady electric field arises, parallel to the guide
field, of amplitude ⟨Ey⟩ of order 100 V/m. Superimposed electric field oscillations in Ey
appear. These oscillations appear as high-amplitude (δEy ≃ ⟨Ey⟩), almost monochromatic
(frequency ν ≈ 2 MHz, in the lower-hybrid wave frequency range) waves traveling along
the electron outflow with a wavelength of the order of the thermal electron Larmor radius
(kρe ≈ 1). The electron density fluctuations appear correlated with the electric field ones.
Importantly, for this work, an increasing trend in the average electron temperature (of
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the order of 10 eV) near the X line with δEy is observed. We refer to Figure 4 of paper [4],
and in particular, to the red dots, corresponding to the high-guide-field case, where al-
most a doubling of Te is observed in going from the smallest (≈50 V/m) to the largest
(≈150 V/m) values of δEy.

The second part of the study [5] is devoted to a characterization of the energy budget
to identify the different ways through which magnetic energy is converted into particle
energy. As far as the electron component is concerned, the study concludes that a relevant
fraction of the energy is delivered to the electrons through parallel acceleration by the
electric field ⟨Ey⟩ near the X-point or the reconnecting field, along the y-direction.

Given the high level of electric fluctuations with respect to the steady component,
and the correlation between them and the electron temperature, found in [4], it appears
reasonable to investigate how and to what extent the oscillatory part may contribute to the
electron energization. This is the purpose of this work. We propose that a fraction of the
electron heating may occur via interaction with low-frequency high-amplitude electromag-
netic waves. This mechanism has frequently been invoked in the astrophysical literature,
often as a candidate for ion heating by Alfvèn waves, but its range of application is more
widespread [6–19]. In the present case, we do not refer specifically to a coherent mode: by
the term “wave”, we mean a traveling electromagnetic plane wave Fourier component out
of a whole spectrum. Since the frequency range of the experimental spectrum is fairly nar-
row, retaining just one frequency component within the model appears to be a reasonable
simplification. We sketch a rough Hamiltonian model of wave–particle interaction in the
presence of a strong guide magnetic field, in a simplified geometry, representative of MRX
conditions. We show that, when feeding the model with MRX plasma parameters, we are
able to recover quantitatively the measured amount of heating, in terms of temperature
gain per electron. We justify our test-particle approach based on the fact that MRX plasmas
are relatively low-β, β ≈ 0.5.

Finally, as a spin-off, we discuss wave–particle correlations along the parallel direction,
reminiscent of the collisionless Landau damping mechanism, which arise spontaneously
within our framework.

2. Methods

Throughout this study, we will restrict ourselves close to the X line, where the recon-
necting component of the magnetic field is small and will be neglected in comparison to
the perpendicular guide field Bg.

Within the Hamiltonian formulation, any electric and magnetic field is described in
terms of potentials. The guide magnetic field is

Bg = ∇× Ag, Ag = −B0x ẑ (1)

To this field, we add a monochromatic electromagnetic wave:

Aw =
b
k

cos(kx − ωt) ŷ (2)

The wave has both magnetic and electric components:

B(m)
w = b sin(kx − ωt) ẑ, E(m)

w = − bω

k
sin(kx − ωt) ŷ (3)

Notice that the oscillating electric field is oriented along the direction out of the reconnection
plane and parallel to the guide field, like in the experiment. We provide in Figure 1 a sketch
of the experimental arrangement: we show a section of the reconnecting field in the (x, z)
plane; the arrow along the y-axis represents the direction of the guide field, while the
sinusoidal curve stands for the wave propagating along the x-axis.
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Figure 1. A rough sketch of the experimental arrangement. The field lines of the reconnecting
magnetic fields are shown in a 2D section onto the (x, z) plane. The red arrow marks the direction of
the guide field. The orange curve stands for the wave propagating along the x-axis.

In MRX, fluctuations superimpose upon a mean flow, driven by an average electric
field and braked by collisions [4]. Here, we place ourselves in a reference frame moving
with the mean flow, thus treating electrons as initially at rest along the y-axis, and neglecting
both collisions and the stationary electric field.

In the following lines, for convenience, we will be using dimensionless quantities:
time is given in units of Ω−1, with Ω = qB0/m the Larmor angular frequency. Lengths
are normalized to the thermal Larmor radius ρ =

√
qTe/m, where Te is the measured

electron plasma temperature and q, m are the electron charge and mass. The single-particle
Hamiltonian is written,

H =
p2

x
2

+
1
2
(

py − Aw
)2

+
1
2
(

pz − Ag
)2

≡ p2
x

2
+

x2

2
+

b2

4k2 cos(2kx − 2ωt) (4)

Since H does not depend upon the coordinates y, z, the momenta py, pz are constant
of the motion. They can be dropped from the Hamiltonian using a gauge transform
of A. A constant term (b/2k)2, which represents just an offset, has been dropped alike.
The Hamiltonian (4), but for the inessential factor 2k in the argument of the trigonometric
term, is in the paradigmatic form

H′ =
p2

x
2

+
x2

2
+ a cos(x − ωt) (5)

Note that H and H′ depend just upon the single x spatial coordinate. Had we accounted
for the reconnecting component of the magnetic field, the system would have been
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fully three-dimensional. The Hamiltonian (5) has been extensively studied in the cited
literature [6–19]. Since the Hamiltonian features a time dependence ω t that is slow
compared to the cyclotron motion (in our dimensionless units, ω ≃ 10−3), one might
naively conjecture that the corresponding dynamics are always adiabatic and reversible,
i.e., if the wave is turned on for some time, and then switched off, the initial and final
particle energy are the same. The literature cited above shows, instead, that this is true
only for small wave amplitudes; there is a transition from adiabatic to non-adiabatic
dynamics in correspondence of a trespassing the threshold a = 1. This condition
corresponds to the appearance of a slow (moving with the wave frequency) separatrix
in the particle phase space. In the static case (ω = 0), the separatrix divides orbits
into totally disjointed basins while, in the dynamical regime, it is permeable. Close to
the separatrix, the period of the orbit becomes very large, exceeding the wave period.
Thus, the adiabaticity hypothesis, which relies upon the particle orbit period being much
smaller than the wave period, breaks down; any crossing of the separatrix is an essentially
irreversible process. Since the separatrix is an iso-energy curve in the phase space, each
crossing corresponds to moving between disjointed basins at different energies: the initial
and final particle energies are different. Therefore, a net energy transfer between particle
and wave may effectively take place. (The threshold condition a = 1 places a constraint
upon the wave amplitude which is often difficult to satisfy in laboratory (and sometimes
also astrophysical) plasmas, where fluctuations are ordinarily small with respect to the
mean fields. Although it is not relevant to the present work, we mention that recently,
we showed that this threshold is not always needed, since under some conditions it
can be traded for a threshold upon the duration of the wave–particle interaction, in a
way reminiscent of quantum-mechanics indeterminacy relations: see the paper [20]).
This result is made visual in Figure 2: each of the 16 subplots is a snapshot of the
instantaneous state of the system in the plane (kx, px) taken at consecutive time intervals
∆t = π/(8ω), from left to right and from top to bottom. The colored contour levels
label the instantaneous iso-energy curves p2

x/2 + x2/2 + A cos(kx − ωt) = constant. The
red dots mark the position of 30 particles initialized close to each other near the origin
(x = 0, px = 0) (left-top subplot). While time evolves, the particles spread along almost
iso-energy curves but, ultimately, a fraction of them crosses the newborn separatrix
(third row) and remains energetically separated from the others.

We enclose in the Supplementary Materials a video clip illustrating dynamically the
same behavior: the motion of two initially close particles (red and green dots) is tracked in
the (x, px) plane, superimposed on the instantaneous iso-energy levels, which progressively
become detached in correspondence of each jump across the separatrix and the X-point.
The energy of the two particles differs as well.

The threshold amplitude is written as athre = b2 = 1. The amplitude of the electric
field associated to the wave is |Ew| = ωb/k; hence, the threshold condition can be written
as |Ew| ≥ ω/k. In physical units, it becomes

|Ew| ≥ (ω ρ) B0 (k ρ)−1 =
ω

Ω
uth B0 (k ρ)−1 (6)

where uth is the thermal speed and Ω is the electron Larmor frequency. The average energy
gained per particle in the non-adiabatic regime is a question that, quantitatively, has not yet
received a full investigation. Some partial investigations are reported in [15], but only cold
particles were considered there, i.e., their initial distribution was practically mono-energetic
and close to zero. In this paper, we are going to repeat the exercise using a realistic thermal
initial distribution.
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Figure 2. Snaphots at consecutive time intervals ∆t = π/(8 ω) of the state of the particle: from left to
right and from top to bottom. The colored contour levels label the instantaneous iso-energy curves
p2

x/2 + x2/2 + A cos(kx − ωt) = constant. The red dots mark the corresponding instantaneous
position of 30 particles. The particles are initialized close to each other near the origin (x = 0, px = 0)
(left-top subplot). At the end of the simulation (corresponding to two full wave periods), part of
the particles is left with an energy close to their initial value, while another fraction lies now on a
different energy curve. The figure is reused from the original publication [15].

Hamilton equations from Equation (4) were integrated in time using one symplectic
algorithm built into Wolfram’s Mathematica 12.0 software (“NDSolve” routine, choosing the
“SymplecticPartitionedRungeKutta” method of fourth order), and another one implemented
from ref. [21]. Here below, we provide the results of a scan performed varying the wave
amplitude A = (b/(2k))2. The numerical strategy is the same employed elsewhere: we
switch on and off the wave through a shape function f (t) : A → A f (t), with

f (t) =
1
4

(
1 + tanh

(
t − tS

∆t

))(
1 + tanh

(
tF − t

∆t

))
(7)

In this expression, tS, tF represent the start and end time of the perturbation, and ∆t is
the time scale for switch-on and -off. By comparing the particle energy before and after the
switching of the wave, we obtain the amount of heating. For each value of A, 2400 indepen-
dent trajectories were evolved. The initial conditions were randomly sampled from a thermal
distribution, i.e., E0 and r picked up, respectively, from a zero-mean, unit-variance normal distri-
bution, and from the uniform distribution in (0, 1), and x(0) = (rE0)

1/2, p(0) = ((1− r)E0)
1/2.

All parameters were taken from MRX measurements. Using non-normalized quantities:
B0 = 110 Gauss, Te = 8 eV, kρ = 1, ω/(2π) = 2 MHz. The shape function f (t) grows up and
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falls down over the MRX time scale for the bursts of electromagnetic activity:
tS = 2.5µs, tF = 7.5µs, ∆t = 1µs; this yields an effective duration time of the electron–
wave interaction of roughly 5 µs, which, based upon the figures in [4] (see their Figure 2),
appears reasonable. The temperature, for each value of the electric field, was computed as the
average energy of the particles after the interaction with the wave had been switched off.

3. Results

The main result of this work is summarized in Figure 3. The threshold amplitude of
Equation (6) corresponds to 85 V/m for the parameters employed. There is energy gain
by the electrons only beyond this threshold: compare the two leftmost points with the
others. The figure should be compared with Figure 4 of the paper [4], in particular, with
the red dots that correspond to the case with the largest guide field, closest to the geometry
employed in the present work; there, the electron temperature rises from slightly more than
7 eV to about 10 eV over the range 50–150 V/m, nicely consistent with our result.

Figure 3. Final temperature (average energy of the test particle) when the initial temperature Te = 8 eV
versus the amplitude of the wave electric field. The threshold value (Equation (6)) is Ew = 85 V/m,
corresponding to the second point from the left.

Indeed, it is possible to advance a conjecture: according to the paper [4], electric
fluctuations superimpose to a background quasi-static electric field parallel to the guide
magnetic field, whose typical value is about 80 V/m. The electron collision time for a
10 eV, 1013 cm−3 plasma is τcoll ≈ 10−7 s. Over this time scale, the energy gained by an
electron due to parallel acceleration is ∆K ≈ O(10) eV. Thus, we may envisage the following
scenario: the baseline electron temperature, ≈6 ÷ 8 eV, is due to electron energization by
parallel electric fields. This conclusion is consistent with the analysis carried out in [5].
Waves add a further contribution that, depending upon their amplitude, may amount up
to 2 ÷ 3 eV.

In order to give an insight about the typical dynamics experienced by the electrons
during their interaction with the wave, we plot in Figure 4 a sample of the time trace
of the electron’s kinetic energy, px(t)2/2, alongside the corresponding time trace of the
wave as experienced by the particle: f (t) cos(kx(t)− ωt). In particular, we pay attention
to the wild energy fluctuations during the time interval t = 5000–15,000, when f ≈ 1.
They greatly exceed the final stationary energy of the particle, but only transiently; in
the sub-threshold case, ultimately, the electron lands back to its initial energy once the
wave has disappeared.
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Figure 4. An example of time trace of one simulation. The blue curve is the kinetic energy p2
x(t)/2,

the yellow curve is f (t)cos(kx(t)− ωt). This run features Ew = 170 V/m—twice the threshold for
the onset of nonadiabatic motion, and an initially almost static particle: x(0) = 0, px(0) = 0.075.

In Figure 5, we show the probability distribution of the initial and final particle mo-
menta px for the case with Ew = 170 V/m. Each distribution has been computed by
taking the initial (respectively, final) value of the momentum for all the 2400 independent
trajectories. Interestingly, the final distribution remains fairly close to a thermal (normal)
curve. This result was not obtained from earlier studies using monoenergetic initial distri-
butions, and is comforting since experimental measurements hint at a true heating, not just
electron energization.

Figure 5. Probability distribution of the initial (blue) and final (orange) momentum distribution for
the case with Ew = 170 V/m, computed over 2400 independent trajectories.

We remark, even though the wave electric field is parallel to the guide magnetic
field, energization of the electrons occurs along the x-direction, perpendicular to B. Since
Hamilton’s equation for the motion along the magnetic field is written as dz/dt = −Aw(x, t)
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(setting pz = 0), when the wave vanishes (Aw → 0), we are sure that the particle stops
moving along z; no energy is acquired along the parallel direction.

We conclude with a spin-off of the above analysis. Our simulations do not involve
interactions between particles, and in particular, between ions and electrons; therefore, the
subject of the anomalous resistivity is outside the scope of this work. Yet, the analysis of
the particle dynamics reveals interesting aspects. In Figure 6, we plot one time trace of the
quantity sin(kx − ωt), where x = x(t) is the computed trajectory. The plot refers to the
flat-top phase, where f (t) ≈ 1. Although the plot refers to just one case, the inspection
of several trajectories shows that the picture is generic: the particle trajectory exhibits a
quasi-periodic trend, with intervals where it slowly drifts around two attractors, placed at
the phase = ±90◦, interrupted by sudden jumps from the one to the other.

Figure 6. Time trace of sin(k x − ω t) for one trajectory. Here, Ew = 130 V/m, x(0) = 0.2, px(0) = 0.075.

From Equation (4), we retrieve the equation of motion along y:

dy
dt

= − b
k

cos(kx − ωt) (8)

where we have set py = 0, consistent with our choice of the initial conditions. After another
derivative, we obtain Newton’s law

d2y
dt2 = −ω

b
k

sin(kx − ωt) (9)

The dynamics of Figure 6 consists of finite intervals where the particle stays almost in phase
with the peaks of the electric field: (| sin(kx − ωt)| ≈ 1), which is a feature of the Landau
damping. This condition, which corresponds to the state of maximal acceleration by the
electric field, is unstable since it is incompatible over long periods with the dy/dt ≈ 0
condition from Equation (8); thus, the system jumps repeatedly between the two fixed
points. Yoo et al. [4] introduce the anomalous drag term D = −⟨δneδE⟩/⟨ne⟩, which
quantifies the correlation between the particle and the electric field oscillations and the
contribution to the resistivity by the fluctuating terms. Within our framework, the analog
of D, normalized to the electric field amplitude, is

D′ = ⟨δ(x − x(t)) sin(kx(t)− ωt)⟩ (10)

where x(t) is the particle trajectory, and the average ⟨. . .⟩ is performed both over time and
over all the trajectories.

In our case, there is no symmetry-breaking term; correlated and anti-correlated phases
are equally likely, thus D′ vanishes. However, we may speculate about what would
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happen if an efficient symmetry-breaking mechanism, that allows only correlated (or anti-
correlated) phases to survive, were added. If we average sin(kx(t)− ωt) over just the time
windows where it is positive, we obtain ⟨sin(kx(t)− ωt)⟩>0 ≈ 0.84 = cos(32◦), which
compares fairly well with the cos(30◦) figure coming from the measurements of Yoo et al.
By comparison, a perfectly sinusoidal trend would yield

∫ π
0 dx sin(x)/π = cos(50◦). All

this is highly speculative, yet it is suggestive that the observed correlation might arise as a
consequence of this kind of resonance.

4. Conclusions

In this work, we have presented a proposal for electron energization by low-frequency
high-amplitude electromagnetic waves produced during magnetic reconnection. The
physical mechanism is well established in the literature. It is based upon the appearance
of a moving separatrix in the particle phase space whose crossing breaks the adiabaticity
of the motion and allows for an irreversible transfer of energy between wave and particle.
The model is not self-consistent, since the wave spectrum is given from the outset and no
backreaction of the particle component onto the magnetic field is accounted for. Within
a first-order approximation, this is justified on the basis that MRX plasmas are relatively
low-beta. When applied to the MRX published data, the model has foreseen a level of
energization close to that measured, suggesting that it could be a relevant player in the
overall energy budget, comparable to the energization due to parallel acceleration along
steady electric fields. Indeed, a reasonable guess is that the static parallel electric field heats
the electron up to the 6 ÷ 8 eV baseline value, while the wave contribution justifies the
remaining 2 ÷ 3 eV that appear in Figure 4 of the paper [4].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym16091095/s1, Video S1: video.
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