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Abstract

:

The dynamic stiffness method is developed to analyze the natural vibration characteristics of functionally graded beams, where material properties change continuously across the beam thickness following a symmetric law distribution. The governing equations of motion and associated natural boundary conditions for free vibration analysis are derived using Hamilton’s principle and closed-form exact solutions are obtained for both Euler–Bernoulli and Timoshenko beam models. The dynamic stiffness matrix, which governs the relationship between force and displacements at the beam ends, is determined. Using the Wittrick–Williams algorithm, the dynamic stiffness matrix is employed to compute natural frequencies and mode shapes. The proposed procedure is validated by comparing the obtained frequencies with those given by approximated well-known formulas. Finally, a parametric investigation is conducted by varying the geometry of the structure and the characteristic mechanical parameters of the functionally graded material.
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1. Introduction


Functionally graded materials (FGMs) are deliberately engineered to exhibit continuously varying properties in one or more directions, offering designers extensive versatility in distributing strength and stiffness as needed. Consequently, FGMs have found successful applications in various scientific and engineering fields, including the design of aircraft and spacecraft structures [1]. The study of the static and dynamic behavior of such materials, especially from a structural design perspective, is therefore essential. Beams, acting as load-bearing components, are principal candidates for fabrication from FGMs. Beams made of FGMs can be designed to have specific vibrational characteristics, thus enhancing the stability of structures. FGMs are also beneficial in terms of thermal resistance since the gradual transition in material properties can reduce thermal stresses and prevent thermal fatigue; experimental tests on FGM concrete beams have been performed in [2]. FGMs can also be used to model circular concrete columns confined by Fiber-Reinforced Polymers (FRP) in order to predict their collapse [3].



Consequently, there has been a significant focus on the free [4,5,6,7,8,9,10,11] and forced [9,10,12,13] vibration analysis of functionally graded beams (FGBs) in recent years. The solutions have been proposed for both Euler–Bernoulli [4,6,7,8,10,13] and Timoshenko [5,7,9,10] beam models. In these studies, material properties are usually assumed to vary continuously with a power law [4,5,6,7,12,13], an exponential law [9,10,11] or an arbitrary law [8] along one or more directions. A considerable portion of the study of free vibration analysis of FGBs has relied on finite element and other approximate methods [14,15,16]. Although these methods represent valuable advancements, their results are often contingent upon the number and quality of elements employed in the analysis, leading to potential unreliability, particularly at higher frequencies.



In addition to the predominantly employed numerical methods, further studies used analytical approaches to address the free vibration problem of FGMs. Some of these are based on the use of the dynamic stiffness method (DSM) [4,5,9]. Unlike many numerical methods, the DSM adopts accurate member theory, incorporating frequency-dependent shape functions derived from the solution of the governing differential equations of motion for the structural element undergoing free vibration. Consequently, the DSM yields exact results for all natural frequencies and mode shapes without resorting to any approximation. This independence from the number of elements used in the analysis makes the DSM notably attractive and accurate compared to finite element and other approximate methods.



In FGM, different laws of variation in the mechanical characteristics in the transversal and/or axial direction can be assumed. For example, Banerjee et al. [4,5] applied the DSM to functionally graded materials in which the material properties vary continuously through the beam thickness direction according to a power law distribution. To the author’s knowledge, the case of a symmetric variation in mechanical characteristics with respect to the centroid has never been studied. For this kind of variation, the results reported in [4,5] cannot be applied since some terms of the dynamic stiffness matrix would take an indeterminate form or tend towards infinity.



Symmetric FGMs could find an interesting technical application in modeling the retrofitting of reinforced concrete framed structures, where the reinforcement of the existing columns is realized by a symmetric section augmentation with high-performance concrete; this technique has several examples of application (see, for example, [17]).



With the aim of studying the free vibrations of beam structures in which the material properties are assumed to vary continuously along the beam thickness according to a symmetric distribution, in this paper, the dynamic stiffness matrix is determined, starting from the differential equations of motion derived from Hamilton’s principle.



Subsequently, the dynamic stiffness matrix is utilized in conjunction with the Wittrick–Williams algorithm [18] to compute the natural frequencies and mode shapes of some illustrative examples. In order to apply the Wittrick and Williams algorithm in conjunction with the dynamic stiffness matrix of symmetric functionally graded materials, the term J0, representing the frequencies of vibration of clamped–clamped beams, has to be determined. For homogeneous materials, this term has a well-known expression provided in the scientific literature. In the case of FGM, this expression is not available, so an original derivation of J0 is proposed here. The frequencies of vibration of selected structures composed of symmetric functionally graded materials have been validated through the comparison with the results obtained, evaluating the corresponding Rayleigh quotient. Finally, a parametric investigation is conducted, varying the geometry of the structure and the characteristic mechanical parameters of the functionally graded material. The numerical applications refer to the mechanical parameters of the outer material being either greater or smaller than those of the inner one, and the obtained results could be used, for example, in simulating the effects of retrofitting or material degradation, respectively.




2. The Considered Functionally Graded Beam


The elementary beam model considered in this study is a rectangular section of length L, height h and width b, with y as the beam axis and cross section in the x–z plane (Figure 1).



The beam is characterized by Young’s modulus E and density ρ varying through the height of the section in the z direction with a symmetric law with respect to the centroid. The variation could be parabolic, for example, as reported below:


   E ( ζ ) =  E 2  + (  E 1  −  E 2  )  ζ 2    ,   ρ ( ζ ) =  ρ 2  + (  ρ 1  −  ρ 2  )  ζ 2    



(1)




where E2 and ρ2 are the properties of the beam at the center line of the section, E1 and ρ1 are the properties at the top and bottom surfaces of the beam, and ζ = z/(h/2) is the dimensionless abscissa along the vertical axis represented in Figure 1. In Figure 2, a clearer representation of Equation (1) is reported, where the variation in Young’s modulus E is shown as an example. Furthermore, the material properties are assumed to be constant along the horizontal x and y axes.



2.1. The Governing Differential Equations of Motion


In this subsection, the equations of motion in free vibrations of a beam made by FGM with symmetric variation in the mechanical properties and the associated closed-form solution are obtained. The formulations for the Euler–Bernoulli and Timoshenko models are briefly reported in the following subsubsections.



2.1.1. Euler–Bernoulli Beam Model


The displacement components u1, v1 and w1, respectively, along the x, y and z axes, which characterize the Euler–Bernoulli beam model, can be assumed as


    u 1  = 0   ,    v 1  ( y , z , t ) = v ( y , t ) − z ϕ ( y , t )   ,    w 1  ( y , z , t ) = w ( y , t )   



(2)




where   ϕ ( y , t ) =    ∂ w ( y , t )   ∂ y      is the flexural rotation in the y-z plane.



The potential and kinetic energies UP and UK of the FGB are, after some simplifications, given by [5]


     U p  =   1 2      ∫ 0 L   (  A 0    v ′   2   − 2  A 1   v ′   w ″  +  A 2    w ″   2   ) d y         U K  =   1 2      ∫ 0 L      B 0  (   v ˙  2  +   w ˙  2  ) − 2  B 1   v ˙    w ˙  ′  +  B 2     w ˙  ′   2        d y    



(3)




where prime and over-dot denote differentiation with respect to space y and time t, respectively, and the parameters A and B, which consider the variation in material properties, are


    A i  =    ∫ A    z i  E ( z )    d A   ,    B i  =    ∫ A    z i  ρ ( z )    d A     i = 0 , 1 , 2   



(4)







By applying Hamilton’s principle to the displacement field, it is possible to obtain the differential equations of motion in free vibrations. In particular, it is assumed that v(y,t) and w(y,t) can be expressed in harmonic form:


   v ( y , t ) = V ( y )  e  i ω t     ,   w ( y , t ) = W ( y )  e  i ω t     



(5)




where V(y) and W(y) are the mode shapes and ω is the natural frequency. Introducing the dimensionless abscissa ξ = y/L and the differential operator D = d/dξ, and considering that, according to the symmetric variation laws Equation (1), the terms with i = 1 in Equation (4) become zero, the equations of motion take the following form:


    (  B 0   ω 2   L 3  +  A 0  L  D 2  ) V ( ξ ) = 0     (  B 0   ω 2   L 4  −  B 2   ω 2   L 2   D 2  −  A 2   D 4  ) W ( ξ ) = 0    



(6)







As it can be noticed, axial and bending contributions are decoupled and each displacement component can be easily determined from the individual equations.



The second equation in Equation (6), assuming   W ( ξ ) =  e  λ ξ    , can be written in the form


  (  D 4  + a  D 2  + b )  e  λ ξ   = 0  



(7)




where


   a =     B 2     A 2      L 2   ω 2    ,   b = −     B 0     A 2      L 4   ω 2    



(8)







Equation (7) can be simply solved, leading to the following expression for the transversal displacement component:


  W ( ξ ) =  Q 1   e   λ 1  ξ   +  Q 2   e   λ 2  ξ   +  Q 3   e   λ 3  ξ   +  Q 4   e   λ 4  ξ    



(9)




with


   λ  1 , 2 , 3 , 4   = ±      − a ±    a 2  − 4 b    2      



(10)




where    Q j  ,     j = 1 , … , 4   are constants to be obtained from the boundary conditions.



With a similar procedure, it is possible to evaluate the axial displacements in the form


  V ( ξ ) =  P 1   e   η 1  ξ   +  P 2   e   η 2  ξ    



(11)




where    η  1 , 2   = ± i  c   ;   c =     B 0     A 0      L 2   ω 2    and    P j  , j = 1 , 2   are constants to be obtained from the boundary conditions.




2.1.2. Timoshenko Beam Model


For the Timoshenko beam, the displacement components can still be expressed in the form of Equation (2) but, while for the Euler–Bernoulli beam the rotation ϕ(y,t) is equal to the derivative of the transversal displacement, for the Timoshenko model, ϕ(y,t) is an independent variable related to the total rotation of the cross section      ∂ w   y , t     ∂ y      and the shear strain ψ(y,t) as


  ψ   y , t   =    ∂ w   y , t     ∂ y    − ϕ   y , t    



(12)







The application of Hamilton’s principle to the Timoshenko beam therefore leads to a system of three differential equations of motion.



Assuming that ϕ(y,t) can also be expressed in harmonic form with amplitude Ф(y) and setting


   A 3  =    ∫ A   G  z     d A  



(13)




where G(z) is the shear modulus of the beam varying through the height of the section according to a symmetric law formally identical to the ones reported in Equation (1), the differential equations of motion with respect to the dimensionless abscissa ξ, considering the property of symmetry in the variation in the mechanical parameters of the material, take the form


    (  B 0   ω 2   L 2  +  A 0   D 2  ) V ( ξ ) = 0      B 0   ω 2   L 2  W ( ξ ) +  A 3   D 2  W ( ξ ) −  A 3  L D Φ ( ξ ) = 0      A 3  L D W ( ξ ) +    B 2   ω 2  −  A 3     L 2  Φ ( ξ ) +  A 2   D 2  Φ ( ξ ) = 0    



(14)







As it can be noticed, also for the Timoshenko model, the axial and bending problems are decoupled. Assuming   W ( ξ ) =  e  λ ξ     and   Φ ( ξ ) =  e  λ ξ    , obtaining Ф(ξ) from the second equation in Equation (14) and substituting in the third equation, the differential equation governing the transversal displacement can be written in the form


     D 4  + a  D 2  + b    e  λ ξ   = 0  



(15)




where


   a =     A 3   B 2  +  A 2   B 0     A 2   A 3      ω 2   L 2    ,   b =     B 0     B 2   ω 2  −  A 3       A 2   A 3      ω 2   L 4    



(16)







The same equation for Ф(ξ) would have been obtained if W(ξ) had been isolated in the third equation of Equation (14) and substituted in the second equation. Therefore, solutions for transversal displacement and flexural rotation are


    W ( ξ ) =  Q 1   e   λ 1  ξ   +  Q 2   e   λ 2  ξ   +  Q 3   e   λ 3  ξ   +  Q 4   e   λ 4  ξ       Φ ( ξ ) =  R 1   e   λ 1  ξ   +  R 2   e   λ 2  ξ   +  R 3   e   λ 3  ξ   +  R 4   e   λ 4  ξ      



(17)




where λi has the same formal expression derived for the Euler–Bernoulli beam in Equation (10).



The constants Qj and Rj, j = 1, …, 4 in Equation (17) can be related to each other by substituting the expressions for W(ξ) and Ф(ξ) in the second part of Equation (14):


   Q j  =  β j   R j   



(18)




where


   β j  =     A 3  L  λ j     B 0   ω 2   L 2  +  A 3   λ j 2      



(19)







The axial problem can be solved similarly to Euler–Bernoulli beam model.





2.2. The Dynamic Stiffness Matrix


In this subsection, the derivation of the dynamic stiffness matrix of a beam made of symmetric FGM is reported for the Euler–Bernoulli and Timoshenko beams models. To this aim, the nodal displacements W, V, and Ф and the nodal forces F, M, and S are evaluated according to the convention reported in Figure 3 and applying the boundary conditions at ξ = 0 and ξ = 1 reported in Figure 4.



2.2.1. Euler–Bernoulli Beam Model


From the expressions of the transversal and axial displacements in Equations (9) and (11), it is possible to obtain the following expressions of the flexural rotation Ф(ξ), axial force F(ξ), bending moment M(ξ) and shear force S(ξ):


  Φ ( ξ ) =     W ′   L   =   1 L      Q 1   λ 1   e   λ 1  ξ   +  Q 2   λ 2   e   λ 2  ξ   +  Q 3   λ 3   e   λ 3  ξ   +  Q 4   λ 4   e   λ 4  ξ      



(20)






  F ( ξ ) = −     A 0   L    V ′  = −     A 0   L      P 1   η 1   e   η 1  ξ   +  P 2   η 2   e   η 2  ξ      



(21)






  M ( ξ ) = −     A 2     L 2      W ″  = −     A 2     L 2        Q 1   λ 1 2   e   λ 1  ξ   +  Q 2   λ 2 2   e   λ 2  ξ   +  Q 3   λ 3 2   e   λ 3  ξ   +  Q 4   λ 4 2   e   λ 4  ξ      



(22)






    S ( ξ ) =     A 2     L 3        W  ‴   +     B 2   L 2   ω 2     A 2      W ′    =     A 2     L 3     [  Q 1   λ 1 3   e   λ 1  ξ   +  Q 2   λ 2 3   e   λ 2  ξ   +  Q 3   λ 3 3   e   λ 3  ξ   +  Q 4   λ 4 3   e   λ 4  ξ   +     +     B 2   L 2   ω 2     A 2     (  Q 1   λ 1   e   λ 1  ξ   +  Q 2   λ 2   e   λ 2  ξ   +  Q 3   λ 3   e   λ 3  ξ   +  Q 4   λ 4   e   λ 4  ξ   ) ]    



(23)







The nodal displacements and forces vectors can be defined as


    δ  =          V 1       W 1       Φ 1       V 2       W 2       Φ 2         T    ,    P  =          F 1       S 1       M 1       F 2       S 2       M 2         T    



(24)







Using Equations (20)–(23), the vectors   δ   and   P   can be expressed in matrix form as


   δ  =   B   E B    R   



(25)






   P  =   A   E B    R   



(26)




where R = [P1 P2 Q1 Q2 Q3 Q4]T. Obtaining R from Equation (25) and substituting into Equation (26), the dynamic stiffness matrix KEB = AEB(BEB)−1 that relates nodal displacements and forces can be obtained:


   P  =   K   E B    δ   



(27)







The explicit expressions of matrices AEB and BEB for the Euler–Bernoulli beam model are not reported here for the sake of shortness but can be found in Appendix A.




2.2.2. Timoshenko Beam Model


The shear force S(ξ) and the bending moment M(ξ) for the Timoshenko beam model assume the following expressions:


    S ( ξ ) =     A 3   L     −  W ′  + L Φ   =     A 3   L   [ − (  Q 1   λ 1   e   λ 1  ξ   +  Q 2   λ 2   e   λ 2  ξ   +  Q 3   λ 3   e   λ 3  ξ   +  Q 4   λ 4   e   λ 4  ξ   ) +     + L (  R 1   e   λ 1  ξ   +  R 2   e   λ 2  ξ   +  R 3   e   λ 3  ξ   +  R 4   e   λ 4  ξ   ) ]    



(28)






  M ( ξ ) = −     A 2   L    Φ ′  = −     A 2   L      R 1   λ 1   e   λ 1  ξ   +  R 2   λ 2   e   λ 2  ξ   +  R 3   λ 3   e   λ 3  ξ   +  R 4   λ 4   e   λ 4  ξ      



(29)




where the rotation Ф(ξ) is already reported in Equation (17). It has to be noted that the axial force does not depend on the beam model; therefore, the expression of F(ξ) in this case is the same as in Equation (21).



Considering the relationship between the constants Qj = βjRj, it is possible to obtain nodal forces and displacements at ξ = 0 and ξ = 1 and collect them in the vectors reported in Equation (24). Analogously to the Euler–Bernoulli beam model, the dynamic stiffness matrix KTIM = ATIM(BTIM)−1 that relates nodal displacements and forces can be obtained:


   P  =   K   T I M    δ   



(30)







The explicit expressions of matrices ATIM and BTIM for the Timoshenko beam are reported in Appendix A.






3. Application of the Wittrick and Williams Algorithm


The exact frequencies of vibration of simple beams or framed structures may be obtained applying the Wittrick–Williams algorithm [18] in conjunction with the dynamic stiffness matrix of the considered structure. This algorithm allows the evaluation of the number J of vibration frequencies that are smaller than a trial value ω*, by means of an iterative procedure, to converge to any required accuracy. The number J is given by


  J =  J K  +  J 0   



(31)




where Jk is the number of negative eigenvalues of the dynamic stiffness matrix evaluated at the specified frequency value ω* and    J 0  =   ∑  b = 1   N b e a m s     J  0 , b       is the number of frequencies of vibration of the beams considered with both ends clamped which are lower than ω*.



The evaluation of Jk in the case of beams composed of symmetric functionally graded material can be obtained once the dynamic stiffness matrix of the structure is evaluated at the frequency value ω*. In order to compute J, the expression of J0 for FGM has to be evaluated, and since this is not available in the scientific literature, it will be originally derived in the following.



The procedure is based on the consideration of a simply supported beam made of FGM, for which the natural frequencies of vibration, for the cases of both the Euler–Bernoulli and Timoshenko models, are given in [19]. In particular, for Timoshenko beams, the frequencies of vibration take the following expression:


   ω n 2  =    2   E ^  2   α n 4     ρ 0       1   ζ n  +    ζ n 2  −   4   ρ ^  2    E ^  2     ρ 0   G 0 s     α n 4        



(32)




where     E ^  2    and     ρ ^  2    are given by


     E ^  2  =  E 2  −     E 1 2     E 0       ,     ρ ^  2  =  ρ 2  −     ρ 1 2     ρ 0       



(33)




and    E i  =  A i  ,    ρ i  =  B i  ,   i = 0 , 1 , 2 ,    G 0 s  =  A 3    are terms that consider the variation of the material as in Equations (4)–(13) and αn is given by


   α n  =    n π  L    



(34)




where L is the length of the beam and n is the frequency number. ζn has the following expression:


   ζ n  = 1 +  α n 2         ρ ^  2     ρ 0     +      E ^  2     G 0 s        



(35)







In the case of Euler–Bernoulli, Equation (32) is simplified in


   ω n  =  α n 2         E ^  2     ρ 0  +   ρ ^  2   α n 2        



(36)







Obtaining αn from Equation (32) or Equation (36), depending on the beam model, it is possible to isolate n and, by setting ωn = ω*, find the number of natural frequencies below the assigned frequency, thus obtaining Jb for a simply supported beam made of FGM.



With respect to the determination of Jk,b, the DSM for the simply supported beam can be obtained, according to the boundary conditions, by imposing M1 = M2 = v1 = v2 = 0; therefore, the matrix system is as follows:


       0     0      =         K   2 , 2         K   2 , 4           K   4 , 2         K   4 , 4                φ 1         φ 2         



(37)







The term Jk,b is the number of negative eigenvalues of the DSM in Equation (37) evaluated at the specified frequency value ω*.



Finally, the term, J0,b (which, as already said, refers to the number of frequencies of vibration of the beams considered with both ends clamped which are lower than ω*) can be evaluated by applying Equation (31) to a simply supported beam composed of FGM and calculating J0,b = Jb − Jk,b.




4. Results and Discussion


In this section, with the aim of investigating the influence of material variability on the eigenproperties of structures, the proposed procedure has been applied both to single beams with different boundary conditions and to framed structures. Firstly, in order to validate the obtained results, the frequencies of vibration of some single beams composed of symmetric functionally graded materials have been compared with those obtained by evaluating the corresponding Rayleigh quotient, showing a very good correspondence. Furthermore, some results reported in the literature with reference to homogeneous material have been re-obtained by means of the dynamic stiffness method. Finally, some parametric analyses by varying the E1/E2 ratio on beams and on a simple portal frame have been conducted.



4.1. Validation of the Proposed Procedure


4.1.1. Rayleigh’s Quotient


In this subsection, the fundamental natural frequency of vibration obtained with the proposed procedure is compared to the one obtained through Rayleigh’s quotient, defined as


   ω 2  =       ∫ L   k     ϕ  ″     2    d y         ∫ L   m  ϕ 2    d y        



(38)




where  k  and m are the distributed stiffness and mass of the beam, respectively, ω2 represents the frequency of vibration, and ϕ is the mode shape of the beam.



In Equation (38), the numerator is a quantity proportional to the potential energy, while the denominator is a measure of the kinetic energy. Thus, this quotient may also be derived by equating the maximum value of kinetic energy to the maximum value of potential energy. If potential and kinetic energies are calculated by imposing the exact mode shape of the beam under particular boundary conditions, Rayleigh’s quotient leads to the exact value of the fundamental natural frequency of the beam.



The kinetic and potential energies for an Euler–Bernoulli beam composed of symmetric FGM have been reported in Equation (3). Assuming a harmonic variability with time for the transversal displacement,


  w   y , t   = ψ  y  ⋅ c o s    ω n  t    



(39)







The maximum values of Uk and Up assume the form


       U  K , max   =   1 2      ∫ 0 L      B 0   ψ 2   y     ω n   2  +  B 2    ψ ′   2    y     ω n   2    d y         U  p , max   =   1 2      ∫ 0 L    A 2    ψ ″   2    y  d y        ⇒  U  K , max   =  U  p , max    



(40)







Rayleigh’s quotient can be therefore written as


     ω n   2  =       ∫ 0 L    A 2    ψ ″   2    y  d y         ∫ 0 L      B 0   ψ 2   y  +  B 2    ψ ′   2    y    d y        



(41)







With reference, for example, to an Euler–Bernoulli simply supported beam, the Rayleigh quotient can be exactly evaluated, assuming the shape of the vibration mode as


  ψ  y  = A s i n      π y  L      



(42)




and therefore


     ω n   2  =     A 2     ∫ 0 L        π 4     L 4     A 2  s i  n 2      π y  L      d y       B 0     ∫ 0 L      A 2  s i  n 2      π y  L      d y    +  B 2     ∫ 0 L        π 2     L 2     A 2  s i  n 2      π y  L      d y       =     A 2     π 4     L 4       B 0  +  B 2     π 2     L 2        



(43)







The comparison of the frequencies of vibration obtained by means of the dynamic stiffness matrix and the Rayleigh quotient of simply supported beams is reported in Table 1. A rectangular cross section with dimensions 30 × 50 cm2 has been considered and the mechanical properties of the inner material have been assumed to be E2 = 30 GPa and ρ = 2000 kg/m3. The ratio between the length of the beam L and the height of the cross section h has been assumed to be variable, with values 10, 15, and 20. The ratio between the Young moduli of the outer and inner materials has also been assumed variable, with values 9/5, 7/5, 3/5, and 1/5.



The reported comparison clearly shows that the proposed procedure allows for evaluating the exact frequencies of vibration of a simply supported beam composed of symmetric FGM. Other boundary conditions, not reported for the sake of brevity, have also been analyzed, and the results confirm the accuracy of the approach.




4.1.2. Homogeneous Beams with Different Boundary Conditions


A second validation of the reliability of the proposed procedure can be obtained by evaluating the non-dimensional frequency parameter    λ i  =  ω i       ρ A  L 4    E I        for single beams with different boundary conditions and different length/cross-section height ratios L/h when the material properties are constant in the cross section. The results obtained by means of the proposed procedure considering the Euler–Bernoulli beam model have been compared to those reported by Lee and Lee in [20] for homogeneous beams. Table 2 shows the comparison and highlights the accuracy of the obtained results. Comparisons were made for clamped–free (C-F), clamped–clamped (C-C), simply supported (S-S) and clamped–supported (C-S) end conditions. The cross section of the beams has been assumed to have dimensions 30 × 50 cm2 and the mechanical properties are E = 70 GPa and ρ = 2702 kg/m3.



In Figure 5, the first three modes of vibration of the differently constrained beams have been reported.



With the aim of validating the proposed procedure, the case shear deformability is taken into account; the fundamental frequency parameter of simply supported homogeneous Timoshenko beams    λ 1  =     ω 1   L 2   h       ρ E       has been evaluated for different length/cross-section height ratios L/h and compared in Table 3 to corresponding results reported in [5,21]. The mechanical properties of the beam are E = 70 GPa, ρ = 2702 kg/m3 and Poisson’s ratio υ = 0.3; a rectangular cross section has been considered. For the case of C-C and C-F beams, the results are compared in Table 4 with those reported by Şimşek in [22]. For the latter comparison, the considered mechanical properties are E = 70 GPa, ρ = 2707 kg/m3 and υ = 0.3. The reported values show a very good agreement with the results available in the literature.





4.2. Eigenproperties of Single Beams Composed of Symmetric Functionally Graded Materials


In this subsection, beams with different boundary conditions are analyzed, assuming a symmetric variation in the mechanical properties in the cross section. In particular, the cross section is rectangular with dimensions 30 × 50 cm2, and the values for the mechanical properties of the inner material have been assumed equal to E2 = 30 GPa and ρ = 2000 kg/m3. Both increasing and decreasing values of the ratio E1/E2 with respect to unity have been considered, assuming greater or lower stiffness of the outer material with respect to the inner one. In general, both the Young modulus and density can vary. The influence of the variation in these two parameters on the natural frequencies of vibration can be represented in terms of surfaces, as shown, for example, in Figure 6, for a C-C beam with slenderness ratio L/h = 10. The correspondent surfaces for other constraint conditions and slenderness ratios have not been reported for the sake of brevity. In order to observe in detail the numerical variations in natural frequencies, sections of these surfaces can be reported in terms of tables, assuming constant ρ or E1/E2. Table 5 and Table 6 report the frequencies of vibration for different values of the ratio E1/E2 both for Euler–Bernoulli and Timoshenko beam models. Only the frequencies for different values of E1/E2 assuming constant density have been reported because these are the results with a more significant frequency variation.



Slender beams with L/h = 10, 15, and 20 have been considered, but, in order to highlight the influence of shear deformation, the case of a squat beam with L/h = 3 has also been reported.



The results reported in Table 5 and Table 6 and Figure 6 show that, as expected, for decreasing values of the ratio E1/E2, the FGM becomes more deformable, and therefore, the natural frequencies decrease.



From the values reported in Table 6, the influence of the shear deformability consists in a reduction in each frequency of vibration, and this influence is more accentuated for lower values of the slenderness ratios L/h.



It is interesting to point out that for all the support conditions and all the considered values of the slenderness ratio L/h, the ratio       ω i     E 1  /  E 2  = 1   −  ω i     E 1  /  E 2  = 1 / 5      ω i     E 1  /  E 2  = 1       , where ωi is the i-th frequency of vibration referring to the value of E1/E2 considered, remains constant for the Euler–Bernoulli beam model and equal to 27.89%. The corresponding ratio for the Timoshenko beam model varies between 27.86% and 24.67%. In particular, the value of the ratio decreases when ω increases (i.e., for example, when decreasing the value of L/h or when considering a boundary condition with fewer degrees of freedom). Therefore, when shear deformability is considered, the reduction in the frequencies of vibration due to the decreasing E1/E2 is higher for more deformable beams, whereas the frequency reduction is not affected by the boundary conditions or the slenderness of the beam when shear deformability is neglected.




4.3. Eigenproperties of a Framed Structure Composed of Symmetric Functionally Graded Materials


In this subsection, frequencies of vibration and mode shapes of a framed structure with elements composed of symmetric FGM are obtained. Columns of the frame have height H and the beam has length L, as shown in Figure 7.



Each element of the structure has a rectangular cross section with base b = 0.3 m and height h = 0.6 m. The mechanical properties of the inner material are E2 = 30 GPa and ρ2 = 2000 kg/m3. The results are obtained for different values of H/L = 1, 1/2, and 1/3, with H = 3 m assumed constant. For the Euler–Bernoulli beam model, frequencies for different values of the E1/E2 ratio by decreasing the Young modulus of the outer material only and assuming ρ1/ρ2 = 1 have been reported in Table 7, whereas frequencies for different values of ρ1/ρ2 by decreasing the density of the outer material only and assuming E1/E2 = 1 have been reported in Table 8.



Figure 8 summarizes the results reported in Table 7 and Table 8 for H/L = 1 in terms of 3D surfaces in which the first three frequencies of vibration are shown with the variation in the ratios E1/E2 and ρ1/ρ2. As can be observed, the relationships between the frequencies of vibration and the mechanical property ratios are almost linear. It can also be observed that, as expected, the frequencies increase by increasing E1 (stiffer material), whereas they decrease by increasing ρ1 (higher values of mass).



The first three mode shapes of the framed structure for H/L = 1 and E1/E2 = 4/5 are shown in Figure 9 as an example.



Analogous results for the Timoshenko beam model are reported in Table 9 and Table 10.



As in the case of the beam with different boundary conditions of the previous paragraph, changing the shear deformability reduces the stiffness and, consequently, the frequencies of vibration.





5. Conclusions


Inhomogeneous beams in which the mechanical properties vary along the beam thickness according to a symmetric distribution have been considered. In particular, the Young modulus and the mass density of the inner material have been assumed to be constant, while, with a symmetric parabolic variation, an outer material with variable characteristics has been introduced. The eigenproperties of single beams with different support conditions and slenderness ratios have been evaluated by means of the Wittrick and Williams algorithm applied in conjunction with the dynamic stiffness matrix for both Euler–Bernoulli and Timoshenko beam models. As expected, the reduction in mechanical characteristics of the outer material involves a reduction in vibration frequencies as the structures become more deformable. Considerations of the percentages of reduction for the considered beams have been reported, allowing us to differentiate the behavior of Euler–Bernoulli beams from Timoshenko beams and also to identify which support condition and slenderness ratio mainly affect the frequency reduction. The proposed approach can also be applied to framed structures, and a simple example of an elementary frame has been reported in this paper. The developed study aims to make a contribution to the design of structures using FGMs, since these materials allow for planning advanced structures tailored to specific dynamic conditions.



It must be pointed out that, although the proposed approach provides an exact mathematical solution within the adopted classical beam theories, the fundamental hypotheses of these theories could not be suitable for considering the presence of complex materials which could require the adoption of more sophisticated approaches based on the use of solid FEM elements.
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Appendix A


The formal expressions of the matrices AEB and BEB for the Euler–Bernoulli beam model and ATIM and BTIM for the Timoshenko beam model are reported here for completeness.


    B   E B   =      1   1   0   0   0   0     0   0   1   1   1   1     0   0        λ 1   L           λ 2   L           λ 3   L           λ 4   L          e   η 1         e   η 2       0   0   0   0     0   0     e   λ 1         e   λ 2         e   λ 3         e   λ 4         0   0        λ 1   e   λ 1     L           λ 2   e   λ 2     L           λ 3   e   λ 3     L           λ 4   e   λ 4     L          



(A1)






    A   E B   =        a  11        a  12      0   0   0   0     0   0     a  23        a  24        a  25        a  26        0   0     a  33        a  34        a  35        a  36          a  41        a  42      0   0   0   0     0   0     a  53        a  54        a  55        a  56        0   0     a  63        a  64        a  65        a  66          



(A2)




where the elements of the matrix AEB for h = 1, 2 and k = 3, …, 6 are given by


     a  1 h   = −     A 0   η h   L   ,    a  2 k   =     A 2     L 3        λ  k − 2  3  +     B 2   L 2   ω 2     A 2      λ  k − 2     ,      a  3 k   = −     A 2     L 2      λ  k − 2  2  ,    a  4 h   =     A 0   η h   e   η h     L   ,      a  5 k   = −     A 2   e   λ  k − 2        L 3        λ  k − 2  3  +     B 2   L 2   ω 2     A 2      λ  k − 2     ,    a  6 k   =     A 2     L 2      λ  k − 2  2   e   λ  k − 2     .    








where Ai and Bi, for i = 0, 1, 2; λj, for j = 1, …, 4; and ηh for h = 1, 2 are defined in Section 2.2.1.


    B   T I M   =      1   1   0   0   0   0     0   0   1   1   1   1     0   0      1   β 1           1   β 2           1   β 3           1   β 4            e   η 1         e   η 2       0   0   0   0     0   0     e   λ 1         e   λ 2         e   λ 3         e   λ 4         0   0        e   λ 1       β 1             e   λ 2       β 2             e   λ 3       β 3             e   λ 4       β 4            



(A3)






    A   T I M   =        a  11        a  12      0   0   0   0     0   0     a  23        a  24        a  25        a  26        0   0     a  33        a  34        a  35        a  36          a  41        a  42      0   0   0   0     0   0     a  53        a  54        a  55        a  56        0   0     a  63        a  64        a  65        a  66          



(A4)




where the elements of the matrix ATIM for h = 1, 2 and k = 3, …, 6 are given by


     a  1 h   = −     A 0   η h   L   ,    a  2 k   =     A 3   L     −  λ  k − 2   +   L   β  k − 2        ,      a  3 k   = −     A 2   L       λ  k − 2      β  k − 2      ,    a  4 h   =     A 0   η h   e   η h     L   ,      a  5 k   =     A 3   e   λ  k − 2      L      λ  k − 2   −   L   β  k − 2        ,    a  6 k   =     A 2   L       λ  k − 2    e   λ  k − 2        β  k − 2      .    








where Ai for i = 0, …, 3; λj and βj for j = 1, …, 4; and ηh for h = 1, 2 are defined in Section 2.2.2.
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Figure 1. The beam model. 
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Figure 2. The considered functionally graded beam: the colors denote the different materials. 
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Figure 3. Sign convention for axial force, shear force and bending moment. 
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Figure 4. Boundary conditions for displacements and forces. 






Figure 4. Boundary conditions for displacements and forces.



[image: Symmetry 16 01206 g004]







[image: Symmetry 16 01206 g005] 





Figure 5. Mode shapes of the beam for different boundary conditions. 
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Figure 6. The first three frequencies of vibration for C-C beam as a function of E1/E2 and ρ1/ρ2 for L/h = 10 considering the Euler–Bernoulli beam model. 
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Figure 7. Considered framed structure. 
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Figure 8. The first three frequencies of vibration as a function of E1/E2 and ρ1/ρ2 for H/L = 1. 
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Figure 9. Mode shapes of the framed structure. 
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Table 1. Comparison of frequencies of vibration in rad/s for FGM simply supported beam.
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L/h

	
       E 1     E 2    =  9 5     

	
       E 1     E 2    =  7 5     

	
       E 1     E 2    =  3 5     

	
       E 1     E 2    =  1 5     




	
Proposed Procedure

	
Rayleigh Quotient

	
Proposed Procedure

	
Rayleigh Quotient

	
Proposed Procedure

	
Rayleigh Quotient

	
Proposed Procedure

	
Rayleigh Quotient






	
10

	
267.3849

	
267.3849

	
244.7467

	
244.7467

	
191.6077

	
191.6077

	
158.4922

	
158.4922




	
15

	
119.1080

	
119.1080

	
109.0237

	
109.0237

	
85.3526

	
85.3526

	
70.6011

	
70.6011




	
20

	
67.0517

	
67.0517

	
61.3747

	
61.3747

	
48.0491

	
48.0491

	
39.7448

	
39.7448











 





Table 2. Comparison of frequency parameter for the Euler–Bernoulli beam model.
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L/h

	
C-F

	
C-C

	




	
λ1

	
λ2

	
λ3

	
λ1

	
λ2

	
λ3






	
10

	
3.509

	
21.743

	
59.801

	
22.259

	
60.522

	
116.21

	
Proposed procedure




	
3.509

	
21.743

	
59.802

	
22.259

	
60.522

	
116.21

	
Lee and Lee




	
20

	
3.514

	
21.960

	
61.206

	
22.345

	
61.379

	
119.68

	
Proposed procedure




	
3.514

	
21.961

	
61.207

	
22.345

	
61.379

	
119.68

	
Lee and Lee




	
30

	
3.515

	
22.001

	
61.478

	
22.361

	
61.542

	
120.35

	
Proposed procedure




	
3.515

	
22.002

	
61.478

	
22.361

	
61.542

	
120.35

	
Lee and Lee




	
L/h

	
S-S

	
C-S

	




	
λ1

	
λ2

	
λ3

	
λ1

	
λ2

	
λ3




	
10

	
9.829

	
38.845

	
85.711

	
15.345

	
49.095

	
100.39

	
Proposed procedure




	
9.829

	
38.845

	
85.711

	
15.345

	
49.095

	
100.39

	
Lee and Lee




	
20

	
9.860

	
39.317

	
88.016

	
15.400

	
49.743

	
103.24

	
Proposed procedure




	
9.860

	
39.317

	
88.016

	
15.400

	
49.743

	
103.24

	
Lee and Lee




	
30

	
9.865

	
39.407

	
88.463

	
15.410

	
49.866

	
103.80

	
Proposed procedure




	
9.865

	
39.407

	
88.464

	
15.410

	
49.866

	
103.80

	
Lee and Lee











 





Table 3. Comparison of fundamental frequency parameter for Timoshenko beam model for simply supported beam.
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	L/h
	Proposed Approach
	Su and Banerjee
	Sina et al. [21]





	10
	2.8023
	2.8023
	2.797



	30
	2.8438
	2.8439
	2.843



	100
	2.8486
	2.8496
	2.848










 





Table 4. Comparison of fundamental frequency parameter for Timoshenko beam model for C-C and C-F beams.
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L/h

	
C-C

	
C-F

	






	
5

	
5.1946

	
0.9843

	
Proposed procedure




	
5.2138

	
0.9845

	
Şimşek




	
20

	
6.3495

	
1.0130

	
Proposed procedure




	
6.3512

	
1.0130

	
Şimşek











 





Table 5. Results for frequencies of vibration in rad/s for symmetric FGM for Euler–Bernoulli beam model.
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L/h

	
C-F

	
C-C

	
       E 1     E 2       




	
ω1

	
ω2

	
ω3

	
ω1

	
ω2

	
ω3






	
3

	
1040.5150

	
5837.4920

	
14,278.2317

	
6406.4823

	
15,594.6431

	
26,398.0259

	
9/5




	
997.4404

	
5595.8349

	
13,687.1499

	
6141.2705

	
14,949.0652

	
25,305.2159

	
8/5




	
952.4196

	
5343.2597

	
13,069.3627

	
5864.0763

	
14,274.3198

	
24,163.0324

	
7/5




	
905.1624

	
5078.1375

	
12,420.8861

	
5573.1122

	
13,566.0556

	
22,964.1092

	
6/5




	
855.2980

	
4798.3889

	
11,736.6342

	
5266.0960

	
12,818.7176

	
21,699.0436

	
1




	
802.3407

	
4501.2878

	
11,009.9388

	
4940.0359

	
12,025.0230

	
20,355.5072

	
4/5




	
745.6315

	
4183.1384

	
10,231.7605

	
4590.8761

	
11,175.0990

	
18,916.7877

	
3/5




	
684.2384

	
3838.7111

	
9389.3073

	
4212.8768

	
10,254.9741

	
17,359.2349

	
2/5




	
616.7642

	
3460.1674

	
8463.4073

	
3797.4358

	
9243.7087

	
15,647.4029

	
1/5




	
10

	
95.4612

	
591.4606

	
1626.7698

	
605.5223

	
1646.3690

	
3161.1801

	
9/5




	
91.5094

	
566.9757

	
1559.4258

	
580.4553

	
1578.2136

	
3030.3154

	
8/5




	
87.3790

	
541.3845

	
1489.0391

	
554.2557

	
1506.9789

	
2893.5382

	
7/5




	
83.0434

	
514.5221

	
1415.1558

	
526.7546

	
1432.2055

	
2749.9664

	
6/5




	
78.4686

	
486.1777

	
1337.1966

	
497.7363

	
1353.3070

	
2598.4740

	
1




	
73.6101

	
456.0751

	
1254.4016

	
466.9180

	
1269.5145

	
2437.5847

	
4/5




	
68.4074

	
423.8399

	
1165.7410

	
433.9164

	
1179.7857

	
2265.2972

	
3/5




	
62.7749

	
388.9421

	
1069.7573

	
398.1890

	
1082.6456

	
2078.7792

	
2/5




	
56.5845

	
350.5877

	
964.2662

	
358.9227

	
975.8836

	
1873.7863

	
1/5




	
15

	
42.4728

	
264.8157

	
735.4772

	
269.8832

	
739.3562

	
1435.6814

	
9/5




	
40.7145

	
253.8530

	
705.0303

	
258.7107

	
708.7488

	
1376.2479

	
8/5




	
38.8768

	
242.3950

	
673.2079

	
247.0335

	
676.7585

	
1314.1292

	
7/5




	
36.9478

	
230.3679

	
639.8046

	
234.7761

	
643.1790

	
1248.9246

	
6/5




	
34.9124

	
217.6772

	
604.5585

	
221.8426

	
607.7471

	
1180.1228

	
1




	
32.7507

	
204.1993

	
567.1262

	
208.1068

	
570.1173

	
1107.0533

	
4/5




	
30.4359

	
189.7666

	
527.0419

	
193.3979

	
529.8216

	
1028.8072

	
3/5




	
27.9299

	
174.1417

	
483.6468

	
177.4741

	
486.1976

	
944.0983

	
2/5




	
25.1757

	
156.9692

	
435.9534

	
159.9730

	
438.2526

	
850.9987

	
1/5




	
20

	
23.8999

	
149.3472

	
416.2481

	
151.9602

	
417.4227

	
813.8886

	
9/5




	
22.9105

	
143.1646

	
399.0165

	
145.6694

	
400.1424

	
780.1957

	
8/5




	
21.8764

	
136.7027

	
381.0064

	
139.0944

	
382.0815

	
744.9806

	
7/5




	
20.7910

	
129.9197

	
362.1016

	
132.1928

	
363.1233

	
708.0161

	
6/5




	
19.6456

	
122.7626

	
342.1538

	
124.9105

	
343.1193

	
669.0123

	
1




	
18.4292

	
115.1615

	
320.9687

	
117.1764

	
321.8744

	
627.5892

	
4/5




	
17.1266

	
107.0220

	
298.2828

	
108.8944

	
299.1245

	
583.2314

	
3/5




	
15.7165

	
98.2101

	
273.7230

	
99.9284

	
274.4954

	
535.2098

	
2/5




	
14.1667

	
88.5254

	
246.7306

	
90.0742

	
247.4268

	
482.4316

	
1/5




	
L/h

	
S-S

	
C-S

	
       E 1     E 2       




	
ω1

	
ω2

	
ω3

	
ω1

	
ω2

	
ω3




	
3

	
2855.5125

	
10,211.2928

	
19,887.7552

	
4429.7108

	
12,775.5312

	
23,040.8390

	
9/5




	
2737.3016

	
9788.5717

	
19,064.4535

	
4246.3323

	
12,246.6573

	
22,087.0079

	
8/5




	
2613.7500

	
9346.7519

	
18,203.9548

	
4054.6686

	
11,693.8886

	
21,090.0823

	
7/5




	
2484.0608

	
8882.9841

	
17,300.7097

	
3853.4837

	
11,113.6604

	
20,043.6330

	
6/5




	
2347.2168

	
8393.6310

	
16,347.6340

	
3641.1999

	
10,501.4220

	
18,939.4530

	
1




	
2201.8845

	
7873.9238

	
15,335.4401

	
3415.7482

	
9851.2070

	
17,766.7818

	
4/5




	
2046.2562

	
7317.3979

	
14,251.5369

	
3174.3245

	
9154.9274

	
16,511.0323

	
3/5




	
1877.7734

	
6714.9048

	
13,078.1072

	
2912.9599

	
8401.1376

	
15,151.5624

	
2/5




	
1692.6021

	
6052.7334

	
11,788.4466

	
2625.7066

	
7572.6831

	
13,657.4338

	
1/5




	
10

	
267.3849

	
1056.6879

	
2331.5864

	
417.4227

	
1335.5276

	
2730.8517

	
9/5




	
256.3159

	
1012.9438

	
2235.0648

	
400.1424

	
1280.2402

	
2617.8015

	
8/5




	
244.7467

	
967.2232

	
2134.1823

	
382.0815

	
1222.4549

	
2499.6437

	
7/5




	
232.6029

	
919.2315

	
2028.2882

	
363.1233

	
1161.7991

	
2375.6162

	
6/5




	
219.7891

	
868.5921

	
1916.5522

	
343.1193

	
1097.7969

	
2244.7463

	
1




	
206.1804

	
814.8116

	
1797.8854

	
321.8744

	
1029.8248

	
2105.7587

	
4/5




	
191.6077

	
757.2210

	
1670.8115

	
299.1245

	
957.0372

	
1956.9245

	
3/5




	
175.8313

	
694.8737

	
1533.2418

	
274.4954

	
878.2375

	
1795.7970

	
2/5




	
158.4922

	
626.3507

	
1382.0455

	
247.4268

	
791.6326

	
1618.7096

	
1/5




	
15

	
119.1080

	
473.8501

	
1056.6879

	
186.0130

	
599.3424

	
1238.9827

	
9/5




	
114.1772

	
454.2340

	
1012.9438

	
178.3125

	
574.5312

	
1187.6920

	
8/5




	
109.0237

	
433.7315

	
967.2232

	
170.2641

	
548.5990

	
1134.0840

	
7/5




	
103.6141

	
412.2106

	
919.2315

	
161.8160

	
521.3786

	
1077.8129

	
6/5




	
97.9061

	
389.5024

	
868.5921

	
152.9017

	
492.6565

	
1018.4375

	
1




	
91.8441

	
365.3857

	
814.8116

	
143.4345

	
462.1527

	
955.3791

	
4/5




	
85.3526

	
339.5603

	
757.2210

	
133.2966

	
429.4879

	
887.8532

	
3/5




	
78.3249

	
311.6019

	
694.8737

	
122.3214

	
394.1252

	
814.7500

	
2/5




	
70.6011

	
280.8742

	
626.3507

	
110.2590

	
355.2596

	
734.4057

	
1/5




	
20

	
67.0517

	
267.3849

	
598.5720

	
104.7296

	
338.2895

	
702.1165

	
9/5




	
64.2759

	
256.3159

	
573.7927

	
100.3941

	
324.2852

	
673.0507

	
8/5




	
61.3747

	
244.7467

	
547.8938

	
95.8627

	
309.6482

	
642.6717

	
7/5




	
58.3294

	
232.6029

	
520.7084

	
91.1061

	
294.2840

	
610.7836

	
6/5




	
55.1161

	
219.7891

	
492.0232

	
86.0872

	
278.0723

	
577.1362

	
1




	
51.7035

	
206.1804

	
461.5587

	
80.7570

	
260.8549

	
541.4018

	
4/5




	
48.0491

	
191.6077

	
428.9359

	
75.0491

	
242.4178

	
503.1357

	
3/5




	
44.0929

	
175.8313

	
393.6186

	
68.8698

	
222.4578

	
461.7090

	
2/5




	
39.7448

	
158.4922

	
354.8030

	
62.0784

	
200.5208

	
416.1789

	
1/5











 





Table 6. Results for frequencies of vibration in rad/s for symmetric FGM for Timoshenko beam model.






Table 6. Results for frequencies of vibration in rad/s for symmetric FGM for Timoshenko beam model.





	
L/h

	
C-F

	
C-C

	
       E 1     E 2       




	
ω1

	
ω2

	
ω3

	
ω1

	
ω2

	
ω3






	
3

	
976.7450

	
4397.4773

	
9584.6797

	
4186.2677

	
8648.0538

	
13,854.5002

	
9/5




	
938.0058

	
4243.4098

	
9264.3486

	
4049.1202

	
8379.5514

	
13,429.7922

	
8/5




	
897.4863

	
4082.3999

	
8930.1297

	
3906.0296

	
8100.3366

	
12,988.3476

	
7/5




	
854.9102

	
3913.2982

	
8579.7513

	
3756.0063

	
7808.7243

	
12,527.5718

	
6/5




	
809.9217

	
3734.5893

	
8210.2086

	
3597.7339

	
7502.4769

	
12,044.0356

	
1




	
762.0500

	
3544.2094

	
7817.3864

	
3429.3991

	
7178.5043

	
11,533.0319

	
4/5




	
710.6499

	
3339.2333

	
7395.3979

	
3248.3926

	
6832.3253

	
10,987.7858

	
3/5




	
654.7982

	
3115.3012

	
6935.3464

	
3050.7483

	
6457.0195

	
10,397.9306

	
2/5




	
593.0950

	
2865.4806

	
6422.7824

	
2829.9967

	
6040.9824

	
9746.2551

	
1/5




	
10

	
94.8493

	
567.0480

	
1486.8251

	
567.9982

	
1449.9738

	
2611.4853

	
9/5




	
90.9403

	
544.2368

	
1428.8213

	
545.4725

	
1394.6966

	
2515.5404

	
8/5




	
86.8542

	
520.3822

	
1368.1448

	
521.9122

	
1336.8656

	
2415.1783

	
7/5




	
82.5646

	
495.3244

	
1304.3756

	
497.1566

	
1276.0725

	
2309.6782

	
6/5




	
78.0376

	
468.8581

	
1236.9710

	
470.9992

	
1211.7878

	
2198.0977

	
1




	
73.2287

	
440.7122

	
1165.2098

	
443.1662

	
1143.3040

	
2079.1675

	
4/5




	
68.0776

	
410.5171

	
1088.0998

	
413.2827

	
1069.6417

	
1951.1129

	
3/5




	
62.4986

	
377.7453

	
1004.2138

	
380.8122

	
989.3830

	
1811.3341

	
2/5




	
56.3647

	
341.6006

	
911.3762

	
344.9408

	
900.3504

	
1655.7839

	
1/5




	
15

	
42.3507

	
259.6980

	
703.7623

	
261.9847

	
694.8156

	
1299.8421

	
9/5




	
40.6010

	
249.0905

	
675.4856

	
251.3573

	
667.2282

	
1249.4363

	
8/5




	
38.7721

	
238.0008

	
645.9152

	
240.2453

	
638.3740

	
1196.7053

	
7/5




	
36.8523

	
226.3559

	
614.8525

	
228.5751

	
608.0567

	
1141.2822

	
6/5




	
34.8264

	
214.0625

	
582.0428

	
216.2521

	
576.0235

	
1082.6919

	
1




	
32.6747

	
200.9979

	
547.1496

	
203.1519

	
541.9398

	
1020.3027

	
4/5




	
30.3702

	
186.9951

	
509.7133

	
189.1049

	
505.3473

	
953.2439

	
3/5




	
27.8749

	
171.8174

	
469.0787

	
173.8700

	
465.5906

	
880.2612

	
2/5




	
25.1317

	
155.1082

	
424.2557

	
157.0839

	
421.6756

	
799.4388

	
1/5




	
20

	
23.8611

	
147.6924

	
405.6701

	
149.4019

	
402.5527

	
766.7621

	
9/5




	
22.8745

	
141.6252

	
389.1699

	
143.2889

	
386.2950

	
736.2677

	
8/5




	
21.8432

	
135.2829

	
371.9181

	
136.8983

	
369.2947

	
704.3738

	
7/5




	
20.7606

	
128.6240

	
353.8008

	
130.1879

	
351.4385

	
670.8636

	
6/5




	
19.6183

	
121.5958

	
334.6718

	
123.1044

	
332.5809

	
635.4585

	
1




	
18.4051

	
114.1287

	
314.3388

	
115.5770

	
312.5301

	
597.7895

	
4/5




	
17.1058

	
106.1285

	
292.5401

	
107.5101

	
291.0244

	
557.3518

	
3/5




	
15.6990

	
97.4613

	
268.9035

	
98.7676

	
267.6912

	
513.4231

	
2/5




	
14.1527

	
87.9264

	
242.8687

	
89.1451

	
241.9686

	
464.9091

	
1/5




	
L/h

	
S-S

	
C-S

	
       E 1     E 2       




	
ω1

	
ω2

	
ω3

	
ω1

	
ω2

	
ω3




	
3

	
2540.7814

	
7688.0999

	
13,383.1858

	
3355.9825

	
8221.7511

	
13,606.4807

	
9/5




	
2443.3654

	
7422.2724

	
12,953.3475

	
3238.2762

	
7953.5982

	
13,180.4554

	
8/5




	
2341.4467

	
7144.3359

	
12,504.8210

	
3115.2314

	
7673.9842

	
12,736.8627

	
7/5




	
2234.3082

	
6852.2464

	
12,034.3978

	
2985.9610

	
7381.0235

	
12,272.8404

	
6/5




	
2121.0202

	
6543.3005

	
11,537.7691

	
2849.2965

	
7072.2107

	
11,784.5740

	
1




	
2000.3425

	
6213.8038

	
11,008.9315

	
2703.6474

	
6744.0942

	
11,266.7847

	
4/5




	
1870.5614

	
5858.5037

	
10,439.1357

	
2546.7628

	
6391.7012

	
10,711.8189

	
3/5




	
1729.2003

	
5469.5539

	
9814.9013

	
2375.2948

	
6007.4509

	
10,107.9024

	
2/5




	
1572.4632

	
5034.4637

	
9113.9457

	
2183.9351

	
5578.9064

	
9435.4708

	
1/5




	
10

	
263.8169

	
1005.6455

	
2111.9527

	
402.5527

	
1225.1508

	
2364.1911

	
9/5




	
252.9963

	
965.3857

	
2030.0611

	
386.2950

	
1177.2484

	
2274.9703

	
8/5




	
241.6846

	
923.2815

	
1944.3898

	
369.2947

	
1127.1392

	
2181.6289

	
7/5




	
229.8079

	
879.0493

	
1854.3418

	
351.4385

	
1074.4768

	
2083.5041

	
6/5




	
217.2717

	
832.3241

	
1759.1449

	
332.5809

	
1018.8142

	
1979.7343

	
1




	
203.9517

	
782.6240

	
1657.7716

	
312.5301

	
959.5574

	
1869.1654

	
4/5




	
189.6792

	
729.2903

	
1548.8062

	
291.0244

	
895.8897

	
1750.1959

	
3/5




	
174.2147

	
671.3826

	
1430.2094

	
267.6912

	
826.6376

	
1620.4995

	
2/5




	
157.1986

	
607.4789

	
1298.8667

	
241.9686

	
750.0132

	
1476.4898

	
1/5




	
15

	
118.3873

	
462.9097

	
1005.6455

	
182.9546

	
575.0322

	
1151.1363

	
9/5




	
113.5069

	
444.0511

	
965.3857

	
175.4667

	
551.8873

	
1105.7626

	
8/5




	
108.4056

	
424.3341

	
923.2815

	
167.6388

	
527.6841

	
1058.3019

	
7/5




	
103.0502

	
403.6286

	
879.0493

	
159.4193

	
502.2605

	
1008.4288

	
6/5




	
97.3985

	
381.7681

	
832.3241

	
150.7427

	
475.4082

	
955.7238

	
1




	
91.3949

	
358.5334

	
782.6240

	
141.5227

	
446.8528

	
899.6307

	
4/5




	
84.9641

	
333.6263

	
729.2903

	
131.6420

	
416.2193

	
839.3863

	
3/5




	
77.9995

	
306.6230

	
671.3826

	
120.9340

	
382.9734

	
773.8964

	
2/5




	
70.3410

	
276.8856

	
607.4789

	
109.1485

	
346.3082

	
701.4983

	
1/5




	
20

	
66.8218

	
263.8169

	
581.3592

	
103.7477

	
330.2736

	
672.0839

	
9/5




	
64.0622

	
252.9963

	
557.7678

	
99.4807

	
316.8241

	
645.0739

	
8/5




	
61.1777

	
241.6846

	
533.1009

	
95.0203

	
302.7624

	
616.8282

	
7/5




	
58.1497

	
229.8079

	
507.1950

	
90.3375

	
287.9955

	
587.1573

	
6/5




	
54.9543

	
217.2717

	
479.8404

	
85.3951

	
272.4047

	
555.8177

	
1




	
51.5604

	
203.9517

	
450.7610

	
80.1444

	
255.8336

	
522.4882

	
4/5




	
47.9254

	
189.6792

	
419.5808

	
74.5192

	
238.0691

	
486.7300

	
3/5




	
43.9893

	
174.2147

	
385.7650

	
68.4258

	
218.8089

	
447.9175

	
2/5




	
39.6620

	
157.1986

	
348.5075

	
61.7233

	
197.5975

	
405.1056

	
1/5











 





Table 7. Frequencies for framed structure with varying Young modulus for Euler–Bernoulli beam model.
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H/L

	
    Frequencies     r a d  s       

	
       E 1     E 2    =  9 5     

	
       E 1     E 2    =  8 5     

	
       E 1     E 2    =  7 5     

	
       E 1     E 2    =  6 5     

	
       E 1     E 2    = 1    

	
       E 1     E 2    =  4 5     

	
       E 1     E 2    =  3 5     

	
       E 1     E 2    =  2 5     

	
       E 1     E 2    =  1 5     






	
1

	
ω1

	
289.9012

	
277.9001

	
265.3567

	
252.1902

	
238.2974

	
223.5427

	
207.7428

	
190.6379

	
171.8387




	
ω2

	
1126.9970

	
1080.3422

	
1031.5796

	
980.3946

	
926.3858

	
869.0269

	
807.6044

	
741.1086

	
668.0263




	
ω3

	
1822.2656

	
1746.8285

	
1667.9832

	
1585.2211

	
1497.8931

	
1405.1483

	
1305.8329

	
1198.3145

	
1080.1461




	
1/2

	
ω1

	
207.5357

	
198.9443

	
189.9647

	
180.5390

	
170.5933

	
160.0307

	
148.7198

	
136.4746

	
123.0166




	
ω2

	
371.7867

	
356.3957

	
340.3093

	
323.4238

	
305.6068

	
286.6846

	
266.4218

	
244.4854

	
220.3762




	
ω3

	
1027.8928

	
985.3407

	
940.8661

	
894.1821

	
844.9227

	
792.6077

	
736.5865

	
675.9381

	
609.2824




	
1/3

	
ω1

	
163.2659

	
156.5071

	
149.4430

	
142.0279

	
134.2037

	
125.8943

	
116.9961

	
107.3630

	
96.7757




	
ω2

	
178.6683

	
171.2719

	
163.5413

	
155.4267

	
146.8644

	
137.7710

	
128.0334

	
117.4915

	
105.9054




	
ω3

	
510.2879

	
489.1633

	
467.0842

	
443.9084

	
419.4540

	
393.4828

	
365.6716

	
335.5632

	
302.4726











 





Table 8. Frequencies for framed structure with varying density for Euler–Bernoulli beam model.






Table 8. Frequencies for framed structure with varying density for Euler–Bernoulli beam model.





	
H/L

	
    Frequencies     r a d  s       

	
       ρ 1     ρ 2    =  9 5     

	
       ρ 1     ρ 2    =  8 5     

	
       ρ 1     ρ 2    =  7 5     

	
       ρ 1     ρ 2    =  6 5     

	
       ρ 1     ρ 2    = 1    

	
       ρ 1     ρ 2    =  4 5     

	
       ρ 1     ρ 2    =  3 5     

	
       ρ 1     ρ 2    =  2 5     

	
       ρ 1     ρ 2    =  1 5     






	
1

	
ω1

	
211.6497

	
217.4671

	
223.7923

	
230.7035

	
238.2974

	
246.6941

	
256.0459

	
266.5488

	
278.4603




	
ω2

	
820.7426

	
843.7390

	
868.7835

	
896.1992

	
926.3858

	
959.8437

	
997.2099

	
1039.3099

	
1087.2358




	
ω3

	
1325.2258

	
1362.7514

	
1403.6565

	
1448.4809

	
1497.8931

	
1552.7333

	
1614.0739

	
1683.3096

	
1762.2936




	
1/2

	
ω1

	
151.5350

	
155.6962

	
160.2202

	
165.1630

	
170.5933

	
176.5971

	
183.2829

	
190.7906

	
199.3034




	
ω2

	
271.3307

	
278.8103

	
286.9446

	
295.8351

	
305.6068

	
316.4154

	
328.4585

	
341.9905

	
357.3457




	
ω3

	
748.6100

	
769.5766

	
792.4097

	
817.4038

	
844.9227

	
875.4222

	
909.4826

	
947.8553

	
991.5346




	
1/3

	
ω1

	
119.2165

	
122.4890

	
126.0467

	
129.9336

	
134.2037

	
138.9246

	
144.1815

	
150.0842

	
156.7767




	
ω2

	
130.4482

	
134.0323

	
137.9290

	
142.1866

	
146.8644

	
152.0366