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Abstract: The two-dimensional (2D) hydrogen atom is a fundamental atomic model that is important
for various technologies based on 2D materials. Here, the atomic model is revisited to enhance
understanding of the hydrogen wavefunctions. Unlike in previous studies, we propose an alternative
expression of azimuthal wavefunctions, which are the eigenstates of the square of angular momentum
and exhibit rotational symmetry. Remarkably, our expression leads to the rotation and oscillation
along the azimuthal direction of the probability densities, which do not appear in the conventional
wavefunctions. These behaviors are validated by the numerical results obtained through the 2D finite
difference approach. Variation in oscillator strengths due to the rotation of wavefunctions is observed
in our proposed 2D hydrogen wavefunctions, whereas those due to the conventional wavefunctions
remain constant. More importantly, the proposed wavefunctions’ advantage is illustrating the orbital
shapes of the planar hydrogen states, whose orientation is labeled here using Cartesian representation
for the first time. This study can be applied to visualize the orbital characteristics of the states in
quantum confinement with a radial potential.

Keywords: square of angular momentum; oscillator strength; atomic orbitals; spdf notation

1. Introduction

According to recent growing interest in the low-dimensional systems of single-layer
and thin materials [1–3], the atomic model of the 2D hydrogen atom has gained significant
importance as a foundational concept. It can be applied to describe donor atoms and
excitons in thin semiconductors [4–7], both of which play a key role in various fields of
science and technology. In quantum computing [8–10], individual donor atoms within a
semiconductor can serve as qubits for quantum information processing. In single-electron
transistors [11–13], donor atoms significantly influence the current–voltage characteristics
of atomic devices. In 2D semiconductors [14–16], excitons bound by strong Coulomb
interaction determine optical properties such as selection rules, circular dichroism, and
efficient recombination. Therefore, the atomic model of the 2D hydrogen atom undoubtedly
provides insight into and facilitates understanding of these technologies.

The theoretical framework regarding the 2D hydrogen atom has remained a subject of
ongoing attention and further development for many decades [17–19]. It was first studied in
1967 by Zaslow and Zandler [20], who successfully solved the Schrödinger equation to obtain
the exact eigenvalues and eigenfunctions of the 2D hydrogen atom. This planar atomic model
has been revisited by Yang et al. [21], who conducted further investigations into the dipole
matrix elements, Stark effect, optical transitions, and fine structures. Subsequently, the 2D
hydrogen atom in various confinement potentials was investigated [22–24]. Stevanovic and
Sen found that incidental degeneracy of the confined hydrogen states occurs at a particular
radius of the infinite circular potential [22]. In the presence of a magnetic field and an electric
field, the 2D hydrogen atom is explored numerically and analytically [25–31]. The explorations
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revealed that a tilted magnetic field can be used to manipulate the density of the hydrogen
states [32]. The field also causes strong anisotropic distribution of the probability densities of
the hydrogen states [33]. Meanwhile, an electric field leads to a decrease in the binding energy
of the ground state and an increase in the oscillator strength of the 2D hydrogen atom [34].
Additionally, the effect of spin–orbit coupling on a 2D hydrogen atom has been reported; a
large spin–orbit interaction results in the splitting of energy levels and the tight binding of
an electron [35,36]. It is worth recognizing that the azimuthal wave function used in these
previous studies is complex. Because it consists of real and imaginary components, plotting
the complex wavefunction to visualize and understand the orbital shapes of the 2D hydrogen
states is a struggle.

This work revisits the two-dimensional hydrogen atom. First, the planar hydrogen
wavefunctions are investigated numerically using the 2D finite difference method. Surpris-
ingly, the numerical results show that the spatial distribution of the probability densities
(PDs) of most hydrogen states fluctuates along the azimuthal direction. This behavior
has not been seen before in PDs due to the conventional analytical wavefunctions. Con-
sequently, the new derivation of alternative azimuthal wavefunctions is presented here.
Our proposed wavefunctions are confirmed by the excellent agreement with the numerical
wavefunctions. The oscillator strength due to the proposed hydrogen wavefunctions is also
explored and compared with the conventional wavefunctions. Moreover, our expression of
the planar hydrogen states yields real-valued functions. These functions enable straightfor-
ward visualization of the orbital shapes and orientation, facilitating the first-ever labeling
of s, p, d, and f orbitals of the 2D hydrogen states using Cartesian representation.

2. Theoretical and Numerical Calculations

In the problem of the 2D hydrogen atom, the Schrödinger equation describing an
electron trapped in a coulomb potential is given by

− h̄2

2me
∇2Ψ(r, ϕ)− e2

4πε0r
Ψ(r, ϕ) = EΨ(r, ϕ) (1)

where me is the electron mass, e is the electron charge, and ε0 is the vacuum permittiv-
ity. r and ϕ are the radial distance and angle in polar coordinates. The exact solutions
of Equation (1) are [21]

En = − mee4

8π2ε2
0h̄2(2n − 1)2 , (2)

and
Ψnm(r, ϕ) = Φ0

m(ϕ)Rnm(r) (3)

where Φ0
m = eimϕ is the azimuthal part and Rnm is the radial part of the 2D hydrogen

wavefunctions. n and m are the principal quantum number and magnetic quantum number.
Because the Hamiltonian and the momentum operator L̂z commute each other, they have
common eigenfunctions. As a result, eimϕ, the eigenfunction of L̂z, is conventionally chosen
to be the azimuthal wavefunction, as discussed in many papers [37–39].

We first explore this problem by solving the Schrödinger equation numerically using
the 2D finite difference method [4,40]. Here, the xy-plane is divided into a uniform squared
grid with a representing grid spacing. The positive charge of the nucleus is positioned at
the origin, which is at the center of the plane, as seen in Figure S1 in the Supplementary
Materials. Equation (1) can be rewritten in Cartesian coordinates using ∇2 = ∂2

∂x2 +
∂2

∂y2 and

r2 = x2 + y2, and expressed in discretized form as

−
[(

Ψi−1,j − 2Ψi,j + Ψi+1,j
)

ã2 +

(
Ψi,j−1 − 2Ψi,j + Ψi,j+1

)
ã2

]
− 2√

x̃2 + ỹ2
Ψi,j =

E
E0

Ψi,j. (4)
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Here,Ψi,j is the wavefunction at the position (i, j) in the xy-plane; ã = a/a0, x̃ = x/a0,
ỹ = y/a0, and E0 = h̄2/2mea2

0, where a0 is the Bohr radius defined by a0 = 4πε0h̄2/mee2.
The matrix eigenvalue problem corresponding to Equation (4) is shown in Note S1 in the
Supplementary Materials and can be solved numerically to obtain the eigenenergies E and
eigenstates Ψ.

In the next section, it will be demonstrated that the probability densities |Ψnm|2 due to
the numerical method differ from those due to the analytical conventional calculation. To
confirm the numerical results, the new derivation is presented here to obtain the alternative
expression of azimuthal wavefunctions. Unlike previous studies, our proposed eigenfunc-
tions originate from the commutation of the Hamiltonian with the square of the angular
momentum L̂2

z = −h̄2 ∂2

∂ϕ2 , whose eigenvalue problem is −h̄2 ∂2Φ
∂ϕ2 = (mh̄)2Φ. This is the

second-order differential equation with constant coefficients, and its solution is

Φm(ϕ) = Cm cos(mϕ) + Dm sin(mϕ) (5)

where Cm and Dm are constants. Notice that our proposed Φm in Equation (5) is generally
not the eigenfunction of L̂z, but the conventional Φ0

m in Equation (3) is the eigenfunction of
L̂2

z . Therefore, the commutation relation between L̂z and L̂2
z ([L̂z, L̂2

z ] = 0) can be represented
by the Venn diagram in Figure 1. Note that the eigenfunctions of L̂2

z in the blue region are
concentrated and explored in this study.
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The values of Cm and Dm in Equation (5) are determined from the normalization

condition
2π∫
0

Φ∗
mΦmdϕ = 1. It can be straightforwardly calculated that Cm=0 = 1√

2π
for the

states with m = 0 and
C2

m + D2
m =

1
π

(6)

for the states with m ̸= 0. Additionally, the values of the coefficients Cm and Dm are deter-
mined from the orthogonality of the eigenstates. To achieve the orthogonal set of eigen-
states, it is shown in Appendix A that the state with momentum m (Φm = Cm cos(mϕ) +
Dm sin(mϕ)) and the state with momentum −m (Φ−m = C−m cos(mϕ)− D−m sin(mϕ)) are
orthogonal when the coefficients satisfy the following relation:

CmC−m = DmD−m. (7)

However, any two states with different values of |m| are orthogonal regardless of the
values of the coefficients.

In short, our calculation shows that the conventional azimuthal function Φ0
m in

Equation (3) can be replaced by Φm in Equation (5), where coefficients Cm and Dm must
satisfy Equations (6) and (7), which are derived and presented here for the first time. It will
be shown later that the possible values of these coefficients influence the physical properties
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of the 2D hydrogen states, such as rotation, orbital orientation, and optical transitions. For
illustrating orbital shapes, the values of the coefficients Cm and Dm can be chosen to be 0
and 1/

√
π to obtain the azimuthal functions in the form of

Φm(ϕ) =


1√
π

cos(mϕ) for m > 0
1√
2π

for m = 0
1√
π

sin(mϕ) for m < 0.
(8)

It will be demonstrated that the 2D hydrogen eigenfunctions Ψnm = ΦmRnm, where Φm
is defined in Equation (8), are convenient for labeling s, p, d, and f orbitals in the next section.

3. Results and Discussion

Firstly, the solutions of the 2D hydrogen atom from the conventional analytical calcu-
lation shown in Equations (2) and (3) are compared with those from the numerical method.
As shown in Table 1, the eigenenergies and the number of degenerate states in each energy
level obtained from these two independent methods are in good agreement.

Table 1. Energy levels obtained from the analytical method and finite difference method, denoted by
Eexact

n and Enum
n , respectively. Note that there are 3, 5, and 7 degenerate states for the level n = 2, 3,

and 4.

n Eexact
n /E0 Enum

n /E0 Error (%)

1 −4.00000 −3.97619 0.59525

2

−0.44444 −0.44442 0.00450

−0.44444 −0.44442 0.00450

−0.44444 −0.44149 0.66376

3

−0.16000 −0.15998 0.01250

−0.16000 −0.15993 0.04375

−0.16000 −0.15987 0.08125

−0.16000 −0.15987 0.08125

−0.16000 −0.15872 0.80000

4

−0.08160 −0.08164 0.04901

−0.08160 −0.08164 0.04901

−0.08160 −0.08164 0.03676

−0.08160 −0.08164 0.03676

−0.08160 −0.08164 0.03676

−0.08160 −0.08163 0.03676

−0.08160 −0.08163 0.94363

(Note that the numerical method used does not directly identify degenerate states.
However, by comparing the nearly identical numerical eigenenergies with exact analytical
energy levels, we inferred that these correspond to degenerate states, as shown in Table 1.)
However, the distributions of PDs

(
|Ψnm|2

)
of the states with m ̸= 0 are different as seen

in Figures 2 and 3. Clearly, all of the conventional PDs in Figure 2 are independent of the
azimuthal angle ϕ because |Ψnm|2 results in the cancelation of the azimuthal eigenfunction
eimϕ. In contrast, numerical PDs of the states with m ̸= 0 in Figure 3 oscillate along the
azimuthal direction and exhibit rotational symmetry. It appears that higher n states show
a greater diversity of orders of rotational symmetry. This indicates that the numerical
wavefunctions lead to distinctive azimuthal behaviors and specific orders of rotational
symmetry not present in the conventional wavefunctions. It should be noted that Equation
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(1) can also be solved using the variable-separable method, which is likely to yield results
for the azimuthally dependent PDs and rotational symmetry similar to those obtained
using the 2D finite difference method.
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represent the quantum numbers of each state. The degenerate states are presented in the same lines
and their corresponding energy levels (n) are shown on the right-hand side. PDs of the states with
n = 1, 2, 3, and 4 are illustrated in squares with side lengths 5a0, 25a0, 45a0, and 95a0, respectively.
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Figure 3. The distributions of PDs (|Ψ|2) from the finite difference method. The degenerate states are
presented in the same lines and their corresponding energy levels (n) are shown on the right-hand
side. PDs of the states with n = 1, 2, 3, and 4 are illustrated in squares with side lengths 5a0, 25a0,
45a0, and 95a0, respectively.

To confirm the numerical results, the eigenfunctions Ψ due to the finite difference
method are further investigated and compared with the analytical eigenfunctions Ψnm
with our proposed Φm, defined in Equation (5). We find that oscillating along the az-
imuthal direction of the numerical eigenfunctions depends on the number of grid points
determined by N (see Figure S1); several numerical eigenfunctions with m ̸= 0 rotate un-
predictably around the origin when the grid changes from N = 1500 to N = 2300, as seen in
Figures S2–S5. For our analytic eigenfunctions Ψnm, the rotating behavior is also found
when the values of Cm and Dm in Equation (5) are varied. To illustrate this behavior, we
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have shown in Figure S6 that the eigenfunctions rotate clockwise when Cm increases or
Dm decreases.

The eigenfunctions Ψnm, where the azimuthal part Φm is in the simple form as defined
in Equation (8), are shown in Figure 4. One may notice that our analytical eigenfunctions
in Figure 4 and the numerical eigenfunctions in Figures S2–S5 look very similar. To
demonstrate that they are identical, the data of the numerical eigenfunctions

(
Ψi,j

)
are

fitted to the analytic eigenfunctions by varying Cm and Dm to obtain the maximum values
of the coefficient of determination (R2). As seen in Table 2, R2 ≥ 0.99 for every eigenstate
(n, m) indicates that our analytic eigenfunctions fit the numerical eigenfunctions extremely
well. Moreover, the coefficients Cm and Dm of the state (n, m) and the state (n,−m) in
the table obey Equation (7). This means the numerical eigenstates (n, m) and (n,−m)
are orthogonal to each other. These agreements between our analytical and numerical
solutions verify that the results of these two independent approaches are correct. In
fact, the sinusoidal functions of azimuthal wavefunctions have been presented in a few
papers [41,42]. However, the wavefunctions are not in a general form; the values of Cm
and Dm are specified. Thus, their expression cannot be used to verify the correctness and
rotating behavior of the numerical wavefunctions.
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Next, the oscillator strength of our analytic eigenfunctions Ψnm is investigated and com-
pared with that of the conventional eigenfunctions in Equation (3). This quantity indicates
the probability of transition between states Ψnm and Ψn′m′ , defined by

Pn′m′
nm =

2me(En′−En)

h̄2

∣∣∣∫ 2π
0

∫ ∞
0 Ψ∗

n′m′xΨnmrdrdϕ
∣∣∣2 [43]. We first explore the transition from

the ground state (1, 0) to the first-excited degenerate states (2,−1), (2, 0), and (2, 1). Sim-
ilar to the transition of the conventional eigenfunctions, the possible transition between
our eigenfunctions is found when ∆m = 1. Therefore, P2−1

10 and P2+1
10 are presented in

Figure 5. It is evident that they vary as a parabolic function with respect to Cm, which
is further supported by the linear variation in the oscillator strengths, as shown in the
inset where C2

m is varied. This relationship is also clearly derived from the definition of
the oscillator strengths. Interestingly, although the values of P2±1

10 due to our analytic
eigenfunctions are determined by coefficients Cm and Dm, the summation of P2−1

10 and
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P2+1
10 is constant with a value of 0.2109 (yellow line). This value is equal to the summa-

tion due to the conventional eigenfunctions. Note that for the conventional eigenfunctions,
P2−1

10 = P2+1
10 = 0.1055. After investigating the oscillator strength between the ground state

and the excited states in other energy levels, we also find agreement between the summation
due to our eigenfunctions and due to the conventional eigenfunctions, as shown in Table 3.
While the summations of the oscillator strengths for the traditional wavefunctions and ours are
the same, the variation in individual oscillator strengths indicates that the transitions between
energy states proceed through distinct pathways or exhibit different intensities, challenging
further experiments.

Table 2. The values of R2 obtained by fitting the proposed eigenfunctions due to Equation (5) to the
numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of Cm and Dm.

Energy Level
(n)

Numerical
Eigenfunctions

Analytic Eigenfunctions
(n,m)

Cm Dm R2

1
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the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(1,0)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

1/
√

2π 0.0000 0.9997
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(2,0)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

1/
√

2π 0.0000 0.9998
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(2,+1)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

−0.5407 0.1611 0.9999
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(2,−1)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

−0.1611 0.5407 0.9999

3
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(3,0)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

1/
√

2π 0.0000 0.9989
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(3,+1)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

0.5422 0.1560 0.9995
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(3,−1)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

−0.1560 −0.5422 0.9995
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(3,+2)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

−0.5642 0.0000 0.9998
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(3,−2)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

0.0000 −0.5642 0.9999

4
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(4,0)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

1/
√

2π 0.0000 0.9981
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(4,+1)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

0.4501 −0.3402 0.9904
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(4,−1)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

−0.3402 0.4501 0.9904
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(4,+2)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

−0.5642 0.0000 1.0000
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(4,−2)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

0.0000 0.5642 1.0000

Symmetry 2024, 16, x FOR PEER REVIEW 7 of 14 
 

 

form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

(4,+3)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 

−0.5605 0.0644 0.9904
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 (4,−3)
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form; the values of mC  and mD  are specified. Thus, their expression cannot be used to 
verify the correctness and rotating behavior of the numerical wavefunctions. 

Table 2. The values of 2R  obtained by fitting the proposed eigenfunctions due to Equation (5) to 
the numerical eigenfunctions corresponding to the PDs in Figure 3, using the given values of mC  

and mD . 

Energy 
Level 
( )n  

Numerical 
Eigenfunctions 

Analytic 
Eigenfunctions  

n m( , ) 
mC  mD  R 2  

1 
 

(1,0)  1/ 2π  0.0000 0.9997 

2 
 

(2,0)  1/ 2π  0.0000 0.9998 

 (2,+1)  −0.5407 0.1611 0.9999 

 (2,−1)  −0.1611 0.5407 0.9999 

3 

 
(3,0)  1/ 2π  0.0000 0.9989 

 (3,+1)  0.5422 0.1560 0.9995 

 (3,−1)  −0.1560 −0.5422 0.9995 

 (3,+2)  −0.5642 0.0000 0.9998 

 (3,−2)  0.0000 −0.5642 0.9999 

4 

 
(4,0)  1/ 2π  0.0000 0.9981 

 (4,+1)  0.4501 −0.3402 0.9904 

 (4,−1)  −0.3402 0.4501 0.9904 

 (4,+2)  −0.5642 0.0000 1.0000 

 (4,−2)  0.0000 0.5642 1.0000 

 (4,+3)  −0.5605 0.0644 0.9904 

 (4,−3)  −0.0644 0.5605 0.9904 −0.0644 0.5605 0.9904
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Table 3. Summation of the oscillator strengths Pn′−1
10 and Pn′+1

10 due to the conventional eigenfunctions
and our proposed eigenfunctions for different values of n′.

Transition between States (1,0) and (n’,±1) Pn’−1
10 +Pn’+1

10
Due to the Conventional Eigenfunctions

Pn’−1
10 +Pn’+1

10
Due to Our Proposed Eigenfunctions

(1, 0) → (2,±1) 0.2109 0.2109

(1, 0) → (3,±1) 0.0381 0.0381

(1, 0) → (4,±1) 0.0132 0.0132

The advantage of our proposed wavefunctions is that they are appropriate for identi-
fying orbital shapes labeled as s, p, d, and f , as well as for labeling the orientation of these
shapes. Unlike the complex conventional wavefunctions, our 2D hydrogen wavefunctions
are real-valued and clearly exhibit particular shapes, such as a circle, a ring, a dumbbell,
and a cloverleaf, as seen in Figure 4. It should be noticed that these shapes look very similar
to those in a 3D hydrogen atom [44]. For the 2D hydrogen atom, the azimuthal orbitals
are characterized by their shapes and orientations, which are determined by the angular
momentum quantum number m. The orbitals s, p, d, and f are labeled for the states with
m = 0, ±1, ±2, ±3, respectively, as seen in Figure 4. In a similar manner to a 3D hydrogen
atom [45], the orientation of these orbitals can be labeled by transforming the azimuthal
parts of the hydrogen wavefunctions into Cartesian coordinates on a circle with radius
r = 1, as shown in Table 4. (The proof of this transformation can be found in Appendix B.)
Labeling the orbitals by Cartesian representation provides the interpretation of the orbital
orientations. For example, as seen in Figure 4, the maxima and minima of px

(
py
)
-orbital

states align along the x(y)-axis. The maxima and minima of dx2−y2-orbital states align
along the x- and y-axes, while those of dxy-orbital states align between the x- and y-axes. It
should be noted that all Cartesian representations of 2D hydrogen states shown in Table 4
duplicate some of those in 3D hydrogen states, except for those with a z-coordinate, such
as pz, dxz, dyz, and fxyz, which only appear in the 3D hydrogen states [46].

In short, illustrating 2D hydrogen wavefunctions using our expression reveals the
intuitive characteristics of orbital shapes and their orientations. Here, the hydrogen states
are labeled by Cartesian representations for the first time, whereas the angular momentum
m was used in previous works [26,36,47]. Additionally, the azimuthal wavefunctions in
Equation (5) can be applied to visualize the orbital characters of other quantum states con-
fined in radial potentials, such as the Lennard-Jones potential [48] and the Woods–Saxon
potential [49]. Our results, relevant to the concept of the optical transition between az-
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imuthally dependent states, can also be applied to explain the transition in 2D systems with
Coulomb potential, such as donor atoms and excitons in single-layer or thin materials [4–7].

Table 4. The azimuthal part for the 2D hydrogen states with angular momentum m and their
Cartesian representation.

Angular
Momentum

Azimuthal
Wavefunctions

Cartesian Representation on
a Circle with a Radius r=1

Orbitals with
Labeling Orientation

m = +1 cos(ϕ) x px

m = −1 sin(ϕ) y py

m = +2 cos(2ϕ) x2 − y2 dx2−y2

m = −2 sin(2ϕ) xy dxy

m = +3 cos(3ϕ) x(x2 − 3y2) fx(x2−3y2)

m = −3 sin(3ϕ) y(3x2 − y2) fy(3x2−y2)

4. Conclusions

In this study, we present alternative expressions of the azimuthal 2D hydrogen wave-
functions. Their probability densities corresponding to the states with m ̸= 0 exhibit
distinctive behavior; oscillating along the azimuthal direction is observed. This behavior is
confirmed by the 2D finite difference method. After fitting the numerical wavefunctions
to our proposed analytic wavefunctions, the values of R2 are very close to one. Notably,
although the summation of oscillator strengths from the ground state to excited degenerate
states is identical for both the conventional and proposed wavefunctions, the wavefunction
rotation causes a fundamental difference in optical mechanisms; the transitions between
energy states happen through different pathways or with different intensities, suggesting
new avenues for experimental verification and deeper understanding. Remarkably, the
proposed wavefunctions are real-valued functions, providing an intuitive illustration of
the orbital characteristics of the 2D hydrogen atom. Labeling the 2D hydrogen states using
Cartesian representations suggests partial duplication in the orbital orientation between
2D and 3D hydrogen states. These results regarding orbital states provide a fundamental
concept for describing science and technologies based on donor atoms and excitons in
2D materials.
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//www.mdpi.com/article/10.3390/sym16091163/s1: Note S1: The matrix eigenvalue problem;
Figure S1: A square grid with side length S where wavefunctions are assumed to be zero at the
edge grid points. a = S/(N + 1) is the distance between grid points, where N + 1 is the number of
the interval and the number of grid points is (N + 2)2; Figures S2–S5: The eigenfunctions Ψ from
the finite difference method when using the grid with N = 1500 − 2300. The degenerate states are
presented in the same lines and their corresponding energy levels (n) are shown on the right-hand
side. PDs of the states with n =1, 2, 3, and 4 are illustrated in squares with side lengths 5a0, 25a0,
45a0, and 95a0, respectively; Figure S6: Examples of analytic eigenfunctions Ψnm from Equation (5),
rotating around the origin when the coefficients Cm and Dm are varied and shown on the top of each
column. Note that the coefficients must satisfy Equations (6) and (7).
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Appendix A. Orthogonality of Azimuthal Wavefunctions

The orthogonal relation between the azimuthal functions Φm and Φm′ where m ̸= m′,
is described by the following equations:

0 =
∫ 2π

0 ΦmΦm′dϕ

=
∫ 2π

0 [Cm cos(mϕ) + Dm sin(mϕ)] · [Cm′ cos(m′ϕ) + Dm′ sin(m′ϕ)]dϕ

= (CmCm′ + CmDm′ + Cm′Dm + DmDm′) ·
(

0
m2 − m′2

)
.

That means if m2 ̸= m′2 or |m| ̸= |m′|, these states are orthogonal regardless of the
values of the coefficients Cm, Dm, Cm′ , and Dm′ . However, m2 = m′2 leads to a denominator
equal to zero. To solve this, the azimuthal functions Φm and Φm′=−m are considered,
establishing the following orthogonal condition:

0 =
∫ 2π

0 ΦmΦ−mdϕ

=
∫ 2π

0 [Cm cos(mϕ) + Dm sin(mϕ)] · [C−m cos(mϕ)− D−m sin(mϕ)]dϕ
= CmC−mπ − DmD−mπ.

Therefore,
CmC−m = DmD−m.

That means if m′ = −m or m2 = m′2, the azimuthal functions Φm and Φ−m are
orthogonal when the coefficients Cm, Dm, Cm′ , and Dm′ satisfy the above equation.

Appendix B. Proof of Cartesian Representation of Azimuthal Wavefunctions

For the states m = ±1,±2,±3, the azimuthal parts of the 2D hydrogen wavefunctions
from Equation (8) on a circle with a radius r = 1 are given by

Case m = 1

Φm=1 = cos(ϕ) =
r cos(ϕ)

r
=

x
r

. At r = 1Φm=1 = x.

Case m = −1

Φm=−1 = sin(ϕ) =
r sin(ϕ)

r
=

y
r

. At r = 1Φm=−1 = y.

Case m = 2

Φm=2 = cos(2ϕ) = r2 cos(2ϕ)
r2 =

r2(1−2 sin2(ϕ))
r2 = 1

r2

(
r2 − 2r2 sin2(ϕ)

)
= 1

r2

(
r2 − 2y2) = 1

r2

(
x2 + y2 − 2y2) = 1

r2

(
x2 − y2) = x2 − y2 at r = 1.

Case m = −2

Φm=−2 = sin(2ϕ) = r2 sin(2ϕ)
r2 = r2

r2 2 sin(ϕ) cos(ϕ) = 2
r2 r sin(ϕ)r cos(ϕ)

= 2
r2 xy ∝ xy at r = 1.

Case m = 3

Φm=3 = cos(3ϕ) = r3 cos(3ϕ)
r3 =

r3(4 cos3(ϕ)−3 cos(ϕ))
r3 =

r cos(ϕ)(4r2 cos2(ϕ)−3r2)
r3

=
x(4x2−3r2)

r3 =
x(4x2−3x2−3y2)

r3 =
x(x2−3y2)

r3 = x
(
x2 − 3y2) at r = 1.
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Case m = −3

Φm=−3 = sin(3ϕ) = r3 sin(3ϕ)
r3 =

r3(3 sin(ϕ)−4 sin3(ϕ))
r3 =

r sin(ϕ)(3r2−4r2 sin2(ϕ))
r3

=
y(3x2+3y2−4y2)

r3 =
y(3x2−y2)

r3 = y
(
3x2 − y2) at r = 1.
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