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Abstract: In this work, the efficacy of fractional models under Atangana–Baleanu–Caputo, Caputo–
Fabrizio, and Caputo is compared to the performance of integer-order models in the forecasting
of weekly influenza cases using data from the Kingdom of Saudi Arabia. The suggested fractional
influenza model was effectively verified using fractional calculus. Our investigation uncovered the
topic’s essential properties and deepened our understanding of disease progression. Furthermore,
we analyzed the numerical scheme’s positivity, limitations, and symmetry. The fractional-order
models demonstrated superior accuracy, producing smaller root mean square error (RMSE) and
mean absolute error (MAE) than the classical model. The novelty of this work lies in introducing
the Atangana–Baleanu–Caputo fractional model to influenza forecasting to incorporate memory
of an epidemic, which leads to higher accuracy than traditional models. These models effectively
captured the peak and drop of influenza cases. Based on these findings, it can be concluded that
fractional-order models perform better than typical integer-order models when predicting influenza
dynamics. These insights should illuminate the importance of fractional calculus in addressing
epidemic threats.
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1. Introduction

Different types of influenza viruses cause respiratory infections, commonly known
as influenza [1,2]. The most common method of transmitting these viruses is through
respiratory droplets. They are very infectious. The three primary types of influenza viruses
are A, B, and C. Type A is more prevalent among mammalian animals, type B mainly affects
humans, and type C typically causes moderate respiratory problems. Type A is the most
common form [3,4]. Researchers need help formulating models since these models play
a significant and crucial role in describing phenomena occurring worldwide in various
sectors, including science, engineering, and technology [5].

It has been demonstrated that the study of fractional models is an adaptable topic
that has been successful in various scientific fields [6,7]. Because diseases, particularly
infectious diseases, significantly impact people’s lives, it is essential to study and identify
ways to combat them, whether by pharmaceutical means or non-pharmaceutical practices,
to manage and forecast them in the future [8,9].

Mathematicians and academics are considering several different mathematical models
to understand the dynamics of the infectious disease influenza. Researchers conduct this
analysis to understand the disease better. An example of this would be the mathematical
model [10], which investigates the influenza model. The authors of [11] consider a model
of an avian influenza epidemic and provide control measures for the virus’s elimination.
The writers briefly outlined the dynamics of the human and bird populations. For model
fitting, the authors of [12] considered both the human influenza model and the actual
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cases. In [13], the researchers investigate a mathematical model that describes the vaccine
resistance mechanism for the dynamics of an influenza virus. Article [14] takes into
consideration a model of influenza that has a nonlinear incidence rate. The authors covered
various discussions and methods regarding how to control the infection. All of the models
presented earlier for influenza and their controls are restricted to integer orders only,
and only one method can be used to perform their numerical calculations. Because they
generalize the integer situation, fractional models are more valuable than classical models.
Additionally, one can have a significant amount of information regarding the model’s
heredity and memory.

The fractional influenza illness is presented in [15], and a fractional influenza epidemi-
ological model is provided in [16]. This fractional HPAI model is provided in reference [17].
In [18], a fractional model of visceral leishmaniasist uses the ABC and Cf operators. In
addition, the ABC operator has been successfully applied to epidemiological models and
other fields, as evidenced by the references [19–22]. In addition, some recent significant
results published regarding fractional calculus and its application to situations that occur
in the real world can be found in [23,24]. The writers of these recently released works
discussed various issues associated with science and engineering and produced helpful
results regarding these issues [25–27].

Recent studies on influenza have investigated the influenza spread and specified the
necessity of using a fractional-order approach to modeling [28–34]. Models with fractional
derivatives provide the ability to remember and inherit the processes of virus transmission
and provide better fits to the data. This is particularly important in enhancing the level
of forecasting accuracy and predicting future trends of the flu epidemic, which is vital in
policy-making in the management of epidemics.

This work’s main contribution is its assessment of the efficacy of the fractal models,
specifically the Caputo, CF, ABC operator, and classical models, in the context of influenza
dynamics. This research is distinguished by its rigorous assessment of the fractal models,
particularly the ABC model, and its demonstration of its superiority over the other two
models in epidemiological modeling.

The novelty of this work lies in using the ABC operator, which performed better than
the models using the classical, Caputo, and CF operators. Furthermore, the ABC operator
has shown greater accuracy in reflecting accurate data, with a lower relative error.

The structure of this work is summarized as follows: Section 2 begins with an intro-
duction to the preliminary concepts utilized in our research. Sections 3 and 4 present the
development of the model in terms of the classical and fractional meanings, respectively.
Section 5 discusses the model’s analysis. Section 6 presents the numerical findings and
explanations. Section 7 presents the study’s results and conclusions.

2. Preliminaries

Definition 1 ([35]). The (RL) integral u : R+ → R with order α > 0 is given by

Iα
0+(u(t)) =

1
Γ(α)

∫ t

0
(t − s)α−1u(s) ds, t > 0, (1)

Definition 2 ([35]). The RL differential operator for u(t) , α > 0 is given by

Dα
0+(u(t)) =

1
Γ(m − α)

dm

dtm

(∫ t

0
(t − s)m−α−1u(s) ds

)
, t > 0, (2)

where m − 1 < α < m, m ∈ N.

Definition 3 ([35]). The Caputo definition with α > 0 is given by

CDα
0+(u(t)) =

1
Γ(m − α)

∫ t

0
(t − s)m−α−1u(m)(s) ds, t > 0, (3)
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where m − 1 < α < m, m ∈ N.

Definition 4 ([36]). The CF operator of order α, where α ∈ [0, 1], is defined as follows:

CFDα
0+(u(t)) =

M(α)

1 − α

∫ t

0
exp

[
− α

1 − α
(t − s)

]
u′(s) ds, t > 0, (4)

where M(α) is a normalization function, M(0) = M(1) = 1, and α ∈ [0, 1].

Definition 5 ([37]). Let u(t) ∈ H1(0, T), T > 0, and α ∈ (0, 1], then the ABC operator under
Caputo sense given by

ABCDα
0+(u(t)) =

B(α)
1 − α

∫ t

0
Eα

[
− α

1 − α
(t − s)

]
u′(s) ds, (5)

where B(α) = M(α)
M(1) = 1 and Eα(·) is the Mittag–Leffler function.

Definition 6 ([38]). The CF operator under Caputo sense, then the integral equation is given by

Iα
0+(u(t)) =

2
M(α)

∫ t

0
u(s) ds. (6)

Definition 7 ([37]). The ABC operator under Caputo sense, then the integral equation is given by

ABC Iα
0+(u(t)) =

B(α)
1 − α

∫ t

0
Eα

[
− α

1 − α
(t − s)

]
u(s) ds. (7)

3. The Development of the Model in the Classical Meaning

The transmission dynamics of influenza are represented using the SEIHR-V model.
This model consists of compartments for individuals who are (S), (E), (I), (H), (R), and (V):
susceptible, exposed, infectious, hospitalized, recovered, and vaccinated (referred to as the
SEIHR − V model). At each given moment, t, then,

N(t) = V(t) + E(t) + I(t) + H(t) + R(t) + S(t).

Every class experiences a constant natural mortality rate of β2. The S is supposed to
expand through recruiting mechanisms at a rate of β1 and through declining immunity of
persons in R and V at β11. It is reduced through vaccination at a rate of β4.

f1 = β3
(E + I)S

N
,

The variable β5 represents the ineffectiveness of vaccination, which may be expressed
as the difference between β3 and β5. On the other hand, β3 represents the likelihood of an
individual belonging to class V or S.

At the rate of β4, individuals from class S are recruited to become members of class
V. It is impossible to obtain long-lasting immunity by vaccination nor to ensure complete
protection. Therefore, persons vaccinated become vulnerable once more at a rate of β11
owing to the fact that their immunity is diminishing and they are exposed to the virus due
to the force of infection.

f2 = β5β3
(E + I)V

N
.

Class E individuals are recruited by illnesses f1 and f2, progress to class I at w, and
reach class R at β8. Infected people from class E are recruited at rate β10, recover at β7, and
spend a percentage of time in the hospital, ϵ. The R increases from classes E, I, and H at
rates β8, β7, and β9, respectively, and becomes vulnerable again at β11. Based on the given
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description, we formulate a system (8) of ordinary differential equations to represent the
model formally.

dS
dt

= β1 + β11(V + R)− β3
(E + I)S

N
− (β4 + β2)S

dV
dt

= β4S − β5β3
(E + I)V

N
− (β11 + β2)V

dE
dt

= β3
(E + I)(S + β5V)

N
− (β10 + β8 + β2)E

dI
dt

= β10E − (β7 + ϵ + β2)I

dH
dt

= ϵI − (β9 + β2)H

dR
dt

= β8E + β7 I + β9H − (β11 + β2)R, (8)

with initial conditions R0 ≥ 0, H0 ≥ 0, I0 ≥ 0, E0 ≥ 0, V0 ≥ 0, and S0 ≥ 0. Tables 1 and 2
provides a full description of the model parameters, and Figure 1 shows the transfer
diagram of the model.

S E I H

V

R

β3
(E+1)

N β10 β9

β7

β4
β5β3

(E+1)
N

β11 β11

α1

β2 β2

β2

β2 β2

β2

β4

Figure 1. Influenza transmission dynamics.

Tables 1 and 2 display detailed explanations, precise values, and comprehensive
information regarding all model parameters. Influenza statistics were for 2021 from Saudi
Arabia [39] and used the MCMC method to fit Model (8), which is described in Table 1; the
parameters are displayed in Table 2.

Table 1. Description of compartments in model (8).

Compartment Description

S Susceptible class
V Vaccinated class
E Exposed class
I Infected class
H Hospitalized class
R Recovered class
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Table 2. Explanation of the model’s parameters (8).

Parameter Description Value Source

β1 Population recruitment rate 104 [39]
β2 Natural death rate 0.000254 weeks−1 [39]
β3 Average effective contact rate 0.858 Fitted
β4 Vaccination rate 0.114 Fitted
β5 Vaccine inefficacy 1 Fitted
β6 Average hospitalization rate 0.0015 Fitted
β7 Recovery rate for infected class 0.385 day−1 [40]
β8 Recovery rate for exposed class 0.34 Fitted
β9 Recovery rate for hospitalized individuals 0.68 Fitted
β10 Average latent or incubation period 0.625 day−1 [41]
β11 Rate at which individuals lose immunity 0.0067 day−1 [39]

4. The Development of the Model in the Fractional Meaning

This section presents the fractional influenza model, which utilizes six differential
equations. The description of fractional models, which are memory-based systems, necessi-
tates using numerous methods. Scientists in biology, physics, and engineering have noted
that fractional-order models can make more precise predictions of experimental outcomes
compared to their integer-order counterparts [38,42–44].

∗Dα
0,tS(t) = β1 + β11(V + R)− β3

(E + I)S
N

− (β4 + β2)S

∗Dα
0,tV(t) = β4S − β5β3

(E + I)V
N

− (β11 + β2)V

∗Dα
0,tE(t) = β3

(E + I)(S + β5V)

N
− (β10 + β8 + β2)E

∗Dα
0,t I(t) = β10E − (β7 + ϵ + β2)I

∗Dα
0,tH(t) = β6 I − (β9 + β2)H

∗Dα
0,tR(t) = β8E + β7 I + β9H − (β11 + β2)R, (9)

where * is a fractional-order operator. Table 2 provides full description parameters and
Figure 1 shows the transfer diagram.

4.1. Caputo Meaning

Here, we present the fractional influenza model under the Caputo operator.

CDα
0,tS(t) = β1 + β11(V + R)− β3

(E + I)S
N

− (β4 + β2)S

CDα
0,tV(t) = β4S − β5β3

(E + I)V
N

− (β11 + β2)V

CDα
0,tE(t) = β3

(E + I)(S + β5V)

N
− (β10 + β8 + β2)E

CDα
0,t I(t) = β10E − (β7 + ϵ + β2)I

CDα
0,tH(t) = ϵI − (β9 + β2)H

CDα
0,tR(t) = β8E + β7 I + β9H − (β11 + β2)R, (10)
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4.2. Caputo–Fabrizio Meaning

Here, we present the fractional model under the CF operator.

CFDα
0,tS(t) = β1 + β11(V + R)− β3

(E + I)S
N

− (β4 + β2)S

CFDα
0,tV(t) = β4S − β5β3

(E + I)V
N

− (β11 + β2)V

CFDα
0,tE(t) = β3

(E + I)(S + β5V)

N
− (β10 + β8 + β2)E

CFDα
0,t I(t) = β10E − (β7 + ϵ + β2)I

CFDα
0,tH(t) = ϵI − (β9 + β2)H

CFDα
0,tR(t) = β8E + β7 I + β9H − (β11 + β2)R, (11)

4.3. Atangana–Baleanu–Caputo Meaning

Here, we present the fractional model under the ABC operator.

ABCDα
0,tS(t) = β1 + β11(V + R)− β3

(E + I)S
N

− (β4 + β2)S

ABCDα
0,tV(t) = β4S − β5β3

(E + I)V
N

− (β11 + β2)V

ABCDα
0,tE(t) = β3

(E + I)(S + β5V)

N
− (β10 + β8 + β2)E

ABCDα
0,t I(t) = β10E − (β7 + ϵ + β2)I

ABCDα
0,t H(t) = ϵI − (β9 + β2)H

ABCDα
0,tR(t) = β8E + β7 I + β9H − (β11 + β2)R, (12)

5. Analysis of the Model

This section explores the dynamical elements of model (8) to determine the conditions
for disease persistence or extinction in a population.

5.1. Disease-Free Equilibrium Point (Ed f e)

If there is no influenza, all the infected model compartments remain unaffected,
meaning that the values of E, I, H, and R are all equal to zero. The (Ed f e) coordinates of
system (8) are determined by setting Equation (8) to zero, as shown below:

Ed f e = (S∗
0 , V∗

0 , E∗
0 , I∗0 , H∗

0 , R∗
0), (13)

where S∗
0 = β1(β11+β2)

β2(β4+β11+β2)
, V∗

0 = β4β1
β2(β4+β11+β2)

, and E∗
0 = I∗0 = H∗

0 = R∗
0 = 0.

5.2. Positivity and Boundedness

Theorem 1. If the initial values (S0, V0, E0, I0, H0, R0) are non-negative, then the solutions
(S, V, E, I, H, R) of the model (8) are positive for all t > 0.

Proof. By substituting

S = 0, V = 0, E = 0, I = 0, H = 0, R = 0

into the equations of system (8), respectively in order, we have
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dS
dt

∣∣∣∣
S→0

= β1 + β11(V + R) ≥ 0

dV
dt

∣∣∣∣
V→0

= β4S ≥ 0

dE
dt

∣∣∣∣
E→0

= β3
I(S + β5V)

N
≥ 0

dI
dt

∣∣∣∣
I→0

= β10E ≥ 0

dH
dt

∣∣∣∣
H→0

= β6 I ≥ 0

dR
dt

∣∣∣∣
R→0

= β8E + β7 I + β9H ≥ 0.

Thus, the positive invariant region of system (8) is shown by

Ω =
{
(S(t), V(t), E(t), I(t), H(t), R(t)) ∈ R6

+ : N(t) ≤ β1

β2
, ∀t ≥ 0

}
,

which is epidemiologically meaningful.

5.3. Reproduction Numbers

The reproduction number is a crucial parameter in epidemiology that objectively
measures how a disease spreads.

In this part, we use the approach in [45] to calculate basic reproduction numbers for
system (8).

dE
dt

= β3(t)
(E + I)(S + β5V)

N
− (β10 + β8 + β2)E

dI
dt

= β10E − (β7 + β6 + β2)I

dH
dt

= β6 I − (β9 + β2)H. (14)

Let x = (E, I, H) and rewrite system (14) in compact form as

dx
dt

= f (x)− v(x),

with

f (x) =

 β3
(E+I)(S+β5V)

N
0
0

 and v(x) =

 (β10 + β8 + β2)E
−β10E + (β7 + β6 + β2)I

−β6 I + (β9 + β2)H

.

Then,

F =


β3(S∗

0+β5V∗
0 )

N∗
0

β3(S∗
0+β5V∗

0 )
N∗

0
0

0 0 0
0 0 0

,

and

V =

 (β10 + β8 + β2) 0 0
−β10 (β7 + β6 + β2) 0

0 −β6 (β9 + β2)

. (15)
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The inverse of V is

V−1 =


1

(β10+β8+β2)
0 0

β10
(β10+β8+β2)(β7+β6+β2)

1
(β7+β6+β2)

0
β10β6

(β10+β8+β2)(β7+β6+β2)(β9+β2)
β6

(β7+β6+β2)(β9+β2)
1

(β9+β2)

,

and

FV−1 =


β3(S∗

0+β5V∗
0 )

N∗
0 (β10+β8+β2)

+
β3β10(S∗

0+β5V∗
0 )

N∗
0 (β10+β8+β2)(β7+β6+β2)

β3(S∗
0+β5V∗

0 )
N∗

0 (β7+β6+β2)
0

0 0 0
0 0 0

.

Eigenvalues of FV−1 given by
{

β3(S∗
0+β5V∗

0 )
N∗

0 (β10+β8+β2)
+

β3β10(S∗
0+β5V∗

0 )
N∗

0 (β10+β8+β2)(β7+β6+β2)
, 0, 0, 0, 0, 0

}
.

Then,

Rv =
β3(S∗

0 + β5V∗
0 )

N∗
0 (β10 + β8 + β2)

+
β3β10(S∗

0 + β5V∗
0 )

N∗
0 (β10 + β8 + β2)(β7 + β6 + β2)

=
β3(β4β5 + β2 + β11)(β6 + β7 + β2 + β10)

(β4 + β2 + β11)(β6 + β7 + β2)(β8 + β2 + β10)
. (16)

When β11 = β5 = β4 = 0, then R0 is given by

R0 =
β3(β6 + β7 + β2 + β10)

(β6 + β7 + β2)(β8 + β2 + β10)
. (17)

5.4. Stability Analysis

Theorem 2. At Ed f e, system (8) is locally asymptotically stable if Rv < 1 and unstable if Rv > 1.

Proof. The Jacobian matrix (J) for model (8) considering state variables is:



−β4 − β2 −
β3(E+I)

N β11 − Sβ3
N − Sβ3

N 0 β11

β4 −β2 − β11 −
β3 β5(E+I)

N −Vβ3 β5
N −Vβ3 β5

N 0 0
β3(E+I)

N
β3 β5(E+I)

N −β8 − β2 − β10 +
β3(S+β5V)

N
β3(S+β5V)

N 0 0
0 0 β10 −β6 − β7 − β2 0 0
0 0 0 β6 −β9 − β2 0
0 0 β8 β7 β9 −β2 − β11


At Ed f e, the J becomes

J|Ed f e =



−β4 − β2 β11 − S∗
0 β3
N∗

0
− S∗

0 β3
N∗

0
0 β11

β4 −β2 − β11 −V∗
0 β3 β5
N∗

0
−V∗

0 β3 β5
N∗

0
0 0

0 0 −β8 − β2 − β10 +
β3(S∗

0+β5V∗
0 )

N∗
0

β3(S∗
0+β5V∗

0 )
N∗

0
0 0

0 0 β10 −β6 − β7 − β2 0 0
0 0 0 β6 −β9 − β2 0
0 0 β8 β7 β9 −β2 − β11


.

The eigenvalues of J|Ed f e is the set {λ1, λ2, λ3, λ4, λ5, λ6}, where
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λ1 = −(β4 + β2), λ2 = −(β9 + β2), λ3 = −(β11 + β2),

λ2
4 + λ4(β4 + 2β2 + β11) + (β4 + β2)(β11 + β2)− β4β11 = 0,

λ5 = −(β8 + β2 + β10) +
β3(β2 + β11 + β4β5)

β4 + β2 + β11
, and

λ2
6 + λ6

[
(β8 + β2 + β10)−

β3(β2 + β11 + β4β5)

(β4 + β2 + β11)

]
+

β3β10(β2 + β11 + β4β5)

β4 + β2 + β11
= 0.

By utilizing the Routh–Hurwitz criteria, it becomes apparent that λ5 and λ6 would
have negative real parts when β3β10(β2+β11+β4β5)

β4+β2+β11
< (β8 + β2 + β10) or, equivalently, when

Rv < 1. Consequently, they are unstable for Rv > 1.

5.5. Global Stability of the Disease-Free Equilibrium

Theorem 3. The disease-free equilibrium point Ed f e of system (8) is globally asymptotically stable
if Rv < 1.

Proof. Consider the sub-system of disease-free state variables (S, V, R), and rearrange
system (8) as in (18)

dX
dt

= P(X, Z)

dZ
dt

= G(X, Z), with G(X, 0) = 0, (18)

where
X = (S, V, R) ∈ R3

+, Z = [E, I, H] ∈ R3
+

Using the technique introduced by Castillo-Chavez [7], we derive a global stability of
Ed f e as follows. Let

Ĝ(X, Z) = AZ − G(X, Z),

where

G(X, Z) =

 β3
(E+I)(S+β5V)

N − (β10 + β8 + β2)E
β10E − (β9 + β6 + β2)I

β6 I − (β9 + β2)H

,

and

A =


β3

(S+β5V)
N − (β10 + β8 + β2) β3

(S+β5V)
N 0

β10 −(β7 + β6 + β2) 0

0 β6 −(β9 + β2)

.

A at Ed f e is

A|Ed f e =


β3(S∗

0+β5V∗
0 )

N∗
0

− (β10 + β8 + β2)
β3(S∗

0+β5V∗
0 )

N∗
0

0

β10 −(β7 + β6 + β2) 0

0 β6 −(β9 + β2)
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Plugging these terms into (18) gives

Ĝ(X, Z) =


β3(S∗

0+β5V∗
0 )

N∗
0

E − β3
(E+I)(S+β5V)

N +
β3(S∗

0+β5V∗
0 )

N∗
0

I
0
0


=

 β3(E + I)
[
(

S∗
0

N∗
0
− S

N ) + β5(
V∗

0
N∗

0
− V

N )
]

0
0

.

Since (S∗
0+β5V∗

0 )
N∗

0
≥ (S+β5V)

N at all t, then Ĝ(X, Z) ≥ 0, (X, Z) ∈ Ω. Therefore, Ed f e is a
global asymptotically stable for Rv < 1.

6. Numerical Results and Discussion

In this part, we present solutions for model (18) using Caputo, CF, and ABC.

∗Dα
0,tu(t) = W(u(t)), t ∈ [0, a], u(0) = x0, (19)

where the symbol * represents a fractional operator. If we use (19), we get

u(t) = x0 +
Jt
0 IαW(u(t)), t ∈ [0, a], (20)

Let ur approximate u(t) at t = tr for r = 0, 1, . . . , n. ∆t (= 0.05 ) = a
n , n ∈ N, over

[0, a]; see [46].

Cur+1 = u0 +
(∆t)α

Γ(ω + 1)

r

∑
T=0

[r − T + 1]ω − [r − T]ω ]W(uT) +O(∆t2), (21)

CFur+1 = u0 + (1 − δ)W(ur) + δ∆t
r

∑
T=0

W(uT) +O(∆t2), (22)

ABCur+1 = u0 +
1 − α

AB(α)
W(ur) +

(∆t)α

AB(α)

r

∑
T=0

[r − T + 1]α − [r − T]α]W(uT) +O(∆t2), (23)

The visual comparisons display the weekly seasonal influenza cases collected from the
Ministry of Health’s KSA [47]. In Figure 2, the accuracy of the classical model in forecasting
the number of weekly seasonal influenza cases is demonstrated. The x-axis displays the
number of weeks, while the y-axis depicts the number of infected people. The solid blue
line represents the projections of the classical model, and the black circles indicate the
actual data. The classical model satisfactorily approximates the data, accurately capturing
seasonal influenza’s overall pattern and essential characteristics.

Figure 3 compares different values of the fractional order with accurate data in the Ca-
puto model to determine the best fractional order for predicting weekly seasonal influenza
cases. Figure 4 presents a detailed examination of fractional order values in the Caputo
model, indicating that 0.99 is the most effective fractional order for precise weekly seasonal
influenza incidence prediction. This highlights the Caputo model’s superior performance
in accurately matching the actual data, particularly in identifying infected individuals’
peaks and subsequent decreases.

Figure 5 compares different values of the fractional order in the Caputo–Fabrizio
model to determine the best fractional order for predicting weekly seasonal influenza
cases. The fractional orders of 0.96 in the Caputo–Fabrizio model demonstrate the best
performance in predicting weekly seasonal influenza cases, providing the closest fit to the
real data.
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Figure 2. Comparing the classical model for infected people with real data.

Furthermore, in Figure 6, the performance of the Caputo–Fabrizio model in predicting
weekly seasonal influenza cases is compared to the classical model and real data. The
Caputo–Fabrizio model outperforms the classical model in predicting weekly seasonal
influenza cases, bearing a closer resemblance to real data, particularly in capturing the peak
and subsequent decline of infected individuals.

Figure 7 compares various fractional order values in the Atangana–Baleanu–Caputo
(ABC) model to identify the most optimal fractional order for accurately forecasting weekly
seasonal influenza cases. The study found that a fractional order of 0.95 in the Atangana–
Baleanu–Caputo model demonstrates superior predictive ability for weekly seasonal in-
fluenza cases. This value closely matches the actual data, particularly in accurately captur-
ing infected persons’ peak and subsequent decline.

Additionally, in Figure 8, the performance of the Atangana–Baleanu–Caputo model in
predicting weekly seasonal influenza cases is compared to the classical model and real data.
The Atangana–Baleanu–Caputo model predicts weekly seasonal influenza cases better than
the classical model, fitting the real data better, especially in capturing infected individuals’
peak and subsequent decline. A thorough evaluation of various fractional order values was
performed by comparing them against actual data from weekly influenza cases to establish
the most appropriate fractional order for each model. Afterward, the mean absolute value
was computed for each fractional order value to choose the model with the lowest mean
absolute value and was thus regarded as the most efficient. Figures 9–13 shows simulation
results for the susceptible, vaccinated, exposed, hospitalised, and recovered behaviors.
Reapectively under the Caputo (α = 0.99), CF (α = 0.96), and ABC (α = 0.95),

Fractional models have been shown to reduce relative errors compared to classical
models see Figure 14. These relative errors are found numerically to be 6.6e, 5.8e, and
1.2e for the Caputo (α = 0.99), the CF (α = 0.96), and the ABC (α = 0.95), respectively.
Therefore, the classical approach is less effective compared to the fractional approach. The
fractional model accounts for memory effects using non-local operators, such as fractional
derivatives and integrals.
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Figure 3. Comparing the Caputo model for infected people with real data.

Figure 4. Comparing classical model and Caputo model for infected people with real data.

Figure 5. Comparing the CF model for infected people with real data.
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Figure 6. Comparing classical model and CF model for infected people with real data.

Figure 7. Comparing the ABC model for infected people with real data.

Figure 8. Comparing classical model and ABC model for infected people with real data.
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Figure 9. Simulation results for susceptible behavior under different operators.

Figure 10. Simulation results for vaccinated behavior under different operators.

Figure 11. Simulation results for exposed behavior under different operators.
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Figure 12. Simulation results for hospitalized behavior under different operators.

Figure 13. Simulation results for recovered behavior under different operators.

Figure 14. Comparing classical model and Caputo, CF, and ABC models for infected people with
real data.

The root mean square error (RMSE) and mean absolute error (MAE) are two basic
measures that can be employed to assess the performance of predictive models. An
advantage of the RMSE is the fact that it is sensitive to significant errors because of the
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squared term used in its computation, making it suitable for problem domains where
specific significant errors are not acceptable:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (24)

where ŷi is the model-generated value and n is the number of observations. In contrast,
MAE tells the average absolute value of errors for a set of predictions without regard to
their direction and thus is one of the most straightforward measures of accuracy. It is
defined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (25)

Both are useful in model assessment, but RMSE is more influenced by outliers, while
MAE gives an overall average model assessment.

Table 3 shows the calculated values of root mean square error (RMSE) and mean
absolute error (MAE) for the Caputo operator at various fractional orders. The result of a
more effective fractional order value was α = 0.95.

Table 4 shows the calculated values of root mean square error (RMSE) and mean
absolute error (MAE) for the Caputo Fabrizio operator at various fractional orders. The
result of a more effective fractional order value was α = 0.95.

Table 5 shows the calculated values of root mean square error (RMSE) and mean
absolute error (MAE) for the Atangana–Baleanu–Caputo operator at various fractional
orders. The result of a more effective fractional order value was α = 0.95. Further, the
study’s findings show that ABC has been deemed the most superior of the three fractional
order operators based on the lower error values.

Table 3. MAE and RMSE for the Caputo operator for different fractional orders.

Fractional Order MAE RMSE

0.99 1.004 × 106 3.867 × 106

0.98 1.103 × 106 3.887 × 106

0.97 1.690 × 106 3.908 × 106

0.96 1.102 × 106 3.929 × 106

0.95 1.136 × 106 3.952 × 106

Table 4. MAE and RMSE for the Caputo–Fabrizio operator for different fractional orders.

Fractional Order MAE RMSE

0.99 7.271 × 105 3.753 × 106

0.98 7.010 × 105 3.756 × 106

0.97 6.755 × 105 3.760 × 106

0.96 6.499 × 105 3.725 × 106

0.95 6.563 × 105 3.771 × 106

Table 5. MAE and RMSE for the Atangana–Baleanu–Caputo operator for different fractional orders.

Fractional Order MAE RMSE

0.99 6.068 × 105 3.608 × 106

0.98 5.912 × 105 3.615 × 106

0.97 5.796 × 105 3.624 × 106

0.96 5.787 × 105 3.633 × 106

0.95 5.531 × 105 3.604 × 106

Classical 6.475 × 106 3.933 × 106
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7. Conclusions

This study compares the performance of fractional-order models ABC, CF, and Caputo
with integer-order models. We used data from weekly influenza cases in KSA for 2022
to simulate integer-order and fractional-order models under the ABC, CF, and Caputo
operators. Fractional-order models produced lower RMSE and MAE values than the
integer-order model. The findings revealed that mathematical models with fractional
orders outperform the integer-order model in forecasting influenza cases. In the Caputo–
Fabrizio model, we found that 0.96 is the best fractional order for representing the dynamics
of weekly seasonal influenza cases. The Caputo–Fabrizio model is better than the classical
model at predicting weekly influenza cases, especially when showing infected individuals’
peaks and declines. Additionally, we found that 0.99 is the best fractional order for the
Caputo model, and the Caputo model accurately predicts the number of people who will
get influenza. Furthermore, we found that the best fractional order for Atangana–Baleanu–
Caputo is 0.95, and the ABC model demonstrates superior predictive ability for weekly
seasonal influenza cases. This value closely matches the data, particularly in accurately
capturing infected persons’ peak and subsequent decline. Future work should explore
fractional stochastic models’ effectiveness by integrating stochastic models and machine-
learning algorithms for better prediction [40,48]. It will enhance the appreciation of the
characteristics of diseases so that control measures can be enhanced.
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