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Abstract: Two novel crossover models for breast cancer that incorporate Ψ-Caputo fractal variable-
order fractional derivatives, fractal fractional-order derivatives, and variable-order fractional stochas-
tic derivatives driven by variable-order fractional Brownian motion and the crossover model for
breast cancer that incorporates Atangana–Baleanu Caputo fractal variable-order fractional derivatives,
fractal fractional-order derivatives, and variable-order fractional stochastic derivatives driven by
variable-order fractional Brownian motion are presented here, where we used a simple nonstandard
kernel function Ψ(t) in the first model and a non-singular kernel in the second model. Moreover,
we evaluated our models using actual statistics from Saudi Arabia. To ensure consistency with
the physical model problem, the symmetry parameter ζ is introduced. We can obtain the fractal
variable-order fractional Caputo and Caputo–Katugampola derivatives as special cases from the
proposed Ψ-Caputo derivative. The crossover dynamics models define three alternative models:
fractal variable-order fractional model, fractal fractional-order model, and variable-order fractional
stochastic model over three-time intervals. The stability of the proposed model is analyzed. The Ψ-
nonstandard finite-difference method is designed to solve fractal variable-order fractional and fractal
fractional models, and the Toufik–Atangana method is used to solve the second crossover model with
the non-singular kernel. Also, the nonstandard modified Euler–Maruyama method is used to study
the variable-order fractional stochastic model. Numerous numerical tests and comparisons with real
data were conducted to validate the methods’ efficacy and support the theoretical conclusions.

Keywords: crossover model for breast cancer; Ψ-nonstandard finite-difference method; fractal
variable-order fractional derivatives; variable-order fractional stochastic derivatives; Atangana–
Baleanu operator; Toufik–Atangana method

1. Introduction

Breast cancer is a type of cancer that starts in breast cells. Breast cancer often originates
from the epithelial lining of milk ducts or from within the lobules that generate milk. It
is possible for a malignant tumor to expand to encompass additional bodily areas [1]. A
person with breast cancer may have localized malignant cells in one or more breast regions;
these are frequently palpable masses. It is possible for cancer to spread in either one or
both breasts. On rare occasions, breast cancer spreads to other parts of the body, including
the liver, skeleton, etc. Breast cancer is the second most common type of cancer globally,
affecting women globally after lung cancer [2].

Physicians use a variety of strategies to treat cancer to either destroy cancer cells or
stop them from proliferating. Strong medications are used in chemotherapy treatments to
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destroy aberrant cells, but these treatments have negative effects on the patient’s heart, a
condition known as cardiotoxicity [3].

Scientists and researchers have proposed many theoretical and mathematical studies
to investigate breast cancer dynamics [3–8]. For instance, the authors in [4] formulated
a mathematical model to understand breast cancer in the population of Saudi Arabia.
This study intended to reduce the number of cardiotoxic patients and raise the number of
patients who recover following chemotherapy, which will aid in public health decision-
making. In [3], the authors formulated the dynamics of cancer in the breast with adverse
reactions of chemotherapy treatment on the heart of a patient in the fractional framework to
visualize its dynamic behavior. Also, the authors in [8] developed, analyzed and simulated
fractional mathematical models to investigate the transmission dynamics of different
phases of breast cancer. The suggested breast cancer model incorporates three often-used
fractional operators in epidemiology: Caputo, Caputo–Fabrizio, and Atangana–Baleanu
Caputo operators.

Recent studies revealed that traditional fractional- or integer-order equations are
less accurate than differential equations incorporating piecewise equations. Piecewise
derivatives and fractional calculus’ short memory idea are comparable. A number of
worthwhile studies were recently released (see [9–11]).

The generalized Ψ-Caputo operator is a flexible fractional derivative that provides
a logical framework for dealing with a wide range of practical problems, where we can
obtain the Caputo, Caputo–Katugampola, and Caputo–Hadamard derivatives as special
cases from the proposed derivative. It has been successfully applied in many scientific
domains, such as engineering, physics, and mathematical modeling [12–14]. Its versatility
allows us to address complex systems and phenomena in a unified manner. For additional
information, see [13]. It is particularly helpful for simulating systems that display memory
effects and nonlocal behavior.

These days, engineering and science use the Caputo, Caputo–Fabrizio (CF), and
Atangana–Baleanu (AB) fractional and fractal fractional operators extensively for modeling
issues [15–23]. These operators are used by researchers worldwide to solve a wide range of
issues. Real-world issues with actual data are of interest to scientists because they can be
fitted with models to forecast the dynamics of a phenomenon in the future. These actual
settings might be more suitable for future results than previously thought.

In this study, we will combine piecewise differential equations with the Ψ-Caputo
fractal fractional-order and fractal variable-order fractional derivatives with variable-order
fractional stochastic derivatives driven by the variable-order fractional Brownian motion
derivative to form a new system for breast cancer that is presented for the first time in this
paper. Moreover, we will present a second crossover model with a non-singular kernel,
where the second crossover model for breast cancer that incorporates Atangana–Baleanu
Caputo fractal variable-order fractional derivatives, fractal fractional-order derivatives,
and variable-order fractional stochastic derivatives driven by variable-order fractional
Brownian motion. We will discuss the stability study of this system. Moreover, we will
develop numerical methods called the Ψ-nonstandard finite-difference method (Ψ-NSFDM)
and the nonstandard modified Euler–Maruyama method (NMEMM) to study the behavior
of the resulting solutions. Also, we will use the Toufik–Atangana (TAM) method to solve
the second crossover model with a non-singular kernel. We will compare the results
obtained with real data from the Kingdom of Saudi Arabia from 2014 to 2016. The proposed
crossover models will be defined in three time periods, where the fractal fractional-order
system will be studied in the first period, the fractal variable-order fractional system will
be studied in the second period, and the variable-order fractional stochastic system will
be studied in the third period. We will present several numerical simulations for different
values of the nonstandard Ψ(t) function, as well as fractional and fractal variable-order
fractional derivatives.

The article is presented in the following structure. Section 2 provides the relevant
definitions of fractional calculus and fractal variable-order Ψ-Caputo derivatives. Section 3
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proposes two crossover models: the first one is a new generalized crossover breast cancer
system with fractal fractional-order Ψ-Caputo, fractal variable-order Ψ-Caputo derivatives,
and variable-order fractional stochastic derivatives driven by variable-order fractional
Brownian motion (VFBM) over three time intervals; and the second one is based on Mittag-
Leffler laws. Also, the stability of the proposed model is discussed. Section 4 focuses on con-
structing the Ψ-nonstandard finite-difference method (Ψ-NSFDM) to solve fractal variable-
order fractional and fractal fractional models and TAM to solve the second crossover model
with a non-singular kernel. Also, the nonstandard modified Euler–Maruyama method
(NMEMM) is used to study the variable-order fractional stochastic model. Section 5
presents the numerical simulations of the proposed model. Finally, Section 6 provides a
conclusion summarizing the key findings and contributions of this study.

2. Preliminaries and Notations

In this section, we recall some important definitions of the fractional calculus used
throughout the remaining sections of this paper.

Definition 1 (The fractional integral of Ψ-Riemann–Liouville [24,25]). Let f : [a, b] −→ R be
integrated; 0 < µ, and Ψ ∈ C1([a, b]) be an increasing function such that Ψ′ ̸= 0, for all t ∈ [a, b].
The fractional integral of Ψ-Riemann–Liouville of f with order µ is defined as

a+ I
µ,Ψ

t f (t) =
1

Γ(µ)

∫ t

a
f (s)Ψ′(s)(Ψ(t)− Ψ(s))(µ−1)ds, µ > 0, (1)

where Γ(µ) is the Gamma function. Note Ψ(t) = t and Ψ(t) = Ln(t) in Equation (1) is reduced
to the Riemann–Liouville and Hadamard fractional integrals, respectively.

Definition 2 (The Ψ-Riemann–Liouville fractional derivative [24,25]). Let n ∈ N and let
Ψ, f ∈ Cn([a, b],R) be two functions such that Ψ is increasing and Ψ′ ̸= 0, for all t ∈ [a, b]. The
Ψ-Riemann–Liouville fractional derivative may be calculated using the following:

RLDµ,Ψ
a+ f (t) = (

1
Ψ′

d
dt
)n

a+ I
µ,Ψ

t f (t)

=
1

Γ(n − µ)
(

1
Ψ′

d
dt
)n
∫ t

a
f (s)Ψ′(s)(Ψ(t)− Ψ(s))(n−µ−1)ds, (2)

where n = [µ] + 1.

Definition 3 (The fractional derivative of Ψ-Caputo [26]). Let f , Ψ ∈ Cn([a, b],R) be two
functions such that Ψ is increasing, and 0 ̸= Ψ′, for all t ∈ [a, b]. The fractional derivative of
Ψ-Caputo with order µ is defined as

CDµ,Ψ
a+ f (t) = a+ I

n−µ,Ψ

t (
1

Ψ′
d
dt
)n f (t)

1
Γ(n − µ)

∫ t

a
f (n)Ψ (s)Ψ′(s)(Ψ(t)− Ψ(s))(n−µ−1)ds, (3)

where f (n)Ψ (t) := ( 1
Ψ′

d
dt )

n f (t), n = [µ] + 1.

In this paper, we will extended the fractional Ψ-Caputo [26] derivative to fractal
fractional-order and variable-order Ψ-Caputo derivative as elucidated below.
First, we can define the fractal Ψ-Caputo fractional derivative as follows [15]:

CDµ,ν,Ψ
a+ f (t) = a+ I

n−µ,ν,Ψ

t (
1

Ψ′
d

dtν
)n f (t)

1
Γ(n − µ)

∫ t

a

d f (n)Ψ (s)
dνs

Ψ′(s)(Ψ(t)− Ψ(s))(n−µ−1)ds. (4)
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Also, the fractal variable-order Ψ-Caputo fractional derivative given as follows [15]:

CDµ(t),ν(t),Ψ
a+ f (t) = 1

Γ(n−µ(t))

∫ t
a

d f (n)Ψ (s)
dν(t)s

Ψ′(s)(Ψ(t)− Ψ(s))(n−µ−1)ds. (5)

It follows from (4) and (5) that if Ψ(t) = t, the fractal fractional-order and variable-order
Ψ(t)-Caputo derivatives become the well-known Caputo fractal fractional- and variable-
order derivatives. Moreover, if Ψ(t) = tϵ, ϵ ≥ 0, the fractional-order and variable-order
fractal Ψ(t)-Caputo derivatives become the well-known Caputo–Katugampola fractional-
and variable-order fractal derivatives.

Definition 4. Based on the Mittag-Leffler-type kernel, one may find the fractal fractional derivative
of f (t) with the order of µ using the method of [27] as follows:

ABCDµ,ν f (t) =
AB(µ)
1 − µ

∫ t

0

d f (s)
dtν

Eµ

(
− α

(t − s)µ

1 − µ

)
ds, (6)

such that 0 < µ, ν ≤ 1, AB = −µ + 1− µ
Γ(µ) , and the Mittag-Leffler function is an entire function

defined by the series Eµ(X) = ∑∞
ι=0

Xι

ιµ+1 .

Definition 5. If f (t) is continuous on (a, b) with order ν, then the fractal fractional integral of
f (t) with order µ and teh Mittag-Leffler kernel is defined as follows [21,27]:

AB Iµ,ν f (t) =
µν

Γ(µ)AB(µ)

∫ t

0
f (s)sν−1(t − s)µ−1ds +

ν(1 − µ)t(ν−1) f (t)
AB(µ1)

. (7)

3. The Piecewise Mathematical Model
3.1. Breast Cancer Model Based on Fractal (Fractional and Variable Order) Ψ-Caputo Derivative

Using the concept of a piecewise differential equation system, the mathematical model
of breast cancer [4] was expanded to a Ψ-Caputo piecewise fractal fractional-order–fractal
variable-order–fractional stochastic breast cancer model. The deterministic model extended
the fractal fractional derivative using the Ψ-Caputo operator in the range 0 < t ≤ t1
and using the fractal variable-order Ψ-Caputo operator in the range t1 < t ≤ t2. In the
interval t2 < t ≤ Tf , the variable fractional stochastic differential equation (VFSDE) is
expanded. A new parameter ζ is introduced in order to be compatible with the physical
model problem. Furthermore, we avoid dimensional incompatibilities by incorporating an
additional parameter, ζ, into the variable-order fractional model [16]. Table 1 shows the
definitions of all system variables. The system that is produced can be expressed as follows:



ζµ−1CDµ,ν,Ψ
t B12 = Λ + (ϱ + υ)B12,

ζµ−1CDµ,ν,Ψ
t B3 = Γ + υB12 + ϑBR − (σ + µ1 + κ + χ)B3, t1 ≥ t > t0,

ζµ−1CDµ,ν,Ψ
t B4 = Ω + µ1B3 + ΦBR − (δ + ω + τ)B4,

ζµ−1CDµ,ν,Ψ
t BR = ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR,

ζµ−1CDµ,ν,Ψ
t BE = ξBR + ωB4 + κB3 − ηBE,

(8)

with initial conditions

B12(t0) = b120 ≥ 0, B3(t0) = b30 ≥ 0, B4(t0) = b40 ≥ 0,

BR(t0) = bR0 ≥ 0, BE(t0) = bE0 ≥ 0. (9)

In t2 ≥ t > t1, the model can be expressed as follows:
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ζµ(t)−1CDµ(t),ν(t),Ψ
t B12 = Λ + (ϱ + υ)B12,

ζµ(t)−1CDµ(t),ν(t),Ψ
t B3 = Γ + υB12 + ϑBR − (σ + µ1 + κ + χ)B3, t2 ≥ t > t1,

ζµ(t)−1CDµ(t),ν(t),Ψ
t B4 = Ω + µ1B3 + ΦBR − (δ + ω + τ)B4,

ζµ(t)−1CDµ(t),ν(t),Ψ
t BR = ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR,

ζµ(t)−1CDµ(t),ν(t),Ψ
t BE = ξBR + ωB4 + κB3 − ηBE,

(10)

B12(t1) = b121 ≥ 0, B3(t1) = b31 ≥ 0, B4(t1) = b41 ≥ 0,

BR(t1) = bR1 ≥ 0, BE(t1) = bE1 ≥ 0. (11)

In Tf ≥ t > t2, the model can be expressed as follows:

dB12 = (Λ + (ϱ + υ)B12)dt + σ1B12dWH∗
1 ,

dB3 = (Γ + υB12 + ϑBR − (σ + µ1 + κ + χ)B3)dt + σ2B3dWH∗
2 , Tf ≥ t > t2,

dB4 = (Ω + µ1B3 + ΦBR − (δ + ω + τ)B4)dt + σ3B4(t)dWH∗
3 ,

dBR = (ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR)dt + σ4BRdWH∗
4 ,

dBE = (ξBR + ωB4 + κB3 − ηBE)dt + σ5BEdWH∗
5 ,

(12)

with
B12(t2) = b122 ≥ 0, B3(t2) = b32 ≥ 0, B4(t2) = b42 ≥ 0,

BR(t2) = bR2 ≥ 0, BE(t2) = bE2 ≥ 0. (13)

where patients with cancer who are in stages one or two of the disease are represented by
Λ. Individuals in Γ are those with stage three cancer. Patients in the fourth stage of cancer
make up Ω. Let ϱ be the stage one and two recoveries following chemotherapy. σ represents
the third stage of chemotherapy recovery. τ represents stage four of chemotherapy recovery.
Individuals with poor health are admitted to the stage four population, denoted by µ1. Let
υ be the number of students in the B3 class that are ill. Patients in κ are those receiving harsh
therapy that causes cardiotoxicity. ω represents the number of individuals experiencing
cardiotoxicity due to phase four. ξ represents patients who are disease-free but have
undergone significant cardiotoxic treatment. χ represents death from cancer at stage three.
δ represents stage four cancer-related death. η is the mortality rate of cardiotoxic patients.
Let ϑ be patients who fall back to stage three. ϕ is when people fall back to stage four.

Table 1. The system’s variables [4].

The Variable Description

B12 Patients with stage one and stage two breast cancer.

B3 The group of people with stage three breast cancer.

B4 The group of people with stage four breast cancer.

BR Number of breast cancer patients in a state free of the disease.

BE Patients with cardiotoxic breast cancer in the population.

3.2. Breast Cancer Model Based on Fractal (Fractional and Variable Order) Mittag-Leffler Laws

ζµ−1 ABCDµ,ν
t B12 = Λ + (ϱ + υ)B12,

ζµ−1 ABCDµ,ν
t B3 = Γ + υB12 + ϑBR − (σ + µ1 + κ + χ)B3, 0 < t ≤ t1,

ζµ−1 ABCDµ,ν
t B4 = Ω + µ1B3 + ΦBR − (δ + ω + τ)B4,

ζµ−1 ABCDµ,ν
t BR = ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR,

ζµ−1 ABCDµ,ν
t BE = ξBR + ωB4 + κB3 − ηBE,

(14)
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with initial conditions
B12(t0) = b120 ≥ 0, B3(t0) = b30 ≥ 0, B4(t0) = b40 ≥ 0,

BR(t0) = bR0 ≥ 0, BE(t0) = bE0 ≥ 0. (15)

In t2 ≥ t > t1, the model can be expressed as follows:

ζµ(t)−1 ABCDµ(t),ν(t)
t B12 = Λ + (ϱ + υ)B12,

ζµ(t)−1 ABCDµ(t),ν(t)
t B3 = Γ + υB12 + ϑBR − (σ + µ1 + κ + χ)B3, t2 ≥ t > t1,

ζµ(t)−1 ABCDµ(t),ν(t)
t B4 = Ω + µ1B3 + ΦBR − (δ + ω + τ)B4,

ζµ(t)−1 ABCDµ(t),ν(t)
t BR = ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR,

ζµ(t)−1 ABCDµ(t),ν(t)
t BE = ξBR + ωB4 + κB3 − ηBE,

(16)

B12(t1) = b121 ≥ 0, B3(t1) = b31 ≥ 0, B4(t1) = b41 ≥ 0,

BR(t1) = bR1 ≥ 0, BE(t1) = bE1 ≥ 0. (17)

In t2 < t ≤ Tf , the model can be expressed as follows:

dB12 = (Λ + (ϱ + υ)B12)dt + σ1B12dWH∗
1 ,

dB3 = (Γ + υB12 + ϑBR − (σ + µ1 + κ + χ)B3)dt + σ2B3dWH∗
2 , Tf ≥ t > t3,

dB4 = (Ω + µ1B3 + ΦBR − (δ + ω + τ)B4)dt + σ3B4(t)dWH∗
3 ,

dBR = (ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR)dt + σ4BRdWH∗
4 ,

dBE = (ξBR + ωB4 + κB3 − ηBE)dt + σ5BEdWH∗
5 ,

(18)

with
B12(t2) = b122 ≥ 0, B3(t2) = b32 ≥ 0, B4(t2) = b42 ≥ 0,

BR(t2) = bR2 ≥ 0, BE(t2) = bE2 ≥ 0. (19)

3.3. The Points of Equilibrium and Their Analysis

We put the following as the equilibrium point of the model (8):

CDµ,ν,Ψ
t B12 = CDµ,ν,Ψ

t B3 = CDµ,ν,Ψ
t B4 = CDµ,ν,Ψ

t BR = CDµ,ν,Ψ
t BE = 0.

Then, the equilibrium point of the model given by Q = ( ˘B12, B̆3, B̆4, B̆R, B̆E) may be ex-

pressed as follows:

˘B12 =
Λ

ϱ + υ
, B̆3 =

F1

(ϱ + υ)F5
, B̆4 =

F2

(ϱ + υ)F5
,

B̆R =
F3

(ϱ + υ)F5
, B̆E =

F4

(ϱ + υ)F5η
.

F1 =

[
(ω + δ + τ)ϑ + (Φ + ξ)(ω + δ) + ξτ

]
Γυ + (ω + δ + τ)Λ + Ωτ)ϑ

+υΛ

[
(Φ + ξ)(ω + ω) + τξ

]
,

F2 =

[
(µ1 + χ + κ + σ)Φ + µ1(ϑ + ξ) + (σ + κ + χ)ξ + ϑ(κ + χ)(υ + ϱ)Ω

]
[

µ1

(
Λ + Γ

)
+ (σ + κ + χ)Λ + σΓ

]
Φ + (ξΓ + ϑ(Γ + Λ)µ1)ϱ
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+

[
Φ(σ + µ1) + µ1(ξ + ϑ)

]
(Λ + Γ)υ.

F3 =

[
(µ1 + χ + κ + σ)Λ + σ(Ω + Γ) + Γµ1 + Ω(κ + µ1 + χ)τ

+((µ1 + χ + κ + σ)Λ + Γσ(ω + δ))

]
ϱ

+υ

[
Λ(σ + µ1) + σ(Ω + Γ) + σµ + Ωτ(µ + χ + κ) + (ω + ϱ)(Γ + Λ)σ

]
,

F4 =

[
κ(Γ + Ω + Λ) + Λ(σ + µ1 + χ) + Γ(σ + µ1) + Ω(µ1 + χ + κ)

]
ϱωξ

[
+ µ1(Φ + ϑ) + (σ + χ)

]
Λ +

[
µ1(ϑ + Φ) + Φσ

]
Γ +

[
µ1(Φ + ϑ) + χϑ + Φ(σ + χ)

]
Ωωϱ

+

[
κ(Γ + Ω + Λ) + (Γ + Λ)(σ + µ1) + (µ1 + σ + χ)Ω

]
ωξυ

+

[
κ(Ω + Γ + Λ)(Φ + ϑ) + (µ1(Φ + ϑ) + Φσ)Λ

]
υω+

[
(µ1(Φ + ϑ + Φσ))Γ + (µ1(Φ + ϑ) + ϑχ + (σ + χ)Φ)Ω

]
ωυ

+

[
Λ(τ + δ) + Γ(τ + δ) + τΩ)κ + (τ + δ)(σ + χ + σ)

]
ξΛϱ

+

[
(τ(σ + µ1) + σδ)Γ + τΩ(σ + µ1 + χ)

]
ϱξ + ϱκ×

[
ϑΛ(τ+ δ)+ (ϑτ+ δ(Φ+ ϑ))Γ+ΦτΩ

]
+ ξυ

[
((δ+ τ)(Γ+Λ)+ τΩ)Λκ(τ(σ+µ1)+σδ)

]

+υξ

[
(τ(σ + µ1) + σδ)Γ + τΩ(σ + ξ + µ1)

]
+

υκ

[
(ϑτ + (ϑ + Φ)δ)Λ + (ϑτ + δ(Φ + ϑ))Γ + ϑΩτ

]
.

F5 = ξ(τ + δ + ω)(χ + µ1 + σ + κ) +

[
(χ + κ)(ϑ + Φ) + µ1ϑ + Φ(σ + µ1)

]
δ+

[
(χ + κ)(ϑ + Φ) + µ1ϑ + Φ(µ1 + σ)

]
ω + τϑ(κ + χ).

Theorem 1. The breast cancer model (8) shows local asymptotic stability.

Proof. To prove this theorem, we follow the below steps.
First, we compute the Jacobi matrix at the equilibrium Q as follows:
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J(Q) =


−Z1 0 0 0 0

υ −Z2 0 ϑ 0
0 µ1 −Z3 Φ 0
ϱ σ τ Φ − Z4 0
0 κ ω ξ −η

.

Second, we compute the characteristic equation at Q as follows:

|J(Q)− γI| =


−Z1 − γ 0 0 0 0

υ −Z2 − γ 0 ϑ 0
0 µ1 −Z3 − γ Φ 0
ϱ σ τ Φ − Z4 − γ 0
0 κ ω ξ −η − γ

.

where
Z1 = (ϱ + υ), Z2 = (σ + µ1 + κ + χ), Z3 = (δ + ω + τ), Z4 = (ϑ + Φ + ξ).

Then, two negative eigenvalues, −Z1 and −η, are found in the characteristic equation
for J. The remaining three eigenvalues with negative real parts are determined using the
equation expressed as

γ3 + A1γ2 + A2γ + A3 = 0, (20)

where

A1 = Z1 + Z3 + ξ + ϑ, A2 = Z4[Z2(1 − S2 − S3) + Z3(1 − S2 − S4)] + Z2Z3,

A3 = Z2Z3Z4(1 − S0),

and
S0 =

µ1ϑτ

Z2Z3Z4
+

Φ
Z4

+
ϑσ

Z2Z4
+

Φϱ

Z4Z3
.

S1 =
µ1ϑτ

Z2Z3Z4
, S2 =

Φ
Z4

, S3 =
ϑσ

Z2Z4
, S4 =

Φϱ

Z4Z3
.

We can demonstrate the following:
A1 A2 − A3 > 0,

A1 A2 − A3 = Z2
2 [Z4(1 − S2 − S3) + Z3] + Z3Z4(−S3 − S2 + 1)(ξ + Z3 + ϑ)

+Z2Z4(ξ + ϑ)(−S3 − S2 + 1) + Z2Z2
3 > 0.

This guarantees the locally asymptotically stable nature of the breast cancer model at Q.

4. Numerical Methods for the Proposed Models
4.1. Ψ-NSFDM

We present numerical methods in this section to solve (8)–(12) numerically. We
consider the general form equation of the crossover (fractal fractional-fractal variable
deterministic-variable-order fractional stochastic) model derivative as follows:

CDµ,ν,ΨΥ(t) =Φ(Υ, t), 0 < t ≤ t1, 0 < µ ≤ 1,

Υ(0) = Υ0,
(21)

CDµ(t),ν(t),Ψ(t)Υ(t) =Φ(Υ, t), t1 < t ≤ t2, 0 < µ(t) ≤ 1,

Υ(t1) = Υ1
(22)

dΥ(t) =(Φ(Υ, t))dt + σΥ(t)dWH∗
(t), t2 < t ≤ T, 0.5 ≤ H∗ ≤ 1,

Υ(t3) = Υ3,
(23)
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such that W(t) is the typical Brownian motion, H∗ is the Hurst index, and σ indicates the
stochastic environment’s intensity.

In the following, we expand on the discretization of (3). We divide the interval [a, T]
into a = t0 < t1 < . . . < tj < tj+1 < . . . < tN = T, with uniform mesh h = tj+1 −
tj, j = 0, 1, . . . , N − 1. We put Ψ(t) = (ςt + λ)ϵ in (3) and f (t) = Υ(t). By using the
nonstandard method to approximate the derivative Υ

′
(t), ϖ(h) is the positive function,

0 < ϖ(h) ≤ 1, [28] ς, λ, ϵ are constants. Using [29,30],
CDµ,ν,ΨΥ(t) =

1
νtν−1

CDµ,ΨΥ(t), 0 < t ≤ t1, 0 < µ, ν ≤ 1,

Υ(0) = Υ0,
(24)

and
CDµ,ΨΥ(t) =νtν−1CDµ,ν,ΨΥ(t), 0 < t ≤ t1, 0 < µ, ν ≤ 1,

Υ(0) = Υ0.
(25)

Also,

CDµ(t),ΨΥ(t) =ν(t)tν(t)−1CDµ(t),ν(t),ΨΥ(t), t1 < t ≤ t2, 0 < µ(t), ν(t) ≤ 1,

Υ(t1) = Υ1,
(26)

CDµ,Ψ
t Υ(t)|t=tj =

(ςϵ)−1

Γ(n − µ)

j

∑
k=0

∫ tk+1

tk

(ς(tk+1) + λ)1−ϵ(Υ(tk+1)− Υ(tk))

ϖ(h)

× (Ψ(tj+1)− Ψ(s))(n−µ−1)Ψ′(s)ds, (27)

CDµ,Ψ
t Υ(t)|t=tj =

(ςϵ)−1

Γ(n − µ)

j

∑
k=0

(ς(tk+1) + λ)1−ϵ(Υ(tk+1)− Υ(tk))

ϖ(h)∫ tk+1

tk

(Ψ(tj+1)− Ψ(s))(n−µ−1)Ψ′(s)ds, (28)

CDµ,Ψ
t Υ(t)|t=tj =

(ςϵ)−1

ϖ(h)Γ(n − µ + 1)

j

∑
k=0

(Υ(tk+1)− Υ(tk))((ς(j + 1)h + λ)ϵ − (ςkh + λ)ϵ)n−µ

− ((ς(j + 1)h + λ)ϵ − (ς(k + 1)h + λ)ϵ)n−µ(ς(tk+1) + λ)1−ϵ. (29)

Also,

CDµ(t),Ψ
t Υ(t)|t=tj =

(ϵς)−1

ϖ(h)Γ(n − µ + 1)

j

∑
k=0

(Υ(tk+1)− Υ(tk))((ς(j + 1)h + λ)ϵ

− (ςkh + λ)ϵ)n−µ(t) − ((ς(j + 1)h + λ)ϵ

− (ς(k + 1)h + λ)ϵ)n−µ(t)(ς(tk+1) + λ)1−ϵ, (30)

and

CDµ,ν,Ψ
t Υ(t)|t=tj =

(ϵς)−1

ν(tj)(ν−1)Γ(n − µ + 1)ϖ(h)

j

∑
k=0

(Υ(tk+1)− Υ(tk))((ς(j + 1)h + λ)ϵ

− (ςkh + λ)ϵ)n−µ − ((ς(j + 1)h + λ)ϵ

− (ς(k + 1)h + λ)ϵ)n−µ(ς(tk+1) + λ)1−ϵ. (31)

To solve (21) by using (25) and (31) with nonstandard finite difference method, we have



Symmetry 2024, 16, 1172 10 of 21

(ςϵ)−1

ϖ(h)Γ(n − µ + 1)

j

∑
k=0

(Υ(tk+1)− Υ(tk))((ς(j + 1)h + λ)ϵ − (ςkh + λ)ϵ)n−µ

− ((ς(j + 1)h + λ)ϵ − (ς(k + 1)h + λ)ϵ)n−µ(ς(tk+1) + λ)1−ϵ = νtν−1
j Φ(Υj, tj). (32)

We have

Υ(tj+1) =Υ(tj)−
1

(ςtj+1 + λ)1−ϵ((ς(j + 1)h + λ)ϵ − (ςjh + λ)ϵ)n−µ

j−1

∑
k=1

(ς(tk+1) + λ)1−ϵ

× (Υ(tk+1)− Υ(tk))((ς(j + 1)h + λ)ϵ

− (ςkh + λ)ϵ)n−µ − ((ς(j + 1)h + λ)ϵ − (ς(k + 1)h + λ)ϵ)n−µ

+
ϵςϖ(h)(Γ(n − µ + 1)h)

(ςtj+1 + λ)1−ϵ((ς(j + 1)h + λ)ϵ − (ςjh + λ)ϵ)n−µ
νtν−1

j Φ(Υj, tj). (33)

To solve (22) using (26), the relevant equations are expressed as follows:

(ϵς)−1

ν(tj3)t
(ν(tj3 )−1
j3

ϖ(h)Γ(n − µ(tj3) + 1)

j3

∑
k=j+1

(ς(tk+1) + λ)1−ϵ(Υ(tk+1)− Υ(tk))((ς(j3 + 1)h + λ)ϵ

− (ςkh + λ)ϵ)n−µ(tj3+1) − ((ς(j3 + 1)h + λ)ϵ − (ς(k + 1)h + λ)ϵ)n−µ(tj3+1) = Φ(Υj3 , tj3). (34)

We have

Υ(tj3+1) =Υ(tj3)−
1

(ςtj3+1 + λ)1−ϵ((ς(j3 + 1)h + λ)ϵ − (ςj3h + λ)ϵ)n−µ(t(j3)

j3−1

∑
k=j+1

(ς(tk+1) + λ)1−ϵ

× (Υ(tk+1)− Υ(tk))((ς(j3 + 1)h + λ)ϵ − (ςkh + λ)ϵ)n−µ(t(j3) − ((ς(j3 + 1)h + λ)ϵ

− (ς(k + 1)h + λ)ϵ)n−µ(t(j3)+

(ν(t(j3))(ν(t(j3)−1)ςϵΓ(n − µ(tj3+1)ϖ(h))

(ςtj3+1 + λ)1−ϵ((ς(j3 + 1)h + λ)ϵ − (ςj3h + λ)ϵ)n−µ(t(j3)
Φ(Υj3 , tj3). (35)

4.2. NMEMM

In the following, we use NMEMM, [31] to solve (23) as follows:

Υj4+1 =Υj4 + (Φ(Υj4 , tj4))ϖ(h) + Υj4 ∆Wj4 + 0.5Υj4 ϖ(h)2H∗
,

Tf ≥ t > t2, j4 = j3 + 1, . . . , N. (36)

Stability of the Proposed Method

To analyze the stability of a numerical method for the Ψ-Caputo derivative, we con-
sider a simple fractional differential equation (FDE) involving the Ψ-Caputo derivative
as follows:

CDµ,Ψu(t) = f (t, u(t)), t ∈ [0, T], (37)

with initial conditions u(0) = u0. Now, by using a nonstandard finite-difference method
to discretize the Ψ-Caputo derivative and the discretized form of the FDE at grid points
ti = ih, we have the following:

1
χ(h)µ

i

∑
j=0

wi,j(uj+1 − uj) = f (ti, ui),
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where wi,j are the weights determined by the discretization method, and uj approximates
u(tj). For linear stability analysis, we consider the linear test equation:

CDµ,Ψu(t) = Ξu(t),

where Ξ is a constant. The numerical scheme for this test equation becomes
1

χ(h)α

i

∑
j=0

wi,j(uj+1 − uj) = Ξui.

To analyze the stability, we examine the growth factor G defined by
ui = Giu0.

We substitute ui = Giu0 into the following numerical scheme:
1

χ(h)µ

i

∑
j=0

wi,j(Gj+1u0 − Gju0) = ΞGiu0.

Both sides are divided by Giu0 as follows:

| 1
χ(h)µ

i

∑
j=0

wi,jGj−i(G − 1)| ≤ | 1
χ(h)µ

i

∑
j=0

wi,jGj−i+1| = |Ξ|.

For stability, the magnitude of the growth factor G should be bounded, i.e., |G| ≤ 1. This
implies that the eigenvalues of the matrix representing the discretized system should lie
within the unit circle in the complex plane.

Practical Stability Considerations

• h: The choice of the step size h significantly affects stability. Smaller step sizes generally
improve stability but increase computational cost.

• Weights wi,j: The stability also depends on the specific form of the weights wi,j.
• Function Ψ(t): The function Ψ(t) influences the stability through the term Ψ′(s). The

proper selection of Ψ(t) can enhance stability.

4.3. Numerical Method for Crossover Non-Singular Kernel Fractal (Fractional–Variable)
Order Models
Toufik–Atangana Method

First, we approximate the deterministic fractal (fractional–variable) order breast cancer
models, which is given as follows:
We rewrite the deterministic fractal fractional breast cancer model as follows:

ζµ−1 ABCDµ
t B12 = νtν−1(Λ + (ϱ + υ)B12),

ζµ−1 ABCDµ
t B3 = νtν−1(Γ + υB12 + ϑBR − (σ + µ + κ + χ)B3, ) 0 < t ≤ t1,

ζµ−1 ABCDµ
t B4 = νtν−1(Ω + µB3 + ΦBR − (δ + ω + τ)B4),

ζµ−1 ABCDµ
t BR = νtν−1(ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR),

ζµ−1 ABCDµ
t BE = νtν−1(ξBR + ωB4 + κB3 − ηBE).

(38)

Also, we rewrite the deterministic fractal variable-order fractional breast cancer model
as follows:

ζµ(t)−1 ABCDµ(t)
t B12 = ν(t)tν(t)−1(Λ + (ϱ + υ)B12),

ζµ(t)−1 ABCDµ(t)
t B3 = ν(t)tν(t)−1(Γ + υB12 + ϑBR − (σ + µ + κ + χ)B3, ) t1 < t ≤ t2,

ζµ(t)−1 ABCDµ(t)
t B4 = ν(t)tν(t)−1(Ω + µB3 + ΦBR − (δ + ω + τ)B4),

ζµ(t)−1 ABCDµ(t)
t BR = ν(t)tν(t)−1(ϱB12 + σB3 + τB4 − (ϑ + Φ + ξ)BR),

ζµ(t)−1 ABCDµ(t)
t BE = ν(t)tν(t)−1(ξBR + ωB4 + κB3 − ηBE).

(39)
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dΥ(t) =(Φ(Υ, t))dt + σΥ(t)dWH∗(t)
(t), t2 < t ≤ T, 0.5 ≤ H∗ ≤ 1,

Υ(t3) = Υ3,
(40)

such that W(t) is the typical Brownian motion, H∗ is the Hurst index, and σ indicates the
stochastic environment’s intensity. Consider the general form of fractal fractional-order
derivative in terms of Atangana–Baleanu given as follows:

ABCD
µ,ν

X(t) = νtν−1Φ(t, X(t)), 0 < t ≤ t1, (41)

X(0) = X0,

and consider the general form of fractal variable-order fractional derivative in terms of
Atangana–Baleanu given as follows:

ABCD
µ(t),ν(t)

X(t) = ν(t)tν(t)−1Φ(t, X(t)), t1 < t ≤ t2. (42)

X(1) = X1.

Now, for solving (41), we follow the below steps.
By integrating (41), we have

X(t)− X(0) =
1 − µ

ABC(µ)
νtν−1Φ(t, X(t)) +

µν

ABC(µ)Γ(µ)

∫ t

0
(t − s)µ−1s(ν−1)Φ(s, X(s))ds, (43)

where
X(t) := (B12, B3, B4, BR, BE),

X(0) := (B12(0), B3(0), B4(0), BR(0), BE(0)),

Φ(s, X(s)) := Ki(t, B12, B3, B4, BR, BE)
T , i = 1, 2, 3, 4, 5.

Taking the first equation of the model (38) and by using the anti-derivative of fractal
dimension and fractal order, we have

B12(t)− B12(0) =
1 − µ

ABC(µ)
νtν−1Φ(t, X(t)) +

µν

ABC(µ)Γ(µ)

∫ t

0
(t − s)µ−1s(ν−1)Φ(s, X(s))ds, (44)

where
X := (B12, B3, B4, BR, BE),

X0 := (B12(0), B3(0), B4(0), BR(0), BE(0)),

(X(s)) := (Ki(t, B12, B3, B4, BR, BE)), i = 1, 2, 3, 4, 5.

Taking the first equation and by using the anti-derivative of fractal dimension and fractal
order, we obtain the following [21]:

B12(t)− B12(0) =
1 − µ

ABC(µ)
νtν−1K1(t, B12(t))+

µν

ABC(µ)Γ(µ)

∫ t

0
(t − s)µ−1s(ν−1)K1(s, B12(s))ds, (45)

by letting t = tn+1, for n = 0, 1, 2, . . ..

Bn+1
12 (t)− B12(0) =

1 − µ

ABC(µ)
νtν−1

n+1K1(t, B12(tn))+

µν

ABC(µ)Γ(µ)

∫ tn+1

0
(t − s)µ−1s(ν−1)K1(s, B12(s))ds, (46)
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Bn+1
12 (t)− B12(0) =

1 − µ

ν
tν−1
n+1K1(tn, B12(tn))+

µν

ABC(µ)Γ(µ)

n

∑
m=0

∫ tm+1

tm
(t − s)µ−1s(ν−1)K1(s, B12(s))ds. (47)

Let the approximate function be K1 on [tm, tm+1] through the interpolation polynomial as
follows [32]:

K1 =
K1

h
(t − tm−1)−

K1

h
(t − tm),

which implies that

Bn+1
12 (t) = B12(0) +

1 − µ

ABC(µ)
νtν−1

n+1K1(tn, B12(tn)) +
µν

ABC(µ)Γ(µ)

n

∑
m=0

(
K1(tm, B12(tm))

h∫ tm+1

tm
(t − tm−1)(tm+1 − t)µ−1t(ν−1)

m dt−

K1(tm−1, B12(tm−1))

h

∫ tm+1

tm
(t − tm)(t − tm+1)

µ−1t(ν−1)
m dt), (48)

Bn+1
12 (t) = B12(0) +

1 − µ

ABC(α)
νtν−1

n+1K1(tn, B12(tn)) +
µν

ABC(µ)Γ(µ)

n

∑
m=0

(
K1(tm, B12(tm))

h

Im−1,µ − K1(tm−1, B12(tm−1))

h
Im,µ). (49)

Now calculating Im−1,µ, Im,µ, we obtain the following:

Im−1,µ =
∫ tm+1

tm
(t − tm−1)(tm+1 − t)µ−1t(ν−1)

m dt

= − 1
µ

[
(tm+1 − tm−1)(tn+1 − tm+1)

µ − (tm − tm−1)(tn+1 − tm)
µ

]

− 1
µ(µ − 1)

[
(tn+1 − tm)

µ+1 − (tn+1 − tm)
µ+1

]
, (50)

Im,µ =
∫ tm+1

tm
(t − tm)(t − tm+1)

µ−1t(ν−1)
m dt

= − 1
α

[
(tm+1 − tm)(tn+1 − tm+1)

µ − (tm − tm−1)(tn+1 − tm)
µ

]

− 1
µ(µ − 1)

[
(tn+1 − tm+1)

µ+1 − (tn+1 − tm)
µ+1

]
. (51)

Put tm = mh, we obtain

Im−1,µ =
hµ+1

µ(µ − 1)

[
(n + 1 − m)µ(n − m + 2 + µ)− (n − m)µ(n − m + 2 + 2µ)

]
, (52)

Im,µ =
hµ+1

µ(µ − 1)

[
(n + 1 − m)µ+1 − (n − m)µ(n − m + 1 + µ)

]
. (53)

Substituting the values of (52) and (53) in (49), we obtain
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Bn+1
12 (t) = B12(0) +

1 − µ

ABC(µ)
tν−1
n+1K1(tn, B12(tn)) +

µν

ABC(µ)Γ(µ)

n

∑
m=0

(
tν
mK1(tm, B12(tm))

h[
hµ+1

µ(µ − 1)
((n + 1 − m)µ(n − m + 2 + µ)− (n − m)µ(n − m + 2 + 2µ))

]
−

tν
m−1K1(tm−1, B12(tm−1))

h
hµ+1

µ(µ − 1)

[
(n + 1 − m)µ+1 − (n − m)µ(n − m + 1 + µ)

]
, (54)

and similarly for the other classes B3, B4, BR, and BE, we find the same scheme.
Now, to approximate the model (42) in t1 < t ≤ t2, we calculate the following:

Bn1+1
12 (t) = B12(0) +

1 − µ(tn1)

ABC(µ(tn1)
ν(tn1)t

ν(tn1 )−1
n1+1 K1(tn1 , B12(tn1))

+
µ(tn1)ν(tn1)

ABC(µ(tn1))Γ(µ(tn1))

n2

∑
m=n1

(
tν(tm)
m K1(tm, B12(tm))

h[
hµ(tm)+1

µ(tm)(µ(tm)− 1)
((n2 + 1 − m)µ(tm)(n2 − m + 2 + µ(tmt))

− (n2 − m)µ(tm)(n2 − m + 2 + 2µ(tm)))

]
−

tν(tm−1)
m−1 K1(tm−1, B12(tm−1))

h
hµ(tm−1)+1

µ(tm−1)(µ(tm−1)− 1)[
(n2 + 1 − m)µ(tm−1)+1 − (n2 − m)µ(tm−1)(n2 − m + 1 + µ(tm−1))

]
. (55)

Similarly, for the other classes, B3, B4, BR, and BE, we find the same scheme.

Remark 1. Concerning the error analysis of this method, we refer to [32] for more details.

Finally, to approximate the fractional stocastic model (23) and (40), we use NMEMM
as follows:

4.4. NMEMM

In the following, we use NMEMM, [31] to solve (23) as follows:

Υn3+1 =Υn3 + (Φ(Υn3 , tn3))ϖ(h) + Υn3 h∆Wn3 + 0.5Υn3 ϖ(h)2H∗(t),

Tf ≥ t > t3, n3 = n2 + 1, . . . , N. (56)

ϖ(h) is positive function, 0 < ϖ(h) ≤ 1, [28].

5. Numerical Simulations

We use the following parameters [4]: τ = 0.01, Γ = 80, Ω = 90, µ = 0.01, ϱ = 0.03,
υ = 0.034, κ = 0.09, ω = 0.1, Λ = 14000, χ = 0.0256, σ = [0.35 0.5], ξ = 0.2, δ = 0.0256,
ς = 0.0256, ϑ = 0.03, ϕ = 0.3, σ1 = 0.1, σ2 = 0.2, σ3 = 0.02, σ4 = 0.05, σ5 = 0.02. Also, the
initial conditions are given as follows: B12(t0) = 30,000, B3(t0) = 12,300, B4(t0) = 783,
BR(t0) = 334, BE(t0) = 10, ϖ(h) = 1 − e−h, Ψ(t) = (ςt + λ)ϵ, t1 = 4, t2 = 9, Tf = 150. The
crossover models are being validated against reported cases of stage four breast cancer
among females in Saudi Arabia from 2004 to 2016 [4]. We compared the results of infected
humans obtained from the proposed model (8)–(12) with real data in Figures 1–8. In
these Figures, we chose different values of ϵ, ς, λ, µ, ν, µ(t), ν(t). We have excellent results
compared with the models in [4]. The proposed model outperforms significantly. Also,
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we compared the results of stage four breast cancer patient incidences obtained from the
proposed model (14)–(18) with real data in Figures 5 and 6. Figure 7 shows the solution
behavior for the considered model (14)–(18), when H∗(t) = 0.98 − 0.0007t, and ν = 0.96,
µ = 0.98, ν(t) = 0.96 − 0.001(cos(t/10))2 and µ(t) = 0.96 − 0.001(sin(t/10))2. Also,
the operators of Ψ-fractal fractional-order Caputo derivative and Ψ-fractal variable-order
fractional Caputo derivative are more general than the operators of fractal fractional-order
Caputo derivative and fractal variable-order fractional Caputo derivative, where when
we put Ψ(t) = t, we have the operators of fractal fractional-order Caputo derivative
and fractal variable-order fractional Caputo derivative. Also, the proposed operators are
more general than the fractal fractional-order Caputo–Katugampola derivative and fractal
variable-order fractional Caputo–Katugampola derivative, when we put Ψ(t) = tϵ, we
have the operators of the fractal fractional-order Caputo–Katugampola derivative and
fractal variable-order fractional Caputo–Katugampola derivative. For our simulations in
Figure 1, we use Ψ(t) = (0.99t + 0.97)0.98; in Figure 2, we use Ψ(t) = tϵ; and in Figure 3, we
use Ψ(t) = t. Figure 8 shows the solution behavior for the considered model (8)–(12) with
different values of µ, µ(t), ν, ν(t), and Ψ(t) = (0.99t + 0.97)0.98. Figure 9 describes the effect
of changing functions Ψ(t) on the behavior of solutions and µ(t) = 0.96 − 0.001sin(t/10)2

and ν = 0.98, µ = 0.98, ν(t) = 0.98 − 0.001t and µ(t) = 0.99 − 0.001t, σ1 = 0.01, σ2 = 0.02,
σ3 = 0.02, σ4 = 0.05, σ5 = 0.02. From our results, using a simple nonstandard kernel
function Ψ(t), we outperformed previous classical and fractional models in [4].

Figure 1. Breast cancer data from Saudi Arabia compared with the obtained results for (8)–(12)
when µ(t) = 0.99 − 0.001t, ν(t) = 0.98 − 0.001t, ϵ = 0.98, λ = 0.97, ς = 0.99, H∗(t) = 1 − 0.001t,
µ = 0.99, ν = 0.99.

Figure 2. Breast cancer data from Saudi Arabia compared with the obtained results for (8)–(12) when
µ(t) = 0.99 − 0.001t, ν(t) = 0.98 − 0.001t, ϵ = 0.98, λ = 0, ς = 1, H∗(t) = 1 − 0.001t, µ = 0.99,
ν = 0.99.
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Figure 3. Breast cancer data from Saudi Arabia compared with the obtained results for (8)–(12) when
µ(t) = 0.99− 0.001t, ν(t) = 0.98− 0.001t, ϵ = 1, λ = 0, ς = 1, H∗(t) = 1− 0.001t, µ = 0.99, ν = 0.99.

Figure 4. Breast cancer data from Saudi Arabia compared with the obtained results for (8)–(12) when
µ(t) = 0.99 − 0.001t, ν(t) = 0.98 − 0.001t, ϵ = 0.98, λ = 0, ς = 1, H∗(t) = 1 − 0.001t and different
values of ν and µ.

Figure 5. Breast cancer data from Saudi Arabia compared with the obtained results for (14)–(18) when
µ(t) = 0.99 − 0.001t, ν(t) = 0.98 − 0.001t, H∗(t) = 1 − 0.001t and ν = 0.98 and µ = 0.90.
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Figure 6. Breast cancer data from Saudi Arabia compared with the obtained results for (14)–(18) when
µ(t) = 0.99 − 0.001t, ν(t) = 0.99 − 0.001(cos(t/10))2, H∗(t) = 1 − 0.001t and ν = 0.98 and µ = 1.

Figure 7. Simulation for (14)–(18) with H∗(t) = 0.98 − 0.0007t, and ν = 0.96, µ = 0.98,
ν(t) = 0.96 − 0.001(cos(t/10))2 and µ(t) = 0.96 − 0.001(sin(t/10))2.
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Figure 8. Simulation for (8)–(12) with ϵ = 0.98, λ = 0.97, ς = 0.99, H∗(t) = 1 − 0.001t, and different
values of ν, µ, ν(t) and µ(t).

Figure 9. Cont.
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Figure 9. Simulation for (8)–(12) with different Ψ(t), H∗(t) = 1 − 0.001t, and ν = 0.98, µ = 0.98,
ν(t) = 0.98 − 0.001t and µ(t) = 0.99 − 0.001t.

6. Conclusions

This study focuses on examining two novel crossover models for breast cancer that
incorporate Ψ-Caputo and Mittag-Leffler laws of fractal variable-order and fractal fractional-
order derivatives. Three models of fractal variable-order, fractal fractional-order, and
variable-order fractional stochastic derivatives are defined in three time sub-intervals. Two
simple numerical methods were constructed to solve the suggested models based on Ψ-
Caputo derivatives. These methods include Ψ-NSFDM to solve the deterministic models,
and NMEMM is used to solve variable-order fractional stochastic differential equations
generated by VFBM. We use real statistical data to validate our models. We have chosen this
generalized Caputo operator for our work for several reasons, including its adaptability,
capacity to capture complicated dynamics, and suitability for modeling fractional-order
systems. Also, we use TAM to solve the second crossover model with a non-singular kernel.
Overall, our Ψ-fractal variable-order fractional system can be reduced to a classical fractal
fractional Caputo system using Ψ(t) = t, ς = 1, ϵ = 1, λ = 0, and fractal variable-order
fractional Caputo–Katugampola derivative when Ψ(t) = tϵ, ς = 1, λ = 0. We demonstrated
from comparing our results with real data that it is unnecessary to use non-trivial functions
Ψ(t) to advance the state of the art.

The current research investigation demonstrates that the Ψ-Caputo fractal fractional-
order operator, with a simple nonstandard kernel function Ψ(t) in this model, is one of
the better options among the existing fractional-order operators. We outperform existing
classical and fractal variable-order fractional models in the literature by using a simple
nonstandard kernel function. In future work, we will extend this work to control the
proposed model problem with time delay.

Author Contributions: N.H.S.: Conceptualization, data curation, formal analysis, resources, inves-
tigation, supervision, writing—review and editing. S.M.A.-M.: Conceptualization, data curation,
formal analysis, resources, software, validation, visualization, writing—original draft, methodology,
investigation, supervision. W.S.A.K.: Supervision, writing—review and editing, G.A.: Writing—
original draft, funding acquisition. All authors have read and agreed to the published version of
the manuscript.



Symmetry 2024, 16, 1172 20 of 21

Funding: This research received no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors.

Data Availability Statement: Data are contained within this article.

Acknowledgments: The authors are very grateful to the anonymous reviewers, whose valuable
comments and suggestions improved the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.;

Wolfe, C.; et al. The global burden of cancer 2013. JAMA Oncol. 2015, 1, 505–527. [CrossRef] [PubMed]
2. DeSantis, C.E.; Bray, F.; Ferlay, J.; Lortet-Tieulent, J.; Anderson, B.O.; Jemal, A. International variation in female breast cancer

incidence and mortality rate international variation in female breast cancer rates. Cancer Epidemiol. Biomark. Prev. 2015, 24,
1495–1506. [CrossRef] [PubMed]

3. Tang, T.-Q.; Shah, Z.; Bonyah, E.; Jan, R.; Shutaywi, M.; Alreshidi, N. Modeling and analysis of breast cancer with adverse
reactions of chemotherapy treatment through fractional derivative. Comput. Math. Methods Med. 2022, 2022, 5636844. [CrossRef]

4. Alzahrani, E.; El-Dessoky, M.; Khan, M.A. Mathematical model to understand cancer dynamics, prevention diagnosis, and
therapy. Mathematics 2023, 11, 1975. [CrossRef]

5. Vasiliadis, I.; Kolovou, G.; Mikhailidis, D. Cardiotoxicity and cancer therapy. Angiology 2024, 65, 369–371. [CrossRef]
6. Dave, D.K.; Shah, T.P. Stability analysis and z-control of breast cancer dynamics. Adv. Appl. Math. Sci. 2021, 21, 343–363.
7. Solís-Pérez, J.E.; Gómez-Aguilar, J.F.; Atangana, A. A fractional mathematical model of breast cancer competition model. Chaos

Solitons Fractals 2019, 127, 38–54. [CrossRef]
8. Chavada, A.; Pathak, N.; Raval, R. Fractional mathematical modeling of breast cancer stages with true data from Saudi Arabia.

Results Control Optim. 2024, 15, 100431. [CrossRef]
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