
Citation: Fajfar, I.; Rojec, Ž.; Bűrmen,

Á.; Kunaver, M.; Tuma, T.; Tomažič, S.;

Puhan, J. Imperative Genetic

Programming. Symmetry 2024, 16,

1146. https://doi.org/10.3390/

sym16091146

Academic Editor: Shi Cheng

Received: 31 July 2024

Revised: 27 August 2024

Accepted: 29 August 2024

Published: 3 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Imperative Genetic Programming
Iztok Fajfar * , Žiga Rojec , Árpád Bűrmen, Matevž Kunaver , Tadej Tuma , Sašo Tomažič and Janez Puhan

Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
* Correspondence: iztok.fajfar@fe.uni-lj.si; Tel.: +386-1-476-8722

Abstract: Genetic programming (GP) has a long-standing tradition in the evolution of computer
programs, predominantly utilizing tree and linear paradigms, each with distinct advantages and
limitations. Despite the rapid growth of the GP field, there have been disproportionately few attempts
to evolve ’real’ Turing-like imperative programs (as contrasted with functional programming) from
the ground up. Existing research focuses mainly on specific special cases where the structure of the
solution is partly known. This paper explores the potential of integrating tree and linear GP paradigms
to develop an encoding scheme that universally supports genetic operators without constraints
and consistently generates syntactically correct Python programs from scratch. By blending the
symmetrical structure of tree-based representations with the inherent asymmetry of linear sequences,
we created a versatile environment for program evolution. Our approach was rigorously tested
on 35 problems characterized by varying Halstead complexity metrics, to delineate the approach’s
boundaries. While expected brute-force program solutions were observed, our method yielded
more sophisticated strategies, such as optimizing a program by restricting the division trials to
the values up to the square root of the number when counting its proper divisors. Despite the
recent groundbreaking advancements in large language models, we assert that the GP field warrants
continued research. GP embodies a fundamentally different computational paradigm, crucial for
advancing our understanding of natural evolutionary processes.

Keywords: evolutionary algorithms; tree genetic programming; linear genetic programming;
imperative programming

1. Introduction

Genetic programming (GP) is a prominent sub-field of evolutionary algorithms (EAs),
simulating Darwinian processes on a computer. The GP paradigm was established by John
Koza in the early 1990s [1] and had been steadily growing until recently [2]. This trend ap-
pears to have reversed with the emergence of large language models (LLMs) [3]. However,
we believe that GP will continue to be a significant study area, both as a complementary
approach to LLMs and an independent research topic.

Despite the rapid growth of the GP field since the 1990s, there have been dispropor-
tionately few attempts to evolve ’real’ Turing-like programs. Most research focuses on
less complex logical or arithmetic expressions, without incorporating iteration or mem-
ory [4]. One reason is that the original GP concept is not Turing complete, a limitation
addressed by [5] through the introduction of indexed memory. Another reason is that
the original GP paradigm encodes a program as a tree, necessitating viewing a computer
program as a sequential application of functions and operators to arguments (so-called
functional programming). While not a limitation per se, this is not the most natural way
to conceptualize computer programs. Shortly after the traditional tree representation of a
computer program in GP, linear and graph representations emerged [6,7]. In contrast to the
functional programming language expressions encoded by trees in traditional GP, linear
genetic programming evolves sequences of instructions from an imperative programming
language. The difference in program representation necessitates different genetic operators,

Symmetry 2024, 16, 1146. https://doi.org/10.3390/sym16091146 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16091146
https://doi.org/10.3390/sym16091146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4416-5432
https://orcid.org/ 0000-0001-5256-173X
https://orcid.org/ 0000-0001-7814-0781
https://orcid.org/ 0000-0001-6030-0820
https://orcid.org/ 0000-0003-3288-8254
https://doi.org/10.3390/sym16091146
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16091146?type=check_update&version=2

Symmetry 2024, 16, 1146 2 of 19

making both approaches even more distinct. Both approaches, tree and linear, have their
respective advantages and disadvantages, and researchers and practitioners select one
based on the specific requirements of their problem. There has been criticism that the
GP concept has an intrinsic flaw in that it cannot produce real software effectively [2,4],
primarily because computer code is not as robust as genetic code. It is extremely sus-
ceptible to even the smallest changes. This is one of the main reasons that the existing
research focuses mainly on specific special cases where the structure of the solution is partly
known [8,9]. The vast majority of studies are limited to symbolic regression and classifica-
tion problems [2,10–22]. Other important domains where GP is being used include, but are
not limited to, control systems [23,24], analog optimization [8,25–28], scheduling [29,30],
and image processing [31,32]. To the best of our knowledge, no systematic research has been
conducted to evolve general Turing-like (imperative) programs (as contrasted with functional
programming) from scratch, with no a priori assumptions on the solution structure.

The contribution of this paper is twofold. First, we introduce a computer program
representation that merges tree and linear representations, using trees for expressions and
a linear representation for encoding the overall computer program. We use Python as
a programming language for generated programs. Second, we systematically apply our
approach to several well-known algorithms of varying complexities to identify the limits of
the proposed method.

The structure of this paper is as follows. Sections 2 and 3 detail the encoding of
programs and the methodology for generating a concrete program from this encoding.
Section 4 describes the evolutionary algorithm employed, while Section 5 outlines the
overall experimental setup. The final sections present and discuss the results.

2. The Proposed Program Genotype
2.1. The Basic Idea

A computer program is a linear sequence of instructions, generally asymmetrical.
However, a program can contain nested conditional and loop statements, which imply
an inherently symmetrical tree structure. Expressions also exhibit a tree structure. This
symmetrical/asymmetrical duality of a computer program was the most important issue we
had to address when devising the structure of our genotype. Another critical consideration
was the possibility of a randomly created loop-controlling expression resulting in an
infinite loop or a loop with an unreasonably high number of iterations. Limiting the
number of loop iterations is crucial when composing and executing thousands of randomly
generated programs.

We encoded the program itself as a linear set of statements. Whenever there is a
control statement header, a certain number of the following lines form the statement’s body.
That number is stored with the header and is subject to evolutionary operations.

Most authors address the problem of non-halting programs or programs with excessive
loop iterations by setting an upper limit on the number of executed instructions. We
adopted a slightly different approach by limiting the number of iterations for any loop.
This method prevents the potentially destructive effects of genetic operators, which could
compromise the program by including parts of already functioning code in a loop. If the
code is such that successive repetitions have no different effects than a single iteration,
the program will continue to function correctly. Conversely, if the number of instructions is
limited, parts of the code outside the loop may never execute.

We implemented the upper limit on loop iterations using a for loop combined with a
break statement. For example, we encode a while loop with a control expression expr and
an upper limit of maxIter iterations in the following manner:

for i← 1 to maxIter do
if not expr then break
end if
// Loop body comes here

Symmetry 2024, 16, 1146 3 of 19

end for

Here, the loop iterator i is a safeguard, while expr is the control expression of the
equivalent while loop:

while expr do
// Loop body comes here

end while

2.2. The Structure of the Genotype

We composed the genotype of a program with a fixed number of consecutive lines,
thus eliminating bloat and simplifying genetic operators. To make the system even simpler
and more robust, every program line has the same structure, containing the necessary
information to be decoded into any possible line depending on its position in the program.
That way, we are always able to build a syntactically correct program. The consequence of
this universality is a large amount of redundant code stored in our genotype. The redundant
pieces of code are not expressed in the phenotype (an actual program) and are usually
referred to as introns. This redundancy seems like a downside, but it is also believed that
introns reduce search space and speed up the convergence by dynamically hiding the
genotype segments not needed for the ultimate solution [33].

The structure of a single line of code is depicted in Figure 1. After the type of the line,
which can be an assignment, a macro, a control statement’s header, or simply the pass
placeholder, the line also includes the parameter bodyLen (holding the control statement
body length), the expression tree, the macro index, and the list of variables. The bodyLen
parameter is only relevant when the line type is a control statement’s header, and its value
ranges from 2 to the maximum body length (see Table 1).

assignment/macro/for/if/else/pass

bodyLen

An expression tree

macroIndex

A list of variables (varList)

Figure 1. The structure of a single line of a program.

Figure 2 shows an example of an expression tree. Each node of the expression tree
contains two code snippets: the first one is used when the node is terminal, while the
second one is used when the node is non-terminal (see Figure 3). As seen in Figure 2,
the root of the tree—a non-terminal node in our case—produces the greater-than operator,
which will compare the expressions derived from the left and right subtrees. We derive the
expression abs(x2) from the right subtree because the first node is non-terminal while the
second is terminal. In the same way, we use the mod, − (minus), and abs from the three
non-terminal nodes of the left subtree, and 2, x3, and x2 from the three terminal nodes.
Thus, from this tree, we derive the expression mod(2− x3, abs(x2)) > abs(x2).

It is probably worth mentioning at this point that we have limited ourselves to using
only scalar variables. A serious consequence is that functions that can be added as prefabri-
cated elements to our genetic material cannot return more than a single value. Note that
although Python works exclusively with references, one still cannot pass a scalar variable
by reference to obtain an output value from a function. This limitation does not allow us to
use, for example, a function that swaps the values of two variables. For that reason, we
added macros to our genotype. The parameter macroIndex is used to select a macro from
the list of predefined macros.

Symmetry 2024, 16, 1146 4 of 19

x1

· > ·

x1

mod(·, ·)

x3

· − ·

2
mod(·, ·)

x3

· ̸= ·

0
abs(·)

x2

· − ·

2
abs(·)

x2

·+ ·

Figure 2. An example of a tree representing the expression mod(2− x3, abs(x2)) > abs(x2).

Terminal code

Non-terminal code

Figure 3. The structure of a single node of an expression tree.

Finally, the list of variables holds as many variables as there are placeholders to fill
in the largest macro from the list. If the line type is an assignment, then the first from the
variable list will be used as a left value in the assignment.

Notice that some data contained in program lines and expression trees may appear
redundant in specific contexts. They are nevertheless retained to standardize crossover,
mutation, and code extraction procedures. Moreover, these ’redundant’ data might en-
capsulate hidden genetic material that was once beneficial and could prove useful again
(see, e.g., [34]).

At the beginning of each evolutionary run, we need a population of randomly gen-
erated programs, which are constructed using several parameters summarized in Table 1
together with a short explanation of their meaning. The first parameter limits the number
of variables used in the generated program. All the variables share the same name prefix
with added numbers (e.g., x0, x1, x2, · · ·). Next comes a list of operators and function
names. The operators must be selected among the standard Python operators. At the same
time, the function names can be arbitrary as long as they are defined separately and their
definitions added to the list of function definitions. Following the list of macro definitions
and constants is a list of probabilities indicating the likelihood of each line type being
selected during the initial random genotype creation. Those probabilities also guide the
random line type selection during the mutation procedure.

The limitation of the depth of control statement nestings is also important. More
than a single nested loop is hardly necessary. At the same time, it would be extremely
time-consuming if we allowed it. On the other hand, it is important to allow deeper nesting
of a conditional statement since there are a lot of cases in which such a statement comes
in handy when nested in an already nested loop. Apart from loop nesting, the maximum
number of iterations should also be limited, lest the programs could unreasonably slow
down the evolution.

Symmetry 2024, 16, 1146 5 of 19

As expressions in our programs need not be too complex, we limited the expression
tree depth. Initial depth is limited to two but grows later due to bloat. We employed two
mechanisms to fight bloat. The first is a limit on the depth to which a tree is evaluated,
and the second is a limit on the maximum allowed depth by trimming a tree after each
crossover and mutation. The first of the two limits is lower, so some hidden genetic material
usually stays in a tree. Note that, technically, it is not a problem to limit the evaluation
depth since every node includes a code to be used in both cases—when the node acts as a
terminal or as a non-terminal. The evaluation algorithm simply selects the proper one and
ignores the other.

The last three parameters in Table 1 represent three more important limits on evalua-
tion trees’ densities, the overall program length, and the maximum control statement body
length. Note that the actual program length can be shorter than the given length because of
possible pass statements.

Table 1. The program parameters used in our experiments. Values in parentheses are default values
used in our experiments. If there is no default value (N/A), the value must be explicitly provided for
each experiment by the practitioner.

Number of variables (5) How many variables will be used in the program

Operators (N/A) List of operators and/or function names

Function definitions (N/A) List of function definitions

Macro definitions (N/A) List of macro definitions

Constants (N/A) List of constants

Line type probabilities (assignment = 0.55, for = 0.10, if = 0.15,
else = 0.10, pass = 0.10)

How probable it is, during a random program generation and
mutation, for a certain line type to be selected

Macro selection probability (0.15)
If at least one macro is defined, this probability is added to the
above list. All the probabilities are proportionally reduced so
that they sum to 1

Maximum loop nesting (1) The maximum allowed depth of loop nesting

Maximum if nesting (2) The maximum allowed depth of conditional statement nesting

Maximum loop iterations (100) The maximum allowed number of iterations of a single loop

Tree generation depth (2) The maximum initial depth of an expression tree

Tree evaluation depth (3) The maximum depth to which an expression tree is evaluated

Maximum tree depth (5) The depth to which trees are trimmed after crossover
and mutation

Tree density (0.7) The density of an expression tree during generation
and mutation

Program length (15) The number of lines in the program

Maximum body length (5) Maximum number of statements within a control
statement body

3. Building a Python Program

Algorithm 1 illustrates the construction of actual Python code from the genotype
introduced in Section 2. To thoroughly comprehend the algorithm, one must understand
the role of indentation in Python code. In Python, the body of a control statement consists
of indented lines. All indented lines belong to the statement’s body. Conversely, the first
line with the same indentation level as the control statement’s header is no longer part of
that control statement but it succeeds it.

Symmetry 2024, 16, 1146 6 of 19

Algorithm 1 Algorithm for constructing a Python program from genotype.

1: procedure COMPOSEPYTHONPROGRAM
2: indent← 0
3: for each line in the program do
4: if lineType = assignment then
5: code← code + varList[0] + "=" + expressionFromTree()
6: else if lineType = for then
7: if indent < maxLoopNest then
8: code← code + "for i in range(" + maxIter + ")"
9: indent← indent + 1

10: code← code + "if " + expressionFromTree() + ": break"
11: end if
12: else if lineType = if then
13: if indent < maxI f Nest then
14: code← code + "if " + expressionFromTree() + ":"
15: indent← indent + 1
16: end if
17: else if lineType = else then
18: if inside an if or for block then
19: if the block contains at least one line of code then
20: indent← indent− 1
21: code← code + "else:"
22: indent← indent + 1
23: end if
24: end if
25: else if lineType = macro then
26: selectedMacro ← macroList[macroIndex]
27: Replace placeholders in selectedMacro with variables from varList
28: code← code + selectedMacro
29: else if lineType = pass then
30: code← code + "pass"
31: end if
32: if number of statements in current block equals bodyLen then ▷ The block has
33: indent← indent− 1 ▷ reached the maximum allowed length
34: end if
35: end for
36: code← code + "pass" ▷ In case the last line of the program is if, for, or else.
37: end procedure

In Section 2, we saw that the genotype of an individual program consists of multiple
sequential lines of code. Each line is divided into five distinct parts, with the first part
specifying the line’s type. This type determines how subsequent parts are utilized during
code construction. Algorithm 1 operates through a loop that processes each line of the
program genotype. Prior to this loop, the code indentation is initialized to zero (see Line 2).
Within the loop, various line types are addressed using an if–else chain. The first type
in this sequence, denoted as ’assignment’ (see Line 4), builds an assignment statement.
Here, varList[0] (i.e., the first variable in the list) is used as the variable name on the left
side of the assignment operator, while the expression derived from the corresponding
expression tree forms the right side. Note that both these elements—the variable list and
the expression tree—are encapsulated within the line’s genotype. Note that code is a string,
with the + symbol serving as a concatenation operator. Moreover, every line of code from
Algorithm 1 starts with the correct indentation and ends with a newline character—details
omitted from the algorithm for clarity.

The next line type addressed in the algorithm is the for statement (see Line 6). It is
important to note that this line is bypassed once the maximum permitted loop nesting
depth is reached. Otherwise, the algorithm generates a two-line code segment. The initial

Symmetry 2024, 16, 1146 7 of 19

line forms a conventional Python loop executing maxIter times. Recall that maxIter sets
the upper limit for the number of loop iterations. Following this, an indented if statement
is introduced—indicating its inclusion within the loop body—which triggers an early
loop exit when its expression evaluates as true. As explained in Section 2.1, this design
effectively creates a while loop equipped with a safeguard against excessive iterations,
crucial to prevent undue hindrance in the evolutionary process.

The if statement (Line 12) is managed similarly. It is skipped entirely when the
maximum permitted nesting depth is attained. Following the addition of the control
statement header, the indentation increases to ensure that the following lines fall within the
statement body.

The else part, handled in Line 17, is incorporated only when nested within the body of
an if or for statement that contains at least one line of code. Note that in Python, a for loop
can also have an optional else segment, which is executed upon loop completion. However,
it will not be executed if the loop is interrupted by a break statement. Recall, in our context,
the for loop functions akin to a while loop with a capped number of iterations. Hence,
the else segment only comes into play when this iteration limit is met. Such a design can
prove beneficial during evolution, though it might be extraneous in final programs. When
integrating the else keyword, the indent level is reduced beforehand and then increased
afterward, effectively closing the current block and commencing a new one.

Line 25 processes a macro. It simply takes a macro from the list and replaces its
placeholders, in order of appearance, with the variables from the variable list.

The final line type addressed is the pass statement (see Line 29), serving as a place-
holder for potential subsequent code. After that (see Line 32), it is necessary to verify if the
current block length is reached, and if so, conclude that block by decreasing the indentation.
Upon completing the program, an additional pass statement is appended (see Line 36) to
avoid an error if the program’s last line is a control statement header.

4. The Evolutionary Algorithm

The evolutionary algorithm is outlined in Algorithm 2. First, some initialization
procedures are carried out in Lines 2 to 4. After some preliminary runs, we settled with the
genetic parameters summarized in Table 2 that we used in all our experiments. We explain
the meaning of each parameter later on in the context of the algorithm. The program
parameters, however (see Line 3 of Algorithm 2), are initialized differently for each run,
depending on the type of program we want to evolve. Recall that the used program
parameters are summarized in Table 1 at the end of Section 2.

Table 2. The genetic parameters used in our experiments.

Population size 1000
Array of training data length 20
Selection Linear ranking with elitism
Selection pressure 1.3
Elite size 10
Number of generations 2000
Mutation probability 0.5
Line crossover probability 0.3
Number of crossover lines 4
Toggle terminal probability 0.3
Mutation depth 2
Fitness calculation method Least squares
Premature stopping criterion 1 Fitness does not change for 600 generations
Premature stopping criterion 2 Fitness drops to zero

Line 4 of Algorithm 2 prepares the training data. This is simply an array of in-
put/output pairs of data that our program should produce. For instance, if we wanted
to evolve a program that returns the largest of three input values, we would need the

Symmetry 2024, 16, 1146 8 of 19

array [[[2, 7, 12], 12], [[−4, 56, 21], 56], [[6,−15, 3], 6], · · ·]. The array is generated randomly
using some preset limit values. It turned out that without them, the algorithm might not
work in limited cases. For example, in multiplication, it is necessary to include training
data involving ones and zeroes in different combinations. It is also important that these
critical values appear as first and second parameters. It happened that the algorithm
trained on the data missing multiplication with zero as the second parameter worked
for multiplications of the form 0 · x but not x · 0. It also happened that in evolving the
algorithm detecting primes, the training array contained only even non-primes. Naturally,
the evolved algorithm erroneously detected even numbers instead of primes.

The last thing we need to do before entering the main program loop is generate
random programs and evaluate their fitness values. As seen in Table 2, we use the least
squares method to calculate the program fitness. To do that, we run the program and then
calculate the sum of squared differences between actual and required outputs. The program
with the smallest fitness is the best.

Algorithm 2 The evolutionary algorithm.

1: procedure EVOLVEPROGRAM
2: Initialize genetic parameters
3: Initialize program parameters
4: Calculate training data
5: Generate a population of random programs
6: Calculate the fitness of each program in the population
7: for generation = 1 to Number of generations do
8: Selection
9: for Pair of programs in selection do ▷ Parents

10: if Random value in [0,1) < pline crossover then
11: Line crossover
12: else
13: Program crossover
14: end if
15: end for
16: for program in selection do ▷ Children
17: if Random value in [0,1) < pmutation then
18: Mutate program
19: end if
20: Calculate fitness
21: end for
22: Replacement
23: if at least one of the premature stopping criteria met then
24: Stop evolution
25: end if
26: end for
27: end procedure

4.1. Selection

In the main program loop, we first select programs to participate in genetic operations.
Because the fitness landscape of a computer program’s population is extremely rugged, we
opted for rank selection to give less fit programs an equal chance to reproduce. We used
linear ranking [35], where selection probability is linearly dependent on the rank position
of the individual in the population. We calculate the probability p for rank position ri as

p(ri) =
1
n

(
sp− (2sp− 2)

i− 1
n− 1

)
, 1 ≤ i ≤ n, 1 ≤ sp ≤ 2.

Here, n is the size of the population and sp is selection pressure. Notice that sp = 1
gives equal probabilities for all the population members, which means there is no selection

Symmetry 2024, 16, 1146 9 of 19

pressure. On the other hand, if sp = 2, selection pressure is very high. As seen in Table 2,
we set selection pressure to 1.3, which—combined with the elite size of 10—produced the
best results.

4.2. Crossover

The next operation in the main program loop is crossover. We form random pairs of
programs from the group selected for genetic operations and perform either a program or
line crossover, depending on a preset probability pline crossover.

The crossover of the whole program is straightforward. We select a random cutting
point (the same for both programs in question) and then swap cutoff parts of the programs
as shown in Figure 4.

Before Crossover

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Crossover Point

After Crossover

x1 x2 x3 y4 y5

y1 y2 y3 x4 x5

Figure 4. The crossover of two 5-line programs x and y. The crossover point lies between the 3rd and
4th lines. The operation swaps the lines x4 and x5 with y4 and y5.

The line crossover is a little more elaborate. First, we randomly select a prescribed
number of lines from each program. The number is one of the genetic parameters shown in
Table 2. As the line structure is universal, there is no limit on which lines to select. Figure 5
shows an example of the line crossover of two programs. On each pair of lines, we perform
one of the following crossover operations:

• Exchange the first part of the line (i.e., the type of statement).
• Exchange the second part of the line (i.e., the bodyLen parameter).
• Perform the expression tree crossover.
• Exchange the fourth part of the line (i.e., the macroIndex parameter).
• Perform the list of variables crossover.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Figure 5. An example of the line crossover of two 10-line programs x and y. Lines x2, x4, x5,
and x8 from the first program and lines y1, y3, y4, and y5 from the second program were selected for
the crossover.

The parts of the lines that hold a single value (i.e., the type of statement and the
parameters bodyLen and macroIndex) are exchanged. When the crossover is performed on
expression trees, the operation follows the standard tree crossover procedure where we cut
a random subtree from each tree and swap the cutoff parts. Figure 6 shows the procedure.
Note that, if both cutting points are above the roots of the trees, the expression trees are
merely exchanged.

In order to limit bloat—as already mentioned in Section 2.2—the trees are trimmed
after the crossover not to exceed the prescribed maximum depth (see Table 1).

Symmetry 2024, 16, 1146 10 of 19

Before Crossover

a

b

d

f g

i

e

h

c

A

B

D

G

E

C

F

H

J

I

After Crossover

a

b

G e

h

c

A

B

D

d

f g

i

E

C

F

H

J

I

Figure 6. In tree crossover, two random subtrees are selected and swapped.

The crossover on the list of variables is carried out the same way as it is on the whole
program (see Figure 4). Like in expression tree crossover, the whole lists can also be
exchanged if the crossover point appears before the first element of the list.

4.3. Mutation

The children obtained as a result of the crossover are mutated with the probability
pmutation (see Line 16 in Algorithm 2). If the child is selected for mutation, one component
of one line of its code is picked up randomly and mutated in the following manner:

• The line type is randomly replaced by one of the six possible choices.
• The parameter bodyLen is randomly replaced with the number between 2 and the

maximum allowed number of statements within a control statement body.
• In the expression tree, a randomly selected node (not deeper than mutation depth—see

Table 2) is mutated as described below.
• The parameter macro index is replaced by a randomly chosen index.
• In the list of variables, a randomly selected variable is replaced by another randomly

picked up variable.

The mutation of a node in an expression tree consists of two operations. First, the termi-
nal code is replaced by a randomly selected element from the list of variables and constants.

Symmetry 2024, 16, 1146 11 of 19

Second, the non-terminal code is replaced by a randomly selected element from the list of
functions and operators. If the newly selected function or operator needs more arguments,
additional random subtrees are generated to support them. Finally, we toggle the type of
the node (i.e., terminal or non-terminal) with the toggle terminal probability (see Table 2).

4.4. Replacement and Stopping

After the genetic operations have been completed, we replace the whole population
except for the elite (see Table 2) with the obtained children. If the fitness of the best
individual in the population drops to zero or the fitness does not change for 600 generations
(see Table 2), the evolution stops. Otherwise, the evolution continues until the maximum
number of generations has been reached.

5. Experiment Setup

Given that we aim to evolve our programs from the ground up, without using any a
priori knowledge about the solution structure, we conjectured that the problem set for our
experiment should consist mainly of basic, with some intermediate, programming problems.
We constructed the problem set using assignments from the introductory programming
course at our university, selecting 35 different problems to test our approach. The selection
of problems themselves including the sets of operators and functions/macros used must
be diverse enough to push our approach to its limits—both lower (no success) and upper
(100% success rate). At the same time, most problems should fall within the intermediate
range, with success rates in between.

Table 3 summarizes all the problems with the operators, functions, macros, and con-
stants used to evolve the programs for their solutions. The number of arguments and return
values for each problem is given in parentheses after the problem name. The functions
mod, idiv, mul, and bigMul are safe modulo, integer division, and multiplication operators,
respectively, with their definitions listed in Appendix A. The rest of the parameters were
common to all the runs and are listed in Table 1.

Table 3. The problems used in our experiments.

Problem Name Notes
(No. of Input/Output Values) Operators Constants

absolute (1/1) Absolute value of a number
−,< 0, 1

absoluteDifference (2/1) Absolute difference of two numbers
−,< 0, 1

absoluteDifferencePlus (2/1) No minus operator
+,< 0, 1

absoluteDifferencePlusMacro (2/1) Utilize macro if b > a: a, b = b, a
+,< 0, 1

absoluteDifferencePlusSorted (2/1) First argument not less than second
+,< 0, 1

collatz (1/1) Length of Collatz sequence
+,−,<,=, mul, mod, idiv 0, 1, 2, 3

collatzMacro (1/1) Utilize macro a = a // 2 if a % 2 == 0 else a * 3 + 1
+,<,= 0, 1

collatzStep (1/1) The next number in Collatz sequence
+,<,=, mul, mod, idiv 0, 1, 2, 3

countDigits (1/1) Number of digits in a natural number
+,−,<,=, idiv 0, 1, 10

exactDivision (2/1) Integer division without remainder
+,−,<,= 0, 1

exactDivisionPlus (2/1) No minus operator
+,<,= 0, 1

Symmetry 2024, 16, 1146 12 of 19

Table 3. Cont.

Problem Name Notes
(No. of Input/Output Values) Operators Constants

exactDivisionTimes (2/1) Utilize multiplication operator
+,<,=, mul 0, 1

factorial (1/1) n!
−,<, bigMul 0, 1

fibonacci (1/1) n-th number of Fibonacci sequence
+,<,= 0, 1

fibonacciMacro (1/1) Utilize macro a, b = b, a
+,<,= 0, 1

gcd (2/1) Greatest common divisor
−,<,= 0, 1

gcdMacro (2/1) Utilize macro a, b = b, a
<, mod 0

gcdModulo (2/1) Utilize modulo operator
−,<,=,∧, mod 0, 1

integerDivision (2/1) Floor division, dismiss remainder
+,−,< 0, 1

integerDivisionRem (2/2) Floor division, quotient and remainder
+,−,< 0, 1

lcm (2/1) Least common multiple
+,−,<,=, idiv, mul 0, 1

lcmMacro1 (2/1) Utilize macro if a > b: a = a - b
+,−,<,=, idiv, mul 0, 1

lcmMacro2 (2/1) Utilize macro a = a - b
+,−,<,=, idiv, mul 0, 1

lcmMacro4 (2/1) Utilize macro a, b = b, a
+,−,<,=, idiv, mul 0, 1

max2 (2/1) Larger of two numbers
< 0, 1

max3 (3/1) Largest of three numbers
< 0, 1

multiplication (2/1) Product of two integers
+,−,<,= 0, 1

multiplicationNonneg (2/1) Nonnegative integers
+,−,<,= 0, 1

prime (1/1) Test primality of a number
+,<,=, mod 0, 1, 2

primeMacro (1/1) Utilize macro if mod(a, b) == 0: c = 0
+,<,=, mod 0, 1, 2

properDivisors (1/1) Count proper divisors
+,−,<,=, mod 0, 1

properDivisorsMacro (1/1) Utilize macro if mod(a, b) == 0: c = c + 1
+,−,<,=, mod 0, 1

remainder (2/1) Remainder of floor division
−,<,= 0, 1

sort (2/2) Sort two numbers
< 0, 1

triangularNumber (1/1) Sum of natural numbers from 1 to n
+,<,= 0, 1

For the most part, Table 3 is self-explanatory. There are, however, some points that
need further explanation. The problems with the same names but different suffixes evolved
under the same conditions, the only difference being the set of used operators, functions,
and macros. For instance, absoluteDifference and absoluteDifferencePlus differ only in that
the first uses the subtraction and the other the addition operator. Or, fibonacci and
fibonacciMacro differ in that the second uses a macro that swaps the values of two
variables (for the reader unfamiliar with Python, it might be useful to know that the code

Symmetry 2024, 16, 1146 13 of 19

a, b = b, a swaps the values of the variables a and b.). Whenever we use a macro as
the building block for the solution, the used macro is listed in Python format in the Notes
column. Notice that some macros could also be implemented as functions without affecting
the results.

6. Results and Discussion

We performed 1000 evolution runs for each program from the previous section using
20 2.66 GHz Core i5 (four cores per CPU) machines, which took 3 weeks of computing
time. Table 4 lists the percentages of successful evolution runs for each program, with the
average number of needed generations (averaged over successful runs only) and estimated
program complexity. We calculated the Halstead metrics for the hand-written programs,
and we list in the table programming effort (E), program difficulty (D), and intelligence
content (I). The calculated complexity measures generally agree with the evolution success
rate. One notable exception is the gcdModulo (greatest common divisor) function using
the modulo operator. The success rate is surprisingly high with extremely high values of
the E and D measures and a relatively high I measure. When we looked deeper into the
matter, we discovered an error by one of our researchers. Namely, his version was a brute
force gcd algorithm trying divisions with all integers between 1 and the smaller of the two
parameters, which resulted in unreasonably high complexity measures. The evolution came
up with a much smarter version of the algorithm, which, after removing the statements
with no effect and replacing the for and break statements with the while loop, looks like this:

def gcdModulo(x, y):
while y > 0:

tmp = x
x = y
y = tmp % y

return x

Halstead complexity measures for the above function are E = 640, D = 10.40,
and I = 5.92, which better agrees with the evolution success rate for that function.

Table 4 also shows that using a macro for coding a part of the solution invariably
increases the success rate. That was, of course, expected, because including an appropriate
building block necessarily decreases the algorithm complexity. That way, we can success-
fully evolve more complex algorithms that would otherwise defy evolution. For example,
we could not evolve the collatz function because of the high complexity. We were, however,
able to evolve collatzStep function with high probability and then use this function to evolve
collatzMacro. We observed a similar situation with the functions absoluteDifferencePlus,
sort, and absoluteDifferencePlusMacro. Indeed, any macro utilized in our experiments
is sufficiently straightforward that we could evolve it effectively as a function. The next
step in such cases would be to automatize the definition of a helper function and its use
in the same evolutionary process. The idea of automatically defined functions (ADFs) has
already been introduced in [1] as a way of reusing code in genetic programming but has
not received very much attention [36,37]. The solutions are limited to tree-formed GP and
impose serious constraints on the genetic operators, as different branches are not allowed to
directly exchange genetic material, leaving this question an important open research issue.

We carried out additional experiments using a different set of operators not shown in
Table 4. In some cases, fewer operators increased the success rate significantly. For example,
removing the less than operator from the Fibonacci function increased the success rate
to 27.4%, and removing the minus operator from the countDigits function increased it to
26.7%. Both results are significant with p-value p = 0.01. Removing the equality, minus
and conjunction operators, and the constant value 1 from the gcdModulo function did not
change the success rate but dropped the average number of generations to 339, which was
also a statistically significant result with p = 0.01. In some other cases, we also observed
some improvement although not statistically significant. Those improvements could be

Symmetry 2024, 16, 1146 14 of 19

attributed to the smaller search space we created with fewer building blocks. Generally,
the search space dimension increases exponentially with the number of building blocks [7].
It is difficult to say how strong the influence of certain superfluous operators is. Still,
at least the operators that can be replaced by the ones already included in the set should
be removed. For example, one does not need less than and greater than operators in the
same set. Usually, even equality or inequality operators are extra in conjunction with the
less-than operator. By the same token, we observed that often more learning samples give
better results. One possible explanation is that more samples increase the resolution of the
search space, making it easier to descend towards the minimum.

Table 4. Proportions of solved problems (1000 runs) with an average number of generations and
Halsteas metrics. To calculate the average number of fitness evaluations, multiply the number of
generations by the population size (1000). Since each fitness evaluation involves running a program
on all the input/output pairs in the training data array, the actual number of program executions is
20 times larger, corresponding to the length of the training data array.

Program Name Program Complexity Success Rate Avg. Number
E D I (%) of Generations

absolute 269 8.75 3.52 100.0 6
max2 301 8.17 4.51 100.0 11
absoluteDifference 403 9.33 4.62 100.0 23
sort 484 10.50 4.39 100.0 32
max3 596 10.00 5.96 99.7 65
gcdMacro 90.0 404
collatzStep 694 10.00 6.94 87.7 259
collatzMacro 71.3 515
gcdModulo 2337 19.50 6.15 61.6 619
absoluteDifferencePlusSorted 768 10.50 6.96 36.0 562
primeMacro 26.7 571
lcmMacro1 22.0 796
remainder 637 13.50 3.50 21.0 650
absoluteDifferencePlusMacro 20.6 619
countDigits 715 11.0 5.91 19.7 853
fibonacciMacro 17.1 1186
prime 1054 12.83 6.40 16.7 801
exactDivisionTimes 781 10.83 6.65 16.0 799
triangularNumber 684 10.80 5.86 9.8 747
integerDivision 873 11.67 6.42 8.4 692
exactDivision 693 10.00 6.93 6.4 806
fibonacci 868 9.71 9.20 6.3 1584
multiplicationNonneg 873 11.67 6.42 4.6 622
properDivisorsMacro 2.4 1441
integerDivisionRem 811 10.83 6.91 2.2 1098
lcmMacro2 2.2 1043
exactDivisionPlus 856 10.29 8.09 2.1 643
factorial 880 13.00 5.21 1.3 1947
gcd 2346 26.67 3.27 1.6 895
lcm 2166 20.00 5.42 0.9 714
absoluteDifferencePlus 1848 16.67 6.65 0.0 N/A
collatz 3164 24.29 5.37 0.0 N/A
multiplication 2667 20.58 6.29 0.0 N/A
properDivisors 1636 16.50 6.01 0.0 N/A

Another noteworthy observation is that some of the evolutions appear to have huge
jumps in fitness value, while the majority exhibit a more or less steady drop. Figure 7
shows the convergence of Fibonacci and factorial functions in which significant drops can
be observed. Interestingly, these drops happen in different runs at approximately the same
levels as the graphs show (notice the suggested horizontal lines formed by the alignment

Symmetry 2024, 16, 1146 15 of 19

of graphs). On the other hand, functions in Figure 8 show more steady convergence,
although here, one also observes lots of sudden drops that stem from the highly nonlinear
nature of the search process caused by the destructive nature of genetic operators in linear
GP [2,4]. The more severe fitness drops in Figure 7 are caused by a coarse fitness landscape.
Namely, Fibonacci and factorial values are positioned far apart, while values obtained from,
for instance, multiplication cover the space more evenly.

100 101
102 103

Generation number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
it
n
e
s
s

1e12 calculateFib

Generation number

Fi
tn
es
s

Generation number

Fi
tn
es
s

Figure 7. Convergence of functions fibonacci, FibonacciMacro, and factorial.

Figure 8. Convergence of functions multiplication, exactDivisionPlus, and gcd.

We already looked at a specific evolved program (for finding the greatest common
divisor) at the beginning of this section where the evolution came up with quite a cunning
solution. Of course, we discovered more similarly interesting solutions. The following one
is the program that counts the number of proper divisors.

Symmetry 2024, 16, 1146 16 of 19

def properDivisorsMacro(n):
count = 0
div = 1
x1 = 0
x2 = 1
x2 += 1
while x2 <= n:

if n % div == 0: count += 1
if x1 % 2 == 0: div += 1
x2 += div
x1 += 1

return count

We removed from the original program all the statements with no side effects, renamed
the variables, and made some other minor changes so the program is more human-readable.
We retained, however, the basic idea behind the solution, which is quite fascinating. Namely,
if one wants to count all proper divisors of n, one does not need to try divisions by numbers
greater than

√
n. And that is exactly what the above program is doing—instead of trying

divisions with numbers greater than
√

n, it counts each division with numbers in the
(left–closed and right–open) interval [2,

√
n) twice. Of course, the program would not have

to try each division twice but only count them. It is, nevertheless, an interesting solution.
It is easy to see in the above program that each division with numbers greater than one

is carried out twice. But does the process stop at
√

n? Notice that variable x2, responsible
for halting the program, starts with 2 (= 1 + 1). Then, we have

x2 = 2
n−1

∑
k=1

+n = n2.

We made some more similar observations. For example, in a program that detects
primes, the division was first tried by two, then only with odd numbers smaller than
the number tested. Certainly, all these observations took some serious looking because
evolved programs are generally quite obscure and often follow confusing logic with many
redundant operations, but they are by no means wrong. One possible direct application
of these programs would be software obfuscation. Let us conclude this section with an
example of an unedited function returning the x0th number of a Fibonacci sequence:

def fibonacci(x0):
x1=x2=x3=x4=0
x4=x2==x1
x2=x4+x1
for i in range(100):

if x0+x3<x0<x0: break
x4=x4
x3=x3==x4==x0+x2

x3=x2==x3
for i in range(100):

if x3==x0: break
x4=x4
x1=x2
x2=x4+x2
x3=1+x3
x4=x1
pass

return x4

Symmetry 2024, 16, 1146 17 of 19

7. Conclusions

In this paper, we studied the possibility of evolving imperative computer programs
that are not purely expression-oriented but allow for the linear sequence of statements.
Specifically, we evolved Python programs. The basis for our work is a special gene-encoding
approach combining linear sequences of statements and trees encoding expressions. Be-
cause the program population is spawned randomly, it is important to prevent infinite
loops. Therefore, we encoded the while statement as the for loop with a break. The iterator
of the for loop serves as a safety net setting the upper limit on the number of iterations,
while the break statement contains the actual loop condition. We tried in our experiments
to evolve different simple programs for which we also calculated Halstead metrics. As ex-
pected, we had less success with programs with higher complexity measures, or at least
the evolution lasted more generations. We observed that increasing the number of used
operators or decreasing the number of training samples could hinder the evolution, often
with statistical significance. Whenever we added a useful prefabricated building block
(in the form of a macro) to genetic material, the evolution results were better. Specifically,
the success rates for the next number of the Collatz sequence calculation and the sequence
length counting using a macro were quite high. In contrast, the evolution of the sequence
length counting alone was unsuccessful. That leads to the possibility of augmenting the
fitness function to support automatically defined functions in the same evolution for more
complex tasks, which we feel is an important open research question. Last, we observed
some smart solutions evolved by our approach that went beyond a simple brute force
approach. It is important to point out that those solutions appeared without being explicitly
enforced by the fitness function. We believe that with additional fitness criteria that would
favor more efficient solutions, we could obtain more optimal programs. There is also room
for improvement in several other directions. For example, incorporating array processing
would be an enormous step towards more useful programs.

In conclusion, we believe our paper is an important step that will hopefully motivate
further research in this direction. Although the advent of large language models may
make the GP approach seem outdated, it is important to emphasize that the pure evolu-
tionary approach operates at a fundamentally different level of computation. While it is
lower in abstraction than higher-level computational methods, it is by no means inferior
in significance.

Author Contributions: Conceptualization, I.F. and Ž.R.; methodology, J.P.; software, Ž.R. and M.K.;
validation, J.P., Á.B. and T.T.; formal analysis, Á.B.; investigation, M.K. and J.P.; resources, S.T.; data
curation, I.F., M.K. and Ž.R.; writing—original draft preparation, I.F.; writing—review and editing,
Ž.R.; visualization, I.F.; supervision, T.T. and Á.B.; project administration, T.T. and S.T.; funding
acquisition, S.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research and Innovation Agency (Javna agencija
za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije) through the program P2-
0246 (ICT4QoL—Information and Communications Technologies for Quality of Life).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. Functions Used in Evolution

This appendix lists all the functions that we used as building blocks for the programs
to be evolved. The functions implement basic mathematical operators with built-in safety
mechanisms that guard against undesired scenarios like division by zero or multiplica-
tion overflow.

Symmetry 2024, 16, 1146 18 of 19

def mod(x, y): #Safe modulo
if y == 0: return 1 #Prevent division by zero
return x % y

def idiv(x, y): #Safe floor division
if y == 0: return 0 #Prevent division by zero
return x // y

def mul(x, y): #Limited multiplication
if x * y > 10000: return 10000
if x * y < -10000: return -10000
else: return x * y

def bigMul(x, y): #Limited multiplication
if x * y > 100000000000000: return 100000000000000
if x * y < -100000000000000: return -100000000000000
else: return x * y

References
1. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA,

USA, 1992.
2. Yampolskiy, R.V. Why We Do Not Evolve Software? Analysis of Evolutionary Algorithms. Evol. Bioinform. 2018, 14,

1176934318815906. [CrossRef]
3. Romera-Paredes, B.; Barekatain, M.; Novikov, A.; Balog, M.; Kumar, M.P.; Dupont, E.; Ruiz, F.J.R.; Ellenberg, J.S.; Wang, P.; Fawzi,

O.; et al. Mathematical discoveries from program search with large language models. Nature 2023, 625, 468–475. [CrossRef]
[PubMed]

4. Woodward, J.; Bai, R. Why evolution is not a good paradigm for program induction: A critique of genetic programming.
In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China, 12–14 June 2009;
pp. 593–600. [CrossRef]

5. Teller, A. Turing completeness in the language of genetic programming with indexed memory. In Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June
1994; Volume 1, pp. 136–141. [CrossRef]

6. Banzhaf, W.; Francone, F.D.; Keller, R.E.; Nordin, P. Genetic Programming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1998.

7. Brameier, M.F.; Banzhaf, W. Linear Genetic Programming; Springer: New York, NY, USA, 2007. [CrossRef]
8. Fajfar, I.; Puhan, J.; Bűrmen, Á. Evolving a Nelder-Mead Algorithm for Optimization with Genetic Programming. Evol. Comput.

2016, 25, 351–373. [CrossRef] [PubMed]
9. Cramer, N.L. A representation for the adaptive generation of simple sequential programs. In Proceedings of the First International

Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, USA, 24–26 July 1985; Psychology Press: London, UK,
1985; Volume 183, p. 187.

10. Augusto, D.A.; Barbosa, H.J.C. Symbolic regression via genetic programming. In Proceedings of the Sixth Brazilian Symposium
on Neural Networks, Rio de Janeiro, Brazil, 25 November 2000; Volume 1, pp. 173–178. [CrossRef]

11. Icke, I.; Bongard, J.C. Improving genetic programming based symbolic regression using deterministic machine learning.
In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1763–1770.
[CrossRef]

12. Evans, B.; Al-Sahaf, H.; Xue, B.; Zhang, M. Evolutionary Deep Learning: A Genetic Programming Approach to Image
Classification. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July
2018; pp. 1–6. [CrossRef]

13. Bi, Y.; Xue, B.; Zhang, M. Genetic Programming for Image Classification: An Automated Approach to Feature Learning; Springer:
Berlin/Heidelberg, Germany, 2021. [CrossRef]

14. Najaran, M.H.T. A genetic programming-based convolutional deep learning algorithm for identifying COVID-19 cases via X-ray
images. Artif. Intell. Med. 2023, 142, 102571. [CrossRef]

15. Bakurov, I.; Castelli, M.; Scotto di Freca, A.; Vanneschi, L.; Fontanella, F. A novel binary classification approach based on geometric
semantic genetic programming. Swarm Evol. Comput. 2021, 69, 101028. [CrossRef]

16. Espejo, P.G.; Ventura, S.; Herrera, F. A Survey on the Application of Genetic Programming to Classification. IEEE Trans. Syst.
Man Cybern. Part C Appl. Rev. 2010, 40, 121–144. [CrossRef]

17. Dara, O.A.; Lopez-Guede, J.M.; Raheem, H.I.; Rahebi, J.; Zulueta, E.; Fernandez-Gamiz, U. Alzheimer’s Disease Diagnosis Using
Machine Learning: A Survey. Appl. Sci. 2023, 13, 8298. [CrossRef]

http://doi.org/10.1177/1176934318815906
http://dx.doi.org/10.1038/s41586-023-06924-6
http://www.ncbi.nlm.nih.gov/pubmed/38096900
http://dx.doi.org/10.1145/1543834.1543915
http://dx.doi.org/10.1109/ICEC.1994.350027
http://dx.doi.org/10.1007/978-0-387-31030-5
http://dx.doi.org/10.1162/evco_a_00174
http://www.ncbi.nlm.nih.gov/pubmed/26807484
http://dx.doi.org/10.1109/SBRN.2000.889734
http://dx.doi.org/10.1109/CEC.2013.6557774
http://dx.doi.org/10.1109/CEC.2018.8477933
http://dx.doi.org/10.1007/978-3-030-65927-1
http://dx.doi.org/10.1016/j.artmed.2023.102571
http://dx.doi.org/10.1016/j.swevo.2021.101028
http://dx.doi.org/10.1109/TSMCC.2009.2033566
http://dx.doi.org/10.3390/app13148298

Symmetry 2024, 16, 1146 19 of 19

18. Rovito, L.; Bonin, L.; Manzoni, L.; De Lorenzo, A. An Evolutionary Computation Approach for Twitter Bot Detection. Appl. Sci.
2022, 12, 5915. [CrossRef]

19. Muni, D.; Pal, N.; Das, J. Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2006, 36, 106–117. [CrossRef]

20. Oğuz, K.; Bor, A. Prediction of Local Scour around Bridge Piers Using Hierarchical Clustering and Adaptive Genetic Programming.
Appl. Artif. Intell. 2022, 36, 2001734. [CrossRef]

21. Alturky, S.; Toma, G. A Metaheuristic Optimization Algorithm for Solving Higher-Order Boundary Value Problems. Int. J. Appl.
Metaheuristic Comput. 2022, 13, 1–17. [CrossRef]

22. Sobania, D.; Schmitt, J.; Köstler, H.; Rothlauf, F. Genetic programming for iterative numerical methods. Genet. Program. Evolvable
Mach. 2022, 23, 253–278. [CrossRef]

23. Brablc, M.; Žegklitz, J.; Grepl, R.; Babuska, R. Control of Magnetic Manipulator Using Reinforcement Learning Based on
Incrementally Adapted Local Linear Models. Complexity 2021, 2021, 6617309. [CrossRef]

24. García, C.A.; Velasco, M.; Angulo, C.; Marti, P.; Camacho, A. Revisiting Classical Controller Design and Tuning with Genetic
Programming. Sensors 2023, 23, 9731. [CrossRef] [PubMed]

25. Beşkirli, A.; Dağ, İ. An efficient tree seed inspired algorithm for parameter estimation of Photovoltaic models. Energy Rep. 2022,
8, 291–298. [CrossRef]

26. Beşkirli, A.; Dağ, İ. A new binary variant with transfer functions of Harris Hawks Optimization for binary wind turbine
micrositing. Energy Rep. 2020, 6, 668–673. [CrossRef]

27. Beşkirli, A.; Dağ, İ. Parameter extraction for photovoltaic models with tree seed algorithm. Energy Rep. 2023, 9, 174–185.
[CrossRef]

28. Beskirli, A.; Özdemir, D.; Temurtas, H. A comparison of modified tree–seed algorithm for high-dimensional numerical functions.
Neural Comput. Appl. 2020, 32, 6877–6911. [CrossRef]

29. Zhan, R.; Zhang, J.; Cui, Z.; Peng, J.; Li, D. An Automatic Heuristic Design Approach for Seru Scheduling Problem with Resource
Conflicts. Discret. Dyn. Nat. Soc. 2021, 2021, 8166343. [CrossRef]

30. Xu, M.; Mei, Y.; Zhang, F.; Zhang, M. Genetic Programming and Reinforcement Learning on Learning Heuristics for Dynamic
Scheduling: A Preliminary Comparison. IEEE Comput. Intell. Mag. 2024, 19, 18–33. [CrossRef]

31. Mahmood, M.T. Defocus Blur Segmentation Using Genetic Programming and Adaptive Threshold. Comput. Mater. Contin. 2022,
70, 4867–4882. [CrossRef]

32. Correia, J.; Rodriguez-Fernandez, N.; Vieira, L.; Romero, J.; Machado, P. Towards Automatic Image Enhancement with Genetic
Programming and Machine Learning. Appl. Sci. 2022, 12, 2212. [CrossRef]

33. Wineberg, M.; Oppacher, F. The Benefits of Computing with Introns. In Proceedings of the First Annual Conference, Stanford,
CA, USA, 28–31 July 1996; Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., Eds.; Stanford University: Stanford, CA, USA, 1996;
pp. 410–415. [CrossRef]

34. Abdelkhalik, O. Hidden Genes Genetic Optimization for Variable-Size Design Space Problems. J. Optim. Theory Appl. 2013,
156, 450–468. [CrossRef]

35. Baker, J.E. Adaptive Selection Methods for Genetic Algorithms. In Proceedings of the 1st International Conference on Genetic
Algorithms, Pittsburgh, PA, USA, 24–26 July 1985; pp. 101–111.

36. Ferreira, C. Automatically Defined Functions in Problem Solving. In Gene Expression Programming: Mathematical Modeling by an
Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; pp. 233–273. [CrossRef]

37. Ferreira, C. Automatically Defined Functions in Gene Expression Programming. In Genetic Systems Programming: Theory and
Experiences; Nedjah, N., Abraham, A., Macedo Mourelle, L.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 13,
pp. 21–56. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app12125915
http://dx.doi.org/10.1109/TSMCB.2005.854499
http://dx.doi.org/10.1080/08839514.2021.2001734
http://dx.doi.org/10.4018/IJAMC.292515
http://dx.doi.org/10.1007/s10710-021-09425-5
http://dx.doi.org/10.1155/2021/6617309
http://dx.doi.org/10.3390/s23249731
http://www.ncbi.nlm.nih.gov/pubmed/38139576
http://dx.doi.org/10.1016/j.egyr.2021.11.103
http://dx.doi.org/10.1016/j.egyr.2020.11.154
http://dx.doi.org/10.1016/j.egyr.2022.10.386
http://dx.doi.org/10.1007/s00521-019-04155-3
http://dx.doi.org/10.1155/2021/8166343
http://dx.doi.org/10.1109/MCI.2024.3363970
http://dx.doi.org/10.32604/cmc.2022.019544
http://dx.doi.org/10.3390/app12042212
http://dx.doi.org/10.7551/mitpress/3242.003.0061
http://dx.doi.org/10.1007/s10957-012-0122-6
http://dx.doi.org/10.1007/3-540-32849-1_6
http://dx.doi.org/10.1007/3-540-32498-4_2

	Introduction
	The Proposed Program Genotype
	The Basic Idea
	The Structure of the Genotype

	Building a Python Program
	The Evolutionary Algorithm
	Selection
	Crossover
	Mutation
	Replacement and Stopping

	Experiment Setup
	Results and Discussion
	Conclusions
	Functions Used in Evolution
	References

