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Abstract: The primary objective of this research is to introduce and investigate novel polynomial
variants termed ∆h Laguerre polynomials. This unique polynomial type integrates the monomiality
principle alongside operational rules. Through this innovative approach, the study delves into un-
charted territory, unveiling fresh insights that build upon prior research endeavours. Notably, the ∆h

Laguerre polynomials exhibit significant utility in the realm of quantum mechanics, particularly in the
modelling of entropy within quantum systems. The research meticulously unveils explicit formulas
and elucidates the fundamental properties of these polynomials, thereby forging connections with
established polynomial categories. By shedding light on the distinct characteristics and functionalities
of the ∆h Laguerre polynomials, this study contributes significantly to their comprehension and
application across diverse mathematical and scientific domains.

Keywords: ∆h sequences; monomiality principle; explicit forms; symmetric identities; series representation
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1. Introduction and Preliminaries

The exploration of generalized and multivariable special functions has seen significant
advancements in recent years, greatly enhancing our ability to address complex physical
problems. These functions, which extend beyond traditional special functions, offer pow-
erful tools for solving intricate partial differential equations (PDEs). Their multivariable
nature allows for the simultaneous consideration of multiple interacting variables, which is
essential in modelling realistic physical systems. This progress has enabled researchers to
develop more accurate and comprehensive solutions to PDEs that arise in diverse fields
such as quantum mechanics, fluid dynamics, and electromagnetic theory. By employing
these advanced functions, scientists can now tackle problems involving intricate boundary
conditions and non-linear interactions with greater precision. Consequently, the improved
mathematical framework not only aids in theoretical developments but also in practical
applications, leading to innovations in technology and engineering. Thus, the advance-
ments in generalized and multivariable special functions mark a crucial step forward in
the mathematical modelling of complex physical phenomena. Recent studies have focused
on investigating special polynomials of two variables that have been incredibly useful in
solving complex challenges. One notable class of polynomial sequences is Laguerre polyno-
mials, which are integral in the fields of physics and mathematics due to their orthogonality
properties. These polynomials were first introduced by the French mathematician Edmond
Laguerre in the 19th century, and since then, numerous authors have made significant
contributions to their study. For more information, key references include [1–8].
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Laguerre polynomials are widely utilized in mathematics, physics, and engineering
to solve the Schrodinger equation for the hydrogen atom and other quantum systems
exhibiting spherical symmetry. Their applications extend to various areas such as quantum
mechanics, spectroscopy, and atomic physics, where these polynomials play a crucial role
in describing the behaviour of electrons in complex atomic structures. Additionally, they
find applications in fields such as signal processing and probability theory due to their
unique properties and mathematical significance. Furthermore, issues involving diffusion
equations, wave propagation, and heat conduction give rise to these polynomials.

The significance of two-variable special polynomials is profound, as they offer a ver-
satile and robust framework for addressing problems across various mathematical and
scientific domains. These polynomials, characterized by their ability to handle functions in-
volving two variables simultaneously, provide powerful tools for expressing and analyzing
complex multivariate relationships.

In mathematics, two-variable special polynomials facilitate the study of multivariate
calculus, algebraic geometry, and optimization problems. Their rich structure and prop-
erties enable mathematicians to derive explicit solutions to intricate equations, perform
precise approximations, and develop new theoretical insights. For example, in approxi-
mation theory, these polynomials can approximate bivariate functions with high accuracy,
aiding in numerical analysis and computational methods.

In scientific applications, particularly in physics and engineering, two-variable special
polynomials are indispensable. They are employed in solving partial differential equations
(PDEs) that describe a wide range of phenomena, from heat conduction and wave propaga-
tion to fluid dynamics and quantum mechanics. Their specific properties, such as orthog-
onality and recurrence relations, make them highly suitable for constructing solutions to
these PDEs, allowing for the more accurate modelling of physical systems. Additionally,
in fields like statistics and data science, these polynomials are used in multivariate statistical
analysis and the modelling of complex datasets. They enable the extraction of meaningful
patterns and relationships from data involving multiple variables, thus contributing to
more informed decision-making and predictions.

Therefore, the utility of two-variable special polynomials in expressing and analyzing
multivariate functions, coupled with their application-specific properties, underscores
their significance in advancing both theoretical research and practical problem-solving in
various domains.

The two-variable Laguerre polynomials (Wn(u, v)) [9,10] are defined by the generating
function:

evξC0(uξ) =
∞

∑
n=0

Wn(u, v)
ξn

n!
, (1)

where C0(uξ) is the 0th Bessel–Tricomi function [11], operationally defined as

C0(αu) = exp(−αD−1
u {1}){1}; D−n

u {1} :=
un

n!
. (2)

The Bessel–Tricomi function Cn(u) is expressed through the series expansion:

Cn(u) = u−n/2 Jn(2
√

u) =
∞

∑
k=0

(−1)kuk

k!(n + k)!
, (3)

with Jn(u) being the cylindrical Bessel function of the first kind [11].
The 2VLP Wn(u, v) can also be defined by the series

Wn(u, v) = n!
n

∑
k=0

(−1)kukvn−k

(k!)2(n − k)!
. (4)
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These polynomials are of intrinsic mathematical interest and have significant applica-
tions in physics, particularly as natural solutions to specific partial differential equations.
One such equation is

∂

∂v
Wn(u, v) = −

(
∂

∂u
u

∂

∂u

)
Wn(u, v); Wn(u, 0) =

(−u)n

n!
, (5)

which resembles a Fokker–Planck-type heat diffusion equation and is used to study the
beam lifetime due to quantum fluctuations in storage rings [12].

Furthermore, the 2VLP Wn(u, v) are quasi-monomial with respect to the following
multiplicative and derivative operators:

Θ+
n = v − D−1

u , Θ−
n = −DuuDu. (6)

Mathematicians have recently demonstrated great interest in introducing different
versions of special polynomials and hybrid special polynomials; see, for instance, [13–17].
Further, in [18,19], authors introduced a new variant/version of the special polynomi-
als, called ∆h special polynomials of different polynomials, by employing the classical
finite difference operator ∆h. These ∆h special polynomials have drawn attention due to
their amazing applicability in statistics and physics, in addition to several disciplines of
mathematics. A recent attempt to introduce ∆h polynomial sequences, namely ∆h Appell
polynomials, and to study their many features was undertaken by Costabile and Longo [18].
The mathematical representation of the ∆h-Appell polynomial is as follows:

A[h]
n (u) := An(u), n ∈ N0 (7)

and defined by
A[h]

n (u) = nhAn−1(u), n ∈ N, (8)

where ∆h being the F.D.O:

∆hH
[h](u) = H(u + h)−H(u). (9)

Further, the ∆h-Appell polynomials An(u) are defined through the generating relation [18]:

γ(ξ)(1 + hξ)
u
h =

∞

∑
n=0

A[h]
n (u)

ξn

n!
, (10)

where

γ(ξ) =
∞

∑
n=0

γn,h
ξn

n!
, γ0,h ̸= 0. (11)

Moreover, in [18], ∆h Appell sequences An(u), n ∈ N are defined by γ(ξ)(1 + hξ)
q
h

in the power series of the product of two functions:

γ(ξ)(1 + hξ)
u
h = A[h]

0 (u) +A[h]
1 (u)

ξ

1!
+A[h]

2 (u)
ξ2

2!
+ · · ·A[h]

n (u)
ξn

n!
· · · , (12)

where

γ(ξ) = γ0,h + γ1,h
ξ

1!
+ γ2,h

ξ2

2!
+ · · ·+ γn,h

ξn

n!
+ · · · . (13)

The ∆h Appell sequences represent a specialized class of Appell sequences that emerge
from the application of the difference operator ∆h to a pre-existing Appell sequence. This
process involves applying the operator ∆h, defined as ∆h f (u) = f (u + h)− f (u), to gen-
erate new sequences with distinct properties. Within this framework, the parameter q
within the Appell sequence assumes specific values, which simplifies the resulting ∆h
Appell sequences into well-established sequences and polynomials. This simplification
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is significant as it provides a deeper understanding of the behaviour and characteristics
of these sequences, revealing their connections to more familiar mathematical constructs.
For example, when q takes on certain values, the ∆h Appell sequences can be reduced to
classical polynomial sequences such as Bernoulli polynomials, Euler polynomials, or Her-
mite polynomials. These reductions highlight the versatility and broad applicability of the
∆h Appell sequences in various mathematical contexts.

Connecting to well-known sequences allows mathematicians to leverage existing
knowledge and techniques to study the ∆h Appell sequences. For instance, understanding
their orthogonality properties, generating functions, and recurrence relations becomes
more accessible through these connections. Additionally, these insights can lead to the
discovery of new identities and relationships within the realm of special functions and
polynomial sequences.

In applied mathematics and physics, ∆h Appell sequences can be instrumental in
solving difference equations, modelling discrete systems, and analyzing numerical meth-
ods. Their structured properties enable the precise formulation and solution of problems
involving discrete changes, which are common in computational algorithms and discrete
dynamical systems.

Overall, the study of ∆h Appell sequences enriches the theory of special functions and
polynomial sequences and enhances our ability to address practical problems in various
scientific and engineering disciplines. The parameter q’s role in simplifying these sequences
into well-known forms underscores the inter-connectedness of mathematical concepts and
the value of exploring these specialized classes. For instance:

When the variable u is a non-negative integer, the generalized falling factorials, de-
noted as (u)h

n ≡ (u)n, are obtained as a special case of the ∆h Appell sequence, which is
described in the reference [20].

When the value of u is equal to 1, the Bernoulli sequence of the second kind, denoted
as bn(u), can be derived as a special case of the ∆h Appell sequence, as referenced in [20].

When the parameter u is equal to the constant δ, where δ is a constant, the Poisson–
Charlier sequence Cn(u; δ), as referenced in [20] (p. 2), is derived as a special case of the ∆h
Appell sequence.

When the values are u = δ and h = 1, the Boole sequence Bln(u; u) can be derived as a
special case of the ∆h Appell sequence.

In various practical applications, it is often necessary to utilize well-known sequences
and polynomials; these special cases can be quite beneficial. The ∆h Appell sequences offer
a structured method for obtaining these sequences and polynomials.

Motivated by Costabile [18], here we introduced the two-variable ∆h Laguerre polynomials:

(1 + hξ)
v
h (1 + hξ2)

D−1
u
h {1} =

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
, (14)

through the generating function concept.
The significance of two-variable ∆h Laguerre special polynomials lies in their ability to

extend the classical Laguerre polynomials to multivariate and discrete settings, providing a
powerful tool for solving complex mathematical and physical problems. Here are several
key aspects of their importance: The two-variable ∆h Laguerre polynomials generalize
the classical Laguerre polynomials, which are widely used in single-variable contexts,
particularly in solving differential equations related to quantum mechanics and other
physical systems. Extending these polynomials to two variables facilitates the analysis of
systems involving two interacting components or dimensions. The ∆h operator introduces
a discrete component to the Laguerre polynomials, making them suitable for problems
involving discrete changes or steps. This is particularly useful in numerical analysis and
discrete dynamical systems, where the behaviour of a system is studied at discrete points in
time or space. These polynomials maintain connections to classical Laguerre polynomials,
allowing well-established mathematical techniques and theories to be used. This connection
helps in deriving new properties, and in generating functions, and identities that enrich
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the broader theory of special functions and polynomial sequences. The two-variable ∆h
Laguerre special polynomials provide a powerful and versatile mathematical and physical
problem-solving tool. Their ability to handle two variables and discrete changes makes
them invaluable in a wide range of applications, from solving PDEs and discrete dynamical
systems to modelling complex interactions in physics and engineering. Extending the
classical Laguerre polynomials opens new avenues for research and practical applications,
highlighting the deep interconnections within mathematical theory.

The rest of thearticle is presented as follows:
Section 2 delves into the generation of Laguerre polynomials and examines the re-

currence relations that characterize their behavior. In Section 3, formulas for summing
or evaluating these polynomials over specific ranges or under particular conditions are
provided, offering efficient methods for calculating their values. Section 4 introduces the
monomiality principle, which describes the behavior of Laguerre polynomials under certain
operations, and also establishes their determinant form.

Section 5 derives symmetric identities for these polynomials. finally, the concluding re-
marks are provided, which highlights the article’s key findings, explores their implications and
applications, and proposes possible directions for future research on Laguerre polynomials.

2. Two-Variable ∆h Laguerre Polynomials

This section plays a pivotal role in introducing a novel class of two-variable ∆h La-
guerre polynomials and establishing their core properties. The research significantly
contributes to the existing literature, broadening our understanding and opening new
avenues for exploration within polynomial theory and its diverse applications.

The creation of the generating function for ∆h Laguerre polynomials, denoted by
W[h]

n (u, v), marks a crucial advancement in grasping the intricate characteristics and at-
tributes of these polynomials. Generating functions are indispensable tools in fields such
as combinatorics, analysis, and mathematical physics, as they offer profound insights into
the underlying structure and behavior of sequences and functions.

Moreover, this study deepens the mathematical community’s comprehension of poly-
nomial families and their practical uses by linking ∆h Laguerre polynomials to their gener-
ating functions. The properties discussed in this section illuminate the distinctive traits and
behaviors of these polynomials, facilitating their application in a wide range of mathemati-
cal and scientific contexts. This section represents a significant leap forward in the field
of polynomial theory, providing new perspectives and potential applications that warrant
further investigation.

To construct the generating function for the ∆h Laguerre polynomials W[h]
n (u, v), we

begin by proving the following result:

Theorem 1. For the 2V ∆h Laguerre polynomials W[h]
n (u, v), the following generating relation holds:

(1 + hξ)
v−D−1

u
h =

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
, (15)

or equivalently,

(1 + hξ)
v
h C0

(u
h

log(1 + hξ)
)
=

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
. (16)

Proof. The set of polynomials W[h]
n (u, v), represented in Equation (15) as the coefficients

of ξn

n! , serve as the generating function for the two-variable ∆h Laguerre polynomials

W[h]
n (u, v). This is achieved by expanding (1 + hξ)

v−D−1
u

h at u = v = 0 using a Newton
series for finite differences, and by considering the order of the product in the development
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of the function (1 + hξ)
v−D−1

u
h with regard to the powers of ξ.

Theorem 2. For the 2V ∆h Laguerre polynomials W[h]
n (u, v), the succeeding relations hold true:

v∆h
h W[h]

n (u, v) = n W[h]
n−1(u, v)

u∆h
h W[h]

n (u, v) = n(n − 1) W[h]
n−2(u, v), D−1

u → u.
(17)

Proof. By differentiating (15) with regard to v by taking into consideration expression (9),
we find

v∆h(1 + hξ)
v
h (1 + hξ)

D−1
u
h {1} = (1 + hξ)

v+h
h (1 + hξ)

D−1
u
h {1} − (1 + hξ)

v
h (1 + hξ)

D−1
u
h {1}

= (1 + hξ − 1)(1 + hξ)
v
h (1 + hξ)

D−1
u
h {1}

= hξ (1 + hξ)
v−D−1

u
h .

(18)

By substituting the right hand side of expression (15) into (18), we find

v∆h

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
= h

∞

∑
n=0

W[h]
n (u, v)

ξn+1

n!
. (19)

Assertion (17) is derived by substituting n → n − 1 into the right hand side of the
earlier expression (18) and contrasting the coefficients of the same exponents of ξ in the
resulting equation.

Next, we deduce the explicit form satisfied by these two-variable ∆h Laguerre polyno-
mials S[h]n (u, v) by demonstrating the result.

Theorem 3. For the two-variable ∆h Laguerre polynomials W[h]
n (u, v), the succeeding relations

hold true:

W[h]
n (u, v) =

[ v
h ]

∑
d=0

(
n
d

)( v
h
d

)
hd W[h]

n−d(u). (20)

Proof. Expanding generates relation (15) in the given manner:

(1 + hξ)
v
h (1 + hξ)

D−1
u
h {1} =

v
h

∑
d=0

(
[ v

h ]

d

)
(hξ)d

d!

∞

∑
n=0

W[h]
n (u, 0)

ξn

n!
(21)

which can further be written as

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
=

∞

∑
n=0

[ v
h ]

∑
d=0

( v
h
d

)
hd W[h]

n (u, 0)
ξn+d

n! d!
. (22)

By replacing n → n− d in the right hand side of the previous expression, it follows that

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
=

∞

∑
n=0

v
h

∑
d=0

( v
h
d

)
hd W[h]

n (u, 0)
ξn

(n − d)! d!
. (23)

In the right hand side of the previous statement (23), we multiply and divide by n! to
obtain the value of assertion (20). We then compare the coefficients of the same exponents
of ξ on both sides.
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3. Summation Formulae

This section introduces fundamental summation formulae, also known as sigma nota-
tion, essential for computing sums involving special polynomials with two variables. These
formulae provide systematic methods for evaluating complex expressions and uncover-
ing hidden symmetries within polynomial structures, contributing to the development
of efficient computational techniques. They are essential for exploring and advancing
mathematical theory and its practical applications.

Theorem 4. For n ≥ 0, we have

W[h]
n (u, v) =

n

∑
γ=0

(
n
γ

)(
−v

h

)
γ
(−h)γW[h]

n−γ(0, u). (24)

Proof. From (15), we have

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
= (1 + hξ)

v
h (1 + hξ)

D−1
u
h {1} =

∞

∑
n=0

W[h]
n (0, u)

ξn

n!

∞

∑
γ=0

(
−v

h

)
γ
(−h)γ ξγ

γ!

=
∞

∑
n=0

(
n

∑
γ=0

(
n
γ

)(
−v

h

)
γ
(−h)γW[h]

n−γ(0, u)

)
ξn

n!
. (25)

Comparing the coefficients of ξ, we obtain (24).

Theorem 5. For n ≥ 0, we have

W[h]
n (v + 1, u) =

n

∑
γ=0

(
n
γ

)(
−1

h

)
γ

(−h)γW[h]
n−γ(u, v). (26)

Proof. From (15), we have

∞

∑
n=0

W[h]
n (v + 1, u)

ξn

n!
−

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
= (1 + hξ)

v
h (1 + hξ)

D−1
u
h {1}

(
(1 + hξ)

1
h − 1

)
=

∞

∑
n=0

W[h]
n (u, v)

ξn

n!

(
∞

∑
γ=0

(
−1

h

)
γ

(−h)γ ξγ

γ!
− 1

)

=
∞

∑
n=0

(
n

∑
γ=0

(
n
γ

)(
−1

h

)
γ

(−h)γW[h]
n−γ(u, v)

)
ξn

n!
−

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
. (27)

Comparing the coefficients of ξ, we obtain (26).

Theorem 6. For n ≥ 0, we have

W[h]
n (u, v) =

n

∑
j=0

(
−v

h

)
n−j

(−h)n−j
(
−u

h

)
j
(−1)j n!

(n − j)!(j!)2 . (28)
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Proof. From (15), we have

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
= (1 + hξ)

v
h (1 + hξ)

D−1
u
h {1}

=
∞

∑
n=0

(
−v

h

)
n
− h)n ξn

n!

∞

∑
j=0

(
−u

h

)
j
(−1)j(−h)j ξ j

j!j!

=
∞

∑
n=0

n

∑
j=0

(
−v

h

)
n−j

(−h)n−j
(
−u

h

)
j
(−1)j ξn

(n − j)!(j!)2 . (29)

Comparing the coefficients of ξ, we obtain (28).

Next, we investigate the connection between the Stirling numbers of the first kind and
two-variable ∆h Laguerre polynomials.

[log(1 + ξ)]k

k!
=

∞

∑
i=k

S1(i, k)
ξ i

i!
, | ξ |< 1. (30)

From the above definition, we have

(v)i =
i

∑
k=0

(−1)i−kS1(i, k)vk. (31)

Theorem 7. For n ≥ 0, we have

W[h]
n (u, v) =

n

∑
γ=0

(
n
γ

)
W[h]

n (u)
γ

∑
j=0

vjS1(γ, j)hγ−j. (32)

Proof. From (15), we have

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
= e

v
h log(1+hξ)(1 + hξ)

D−1
u
h {1}

= (1 + hξ)
D−1

u
h {1}

∞

∑
j=0

(v
h

)j [log(1 + hξ)]j

j!

=
∞

∑
n=0

W[h]
n (u)

ξn

n!

∞

∑
γ=0

γ

∑
j=0

(v
h

)j
S1(γ, j)hγ ξγ

γ!

=
∞

∑
n=0

(
n

∑
γ=0

(
n
γ

)
W[h]

n−γ(u)
γ

∑
j=0

(v
h

)j
S1(γ, j)hγ

)
ξn

n!
. (33)

Comparing the coefficients of ξ, we obtain (32).

Theorem 8. For n ≥ 0, we have

W[h]
n (0, u) =

n

∑
γ=0

(
n
γ

)
W[h]

n−γ(u, v)
γ

∑
j=0

(
−v

h

)j
S1(γ, j)hγ. (34)
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Proof. From (15), we have

(1 + hξ)
D−1

u
h {1} = e−

v
h log(1+hξ)

∞

∑
n=0

W[h]
n (u, v)

ξn

n!

=
∞

∑
n=0

W[h]
n (u, v)

ξn

n!

∞

∑
j=0

(
−v

h

)j [log(1 + hξ)]j

j!

=
∞

∑
n=0

W[h]
n (u, v)

ξn

n!

∞

∑
γ=0

γ

∑
j=0

(
−v

h

)j
S1(γ, j)hγ ξγ

γ!

=
∞

∑
n=0

(
n

∑
γ=0

(
n
γ

)
W[h]

n−γ(u, v)
γ

∑
j=0

(
−v

h

)j
S1(γ, j)hγ

)
ξn

n!
. (35)

Comparing the coefficients of ξ, we obtain (34).

Theorem 9. For n ≥ 0, we have

W[h]
n (u, v) =

n

∑
l=0

n−l

∑
γ=0

n!
(n − γ − l)!(γ + l)!

hγW[h]
n−γ−1(0, u)S1(γ + l, l)vl . (36)

Proof. From (15), we have

∞
∑

n=0
W[h]

n (u, v) ξn

n! = (1 + hξ)
v
h (1 + hξ)

D−1
u
h {1}

=
∞
∑

n=0
W[h]

n (0, u) ξn

n!

∞
∑

γ=0

(
− v

h
)

γ
(−h)γ ξγ

γ!

=
∞
∑

n=0

(
n
∑

γ=0
(n

γ)
(
− v

h
)

γ
(−h)mγW[h]

n−γ(0, u)

)
ξn

n! .

(37)

Upon comparing the coefficients of ξ, we arrive at the following findings:

W[h]
n (u, v) =

n

∑
γ=0

(
n
γ

)(
−v

h

)
γ
(−h)γW[h]

n−γ(0, u). (38)

Using the above equality (28), we obtain

W[h]
n (u, v) =

(
n
∑

γ=0
(n

γ)(−h)γW[h]
n−γ(0, u)

)(
γ

∑
l=0

(−1)γ−lS1(γ, l)(−h)−lvl
)

=
n
∑

l=0

n
∑

γ=l

n!
(n−γ)!γ! (−h)γ−lW[h]

n−γ(0, u)(−1)γ−lS1(γ, l)vl

=
n
∑

l=0

n−l
∑

γ=0

n!
(n−γ−l)!(γ+l)! (−h)γW[h]

n−γ−1(0, u)(−1)γS1(γ + l, l)vl .

(39)

This is the complete proof of the theorem.

Theorem 10. For n ≥ 0, we have

W[h]
n (v + w, u) =

n

∑
l=0

n−l

∑
γ=0

n!
(n − γ − l)!(γ + l)!

hγW[h]
n−γ−l(u, v)S1(γ + l, l)wl . (40)
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Proof. Taking v + w instead of v in (15), we have

∞

∑
n=0

W[h]
n (v + w, u)

ξn

n!
= (1 + hξ)

v+w
h (1 + hξ)

D−1
u
h {1}

=

(
∞

∑
n=0

W[h]
n (u, v)

ξn

n!

)(
∞

∑
γ=0

(
−w

h

)
γ
(−h)γ ξγ

γ!

)
. (41)

Using the Cauchy rule and after comparing the coefficients of ξ on both sides of the
resulting equation, we have

W[h]
n (v + w, u) =

n

∑
γ=0

(
n
γ

)(
−w

h

)
γ
(−h)γW[h]

n−γ(u, v). (42)

Then, using (31) for
(
−w

h
)

γ
, we obtain (40).

Theorem 11. For n ≥ 0, we have

W[h]
n (u, v) =

n

∑
γ=0

γ

∑
j=0

(
n
γ

)
(z − v)jS1(γ, j)hγ−jW[h]

n−γ(0, u). (43)

Proof. From (15), we have

(1 + hξ)
D−1

u
h {1} = e−

v
h log(1+hξ)

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
. (44)

Replacing v with z and comparing the resulting equations, we obtain

e
z−v

h log(1+hξ)(1 + hξ)
D−1

v
h =

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
. (45)

Ultimately, we arrive at assertion (45) of Theorem 11 by expanding the exponential
function and comparing the coefficients of identical powers of ξ.

Remark 1. Assuming that v = 0 in Theorem 11, we can quickly arrive at the following conclusion:

W[h]
n (0, u) =

n

∑
γ=0

γ

∑
j=0

(
n
γ

)
zjS1(γ, j)hγ−jW[h]

n−γ(0, u).

4. Monomiality Principle

The monomiality principle stands as a foundational concept in polynomial theory,
offering a fundamental framework for understanding and manipulating polynomial ex-
pressions. This principle asserts that any polynomial can be uniquely expressed as a linear
combination of monomials, which are simple algebraic terms consisting of a single variable
raised to a non-negative integer power. This representation simplifies the structure of
polynomials and facilitates their analysis and manipulation in various mathematical con-
texts. By breaking down complex polynomial expressions into their constituent monomials,
mathematicians can derive key properties, such as degree, leading coefficient, and roots, en-
abling deeper insights into polynomial behaviour and paving the way for the development
of advanced mathematical techniques and algorithms.

Beyond its theoretical significance, the monomiality principle plays a pivotal role in
practical applications across diverse scientific and engineering fields. In computational
mathematics, for instance, algorithms for polynomial interpolation, approximation, and nu-
merical integration often rely on the monomial basis for their efficiency and accuracy.
Similarly, in areas such as signal processing, control theory, and image analysis, polynomi-
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als serve as essential mathematical tools for modelling complex systems and phenomena,
with the monomiality principle providing a concise and intuitive representation framework.
Furthermore, the versatility of monomial-based polynomial representations extends to
disciplines like physics, where polynomials are utilized to describe physical laws and
phenomena. With the concept of poweroids, Steffenson originally proposed monomiality
in 1941 [21]; Dattoli subsequently expanded on this idea [22,23]. The Ĵ and K̂ operators
are multiplicative and derivative operators that are crucial in this context for a polynomial
set gk(u1)k∈N. The following expressions are satisfied by these operators:

gk+1(u1) = Ĵ {gk(u1)} (46)

and
k gk−1(u1) = K̂{gk(u1)}. (47)

Thus, when multiplicative and derivative operations are applied to the polynomial set
gk(u1)m∈N, the result is a quasi-monomial domain. Adhering to the following formula is
crucial for this quasi-monomial:

[K̂, Ĵ ] = K̂Ĵ − Ĵ K̂ = 1̂. (48)

It consequently displays a Weyl group structure.
Assuming that the set {gk(u1)}k∈N is quasi-monomial, the significance and application

of the operators Ĵ and K̂ may be utilized to derive the significance of the underlined set.
Therefore, the following axioms are true:

(i) gk(u1) gives a differential equation

Ĵ K̂{gk(u1)} = k gk(u1), (49)

provided that Ĵ and K̂ exhibit differential traits.
(ii) The expression

gk(u1) = Ĵ k {1}, (50)

gives the explicit form, with g0(u1) = 1.
(iii) Further, the expression

ewĴ {1} =
∞

∑
k=0

gk(u1)
wk

k!
, |w| < ∞ , (51)

demonstrates the generation of expression behaviour and is obtained by applying
identity (50).

These techniques, rooted in mathematical physics, quantum mechanics, and classical
optics, remain relevant in contemporary research. They are reliable tools for probing intri-
cate phenomena in these domains and play a pivotal role in advancing our understanding
of complex systems. In light of the paramount importance of these methodologies, we
embarked on the validation of the notion of monomiality specifically for the ∆h Laguerre
polynomials. These polynomials, denoted as W[h]

n (u, v), represent a crucial mathematical
framework within which various phenomena can be analyzed and understood. By vali-
dating the concept of monomiality within this context, we aim to elucidate fundamental
properties underpinning these polynomials’ behaviour and their applications.

Within this section, we present the outcomes of our validation efforts. These outcomes
serve to reinforce the integrity and utility of the ∆h Laguerre polynomials as essential
mathematical constructs. Through rigorous analysis and validation, we affirm the validity
and significance of the concept of monomiality, thereby enhancing our confidence in the
robustness of these mathematical tools for theoretical and practical investigations.
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Theorem 12. The ∆h Laguerre polynomials W[h]
n (u, v) satisfy the succeeding multiplicative and

derivative operators:

ˆMSA =

(
v

1 + v∆h
+

2 D−1
u v∆h

h + v∆h
2

)
(52)

and
D̂S =

v∆h
h

. (53)

Proof. In consideration of expression (9), taking derivatives with regard to v of expres-
sion (15), we have

v∆h

{
(1 + ht)

v
h (1 + hξ)

D−1
u
h {1}

}
= (1 + hξ)

v+h
h (1 + hξ)

D−1
u
h {1} − (1 + hξ)

v
h (1 + hξ)

D−1
u
h {1}

= (1 + hξ − 1)(1 + hξ)
v
h (1 + hξ)

D−1
u
h {1}

= hξ (1 + hξ)
v
h (1 + hξ)

D−1
u
h {1},

(54)

thus, we have

v∆h
h

[
(1 + hξ)

v
h (1 + hξ)

D−1
u
h {1}

]
= t
[
(1 + hξ)

v
h (1 + hξ)

D−1
u
h {1}

]
, (55)

which gives the identity

v∆h
h

[
W[h]

n (u, v)
]
= ξ

[
W[h]

n (u, v)
]
. (56)

Now, differentiating expression (15) with regard to ξ, we have

∂

∂ξ

{
(1 + hξ)

v
h (1 + hξ)

D−1
u
h {1}

}
=

∂

∂ξ

{
∞

∑
n=0

W[h]
n (u, v)

ξn

n!

}
, (57)

(
v

1 + hξ
+ 2

D−1
u ξ

1 + hξ

){
∞

∑
n=0

W[h]
n (u, v)

ξn

n!

}
=

∞

∑
n=0

n W[h]
n (u, v)

ξn−1

n!
. (58)

By utilizing identity (56) and substituting n → n+ 1 into the right-hand side of the previous
expression (58), we establish the assertion (52).

Moreover, based on identity (56), we have

v∆h
h

[
W[h]

n (u, v)
]
= n W[h]

n−1(u, v), (59)

which provides a formula for the derivative operator in (53).

We now proceed to derive the differential equation for the ∆h Laguerre polynomials
W[h]

n (u, v) by proving the following result:

Theorem 13. The ∆h Laguerre polynomials W[h]
n (u, v) satisfy the differential equation:(

v
1 + v∆h

+
2 D−1

u v∆h

h + v∆h
2 − nh

v∆h

)
W[h]

n (u, v) = 0. (60)

Proof. By inserting expressions (52) and (53) into expression (49), the assertion (60) is
proved.

5. Symmetric Identities

This section explores symmetric identities inherent to two-variable ∆h special poly-
nomials, revealing relationships between variables and coefficients, deepening our un-
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derstanding of the polynomials and broader mathematical structures. It establishes a
framework for utilizing the symmetrical properties of these polynomials, paving the way
for theoretical analyses and practical applications.

Theorem 14. For a ̸= b, a, b > 0 and u1, u2, v1, v2 ∈ C, we have
n

∑
γ=0

(
n
γ

)
an−γbγW[h]

n−γ(au1, av1)W
[h]
γ (bu2, bv2) =

n

∑
γ=0

(
n
γ

)
anbn−γW[h]

n−γ(au2, av2)W
[h]
γ (bu1, bv1). (61)

Proof. Let

A(ξ) = (1 + hξ)
ab(v1+v2)

h C0

(
−abu1

h
log(1 + hξ)

)
C0

(
−abu2

h
log(1 + hξ)

)
=

∞

∑
n=0

W[h]
n (bu1, bv1)

(aξ)n

n!

∞

∑
γ=0

W[h]
n (au2, av2)

(bξ)γ

γ!

=
∞

∑
n=0

(
n

∑
γ=0

(
n
γ

)
an−γbγW[h]

n−γ(au1, av1)W
[h]
γ (bu2, bv2)

)
ξn

n!
. (62)

Similarly, we have

A(ξ) =
∞

∑
n=0

(
n

∑
γ=0

(
n
γ

)
anbn−γW[h]

n−γ(au2, av2)W
[h]
γ (bu1, bv1)

)
ξn

n!
. (63)

Comparing the coefficients of ξ on both sides of the last equations, we obtain (61).

Theorem 15. For a ̸= b, a, b > 0 and u1, u2, v ∈ C, we have

n

∑
k=0

k

∑
γ=0

(
n
k

)(
k
γ

)
an−γbγ+1βn−k(h)W

[h]
n−γ(bu, bv)σγ(a − 1; h)

=
n

∑
k=0

k

∑
γ=0

(
n
k

)(
k
γ

)
bn−γaγ+1βn−k(h)W

[h]
n−γ(au, av)σγ(b − 1; h). (64)

Proof. Consider

B(ξ) =
abξ(1 + hξ)

abv
h C0

(
−abu

h log(1 + hξ)
)
((1 + hξ)

ab
h − 1)

((1 + hξ)
a
h − 1)((1 + hξ)

b
h − 1)

=
abξ

((1 + hξ)
a
h − 1)

(1 + hξ)
abv
h C0

(
−abu

h
log(1 + hξ)

)
((1 + hξ)

ab
h − 1)

((1 + hξ)
b
h − 1)

= b
∞

∑
n=0

βn(h)
(aξ)n

n!

∞

∑
k=0

W[h]
k (bu, bv)

(aξ)k

k!

∞

∑
γ=0

σγ(a − 1; h)
(bξ)γ

γ!

= b
∞

∑
n=0

βn(h)
(aξ)n

n!

∞

∑
k=0

k

∑
γ=0

(
k
γ

)
ak−γbγW[h]

k−γ(bu, bv)σγ(a − 1; h)
ξk

k!

=
∞

∑
n=0

(
n

∑
k=0

k

∑
γ=0

(
n
k

)(
k
γ

)
an−γbγ+1βγ−k(h)W

[h]
n−γ(bu, bv)σγ(a − 1; h)

)
ξn

n!
. (65)

Similarly, we have

B(ξ) =
∞

∑
n=0

(
n

∑
k=0

k

∑
γ=0

(
n
k

)(
k
γ

)
bn−γaγ+1βn−k(h)W

[h]
n−γ(au, av)σγ(b − 1; h)

)
ξn

n!
. (66)
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Comparing both sides of the above equations, we obtain (64).

Next, to find the first few polynomials of the expression (15), that is,

(1 + hξ)
v−D−1

u
h =

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
,

we start by expanding the left-hand side using the binomial series and then matching it to
the right-hand side to identify the coefficients W[h]

n (u, v).

The binomial expansion of (1 + hξ)
v−D−1

u {1}
h is:

(1 + hξ)
v−D−1

u {1}
h =

∞

∑
n=0

( v−D−1
u {1}
h
n

)
(hξ)n.

This can be rewritten as:

(1 + hξ)
v−D−1

u {1}
h =

∞

∑
n=0

( v−D−1
u {1}
h
n

)
hnξn.

Using the definition of the binomial coefficient for any real number k,(
k
n

)
=

k(k − 1)(k − 2) · · · (k − n + 1)
n!

,

it follows that

( v−D−1
u {1}
h
n

)
=

(
v−D−1

u {1}
h

)(
v−D−1

u {1}
h − 1

)
· · ·
(

v−D−1
u {1}
h − n + 1

)
n!

.

Thus, we find

(1 + hξ)
v−D−1

u {1}
h =

∞

∑
n=0

(
v−D−1

u {1}
h

)(
v−D−1

u {1}
h − 1

)
· · ·
(

v−D−1
u {1}
h − n + 1

)
n!

hnξn,

which can be further simplified as

(1 + hξ)
v−D−1

u {1}
h =

∞

∑
n=0

(v − D−1
u {1})(v − D−1

u {1} − h) · · · (v − D−1
u {1} − (n − 1)h)

hnn!
ξn =

∞

∑
n=0

W[h]
n (u, v)

ξn

n!
.

From this comparison, we can identify the first few coefficients W[h]
n (u, v):

W[h]
0 (u, v) = 1,

W[h]
1 (u, v) =

v − D−1
u {1}
h

,

W[h]
2 (u, v) =

(v − D−1
u {1})(v − D−1

u {1} − h)
h2 ,

W[h]
3 (u, v) =

(v − D−1
u {1})(v − D−1

u {1} − h)(v − D−1
u {1} − 2h)

h3 .

6. Conclusions

The introduction and investigation of the ∆h Laguerre polynomials represent signif-
icant advancements in polynomial theory. Through the integration of the monomiality
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principle alongside operational rules, these novel polynomials offer fresh insights into
unexplored mathematical territory.

The explicit formulas and elucidation of fundamental properties provided in this
research deepen our understanding of the ∆h Laguerre polynomials themselves and es-
tablish connections with established polynomial categories, thereby enriching the broader
mathematical landscape.

Moving forward, future research endeavours could explore several promising av-
enues. Firstly, further investigations into the structural properties and algebraic aspects of
∆h Laguerre polynomials could yield deeper insights into their behaviour and potential
applications. Additionally, exploring their applicability in other areas of quantum me-
chanics and mathematical physics could uncover new avenues for research, and potential
practical implications.
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