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Abstract: It is widely known that symmetry does exist in management systems, such as economics,
management, and even daily life. In addition, effective and qualified decision-making methods can
enhance the performance and symmetry of management systems. Hence, this paper focuses on
a decision-making method. Linguistic interval-valued g-rung orthopair fuzzy sets (LIVq-ROFSs)
have recently been proposed as being effective in describing decision-makers’ evaluation values in
complex situations. This paper proposes a novel multi-attribute group decision-making (MAGDM)
method with LIVg-ROFSs to handle realistic decision-making problems. The main contributions of
this study are three-fold. First, a new method for determining the weight information of attributes
based on decision makers’ evaluation values is proposed. Second, the classical TODIM is extended
into LIVgG-ROFSs and a new decision-making method is proposed. Third, our proposed MAGDM
method is applied to a real decision-making problem to reveal its effectiveness.

Keywords: linguistic interval-valued g-rung orthopair fuzzy sets; attributes” weights determination
methods; TODIM; multi-attribute group decision making

1. Introduction

Decision making is one of the most important activities in economics, management,
and even daily life. Recently, more and more researchers have paid attention to multi-
attribute group decision making (MAGDM). MAGDM refers to a collection of decision-
making problems in which a group of experts are invited to express their opinions over
alternatives under a set of attributes. MAGDM method collects different opinions from
different experts, making the final decision-making results fairer and more reliable. The
recently proposed g-rung orthopair fuzzy set (q-ROFS) [1] characterized by a membership
degree and a non-membership degree is a powerful tool to handle decision makers” com-
plex evaluation information. In addition, the advantages and superiorities of q-ROFSs
over intuitionistic fuzzy sets (IFSs) [2] and Pythagorean fuzzy sets (PFSs) [3] are widely
known in the field of MAGDM. Hence, q-ROFSs have been widely applied in real MAGDM
problems and many novel achievements have been reported. For instance, Jana et al. [4]
introduced a new series of new operations for g-rung orthopair fuzzy numbers (q-ROFNs)
and, based on which, a novel collection of g-rung orthopair fuzzy aggregation operators is
developed. Yu et al. [5] extended the classical q-ROFSs into g-rung orthopair cubic fuzzy
sets, introduced their Maclaurin symmetric mean operators, and applied them to an emerg-
ing technology enterprises evaluation problem. Wang and Yang [6] considered MAGDM
situations in which a partitioned relationship exists among q-ROFNSs, and they introduced
a series of g-rung orthopair fuzzy partitioned Bonferroni means. Liu et al. [7] combined the
power average and Maclaurin symmetric mean operators under g-ROFSs and introduced
some hybrid aggregation operators. Comparative analysis illustrates the advantages and
superiorities of the proposed operators. Based on continuous Archimedean T-Norms and
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T-Conorms, Ai et al. [8] introduced a series of g-rung orthopair fuzzy integrals for aggre-
gating continuous g-ROFNSs, and applied them in MAGDM. Wei et al. [9] introduced a
series of aggregations operators for fusing g-rung orthopair fuzzy information, studied
their properties and applied them in decision-making. For more recent developments of
g-ROFS-based MAGDM methods, readers are suggested to refer to [10-14].

The above references reveal that the -ROFSs have good performance in describing de-
cision makers’ fuzzy and uncertain decision-making information in realistic MAGDM prob-
lems. However, sometimes q-ROFSs still have defects when describing decision-makers’
assessments. As a matter of fact, sometimes decision makers prefer to use linguistic terms
to present membership degrees and non-membership degrees. For the sake of convenience,
we call them linguistic membership degrees (LMDs) and linguistic non-membership de-
grees (LNMDs). For example, Zhang [15] generalized the traditional IFSs into linguistic
IFSs (LIFSs), where the intuitionistic fuzzy membership and non-membership degrees
are denoted by linguistic terms. Due to this characteristic, LIFSs are more powerful and
suitable than IFSs, and they have received much attention in the field of MAGDM [16-18].
Afterward, motived by LIFSs, Garg [19] introduced the concept of linguistic Pythagorean
fuzzy sets (LPFSs), where LMDs and LNMDs are employed in the traditional way to PFSs,
and linguistic Pythagorean fuzzy sets (LPFSs) are developed. As PFSs are more power-
ful than IFSs, LPESs are also more flexible and robust than LIFSs. Similarly, LPFSs have
also received much attention and readers can find LPFS-based decision-making methods
in [20-22]. However, LIFSs and LPFSs still have shortcomings when handling realistic
MAGDM problems. We provide the following instance to illustrate their drawbacks. Let
S = {st|0 < t < I} be a continuous linguistic term set with odd cardinality and & = (s5,s;)
be a linguistic fuzzy number defined on S. If « is a linguistic intuitionistic fuzzy number,
then 6 + 7 < I; and if a is a linguistic Pythagorean fuzzy number, then 62 + 5% < 2. Now
a group of professors are invited to evaluate the quality of discipline. Let S = {sg = “very
poor’, s1 = "poor’, sy = ‘slightly poor’, s3 = ‘fair’, s4 = ‘slightly good’, s5 = ‘good’, s¢ = ‘very good’}
be a linguistic term set, then the group of professors would like to use s4 and ss5 to be the
LMD and LNMD, respectively. Obviously, the ordered pair cannot be denoted by LIFSs
and LPFSs. This example indicates the drawback of LIFSs and LPFSs.

To overcome the defect of LIFSs and LPFSs, Liu and Liu [23] proposed the concept
of linguistic q-rung orthopair fuzzy sets (Lq-ROFSs), which use LMD and LNMD in the
classical g-ROFSs. Lg-ROFSs take the advantages of g-ROFSs, and, hence, they are more
powerful and flexible than LIFs and LPFSs. Since its appearance, the Lq-ROFS-based
MAGDM method has become a new research direction. Liu et al. [24] investigated their
point aggregation operators, discussed their properties, and applied them to MAGDM
problems. Based on the linguistic scale function, Liu et al. [25] extended the reference deal
TOPSIS method into Lq-ROFSs, proposed a novel MAGDM method, and applied it to
postgraduate entrance qualification assessment. Bao and Shi [26] introduced the ELECTRE-
based MAGDM method under Lg-ROFSs and used robot evaluation and selection. Liu
and Liu [27] developed a series of linguistic g-rung orthopair fuzzy power Muirhead
mean operators, which not only reduce the bad effect of unduly high or low aggregated
values, but also consider the interrelationship among aggregated values. More recent
developments of Lg-ROFS-based MAGDM methods can be found in [28-32]. Recently,
the idea of linguistic interval-valued g-rung orthopair fuzzy sets (LIVqQ-ROFSs) [33] was
developed for handling realistic MAGDM problems. In a LIVgQ-ROFS, two uncertain
linguistic variables are used to denote the LMD and LNMD. Hence, LIVq-ROFS can be
regarded as a general form of Lq-ROFS and a linguistic term. Afterward, more and more
scholars started to investigate LIVQ-ROFSs as well as their applications in decision-making.
For example, Gong [34] proposed a series of entropy measures and used them to determine
the weight vector of attributes in decision making. Gurmani et al. [35] proposed basic
operational rules as well as a new score function of LIVq-ROFSs, and finally, a VIKOR-based
MAGDM method was developed.
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The above-mentioned references reveal the good performance of LIVG-ROFSs in han-
dling MAGDM problems. However, recent research still has limitations. In most research
on LIV@-ROFSs, the weight vector of attributes is usually assumed to be known, which is
somewhat inconsistent with reality. Due to the complexity of real MAGDM problems, the
weight information of attributes is usually unknown. However, most LIVq-ROFS-based
MAGDM methods only consider known attributes. Hence, sometimes they are powerless
to handle realistic MAGDM problems. Although Khan et al.’s [33] method considers un-
known attribute weight information, they only consider incomplete weight information.
In other words, Khan et al.’s [33] method can only deal with MAGDM problems where
weight information is partially known. However, we often encounter completely unknown
attribute weight situations. Hence, it is necessary to propose a new MAGDM method for
handling completely unknown weight situations. In addition, the TODIM (an acronym in
Portuguese for Iterative Multi-criteria Decision Making) method introduced by Gomes and
Lima [36] is a powerful decision-making approach. The primary advantage of TODIM is
that it takes decision-makers’ psychological behaviors into consideration when determining
the ranking outcome of alternatives. Hence, the ranking results produced by TODIM are
usually more reliable than some other methods. Due to these advantages, TODIM has been
widely used in picture fuzzy sets [37], neutrosophic sets [38], Pythagorean fuzzy sets [39],
complex interval-valued intuitionistic fuzzy sets [40], etc. Nevertheless, nothing has been
performed with TODIM under LIVq-ROFSs. Considering the advantage of TODIM, it is of
high necessity to study TODIM under LIVq-ROFSs.

The main works of this study are three-fold. First, we study TODIM under LIVg-
ROFSs and propose a new MAGDM method. Second, a method for determining the
weight information of attributes is proposed. Third, our proposed MAGDM is applied
to a realistic problem to illustrate its rightness and advantages. The rest of this paper is
organized as follows. Section 2 reviews some basic notions that will be used in the following
sections. Section 3 proposes a new MAGDM method under LIVg-ROFSs. Section 4 applies
the proposed method to a realistic MAGDM problem to demonstrate its effectiveness.
Summarization is presented in Section 5.

2. Some Basic Notions

In this Section, some basic notions are reviewed.
2.1. Linguistic Interval-Valued q-Rung Orthopair Fuzzy Sets

Definition 1 [33]. Let X = {x1,xp,...,x,} beafiniteset,and S = {s;|0 < t < I} is a continuous
linguistic term set. Then, a linguistic interval-valued g-rung orthopair fuzzy set (LIV-g-ROFS) A
defined on X can be expressed as

X = {xi,sm(x;),sn(x;)|x; € X} 1)

where Sy =[Sy, (Xi), Smy (Xi)] and sy =[Sy, (xi),5n, (x;)] are all subsets of [so, sy in which s
and sy represent the minimum and maximum linguistic variable of the linguistic term set, and are
said to be the linguistic membership degree and linguistic non-membership degree of the element
x; € X toS. Forany x; € X, (Sm,)" + (50,)7 < §] (ie, m) +n) < 19) always satisfies for
x; € X. For the sake of convenience, we call the order pair ([Sy, (Xi), Smy (Xi)], [Sny (Xi), 50, (xi)]) a
linguistic interval-valued g-rung orthopair fuzzy value (LIVq-ROFV), which can be denoted by
¢ = ([5a,5], [3c, 84]) for simplicity.

Some basic operational rules of LIVq-ROFVs are presented by Khan et al. [33].

Definition 2 [33]. Let &1 = ([Sa,, b, ], [Ser/ S, ]), &2 = ([Sa2sSby) s [Sers S, | ) and & = ([Sa, 53],
[Sc,54]) by any three LIVq-ROFV's defined on a continuous linguistic term set S = {s;|0 < t <1},
and A be a positive real number, then
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U a®k= ({s(u‘}-s-ag—u‘l]ug/l'i)l/q’S(b'f-i-bg—b‘fbg/lq)l/q}, SaaoStnayt]):

2 G1©% = ([Snay/1:Stiby/1], S(a‘{ﬂ%—c‘{cﬁ/lﬂ)”"’S(d?+d27d7d3/l”’)w’_ ’
@ 6= ([S(lﬂzq(laq/lq)A)l/q's(mm(lm/lﬂ)A)l/q} ’ {Sl(c/l)“sl(d/l)AD;

o i 3 b ;
4 ¢t= ([SI(H/Z)A,SI(WZ)A} , [S(lﬂl@(lc‘i/lq)A)l/q's(H14(1dq/l‘1))‘)1/q_ )

Khan et al. [33] also defined the score and accuracy values and comparison rules to
compare any two LIVG-ROFVs.

Definition 3 [33]. Let { = ([Sa, Sp), [Sc, S4]) be a LIVG-ROFV defined on a continuous linguistic
term set S = {s¢|0 < t < I}. The score and accuracy values of ¢ can be defined by

S(g) = ’5( lq+u‘7+bZ—c‘7—d‘7 )1/t] (2)

and

H(¢) =5

(l‘I+a‘7+bZ+c‘l+dq )Vfl (©)

Based on the score and accuracy values of LIVqQ-ROFVs, the comparison method for
any two LIVQ-ROFVs is presented as follows.

Definition 4 [33]. Let &1 = ([Sa,,Sp, ], [Se;,54,]) and &2 = ([Say,Sb, ], [Scyr84,] ) be any two
LIVg-ROFVs defined on a continuous linguistic term set S = {s;|0 < t < I}, then we have

(1) If S(¢1) < S(G2), then &1 < &;
(2)  If S(¢1) = S(&2), then

() If H(G1) < H(C2), then &1 < o,
(4) If H(G1) = H(G2), then &1 = {a.

The distance measure between any two LIVG-ROFVs is presented as follows.
Definition 5 [33]. Let & = ([Sa,,5b, ], [Ser,Sa,]) and &o = ([Saps b, |, [SersSa,]) be any two

LIVq-ROFVs defined on a continuous linguistic term set S = {s¢|0 < t < 1}. The generalized
distance measure between ¢1 and Gy is defined as follows

1/6
d(E1, &) = (4(;)(5 (‘a’{ - ag"s + ’b? - bg‘é + ‘C;] - Cg‘é + ‘dil - dg‘5>> (4)

In the formula, the above-generalized distance of LIVG-ROFVs can be reduced to
Euclidean distance when § = 2, and reduce to Hamming distance when § = 1.

To aggregate a series of LIVqQ-ROFVs, Khan et al. [33] introduced the linguistic interval-
valued g-rung orthopair fuzzy weighted average (LIVqQ-ROFWA) operator.

Definition 6 [33]. Let ¢; = ([Eaj,gbj} , {Ecj,gd]} ) (j=1,2,...,n) bea collection of LIVq-ROFVs,

and w = (wy,wo, .. .,wn)T be the corresponding weight vector, satisfying Z;z:1 w; =1 and
0 < wj < 1. The LIVq-ROFWA operator is defined as follows

LIV — ROFWA(Z1,&, ..., &) =

M-

w;Gj ()
1

]
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2.2. TODIM

The TODIM is a powerful method as it can consider decision-makers’ psychological
behaviors. Hence, decision results produced by TODIM are more reliable. The main steps
of TODIM are briefly introduced as follows. Let A = {A1, Az, ..., Am} be a collection of
alternatives that are to be evaluated and G = {Gy, Gy, ..., G, } be a collection of attributes.
A group of decision makers uses crisp numbers to describe their evaluation information
and finally, a decision matrix is obtained, which can be denoted as X = (xi]-)mxn. The

weight vector of attributes is w = (w1, wy, .. ., wn)T, such that E;‘Zl wj=1 and 0 < w; < 1.
For a convenient description, we use Z = (Zif)mxn to denote the normalized decision

matrix. The main steps of TODIM are presented as follows.
Step 1. Calculate the relative weight of attribute Gy to a reference attribute G,, which is

Wiy = Wi/ Wy, (6)

where wy is the weight of attribute Gy and w, = max{w]- li=12...,n}.
Step 2. Calculate the dominance degree of alternative A; over A; with respect to
attribute Gy by

\/wkr (Zik - ij) /Yy W, if Zig > zjk

1, /5 wlr(zjkfzik) .
A A Tre— lel'k < Zjk

O (A, Aj) = , (7)

where 6 > 0, representing the attenuation factor of the losses.
Step 3. Calculate the overall dominance degree of alternative A; over A; with the following

® (A A4)) = Ly P40 4)). ®)
Step 4. Calculate the overall performance of alternative A; with the following

m

Step 5. Calculate the normalized overall performance of alternative A; with the following

(A - ming(4)
w () maxg(A;j) — ming(A;)’

Step 6. Rank the alternative according to ¢(A;).

(10)

3. A Novel MAGDM Method as Well as Its Detailed Steps

This study introduced the TODIM under a linguistic interval-valued g-rung orthopair
fuzzy environment. In other words, this paper proposed a novel MAGDM method based on
TODIM for dealing with decision-making problems wherein decision-makers’ evaluations
are expressed by LIVQ-ROFVs. This Section introduces the detailed steps of our proposed
method. In order to do this, we first introduce the description of a typical MAGDM
problem under LIVq-ROFSs. Afterward, a method for determining the weight information
of attributes is proposed. Finally, the steps of our proposed MAGDM method are presented.

3.1. Description of a Typical MAGDM Problem Based on LIVq-ROFSs

Let us consider a MAGDM problem based on LIVQ-ROFSs. We assume there is a
set of alternatives A = {Aj, Ay, ..., Ay} and a collection of attributes, denoted by G =
{G1,Gy,...,Gp}. The weight information of attributes is completely unknown. To evaluate
the m alternatives under the n attributes, a group of decision makers are invited to express
their opinions and the group of decision makers can be denoted by D = {D;, Dy, ..., D,}.
The weight of decision makers is A = (Aq,A,..., Ae)t, such that chzl Af=1land 0 <
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Ar <1.LetS = {s¢/0 < t <[} be a pre-defined continuous linguistic term set, and for the
decision maker D¢(f =1,2,...,¢) utilizes a LIVq-ROFV é‘f;- = <|:§af/§bf:| , {%fﬁf]) to
ij ij ij ij

express his/her opinion for the attribute G; (j=1,2,...,n)of alternative A;(i = 1,2,...,n).
Finally, we can obtain a collection of linguistic interval-valued g-rung orthopair fuzzy
decision matrices, denoted by M/ = (C{;)

mxn

3.2. The Process of Determining the Weight Vector of Attributes

It is known that the weight information of attributes plays an important role. However,
it is not easy to determine the weight vector of attributes. Generally speaking, decision
makers can provide the weight information subjectively after discussion and negotiation.
However, it is not a sufficient method to determine the attribute vector, because of the
complexity of decision-making problems. Therefore, it is necessary to determine the
weights of attributes by some objective methods. As a matter of fact, many scholars have
realized the importance of attribute weight determination and some methods to objectively
determine weight information have been proposed. For example, Ye [41] proposed a
method to determine weight information based on the assumption that reasonable weight
values of attributes should make the overall score value of all alternatives as large as
possible. By maximizing group consensus, Zhang [42] introduced a nonlinear optimization
model to determine the attributes” weights under hesitant fuzzy sets. Biswas and Sarkar [43]
proposed an entropy measure for PFSs and based on which, they introduced a method to
determine the attributes” weights for handling Pythagorean fuzzy MAGDM. In [44], a g-
rung orthopair fuzzy criteria importance through an inter-criteria correlation method based
on derived weights of decision makers, and standard deviation and correlation coefficient
were developed to determine weights of attributes. Recently, Zhang et al. [45] proposed a
method to calculate the weights of attributes under probabilistic linguistic term sets. In their
opinions, the weight vector of attributes should not only make the total deviation between
all alternatives and the positive ideal solution to be a minimum, but also make the Shannon
information entropy be a maximum. Later on, Tang et al. [46] incorporated the above ideas
under probabilistic dual Pythagorean hesitant fuzzy sets and introduced an optimization
model to calculate the weights of attributes. In this paper, we also use the main ideas of
Zhang et al. [45] to determine the weight information of attributes under LIVq-ROFSs. The
above-mentioned references reveal that the idea is effective for determining the attributes’
weight information. Hence, this paper incorporates this idea when calculating the vector of
attributes. According to Zhang et al. [45] and Tang et al.’s [46] studies, when determining
the weights of attributes, the following two rules should be taken into consideration. In the
following, for convenient expression, we assume that the comprehensive decision matrix is
denoted by A = (a;j) » where a;; is a crisp number. Let w = (wq,wy, ..., w,) T, such that

mX
27:1 wj=1and 0 <w; <1. Let a]* = max;a;.

Rule I. The weight vector of attributes should make the total deviation between all the
alternatives and the positive ideal solution (PIS) to be a minimum.

Rule II. The weight vector should make the Shannon information entropy be a maximum.

When considering Rule I, we can use

Aj(w) = wj\/zzn_l (a}‘ - aij>2/ (11)

to denote the deviation of alternative A; and a; with respect to attribute G;. Therefore, the
sum of all deviations can be denoted as follows

Alw) = ;;1 Aj(w) = 2?:1 wj\/Z:'L (a]’f — ai]-)z, (12)
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When considering Rule II, we can use
H= _k27:1 wilnwj, (13)

to denote the Shannon information entropy measure. Hence, by considering both Rule I
and Rule II, we can establish the following optimization model, i.e.,

min{uz;?_l w]«\/zz.%_l (a]’.‘ - aij)z +(1- u)z;.l:l wjlnwj} s.t.w; > 0and Z]m wj=1

where 1 > u > 0 denotes the balance coefficient between the two mentioned objectives.
Generally, we usually assume that the two objectives have the same importance, and we
can set u = 0.5, and the following result by solving this optimization model can be obtained,

WhICh iS ShOWl’l as fOHOVV S:
u n *
exp I — E i 1(17] —bl]) — |

n u n * 2
j=16*P| — 1=\ Li=1 (bj _bif> -1

Based on the above analysis, and the attributes” weights determination method, in the
following, we present our proposed MAGDM method based on TODIM.

Step 1. Normalize the original decision matrices. As there are benefit and cost types of
attributes, the original decision matrices should be transformed into

gf,gf}, [gflgf]>/ G el
&= ([ by ! (15)
ij o o 4
([Scf’sdﬁ}’ {Sa,f.’sb.f])Gj €h
] 1] ] Ul

where I; and I, denote benefit and cost types of attributes, respectively.
Step 2. For attribute G;(j = 1,2,...,n) of alternative A;(i = 1,2,...,m), use the LIVq-
ROFWA operator to calculate the overall evaluation value, i.e.,

wj =

/ (14)

Zij = LIVqg — ROFWA (g}] e g;;) (16)

Step 3. Calculate the weights of attributes according to Equation (13).
Step 4. Calculate the relative weight of attribute Gy to a reference attribute G,, that is

Wiy = Wi/ Wy, (17)
where wy is the weight of attribute Gy and w, = max{wj j=12...,n}.

Step 5. Calculate the dominance degree of alternative A; over A; with respect to
attribute Gy by

(e i), /s if G =

L ond(Goi)
1 %(wk) if & < B

D (A A)) = ) (18)

where d (éik, ¢ jk) denotes the distance between {j and ¢, 0 > 0, representing the attenua-

tion factor of the losses.
Step 6. Calculate the overall dominance degree of alternative A; over A; with the following

(A Aj) = Yo Pi(Ai4)), (19)
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Step 7. Calculate the overall performance of alternative A; with the following
P(A) = L 9(Ai4y), (20)
Step 8. Calculate the normalized overall performance of alternative A; with the following

P(A;) —ming (A))
max(A;j) —ming(A;)’

Step 9. Rank the alternative according to w(A4;).

¢(4) = (21)

4. Numerical Example

This Section presents a numerical example to demonstrate the calculation process of
our proposed MAGDM method. Operating in an innovation ecosystem—the synthesis of
your new offerings and that of other firms creates a coherent customer solution—carries
risk [47]. Because most breakthrough innovations cannot succeed in isolation. They need
complementary innovation to attract customers. For example, in the early 1990s, high-quality
HDTYV plans seized the mass market. However, the key supporting elements—signal com-
pression technology and broadcasting standards—have not yet been introduced. However,
as high-definition TV manufacturers wait for complementary innovations to catch up, a
new competitive landscape and competitors have already emerged. Therefore, the success
of the final delivery of a breakthrough product depends on the development and deploy-
ment of all other solution components [48]. In many aspects of breakthrough innovation
delivery, team motivation issues, supply issues, financial difficulties, and leadership crises
can all disrupt the projects of partners [49]. Enterprises need to coordinate all stakeholders
involved in the innovation ecosystem, and evaluate the delay risks caused by the adoption
of each component of innovation in this stage (such as supply risks caused by rising raw
material prices). And based on the level of all delay risks, make hierarchical decisions on
the classification and optimization methods of each risk, specifically allocating which risks
should be handled internally and which risks should be shared with third parties [50].

4.1. The Description of the Problem

Assuming that a technology enterprise uses MAGDM analysis to assess the delivery
risks of four key complementary components that need to be submitted to the innovation
ecosystem in order to determine the delivery risk of a breakthrough invention, namely,
the delivery of battery components (A1), microchip components (A;), screen components
(A3), and system programs (A4). Once the causes of risks are identified, optimization
solutions typically emerge. For example, if a company relies excessively on a single partner
leading to high adoption segment prices, the enterprise might design a product with a
flexible interface, supporting the integration of more collaborators. This type of risk will
be “Handled Internally by the Enterprise” (Gi). If complementary companies lack the
motivation to develop their products, they might reach an exclusive licensing agreement,
thus alleviating concerns about competition from complementary merchants. This type of
risk will be “Jointly Handled by the Enterprise and Complementary Businesses” (Gy). If
the complementary product launches late or is priced too high, the company might seek
new partners. This type of risk will be “Handled by a Third Party” (G3). Consequently, six
types of businesses are ultimately categorized into three types of optimization methods.

The project decision-making team is composed of three groups of executives with tech-
nical backgrounds, elected from the enterprise and complementary merchants, including a
group of experts in the field of electromechanical engineering (D1), a group of experts in
product design (D), and a group of information technology experts (D3).

They express their preferences about the four types of businesses using multiplicative
preference relations, additive preference relations, and linguistic distribution preference
relations, respectively. Among them, the decision makers use a set of linguistic terms: very
poor, poor, fair, good, and very good.
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We have delineated four pivotal risk indicators: initiative risks, interdependence risks,
integration risks [47], and structural inertia risks [51]. Initiative risks embody the famil-
iar uncertainties of managing a project. Interdependence risks involve the uncertainties
of coordinating with complementary innovators. Integration risks are the uncertainties
presented by the adoption process across the value chain. Structural inertia risks are the
uncertainty of the structural inertia of the innovation ecosystem.

Initiative risks (G1): This attribute is utilized to evaluate the inherent uncertainties
involved in managing innovation projects by leading enterprises within an innovation
ecosystem [47]. The assessment of initiative risks involves the leading enterprise evaluating
the internal factors of the project that could lead to delays, with a focus on the project’s
own internal elements such as the feasibility of the technology, the accurate assessment
of market demands, the appropriateness of resource allocation, and the team’s execution
capability [52]. Regardless of whether the breakthrough innovation project is a high-tech
chip, such as fast-moving consumer goods such as breakfast cereal or an intangible financial
service product, it faces the risk of market loss due to the inability to deliver on time and
according to specifications. In addressing such risks, the emphasis is on accurately assessing
the challenges and potential obstacles faced by the project and formulating corresponding
strategies to mitigate these risks, ensuring the smooth progression of the project.

Interdependence risks (Gy): This attribute is employed to evaluate the uncertainties
encountered during the coordination process between leading enterprises and complemen-
tors, a common risk in innovation ecosystems [47]. In a large-scale technology project, the
success of the project may not only depend on the efforts of the leading enterprise but
also on the timely delivery of critical components or services by multiple partners [53].
Failure to deliver as promised by any party leads to overall delays, potentially lasting
weeks, months, or even years. Not only the party falling behind but also all parties that
complement it bear the consequences of the delay. Assessing interdependence risks entails
evaluating each complementor of the product. For example, partners may cause delays
due to internal development challenges, regulatory gaps, motivational issues, financial
difficulties, leadership crises, or even their own interdependencies with other parties [54].
If a project exhibits high interdependence risk, managers can specifically optimize response
measures and set reasonable delivery timelines.

Integration risks (G3): This attribute is used to assess the uncertainties associated
with the adoption process of a product or service throughout the entire value chain [47].
Especially in complex ecosystems, the success of an innovation depends not only on the
acceptance by end-users but also on the adoption by intermediaries or distributors [55].
The management of integration risks involves ensuring that the innovative project can be
smoothly integrated into the existing market structures and value chains, which includes
understanding and influencing the decision-making factors at various intermediary stages.
For instance, an innovative medical device might require the approval and support of
hospitals, insurance companies, and government agencies for successful market entry. Each
adopter along the value chain requires time to understand the product, agree to test it, and
accept the trial results. The higher the innovation’s position on the value chain, the greater
the number of intermediaries that must adopt the innovation before it reaches the delivery
and sales stage. Once the assessment of integration risks is completed, a series of moderate
improvements along the downstream chain (such as coordinated design, pre-marketing,
and channel incentive management) may expedite the product’s reach to the consumer and
potentially require fewer resources.

Structural Inertia Risks (G4): This attribute is used to assess the uncertainty of innova-
tion being affected by the structural inertia of the ecosystem. According to Organizational
Ecology Theory, the innovation of ecosystems is also influenced by structural inertia [56].
Generally speaking, the older the complementors and intermediaries involved in an in-
novation, the more likely it is to be influenced by the structural inertia of the innovation
ecosystem [51,57]. The presence of structural inertia implies that organizations tend to
maintain the status quo, making it difficult to respond quickly to dynamic market environ-
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ments [58]. Specifically, structural inertia can lead to members of the innovation ecosystem
being subject to legitimacy constraints, and forming unique behavioral norms and a fixed
information processing structure. This affects the operational efficiency of certain parts of
the innovation ecosystem, thereby increasing the probability of delivery delays; especially
in complex ecosystems such as healthcare, where businesses often turn to the government
to help overcome this inertia. For instance, many IT suppliers are currently lobbying their
governments to mandate the implementation of digital medical records. These efforts re-
place one mode of delay (legislative and administrative lags) for another (the monumental
collective inertia of the health care system).

To determine the best alternative, a group of decision experts (D1, D, and Dj3) are
invited to evaluate the performance of the four alternatives under the attributes. We
assume the weight vector of decision makers is A = (0.3,0.2, 0.5)T. Let S = {sg = ‘Extremely
poor’, s1 = “very poor’, s, = ‘poor’, s3 = ‘slightly poor’, s4 = ‘fair’, s5 = ‘slightly good’, s¢ = ‘good’,
and sy = ‘very good’} be a linguistic term set. The group of decision makers use LIVg-
ROFVs to express their evaluation values and the original decision matrixes are presented
in Tables 1-3. In the following, we use the proposed MAGDM method that presents
the following.

Table 1. The original decision matrix provided by D;.

Gq Gy G3 Gy
Ay ([s2,85]ls3,57])  ([sasalls588])  ([s, 56] [s2,84])  ([s3,56][54,55])
Ay ([s2,82][s0,85])  ([sasse]ls1,85])  ([sas7][s1,52])  ([s2 53] [s456))
Az ([s3/85][s1,54])  ([ss,56][51,83])  ([s1,54][55,53])  ([s1,52][54,57])
Ay ([s1,54][s0,85])  ([sps3]ls3,85])  ([se s7]ls188])  ([sy,85][52,54])

Table 2. The original decision matrix provided by D;.

G1 G2 G3 G4
Ay ([s52,56] [53/54]) ( [s1,53][s3,55]) ( [s0,53] [s5,56])  ([s2,83][5,57])
Ay ([s3:54][s6:56))  ([s3/5a)ls6,57])  ([s1,86)[s0,85])  ([s3,83][s7,7])
Az ([s5,56] [s0,56])  ([ss5,86][51,52])  (Is 4/55} [s2,86])  ([52,56] [54,5))
Ayg ([S3/S6l[S3,S5])  ([S4,Sa][S4 Sa])  ([S3,57)[S2,54])  ([S2 S3][S1,S3])

Table 3. The original decision matrix provided by Dj3.

G1 Gz G3 G4
Ay ([s3,54][51,86])  ([s3,54][5a,87])  ([s3,s5][53,84))  ([s2,57][s5, %))
Ay ([s457][s6/86])  ([s4,85][53,87])  ([s6,57][s2,53]) ([s4,85][s3,57])
Az ([so,86l[s1,86])  ([sa,57][s2,56])  ([s2,84][s1,82])  ([s3,87][s1,82])
Ayq ([s1,820[s1,86])  ([sgs6]ls1,57])  ([ss.86)[s2,83])  ([s3,96] [s5,57])

4.2. The Decision-Making Process

Step 1. Standardize the original decision matric (seen in Table 1), which is the same as
the step 1 in Approach L

Step 2. Compute the relative weight of attribute G; to the reference attribute G,.
According to Equation (13)

wj, = (0.9857,0.7538, 1, 0.8719)T

Step 3. For attribute G; (j=1,2,...,n) of alternative A;(i = 1,2,...,m), use the LIVg-
ROFWA operator to calculate the overall evaluation value, which is shown in Table 4.
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Table 4. The overall evaluation values of the alternatives.

Gy G
Aq ([52.6008, 54.7921], [51.7321, 55.4792]) ([52.6843,53.7612], [53.4641, 56.4992])
Ay ([53.4835, 56.1294), [56.1294, 55.7852] ) ([55.7852, 55.0493) [52.9649, S5.4444) )
Az ([s3.6831,55.8451), [51.2311, 55,5326 ) ([54.1283/ S6.6064), [S1.4142/ 53.7567])
Ay ([52.0757, 54.5205), [51.5971, 55.4772]) ([53.7639, S5.2174), [51.8882, 5.5330) )
G1 GZ
Aq ([52.5316, 54.9256), [54.9256, S4.5174]) ([52.2804/ 6.3216), [53.6325, 56.0590])
Ay ([55.0282, 56.7828), [51.7411, 53.2245]) ([53.4835, 54.2865], [54.0973, S6.7875)] )
Az ([52.8907, S4.3664) [51.5337, 53.0157)) ([52.53165 56.4087) [52.0000, $3.5726) )
Ay ([54.9256/ 56.6064) [51.7411, 53.2704]) ([52.5316/55.3113), [S2.5686, S4.8540])

Step 4. Compute the dominance of each alternative A; over each alternative Ay.

0 05064 —1.9294 —1.0706
—0.9094 0 —2.2284 —0.6610 | .
Pr( A, Ay) = —0.3007 —0.2484 0 _0.0913 | PKk=1234

—0.5177 —0.3671  —2.5473 0
Step 5. Compute the overall prospect value of alternative A;.

P(A1) = —0.8173, ¢p(Ay) = —0.7047
$(Az) = —1.1297, ¢p(Ay) = —0.3474

Step 6. Rank the alternatives and we can obtain A; >~ Ay >~ A; > A3, and A4 is the
best alternative.

5. Conclusions

It is known that Lg-ROFS is a powerful information representation tool that can effec-
tively describe DMs’ evaluation information in complicated MAGDM problems. More and
more researchers have noticed the flexibility and power of Lq-ROFSs in solving decision-
making problems. This paper proposes a novel MAGDM method wherein decision-makers’
evaluation values are in the form of Lg-ROFSs. In the newly developed MAGDM method,
we propose a way to determine the weights of attributes. Afterward, we introduced a
TODIM method for determining the ranking of alternatives. The advantages of our pro-
posed method are obvious. First of all, our proposed method is based on the information
representation tool Lg-ROFSs, and therefore it is more suitable and sufficient to handle
realistic decision-making problems in economics and management. Second, our method
can solve MAGDM problems where the weight vector of attributes is completely unknown.
We established a model to determine the weight vector of attributes. The model is based on
two assumptions; i.e., the weight vector of attributes should make total deviation between
all the alternatives and the PIS to be a minimum (Rule I) and should make the Shannon in-
formation entropy be a maximum (Rule II). Third, our proposed MAGDM method is based
on TODIM, which is an interactive decision-making approach that can take DMs’ psycho-
logical behaviors into consideration. Hence, the above-mentioned three advantages make
our proposed method more suitable and powerful for handling realistic MAGDM problems.
Afterward, we used a numerical example to show the effectiveness of our method. The
numerical example proves that our developed MAGDM method can effectively solve real
decision-making problems. In the future, we will continue our research from two aspects.
First of all, in this paper, the DMs are independent. In other words, DMs express their
evaluation values independently. However, in real decision-making problems, DMs are
usually related, which means that there is relationship among DMs. Recently, more and
more researchers have noticed this phenomenon and some of them have attempted to
investigate MAGDM problems from the perspective of social networks [59]. Therefore,
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we plan to investigate MAGDM methods based on social networks in the future. Second,
in this paper, we assume there are only several DMs. However, in some real MAGDM
problems, there are dozens even thousands of DMs. Recently, some researchers have con-
ducted MAGDM research from the perspective of large-scale group decision makers [60].
Hence, in the future, we will investigate the Lq-ROFS-based decision-making method in
large-scale group decision-making situations.
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