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Abstract: The dynamic stiffness method is developed to analyze the natural vibration characteristics
of functionally graded beams, where material properties change continuously across the beam
thickness following a symmetric law distribution. The governing equations of motion and associated
natural boundary conditions for free vibration analysis are derived using Hamilton’s principle and
closed-form exact solutions are obtained for both Euler–Bernoulli and Timoshenko beam models.
The dynamic stiffness matrix, which governs the relationship between force and displacements at the
beam ends, is determined. Using the Wittrick–Williams algorithm, the dynamic stiffness matrix is
employed to compute natural frequencies and mode shapes. The proposed procedure is validated
by comparing the obtained frequencies with those given by approximated well-known formulas.
Finally, a parametric investigation is conducted by varying the geometry of the structure and the
characteristic mechanical parameters of the functionally graded material.
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1. Introduction

Functionally graded materials (FGMs) are deliberately engineered to exhibit continu-
ously varying properties in one or more directions, offering designers extensive versatility
in distributing strength and stiffness as needed. Consequently, FGMs have found successful
applications in various scientific and engineering fields, including the design of aircraft and
spacecraft structures [1]. The study of the static and dynamic behavior of such materials,
especially from a structural design perspective, is therefore essential. Beams, acting as
load-bearing components, are principal candidates for fabrication from FGMs. Beams made
of FGMs can be designed to have specific vibrational characteristics, thus enhancing the
stability of structures. FGMs are also beneficial in terms of thermal resistance since the
gradual transition in material properties can reduce thermal stresses and prevent thermal
fatigue; experimental tests on FGM concrete beams have been performed in [2]. FGMs can
also be used to model circular concrete columns confined by Fiber-Reinforced Polymers
(FRP) in order to predict their collapse [3].

Consequently, there has been a significant focus on the free [4–11] and forced [9,10,12,13]
vibration analysis of functionally graded beams (FGBs) in recent years. The solutions
have been proposed for both Euler–Bernoulli [4,6–8,10,13] and Timoshenko [5,7,9,10] beam
models. In these studies, material properties are usually assumed to vary continuously
with a power law [4–7,12,13], an exponential law [9–11] or an arbitrary law [8] along one or
more directions. A considerable portion of the study of free vibration analysis of FGBs has
relied on finite element and other approximate methods [14–16]. Although these methods
represent valuable advancements, their results are often contingent upon the number and
quality of elements employed in the analysis, leading to potential unreliability, particularly
at higher frequencies.

In addition to the predominantly employed numerical methods, further studies used
analytical approaches to address the free vibration problem of FGMs. Some of these are
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based on the use of the dynamic stiffness method (DSM) [4,5,9]. Unlike many numerical
methods, the DSM adopts accurate member theory, incorporating frequency-dependent
shape functions derived from the solution of the governing differential equations of motion
for the structural element undergoing free vibration. Consequently, the DSM yields exact
results for all natural frequencies and mode shapes without resorting to any approximation.
This independence from the number of elements used in the analysis makes the DSM
notably attractive and accurate compared to finite element and other approximate methods.

In FGM, different laws of variation in the mechanical characteristics in the transversal
and/or axial direction can be assumed. For example, Banerjee et al. [4,5] applied the
DSM to functionally graded materials in which the material properties vary continuously
through the beam thickness direction according to a power law distribution. To the author’s
knowledge, the case of a symmetric variation in mechanical characteristics with respect
to the centroid has never been studied. For this kind of variation, the results reported
in [4,5] cannot be applied since some terms of the dynamic stiffness matrix would take an
indeterminate form or tend towards infinity.

Symmetric FGMs could find an interesting technical application in modeling the
retrofitting of reinforced concrete framed structures, where the reinforcement of the existing
columns is realized by a symmetric section augmentation with high-performance concrete;
this technique has several examples of application (see, for example, [17]).

With the aim of studying the free vibrations of beam structures in which the material
properties are assumed to vary continuously along the beam thickness according to a
symmetric distribution, in this paper, the dynamic stiffness matrix is determined, starting
from the differential equations of motion derived from Hamilton’s principle.

Subsequently, the dynamic stiffness matrix is utilized in conjunction with the Wittrick–
Williams algorithm [18] to compute the natural frequencies and mode shapes of some
illustrative examples. In order to apply the Wittrick and Williams algorithm in conjunction
with the dynamic stiffness matrix of symmetric functionally graded materials, the term J0,
representing the frequencies of vibration of clamped–clamped beams, has to be determined.
For homogeneous materials, this term has a well-known expression provided in the scien-
tific literature. In the case of FGM, this expression is not available, so an original derivation
of J0 is proposed here. The frequencies of vibration of selected structures composed of
symmetric functionally graded materials have been validated through the comparison with
the results obtained, evaluating the corresponding Rayleigh quotient. Finally, a parametric
investigation is conducted, varying the geometry of the structure and the characteristic
mechanical parameters of the functionally graded material. The numerical applications
refer to the mechanical parameters of the outer material being either greater or smaller than
those of the inner one, and the obtained results could be used, for example, in simulating
the effects of retrofitting or material degradation, respectively.

2. The Considered Functionally Graded Beam

The elementary beam model considered in this study is a rectangular section of length
L, height h and width b, with y as the beam axis and cross section in the x–z plane (Figure 1).

Symmetry 2024, 16, x FOR PEER REVIEW 3 of 22 
 

 

 

Figure 1. The beam model. 

The beam is characterized by Young’s modulus E and density ρ varying through the 

height of the section in the z direction with a symmetric law with respect to the centroid. 

The variation could be parabolic, for example, as reported below: 

E(ζ) E (E E )ζ= + − 2
2 1 2

, ρ(ζ) ρ (ρ ρ )ζ= + − 2
2 1 2

 (1) 

where E2 and ρ2 are the properties of the beam at the center line of the section, E1 and ρ1 

are the properties at the top and bottom surfaces of the beam, and ζ = z/(h/2) is the dimen-

sionless abscissa along the vertical axis represented in Figure 1. In Figure 2, a clearer rep-

resentation of Equation (1) is reported, where the variation in Young’s modulus E is shown 

as an example. Furthermore, the material properties are assumed to be constant along the 

horizontal x and y axes. 

 

Figure 2. The considered functionally graded beam: the colors denote the different materials . 

2.1. The Governing Differential Equations of Motion 

In this subsection, the equations of motion in free vibrations of a beam made by FGM 

with symmetric variation in the mechanical properties and the associated closed-form so-

lution are obtained. The formulations for the Euler–Bernoulli and Timoshenko models are 

briefly reported in the following subsubsections. 

2.1.1. Euler–Bernoulli Beam Model 

The displacement components u1, v1 and w1, respectively, along the x, y and z axes, 

which characterize the Euler–Bernoulli beam model, can be assumed as 

u =
1

0 , 
1

v (y,z,t) v(y,t) z (y,t)= − , w (y,z,t) w(y,t)=
1

 (2) 

where 
w(y,t)

(y,t)
y


=


 is the flexural rotation in the y-z plane. 

The potential and kinetic energies UP and UK of the FGB are, after some simplifica-

tions, given by [5] 

Figure 1. The beam model.



Symmetry 2024, 16, 1206 3 of 21

The beam is characterized by Young’s modulus E and density ρ varying through the
height of the section in the z direction with a symmetric law with respect to the centroid.
The variation could be parabolic, for example, as reported below:

E(ζ) = E2 + (E1 − E2)ζ
2, ρ(ζ) = ρ2 + (ρ1 − ρ2)ζ

2 (1)

where E2 and ρ2 are the properties of the beam at the center line of the section, E1 and
ρ1 are the properties at the top and bottom surfaces of the beam, and ζ = z/(h/2) is the
dimensionless abscissa along the vertical axis represented in Figure 1. In Figure 2, a clearer
representation of Equation (1) is reported, where the variation in Young’s modulus E is
shown as an example. Furthermore, the material properties are assumed to be constant
along the horizontal x and y axes.
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2.1. The Governing Differential Equations of Motion

In this subsection, the equations of motion in free vibrations of a beam made by FGM
with symmetric variation in the mechanical properties and the associated closed-form
solution are obtained. The formulations for the Euler–Bernoulli and Timoshenko models
are briefly reported in the following subsubsections.

2.1.1. Euler–Bernoulli Beam Model

The displacement components u1, v1 and w1, respectively, along the x, y and z axes,
which characterize the Euler–Bernoulli beam model, can be assumed as

u1 = 0, v1(y, z, t) = v(y, t)− zϕ(y, t), w1(y, z, t) = w(y, t) (2)

where ϕ(y, t) = ∂w(y,t)
∂y is the flexural rotation in the y-z plane.

The potential and kinetic energies UP and UK of the FGB are, after some simplifications,
given by [5]

Up =
1
2

L∫
0
(A0v′2 − 2A1v′w′′ + A2w′′ 2)dy

UK =
1
2

L∫
0

[
B0(

.
v2

+
.

w2
)− 2B1

.
v

.
w′

+ B2
.

w′2]dy
(3)

where prime and over-dot denote differentiation with respect to space y and time t, respec-
tively, and the parameters A and B, which consider the variation in material properties, are

Ai =
∫
A

ziE(z)dA, Bi =
∫
A

ziρ(z)dA i = 0, 1, 2 (4)

By applying Hamilton’s principle to the displacement field, it is possible to obtain the
differential equations of motion in free vibrations. In particular, it is assumed that v(y,t)
and w(y,t) can be expressed in harmonic form:

v(y, t) = V(y)eiωt, w(y, t) = W(y)eiωt (5)
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where V(y) and W(y) are the mode shapes and ω is the natural frequency. Introducing the
dimensionless abscissa ξ = y/L and the differential operator D = d/dξ, and considering that,
according to the symmetric variation laws Equation (1), the terms with i = 1 in Equation (4)
become zero, the equations of motion take the following form:

(B0ω2L3 + A0LD2)V(ξ) = 0
(B0ω2L4 − B2ω2L2D2 − A2D4)W(ξ) = 0

(6)

As it can be noticed, axial and bending contributions are decoupled and each displace-
ment component can be easily determined from the individual equations.

The second equation in Equation (6), assuming W(ξ) = eλξ , can be written in the form

(D4 + aD2 + b)eλξ = 0 (7)

where
a =

B2

A2
L2ω2, b = − B0

A2
L4ω2 (8)

Equation (7) can be simply solved, leading to the following expression for the transver-
sal displacement component:

W(ξ) = Q1eλ1ξ + Q2eλ2ξ + Q3eλ3ξ + Q4eλ4ξ (9)

with

λ1,2,3,4 = ±

√
−a ±

√
a2 − 4b

2
(10)

where Qj, j = 1, . . . , 4 are constants to be obtained from the boundary conditions.
With a similar procedure, it is possible to evaluate the axial displacements in the form

V(ξ) = P1eη1ξ + P2eη2ξ (11)

where η1,2 = ±i
√

c; c = B0
A0

L2ω2 and Pj, j = 1, 2 are constants to be obtained from the
boundary conditions.

2.1.2. Timoshenko Beam Model

For the Timoshenko beam, the displacement components can still be expressed in the
form of Equation (2) but, while for the Euler–Bernoulli beam the rotation ϕ(y,t) is equal
to the derivative of the transversal displacement, for the Timoshenko model, ϕ(y,t) is an
independent variable related to the total rotation of the cross section ∂w(y,t)

∂y and the shear
strain ψ(y,t) as

ψ(y, t) =
∂w(y, t)

∂y
− ϕ(y, t) (12)

The application of Hamilton’s principle to the Timoshenko beam therefore leads to a
system of three differential equations of motion.

Assuming that ϕ(y,t) can also be expressed in harmonic form with amplitude ϕ(y) and set-
ting

A3 =
∫
A

G(z)dA (13)

where G(z) is the shear modulus of the beam varying through the height of the section
according to a symmetric law formally identical to the ones reported in Equation (1), the
differential equations of motion with respect to the dimensionless abscissa ξ, considering
the property of symmetry in the variation in the mechanical parameters of the material,
take the form



Symmetry 2024, 16, 1206 5 of 21

(B0ω2L2 + A0D2)V(ξ) = 0
B0ω2L2W(ξ) + A3D2W(ξ)− A3LDΦ(ξ) = 0
A3LDW(ξ) +

(
B2ω2 − A3

)
L2Φ(ξ) + A2D2Φ(ξ) = 0

(14)

As it can be noticed, also for the Timoshenko model, the axial and bending problems
are decoupled. Assuming W(ξ) = eλξ and Φ(ξ) = eλξ , obtaining ϕ(ξ) from the second
equation in Equation (14) and substituting in the third equation, the differential equation
governing the transversal displacement can be written in the form(

D4 + aD2 + b
)

eλξ = 0 (15)

where

a =
A3B2 + A2B0

A2 A3
ω2L2, b =

B0
(

B2ω2 − A3
)

A2 A3
ω2L4 (16)

The same equation for ϕ(ξ) would have been obtained if W(ξ) had been isolated in the
third equation of Equation (14) and substituted in the second equation. Therefore, solutions
for transversal displacement and flexural rotation are

W(ξ) = Q1eλ1ξ + Q2eλ2ξ + Q3eλ3ξ + Q4eλ4ξ

Φ(ξ) = R1eλ1ξ + R2eλ2ξ + R3eλ3ξ + R4eλ4ξ (17)

where λi has the same formal expression derived for the Euler–Bernoulli beam in Equa-
tion (10).

The constants Qj and Rj, j = 1, . . ., 4 in Equation (17) can be related to each other by
substituting the expressions for W(ξ) and ϕ(ξ) in the second part of Equation (14):

Qj = β jRj (18)

where

β j =
A3Lλj

B0ω2L2 + A3λ2
j

(19)

The axial problem can be solved similarly to Euler–Bernoulli beam model.

2.2. The Dynamic Stiffness Matrix

In this subsection, the derivation of the dynamic stiffness matrix of a beam made of
symmetric FGM is reported for the Euler–Bernoulli and Timoshenko beams models. To this
aim, the nodal displacements W, V, and ϕ and the nodal forces F, M, and S are evaluated
according to the convention reported in Figure 3 and applying the boundary conditions at
ξ = 0 and ξ = 1 reported in Figure 4.
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2.2.1. Euler–Bernoulli Beam Model

From the expressions of the transversal and axial displacements in Equations (9) and (11),
it is possible to obtain the following expressions of the flexural rotation ϕ(ξ), axial force
F(ξ), bending moment M(ξ) and shear force S(ξ):

Φ(ξ) =
W ′

L
=

1
L

(
Q1λ1eλ1ξ + Q2λ2eλ2ξ + Q3λ3eλ3ξ + Q4λ4eλ4ξ

)
(20)

F(ξ) = − A0

L
V′ = − A0

L

(
P1η1eη1ξ + P2η2eη2ξ

)
(21)

M(ξ) = − A2

L2 W ′′ = − A2

L2

(
Q1λ2

1eλ1ξ + Q2λ2
2eλ2ξ + Q3λ2

3eλ3ξ + Q4λ2
4eλ4ξ

)
(22)

S(ξ) = A2
L3

(
W ′′′ + B2L2ω2

A2
W ′

)
= A2

L3 [Q1λ3
1eλ1ξ + Q2λ3

2eλ2ξ + Q3λ3
3eλ3ξ + Q4λ3

4eλ4ξ+

+ B2L2ω2

A2
(Q1λ1eλ1ξ + Q2λ2eλ2ξ + Q3λ3eλ3ξ + Q4λ4eλ4ξ)]

(23)

The nodal displacements and forces vectors can be defined as

δ =
[
V1 W1 Φ1 V2 W2 Φ2

]T , P =
[
F1 S1 M1 F2 S2 M2

]T (24)

Using Equations (20)–(23), the vectors δ and P can be expressed in matrix form as

δ = BEBR (25)

P = AEBR (26)

where R = [P1 P2 Q1 Q2 Q3 Q4]T. Obtaining R from Equation (25) and substituting into
Equation (26), the dynamic stiffness matrix KEB = AEB(BEB)−1 that relates nodal displace-
ments and forces can be obtained:

P = KEBδ (27)

The explicit expressions of matrices AEB and BEB for the Euler–Bernoulli beam model
are not reported here for the sake of shortness but can be found in Appendix A.

2.2.2. Timoshenko Beam Model

The shear force S(ξ) and the bending moment M(ξ) for the Timoshenko beam model
assume the following expressions:

S(ξ) = A3
L (−W ′ + LΦ) = A3

L [−(Q1λ1eλ1ξ + Q2λ2eλ2ξ + Q3λ3eλ3ξ + Q4λ4eλ4ξ)+
+L(R1eλ1ξ + R2eλ2ξ + R3eλ3ξ + R4eλ4ξ)]

(28)

M(ξ) = − A2

L
Φ′ = − A2

L

(
R1λ1eλ1ξ + R2λ2eλ2ξ + R3λ3eλ3ξ + R4λ4eλ4ξ

)
(29)

where the rotation ϕ(ξ) is already reported in Equation (17). It has to be noted that the axial
force does not depend on the beam model; therefore, the expression of F(ξ) in this case is
the same as in Equation (21).

Considering the relationship between the constants Qj = βjRj, it is possible to obtain
nodal forces and displacements at ξ = 0 and ξ = 1 and collect them in the vectors reported
in Equation (24). Analogously to the Euler–Bernoulli beam model, the dynamic stiffness
matrix KTIM = ATIM(BTIM)−1 that relates nodal displacements and forces can be obtained:

P = KTIMδ (30)

The explicit expressions of matrices ATIM and BTIM for the Timoshenko beam are
reported in Appendix A.
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3. Application of the Wittrick and Williams Algorithm

The exact frequencies of vibration of simple beams or framed structures may be
obtained applying the Wittrick–Williams algorithm [18] in conjunction with the dynamic
stiffness matrix of the considered structure. This algorithm allows the evaluation of the
number J of vibration frequencies that are smaller than a trial value ω*, by means of an
iterative procedure, to converge to any required accuracy. The number J is given by

J = JK + J0 (31)

where Jk is the number of negative eigenvalues of the dynamic stiffness matrix evaluated
at the specified frequency value ω* and J0 = ∑Nbeams

b=1 J0,b is the number of frequencies of
vibration of the beams considered with both ends clamped which are lower than ω*.

The evaluation of Jk in the case of beams composed of symmetric functionally graded
material can be obtained once the dynamic stiffness matrix of the structure is evaluated
at the frequency value ω*. In order to compute J, the expression of J0 for FGM has to be
evaluated, and since this is not available in the scientific literature, it will be originally
derived in the following.

The procedure is based on the consideration of a simply supported beam made of FGM,
for which the natural frequencies of vibration, for the cases of both the Euler–Bernoulli and
Timoshenko models, are given in [19]. In particular, for Timoshenko beams, the frequencies
of vibration take the following expression:

ω2
n =

2Ê2α4
n

ρ0

1

ζn +

√
ζ2

n −
4ρ̂2 Ê2
ρ0Gs

0
α4

n

(32)

where Ê2 and ρ̂2 are given by

Ê2 = E2 −
E2

1
E0

, ρ̂2 = ρ2 −
ρ2

1
ρ0

(33)

and Ei = Ai, ρi = Bi, i = 0, 1, 2, Gs
0 = A3 are terms that consider the variation of the

material as in Equations (4)–(13) and αn is given by

αn =
nπ

L
(34)

where L is the length of the beam and n is the frequency number. ζn has the following
expression:

ζn = 1 + α2
n

(
ρ̂2

ρ0
+

Ê2

Gs
0

)
(35)

In the case of Euler–Bernoulli, Equation (32) is simplified in

ωn = α2
n

√
Ê2

ρ0 + ρ̂2α2
n

(36)

Obtaining αn from Equation (32) or Equation (36), depending on the beam model, it is
possible to isolate n and, by setting ωn = ω*, find the number of natural frequencies below
the assigned frequency, thus obtaining Jb for a simply supported beam made of FGM.

With respect to the determination of Jk,b, the DSM for the simply supported beam can
be obtained, according to the boundary conditions, by imposing M1 = M2 = v1 = v2 = 0;
therefore, the matrix system is as follows:[

0
0

]
=

[
K2,2 K2,4
K4,2 K4,4

][
φ1
φ2

]
(37)
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The term Jk,b is the number of negative eigenvalues of the DSM in Equation (37)
evaluated at the specified frequency value ω*.

Finally, the term, J0,b (which, as already said, refers to the number of frequencies of
vibration of the beams considered with both ends clamped which are lower than ω*) can
be evaluated by applying Equation (31) to a simply supported beam composed of FGM
and calculating J0,b = Jb − Jk,b.

4. Results and Discussion

In this section, with the aim of investigating the influence of material variability on the
eigenproperties of structures, the proposed procedure has been applied both to single beams
with different boundary conditions and to framed structures. Firstly, in order to validate the
obtained results, the frequencies of vibration of some single beams composed of symmetric
functionally graded materials have been compared with those obtained by evaluating the
corresponding Rayleigh quotient, showing a very good correspondence. Furthermore,
some results reported in the literature with reference to homogeneous material have been
re-obtained by means of the dynamic stiffness method. Finally, some parametric analyses
by varying the E1/E2 ratio on beams and on a simple portal frame have been conducted.

4.1. Validation of the Proposed Procedure
4.1.1. Rayleigh’s Quotient

In this subsection, the fundamental natural frequency of vibration obtained with
the proposed procedure is compared to the one obtained through Rayleigh’s quotient,
defined as

ω2 =

∫
L k(ϕ′′ )2 dy∫

L mϕ2 dy
(38)

where k and m are the distributed stiffness and mass of the beam, respectively, ω2 represents
the frequency of vibration, and ϕ is the mode shape of the beam.

In Equation (38), the numerator is a quantity proportional to the potential energy,
while the denominator is a measure of the kinetic energy. Thus, this quotient may also
be derived by equating the maximum value of kinetic energy to the maximum value of
potential energy. If potential and kinetic energies are calculated by imposing the exact
mode shape of the beam under particular boundary conditions, Rayleigh’s quotient leads
to the exact value of the fundamental natural frequency of the beam.

The kinetic and potential energies for an Euler–Bernoulli beam composed of symmetric
FGM have been reported in Equation (3). Assuming a harmonic variability with time for
the transversal displacement,

w(y, t) = ψ(y) · cos(ωnt) (39)

The maximum values of Uk and Up assume the form

UK,max =
1
2

L∫
0

(
B0ψ2(y)ωn

2 + B2ψ′2(y)ωn
2
)

dy

Up,max =
1
2

L∫
0

A2ψ′′ 2(y)dy

 ⇒ UK,max = Up,max (40)

Rayleigh’s quotient can be therefore written as

ωn
2 =

L∫
0

A2ψ′′ 2(y)dy

L∫
0

(
B0ψ2(y) + B2ψ′2(y)

)
dy

(41)
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With reference, for example, to an Euler–Bernoulli simply supported beam, the
Rayleigh quotient can be exactly evaluated, assuming the shape of the vibration mode as

ψ(y) = Asin
(πy

L

)
(42)

and therefore

ωn
2 =

A2

L∫
0

[
π4

L4 A2sin2
(πy

L

)]
dy

B0

L∫
0

[
A2sin2

(πy
L

)]
dy + B2

L∫
0

[
π2

L2 A2sin2
(πy

L

)]
dy

=
A2

π4

L4

B0 + B2
π2

L2

(43)

The comparison of the frequencies of vibration obtained by means of the dynamic
stiffness matrix and the Rayleigh quotient of simply supported beams is reported in Table 1.
A rectangular cross section with dimensions 30 × 50 cm2 has been considered and the
mechanical properties of the inner material have been assumed to be E2 = 30 GPa and
ρ = 2000 kg/m3. The ratio between the length of the beam L and the height of the cross
section h has been assumed to be variable, with values 10, 15, and 20. The ratio between
the Young moduli of the outer and inner materials has also been assumed variable, with
values 9/5, 7/5, 3/5, and 1/5.

Table 1. Comparison of frequencies of vibration in rad/s for FGM simply supported beam.

L/h

E1
E2

= 9
5

E1
E2

= 7
5

E1
E2

= 3
5

E1
E2

= 1
5

Proposed
Procedure

Rayleigh
Quotient

Proposed
Procedure

Rayleigh
Quotient

Proposed
Procedure

Rayleigh
Quotient

Proposed
Procedure

Rayleigh
Quotient

10 267.3849 267.3849 244.7467 244.7467 191.6077 191.6077 158.4922 158.4922

15 119.1080 119.1080 109.0237 109.0237 85.3526 85.3526 70.6011 70.6011

20 67.0517 67.0517 61.3747 61.3747 48.0491 48.0491 39.7448 39.7448

The reported comparison clearly shows that the proposed procedure allows for evaluat-
ing the exact frequencies of vibration of a simply supported beam composed of symmetric
FGM. Other boundary conditions, not reported for the sake of brevity, have also been
analyzed, and the results confirm the accuracy of the approach.

4.1.2. Homogeneous Beams with Different Boundary Conditions

A second validation of the reliability of the proposed procedure can be obtained by

evaluating the non-dimensional frequency parameter λi = ωi

√
ρAL4

EI for single beams with
different boundary conditions and different length/cross-section height ratios L/h when
the material properties are constant in the cross section. The results obtained by means of
the proposed procedure considering the Euler–Bernoulli beam model have been compared
to those reported by Lee and Lee in [20] for homogeneous beams. Table 2 shows the
comparison and highlights the accuracy of the obtained results. Comparisons were made
for clamped–free (C-F), clamped–clamped (C-C), simply supported (S-S) and clamped–
supported (C-S) end conditions. The cross section of the beams has been assumed to have
dimensions 30 × 50 cm2 and the mechanical properties are E = 70 GPa and ρ = 2702 kg/m3.

With the aim of validating the proposed procedure, the case shear deformability is
taken into account; the fundamental frequency parameter of simply supported homoge-

neous Timoshenko beams λ1 = ω1L2

h

√
ρ
E has been evaluated for different length/cross-

section height ratios L/h and compared in Table 3 to corresponding results reported in [5,21].
The mechanical properties of the beam are E = 70 GPa, ρ = 2702 kg/m3 and Poisson’s ratio
υ = 0.3; a rectangular cross section has been considered. For the case of C-C and C-F beams,
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the results are compared in Table 4 with those reported by Şimşek in [22]. For the latter
comparison, the considered mechanical properties are E = 70 GPa, ρ = 2707 kg/m3 and
υ = 0.3. The reported values show a very good agreement with the results available in the
literature.

Table 2. Comparison of frequency parameter for the Euler–Bernoulli beam model.

L/h
C-F C-C

λ1 λ2 λ3 λ1 λ2 λ3

10
3.509 21.743 59.801 22.259 60.522 116.21 Proposed

procedure
3.509 21.743 59.802 22.259 60.522 116.21 Lee and Lee

20
3.514 21.960 61.206 22.345 61.379 119.68 Proposed

procedure
3.514 21.961 61.207 22.345 61.379 119.68 Lee and Lee

30
3.515 22.001 61.478 22.361 61.542 120.35 Proposed

procedure
3.515 22.002 61.478 22.361 61.542 120.35 Lee and Lee

L/h
S-S C-S

λ1 λ2 λ3 λ1 λ2 λ3

10
9.829 38.845 85.711 15.345 49.095 100.39 Proposed

procedure
9.829 38.845 85.711 15.345 49.095 100.39 Lee and Lee

20
9.860 39.317 88.016 15.400 49.743 103.24 Proposed

procedure
9.860 39.317 88.016 15.400 49.743 103.24 Lee and Lee

30
9.865 39.407 88.463 15.410 49.866 103.80 Proposed

procedure
9.865 39.407 88.464 15.410 49.866 103.80 Lee and Lee

In Figure 5, the first three modes of vibration of the differently constrained beams
have been reported.

Table 3. Comparison of fundamental frequency parameter for Timoshenko beam model for simply
supported beam.

L/h Proposed Approach Su and Banerjee Sina et al. [21]

10 2.8023 2.8023 2.797
30 2.8438 2.8439 2.843

100 2.8486 2.8496 2.848

Table 4. Comparison of fundamental frequency parameter for Timoshenko beam model for C-C and
C-F beams.

L/h C-C C-F

5
5.1946 0.9843 Proposed procedure
5.2138 0.9845 Şimşek

20
6.3495 1.0130 Proposed procedure
6.3512 1.0130 Şimşek
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4.2. Eigenproperties of Single Beams Composed of Symmetric Functionally Graded Materials

In this subsection, beams with different boundary conditions are analyzed, assuming
a symmetric variation in the mechanical properties in the cross section. In particular,
the cross section is rectangular with dimensions 30 × 50 cm2, and the values for the
mechanical properties of the inner material have been assumed equal to E2 = 30 GPa and
ρ = 2000 kg/m3. Both increasing and decreasing values of the ratio E1/E2 with respect to
unity have been considered, assuming greater or lower stiffness of the outer material with
respect to the inner one. In general, both the Young modulus and density can vary. The
influence of the variation in these two parameters on the natural frequencies of vibration
can be represented in terms of surfaces, as shown, for example, in Figure 6, for a C-C beam
with slenderness ratio L/h = 10. The correspondent surfaces for other constraint conditions
and slenderness ratios have not been reported for the sake of brevity. In order to observe
in detail the numerical variations in natural frequencies, sections of these surfaces can
be reported in terms of tables, assuming constant ρ or E1/E2. Tables 5 and 6 report the
frequencies of vibration for different values of the ratio E1/E2 both for Euler–Bernoulli and
Timoshenko beam models. Only the frequencies for different values of E1/E2 assuming
constant density have been reported because these are the results with a more significant
frequency variation.

Slender beams with L/h = 10, 15, and 20 have been considered, but, in order to
highlight the influence of shear deformation, the case of a squat beam with L/h = 3 has also
been reported.

The results reported in Tables 5 and 6 and Figure 6 show that, as expected, for de-
creasing values of the ratio E1/E2, the FGM becomes more deformable, and therefore, the
natural frequencies decrease.



Symmetry 2024, 16, 1206 12 of 21
Symmetry 2024, 16, x FOR PEER REVIEW 16 of 22 
 

 

  

 

Figure 6. The first three frequencies of vibration for C-C beam as a function of E1/E2 and ρ1/ρ2 for L/h 

= 10 considering the Euler–Bernoulli beam model. 

From the values reported in Table 6, the influence of the shear deformability consists 

in a reduction in each frequency of vibration, and this influence is more accentuated for 

lower values of the slenderness ratios L/h. 

It is interesting to point out that for all the support conditions and all the considered 

values of the slenderness ratio L/h, the ratio 
( ) ( )

( )
1 2 1 2

1 2

1 1 5

1

i i

i

ω E / E ω E / E /

ω E / E

= − =

=
, where ωi 

is the i-th frequency of vibration referring to the value of E1/E2 considered, remains con-

stant for the Euler–Bernoulli beam model and equal to 27.89%. The corresponding ratio 

for the Timoshenko beam model varies between 27.86% and 24.67%. In particular, the 

value of the ratio decreases when ω increases (i.e., for example, when decreasing the value 

of L/h or when considering a boundary condition with fewer degrees of freedom). There-

fore, when shear deformability is considered, the reduction in the frequencies of vibration 

due to the decreasing E1/E2 is higher for more deformable beams, whereas the frequency 

reduction is not affected by the boundary conditions or the slenderness of the beam when 

shear deformability is neglected. 
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L/h = 10 considering the Euler–Bernoulli beam model.

From the values reported in Table 6, the influence of the shear deformability consists
in a reduction in each frequency of vibration, and this influence is more accentuated for
lower values of the slenderness ratios L/h.

It is interesting to point out that for all the support conditions and all the considered
values of the slenderness ratio L/h, the ratio ωi(E1/E2=1)−ωi(E1/E2=1/5)

ωi(E1/E2=1) , where ωi is the i-th
frequency of vibration referring to the value of E1/E2 considered, remains constant for
the Euler–Bernoulli beam model and equal to 27.89%. The corresponding ratio for the
Timoshenko beam model varies between 27.86% and 24.67%. In particular, the value of the
ratio decreases when ω increases (i.e., for example, when decreasing the value of L/h or
when considering a boundary condition with fewer degrees of freedom). Therefore, when
shear deformability is considered, the reduction in the frequencies of vibration due to the
decreasing E1/E2 is higher for more deformable beams, whereas the frequency reduction
is not affected by the boundary conditions or the slenderness of the beam when shear
deformability is neglected.
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Table 5. Results for frequencies of vibration in rad/s for symmetric FGM for Euler–Bernoulli
beam model.

L/h
C-F C-C E1

E2ω1 ω2 ω3 ω1 ω2 ω3

3

1040.5150 5837.4920 14,278.2317 6406.4823 15,594.6431 26,398.0259 9/5
997.4404 5595.8349 13,687.1499 6141.2705 14,949.0652 25,305.2159 8/5
952.4196 5343.2597 13,069.3627 5864.0763 14,274.3198 24,163.0324 7/5
905.1624 5078.1375 12,420.8861 5573.1122 13,566.0556 22,964.1092 6/5
855.2980 4798.3889 11,736.6342 5266.0960 12,818.7176 21,699.0436 1
802.3407 4501.2878 11,009.9388 4940.0359 12,025.0230 20,355.5072 4/5
745.6315 4183.1384 10,231.7605 4590.8761 11,175.0990 18,916.7877 3/5
684.2384 3838.7111 9389.3073 4212.8768 10,254.9741 17,359.2349 2/5
616.7642 3460.1674 8463.4073 3797.4358 9243.7087 15,647.4029 1/5

10

95.4612 591.4606 1626.7698 605.5223 1646.3690 3161.1801 9/5
91.5094 566.9757 1559.4258 580.4553 1578.2136 3030.3154 8/5
87.3790 541.3845 1489.0391 554.2557 1506.9789 2893.5382 7/5
83.0434 514.5221 1415.1558 526.7546 1432.2055 2749.9664 6/5
78.4686 486.1777 1337.1966 497.7363 1353.3070 2598.4740 1
73.6101 456.0751 1254.4016 466.9180 1269.5145 2437.5847 4/5
68.4074 423.8399 1165.7410 433.9164 1179.7857 2265.2972 3/5
62.7749 388.9421 1069.7573 398.1890 1082.6456 2078.7792 2/5
56.5845 350.5877 964.2662 358.9227 975.8836 1873.7863 1/5

15

42.4728 264.8157 735.4772 269.8832 739.3562 1435.6814 9/5
40.7145 253.8530 705.0303 258.7107 708.7488 1376.2479 8/5
38.8768 242.3950 673.2079 247.0335 676.7585 1314.1292 7/5
36.9478 230.3679 639.8046 234.7761 643.1790 1248.9246 6/5
34.9124 217.6772 604.5585 221.8426 607.7471 1180.1228 1
32.7507 204.1993 567.1262 208.1068 570.1173 1107.0533 4/5
30.4359 189.7666 527.0419 193.3979 529.8216 1028.8072 3/5
27.9299 174.1417 483.6468 177.4741 486.1976 944.0983 2/5
25.1757 156.9692 435.9534 159.9730 438.2526 850.9987 1/5

20

23.8999 149.3472 416.2481 151.9602 417.4227 813.8886 9/5
22.9105 143.1646 399.0165 145.6694 400.1424 780.1957 8/5
21.8764 136.7027 381.0064 139.0944 382.0815 744.9806 7/5
20.7910 129.9197 362.1016 132.1928 363.1233 708.0161 6/5
19.6456 122.7626 342.1538 124.9105 343.1193 669.0123 1
18.4292 115.1615 320.9687 117.1764 321.8744 627.5892 4/5
17.1266 107.0220 298.2828 108.8944 299.1245 583.2314 3/5
15.7165 98.2101 273.7230 99.9284 274.4954 535.2098 2/5
14.1667 88.5254 246.7306 90.0742 247.4268 482.4316 1/5

L/h
S-S C-S E1

E2ω1 ω2 ω3 ω1 ω2 ω3

3

2855.5125 10,211.2928 19,887.7552 4429.7108 12,775.5312 23,040.8390 9/5
2737.3016 9788.5717 19,064.4535 4246.3323 12,246.6573 22,087.0079 8/5
2613.7500 9346.7519 18,203.9548 4054.6686 11,693.8886 21,090.0823 7/5
2484.0608 8882.9841 17,300.7097 3853.4837 11,113.6604 20,043.6330 6/5
2347.2168 8393.6310 16,347.6340 3641.1999 10,501.4220 18,939.4530 1
2201.8845 7873.9238 15,335.4401 3415.7482 9851.2070 17,766.7818 4/5
2046.2562 7317.3979 14,251.5369 3174.3245 9154.9274 16,511.0323 3/5
1877.7734 6714.9048 13,078.1072 2912.9599 8401.1376 15,151.5624 2/5
1692.6021 6052.7334 11,788.4466 2625.7066 7572.6831 13,657.4338 1/5

10

267.3849 1056.6879 2331.5864 417.4227 1335.5276 2730.8517 9/5
256.3159 1012.9438 2235.0648 400.1424 1280.2402 2617.8015 8/5
244.7467 967.2232 2134.1823 382.0815 1222.4549 2499.6437 7/5
232.6029 919.2315 2028.2882 363.1233 1161.7991 2375.6162 6/5
219.7891 868.5921 1916.5522 343.1193 1097.7969 2244.7463 1
206.1804 814.8116 1797.8854 321.8744 1029.8248 2105.7587 4/5
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Table 5. Cont.

L/h
C-F C-C E1

E2ω1 ω2 ω3 ω1 ω2 ω3

10
191.6077 757.2210 1670.8115 299.1245 957.0372 1956.9245 3/5
175.8313 694.8737 1533.2418 274.4954 878.2375 1795.7970 2/5
158.4922 626.3507 1382.0455 247.4268 791.6326 1618.7096 1/5

15

119.1080 473.8501 1056.6879 186.0130 599.3424 1238.9827 9/5
114.1772 454.2340 1012.9438 178.3125 574.5312 1187.6920 8/5
109.0237 433.7315 967.2232 170.2641 548.5990 1134.0840 7/5
103.6141 412.2106 919.2315 161.8160 521.3786 1077.8129 6/5
97.9061 389.5024 868.5921 152.9017 492.6565 1018.4375 1
91.8441 365.3857 814.8116 143.4345 462.1527 955.3791 4/5
85.3526 339.5603 757.2210 133.2966 429.4879 887.8532 3/5
78.3249 311.6019 694.8737 122.3214 394.1252 814.7500 2/5
70.6011 280.8742 626.3507 110.2590 355.2596 734.4057 1/5

20

67.0517 267.3849 598.5720 104.7296 338.2895 702.1165 9/5
64.2759 256.3159 573.7927 100.3941 324.2852 673.0507 8/5
61.3747 244.7467 547.8938 95.8627 309.6482 642.6717 7/5
58.3294 232.6029 520.7084 91.1061 294.2840 610.7836 6/5
55.1161 219.7891 492.0232 86.0872 278.0723 577.1362 1
51.7035 206.1804 461.5587 80.7570 260.8549 541.4018 4/5
48.0491 191.6077 428.9359 75.0491 242.4178 503.1357 3/5
44.0929 175.8313 393.6186 68.8698 222.4578 461.7090 2/5
39.7448 158.4922 354.8030 62.0784 200.5208 416.1789 1/5

Table 6. Results for frequencies of vibration in rad/s for symmetric FGM for Timoshenko beam model.

L/h
C-F C-C E1

E2ω1 ω2 ω3 ω1 ω2 ω3

3

976.7450 4397.4773 9584.6797 4186.2677 8648.0538 13,854.5002 9/5
938.0058 4243.4098 9264.3486 4049.1202 8379.5514 13,429.7922 8/5
897.4863 4082.3999 8930.1297 3906.0296 8100.3366 12,988.3476 7/5
854.9102 3913.2982 8579.7513 3756.0063 7808.7243 12,527.5718 6/5
809.9217 3734.5893 8210.2086 3597.7339 7502.4769 12,044.0356 1
762.0500 3544.2094 7817.3864 3429.3991 7178.5043 11,533.0319 4/5
710.6499 3339.2333 7395.3979 3248.3926 6832.3253 10,987.7858 3/5
654.7982 3115.3012 6935.3464 3050.7483 6457.0195 10,397.9306 2/5
593.0950 2865.4806 6422.7824 2829.9967 6040.9824 9746.2551 1/5

10

94.8493 567.0480 1486.8251 567.9982 1449.9738 2611.4853 9/5
90.9403 544.2368 1428.8213 545.4725 1394.6966 2515.5404 8/5
86.8542 520.3822 1368.1448 521.9122 1336.8656 2415.1783 7/5
82.5646 495.3244 1304.3756 497.1566 1276.0725 2309.6782 6/5
78.0376 468.8581 1236.9710 470.9992 1211.7878 2198.0977 1
73.2287 440.7122 1165.2098 443.1662 1143.3040 2079.1675 4/5
68.0776 410.5171 1088.0998 413.2827 1069.6417 1951.1129 3/5
62.4986 377.7453 1004.2138 380.8122 989.3830 1811.3341 2/5
56.3647 341.6006 911.3762 344.9408 900.3504 1655.7839 1/5

15

42.3507 259.6980 703.7623 261.9847 694.8156 1299.8421 9/5
40.6010 249.0905 675.4856 251.3573 667.2282 1249.4363 8/5
38.7721 238.0008 645.9152 240.2453 638.3740 1196.7053 7/5
36.8523 226.3559 614.8525 228.5751 608.0567 1141.2822 6/5
34.8264 214.0625 582.0428 216.2521 576.0235 1082.6919 1
32.6747 200.9979 547.1496 203.1519 541.9398 1020.3027 4/5
30.3702 186.9951 509.7133 189.1049 505.3473 953.2439 3/5
27.8749 171.8174 469.0787 173.8700 465.5906 880.2612 2/5
25.1317 155.1082 424.2557 157.0839 421.6756 799.4388 1/5
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Table 6. Cont.

L/h
C-F C-C E1

E2ω1 ω2 ω3 ω1 ω2 ω3

20

23.8611 147.6924 405.6701 149.4019 402.5527 766.7621 9/5
22.8745 141.6252 389.1699 143.2889 386.2950 736.2677 8/5
21.8432 135.2829 371.9181 136.8983 369.2947 704.3738 7/5
20.7606 128.6240 353.8008 130.1879 351.4385 670.8636 6/5
19.6183 121.5958 334.6718 123.1044 332.5809 635.4585 1
18.4051 114.1287 314.3388 115.5770 312.5301 597.7895 4/5
17.1058 106.1285 292.5401 107.5101 291.0244 557.3518 3/5
15.6990 97.4613 268.9035 98.7676 267.6912 513.4231 2/5
14.1527 87.9264 242.8687 89.1451 241.9686 464.9091 1/5

L/h
S-S C-S E1

E2ω1 ω2 ω3 ω1 ω2 ω3

3

2540.7814 7688.0999 13,383.1858 3355.9825 8221.7511 13,606.4807 9/5
2443.3654 7422.2724 12,953.3475 3238.2762 7953.5982 13,180.4554 8/5
2341.4467 7144.3359 12,504.8210 3115.2314 7673.9842 12,736.8627 7/5
2234.3082 6852.2464 12,034.3978 2985.9610 7381.0235 12,272.8404 6/5
2121.0202 6543.3005 11,537.7691 2849.2965 7072.2107 11,784.5740 1
2000.3425 6213.8038 11,008.9315 2703.6474 6744.0942 11,266.7847 4/5
1870.5614 5858.5037 10,439.1357 2546.7628 6391.7012 10,711.8189 3/5
1729.2003 5469.5539 9814.9013 2375.2948 6007.4509 10,107.9024 2/5
1572.4632 5034.4637 9113.9457 2183.9351 5578.9064 9435.4708 1/5

10

263.8169 1005.6455 2111.9527 402.5527 1225.1508 2364.1911 9/5
252.9963 965.3857 2030.0611 386.2950 1177.2484 2274.9703 8/5
241.6846 923.2815 1944.3898 369.2947 1127.1392 2181.6289 7/5
229.8079 879.0493 1854.3418 351.4385 1074.4768 2083.5041 6/5
217.2717 832.3241 1759.1449 332.5809 1018.8142 1979.7343 1
203.9517 782.6240 1657.7716 312.5301 959.5574 1869.1654 4/5
189.6792 729.2903 1548.8062 291.0244 895.8897 1750.1959 3/5
174.2147 671.3826 1430.2094 267.6912 826.6376 1620.4995 2/5
157.1986 607.4789 1298.8667 241.9686 750.0132 1476.4898 1/5

15

118.3873 462.9097 1005.6455 182.9546 575.0322 1151.1363 9/5
113.5069 444.0511 965.3857 175.4667 551.8873 1105.7626 8/5
108.4056 424.3341 923.2815 167.6388 527.6841 1058.3019 7/5
103.0502 403.6286 879.0493 159.4193 502.2605 1008.4288 6/5
97.3985 381.7681 832.3241 150.7427 475.4082 955.7238 1
91.3949 358.5334 782.6240 141.5227 446.8528 899.6307 4/5
84.9641 333.6263 729.2903 131.6420 416.2193 839.3863 3/5
77.9995 306.6230 671.3826 120.9340 382.9734 773.8964 2/5
70.3410 276.8856 607.4789 109.1485 346.3082 701.4983 1/5

20

66.8218 263.8169 581.3592 103.7477 330.2736 672.0839 9/5
64.0622 252.9963 557.7678 99.4807 316.8241 645.0739 8/5
61.1777 241.6846 533.1009 95.0203 302.7624 616.8282 7/5
58.1497 229.8079 507.1950 90.3375 287.9955 587.1573 6/5
54.9543 217.2717 479.8404 85.3951 272.4047 555.8177 1
51.5604 203.9517 450.7610 80.1444 255.8336 522.4882 4/5
47.9254 189.6792 419.5808 74.5192 238.0691 486.7300 3/5
43.9893 174.2147 385.7650 68.4258 218.8089 447.9175 2/5
39.6620 157.1986 348.5075 61.7233 197.5975 405.1056 1/5

4.3. Eigenproperties of a Framed Structure Composed of Symmetric Functionally Graded Materials

In this subsection, frequencies of vibration and mode shapes of a framed structure
with elements composed of symmetric FGM are obtained. Columns of the frame have
height H and the beam has length L, as shown in Figure 7.
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Figure 7. Considered framed structure.

Each element of the structure has a rectangular cross section with base b = 0.3 m and
height h = 0.6 m. The mechanical properties of the inner material are E2 = 30 GPa and
ρ2 = 2000 kg/m3. The results are obtained for different values of H/L = 1, 1/2, and 1/3,
with H = 3 m assumed constant. For the Euler–Bernoulli beam model, frequencies for
different values of the E1/E2 ratio by decreasing the Young modulus of the outer material
only and assuming ρ1/ρ2 = 1 have been reported in Table 7, whereas frequencies for
different values of ρ1/ρ2 by decreasing the density of the outer material only and assuming
E1/E2 = 1 have been reported in Table 8.

Table 7. Frequencies for framed structure with varying Young modulus for Euler–Bernoulli beam
model.
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Table 8. Frequencies for framed structure with varying density for Euler–Bernoulli beam model.

H/L
Frequencies[
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ρ2
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=1 ρ1
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1
ω1 211.6497 217.4671 223.7923 230.7035 238.2974 246.6941 256.0459 266.5488 278.4603
ω2 820.7426 843.7390 868.7835 896.1992 926.3858 959.8437 997.2099 1039.3099 1087.2358
ω3 1325.2258 1362.7514 1403.6565 1448.4809 1497.8931 1552.7333 1614.0739 1683.3096 1762.2936

1/2
ω1 151.5350 155.6962 160.2202 165.1630 170.5933 176.5971 183.2829 190.7906 199.3034
ω2 271.3307 278.8103 286.9446 295.8351 305.6068 316.4154 328.4585 341.9905 357.3457
ω3 748.6100 769.5766 792.4097 817.4038 844.9227 875.4222 909.4826 947.8553 991.5346

1/3
ω1 119.2165 122.4890 126.0467 129.9336 134.2037 138.9246 144.1815 150.0842 156.7767
ω2 130.4482 134.0323 137.9290 142.1866 146.8644 152.0366 157.7968 164.2656 171.6012
ω3 372.2256 382.5257 393.7311 405.9826 419.4540 434.3621 450.9818 469.6679 490.8874

Figure 8 summarizes the results reported in Tables 7 and 8 for H/L = 1 in terms of 3D
surfaces in which the first three frequencies of vibration are shown with the variation in
the ratios E1/E2 and ρ1/ρ2. As can be observed, the relationships between the frequencies
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of vibration and the mechanical property ratios are almost linear. It can also be observed
that, as expected, the frequencies increase by increasing E1 (stiffer material), whereas they
decrease by increasing ρ1 (higher values of mass).
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The first three mode shapes of the framed structure for H/L = 1 and E1/E2 = 4/5 are
shown in Figure 9 as an example.
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Analogous results for the Timoshenko beam model are reported in Tables 9 and 10.

Table 9. Frequencies for framed structure with varying Young modulus for Timoshenko beam model.
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1
ω1 273.2436 262.3707 250.9990 239.0513 226.4284 212.9990 198.5833 182.9241 165.6319
ω2 1026.1581 986.2055 944.4121 900.4884 854.0600 804.6293 751.5111 693.7194 629.7500
ω3 1556.4546 1498.2359 1437.3257 1373.2883 1305.5563 1233.3686 1155.6661 1070.9072 976.7086

1/2
ω1 199.0289 191.0202 182.6453 173.8480 164.5564 154.6753 144.0749 132.5704 119.8823
ω2 352.8565 338.7469 323.9914 308.4903 292.1159 274.6992 256.0090 235.7153 213.3186
ω3 951.2203 913.8004 874.6600 833.5304 790.0654 743.8055 694.1199 640.1035 580.3797

1/3
ω1 157.9586 151.5656 144.8807 137.8597 130.4453 122.5625 114.1089 104.9385 94.8316
ω2 172.7205 165.7303 158.4213 150.7449 142.6388 134.0210 124.7794 114.7549 103.7071
ω3 484.9226 465.5170 445.2231 423.9042 401.3845 377.4319 351.7290 323.8225 293.0266

Table 10. Frequencies for framed structure with varying density for Timoshenko beam model.
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ω2 757.1785 778.2845 801.2598 826.3976 854.0600 884.7000 918.8931 957.3837 1001.1544
ω3 1156.9441 1189.3036 1224.5392 1263.1036 1305.5563 1352.5977 1405.1186 1464.2721 1531.5826

1/2
ω1 146.1774 150.1904 154.5532 159.3198 164.5564 170.3458 176.7926 184.0316 192.2395
ω2 259.3760 266.5211 274.2912 282.7831 292.1159 302.4383 313.9384 326.8588 341.5181
ω3 700.4027 719.9347 741.1974 764.4625 790.0654 818.4258 850.0771 885.7092 926.2332

1/3
ω1 115.8806 119.0609 122.5184 126.2956 130.4453 135.0329 140.1412 145.8769 152.3799
ω2 126.6978 130.1782 133.9621 138.0964 142.6388 147.6610 153.2541 159.5350 166.6574
ω3 356.2458 366.0919 376.8023 388.5114 401.3845 415.6284 431.5049 449.3519 469.6138

As in the case of the beam with different boundary conditions of the previous para-
graph, changing the shear deformability reduces the stiffness and, consequently, the fre-
quencies of vibration.

5. Conclusions

Inhomogeneous beams in which the mechanical properties vary along the beam
thickness according to a symmetric distribution have been considered. In particular, the
Young modulus and the mass density of the inner material have been assumed to be
constant, while, with a symmetric parabolic variation, an outer material with variable
characteristics has been introduced. The eigenproperties of single beams with different
support conditions and slenderness ratios have been evaluated by means of the Wittrick
and Williams algorithm applied in conjunction with the dynamic stiffness matrix for both
Euler–Bernoulli and Timoshenko beam models. As expected, the reduction in mechanical
characteristics of the outer material involves a reduction in vibration frequencies as the
structures become more deformable. Considerations of the percentages of reduction for the
considered beams have been reported, allowing us to differentiate the behavior of Euler–
Bernoulli beams from Timoshenko beams and also to identify which support condition and
slenderness ratio mainly affect the frequency reduction. The proposed approach can also
be applied to framed structures, and a simple example of an elementary frame has been
reported in this paper. The developed study aims to make a contribution to the design
of structures using FGMs, since these materials allow for planning advanced structures
tailored to specific dynamic conditions.

It must be pointed out that, although the proposed approach provides an exact mathe-
matical solution within the adopted classical beam theories, the fundamental hypotheses
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of these theories could not be suitable for considering the presence of complex materials
which could require the adoption of more sophisticated approaches based on the use of
solid FEM elements.
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Appendix A

The formal expressions of the matrices AEB and BEB for the Euler–Bernoulli beam model
and ATIM and BTIM for the Timoshenko beam model are reported here for completeness.

BEB =



1 1 0 0 0 0
0 0 1 1 1 1
0 0 λ1

L
λ2
L

λ3
L

λ4
L

eη1 eη2 0 0 0 0
0 0 eλ1 eλ2 eλ3 eλ4

0 0 λ1eλ1
L

λ2eλ2
L

λ3eλ3
L

λ4eλ4
L


(A1)

AEB =



a11 a12 0 0 0 0
0 0 a23 a24 a25 a26
0 0 a33 a34 a35 a36

a41 a42 0 0 0 0
0 0 a53 a54 a55 a56
0 0 a63 a64 a65 a66

 (A2)

where the elements of the matrix AEB for h = 1, 2 and k = 3, . . ., 6 are given by

a1h = − A0ηh
L , a2k =

A2
L3

(
λ3

k−2 +
B2L2ω2

A2
λk−2

)
,

a3k = − A2
L2 λ2

k−2, a4h = A0ηheηh

L ,

a5k = − A2eλk−2

L3

(
λ3

k−2 +
B2L2ω2

A2
λk−2

)
, a6k =

A2
L2 λ2

k−2eλk−2 .

where Ai and Bi, for i = 0, 1, 2; λj, for j = 1, . . ., 4; and ηh for h = 1, 2 are defined in
Section 2.2.1.

BTIM =



1 1 0 0 0 0
0 0 1 1 1 1
0 0 1

β1
1
β2

1
β3

1
β4

eη1 eη2 0 0 0 0
0 0 eλ1 eλ2 eλ3 eλ4

0 0 eλ1
β1

eλ2
β2

eλ3
β3

eλ4
β4


(A3)
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ATIM =



a11 a12 0 0 0 0
0 0 a23 a24 a25 a26
0 0 a33 a34 a35 a36

a41 a42 0 0 0 0
0 0 a53 a54 a55 a56
0 0 a63 a64 a65 a66

 (A4)

where the elements of the matrix ATIM for h = 1, 2 and k = 3, . . ., 6 are given by

a1h = − A0ηh
L , a2k =

A3
L

(
−λk−2 +

L
βk−2

)
,

a3k = − A2
L

λk−2
βk−2

, a4h = A0ηheηh

L ,

a5k =
A3eλk−2

L

(
λk−2 − L

βk−2

)
, a6k =

A2
L

λk−2eλk−2

βk−2
.

where Ai for i = 0, . . ., 3; λj and βj for j = 1, . . ., 4; and ηh for h = 1, 2 are defined in
Section 2.2.2.
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