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Abstract: As network technology evolves, cyberattacks are not only increasing in frequency but also
becoming more sophisticated. To proactively detect and prevent these cyberattacks, researchers are
developing intrusion detection systems (IDSs) leveraging machine learning and deep learning tech-
niques. However, a significant challenge with these advanced models is the increased training time as
model complexity grows, and the symmetry between performance and training time must be taken
into account. To address this issue, this study proposes a fast-persistent-contrastive-divergence-based
deep belief network (FPCD-DBN) that offers both high accuracy and rapid training times. This model
combines the efficiency of contrastive divergence with the powerful feature extraction capabilities
of deep belief networks. While traditional deep belief networks use a contrastive divergence (CD)
algorithm, the FPCD algorithm improves the performance of the model by passing the results of each
detection layer to the next layer. In addition, the mix of parameter updates using fast weights and
continuous chains makes the model fast and accurate. The performance of the proposed FPCD-DBN
model was evaluated on several benchmark datasets, including NSL-KDD, UNSW-NB15, and CIC-
IDS-2017. As a result, the proposed method proved to be a viable solution as the model performed
well with an accuracy of 89.4% and an F1 score of 89.7%. By achieving superior performance across
multiple datasets, the approach shows great potential for enhancing network security and providing
a robust defense against evolving cyber threats.

Keywords: network intrusion detection system; anomaly detection; fast persistent contrastive
divergence; deep belief network

1. Introduction

The advancement of the internet and network technology has brought us many conve-
niences, but it has also led to a surge in various forms of cyberattacks. Attackers are trying
to exploit related vulnerabilities to steal information or break into secure networks [1].
These attacks can be carried out in a variety of ways, including privacy breaches, data
tampering, and denial-of-service attacks, so it is important to have a network security
system in place. Among cyber attacks, D-Dos attacks are responsible for up to 25% of all
internet traffic in a country [2]. It is essential to analyze the traffic generated to understand
the path of the attacked network to prepare for the next attack or to gather information to
defend against an ongoing attack.

Intrusion detection systems are a critical component of network security that analyze
network traffic to detect malicious activity or policy violations in real time [3]. Intrusion
detection methods are categorized into three main categories [4]. They can be categorized
into signature-based detection, anomaly-based detection, and stateful protocol analysis.
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Signature-based detection is a method of detecting anomalies using signatures that repre-
sent patterns or strings of characters that correspond to known attacks or threats. It is the
process of analyzing and comparing captured events and patterns to detect intrusions, us-
ing knowledge accumulated by specific attacks and system vulnerabilities. Anomaly-based
detection detects behavior that does not correspond to known behavior and uses profiles
that represent normal and expected behavior derived from monitoring regular activity, net-
work connections, hosts, or users over a period of time. These can be static or dynamic and
can be developed for a variety of attributes, such as failed login attempts, processor usage,
number of emails sent, etc. Next, the observed events are compared to the normal profile
to recognize significant attacks. This is also known as behavior-based detection. Some
examples of anomalous behavior-based detection include intrusion attempts, penetration of
legitimate users, denial of service, and Trojans. Finally, stateful protocol analysis indicates
that an IDS can identify and track the protocol state. Although it looks similar to anomaly
detection, it is also called specification-based detection because it relies on generic profiles
developed by vendors for specific protocols. Typically, SPA’s network protocol models are
based on protocol standards originally developed by international standards organizations
(e.g., IETF). They differ in that they focus on specific attacks/threats or unknown attacks.
Among IDS methodologies, anomaly detection methods can detect zero-day attacks be-
cause they detect anomalous behavior by modeling normal behavior. However, modeling
normal behavior is a very difficult problem, so anomaly detection techniques using machine
learning and deep learning techniques have been actively researched recently [5]. Machine
learning and deep learning are suitable because they can model data and predict and infer
outcomes, but most of the data suffer from imbalance, as the data in the minority class are
much smaller than the data in the majority class [6]. In general, classification performance
is likely to suffer when using AI models, and the detection of minority classes becomes
difficult as the model is trained to be biased toward one side.

Recent studies have used support vector machines (SVMs) and autoencoders (AEs) for
training to solve this data imbalance problem and anomaly detection problem. However,
AEs have the disadvantage of over-reconstructing some samples, which degrades the
performance of the detection method, and SVMs have difficulty understanding the inherent
structure of the data and extracting features from noisy or incomplete data. The symmetry
between performance and training time must be considered. In this paper, DBNs are used,
which learn complex representations of data, extract robust features from incomplete data
through unsupervised and semi-supervised learning, and learn multi-level representations.
DBN is a structure of multiple layers of restricted Boltzmann machines, where each layer
can learn the complex hierarchical structure of the data [7,8]. The weights of each layer
can be efficiently initialized to alleviate the gradient vanishing problem, which enables
structured and hierarchical dictionary learning compared to AE.

Recent research has focused on high accuracy, and as the structure of the model
becomes increasingly complex, the learning speed of the model becomes slower. To address
this, this paper uses a fast-continuous-contrast-divergence–deep-belief-network-based
model to effectively deal with uncertainty and ambiguity in the data. High-dimensional
data features are then extracted through the deep neural network structure, and precise
detection is performed based on them.

The organization of this paper is as follows: Section 2 describes the network intrusion
detection approach, which uses deep learning models to detect anomalies. Section 3
describes the DBN model using the fast continuous contrast divergence method proposed
in this paper. In Section 4, anomalies are detected using the NSL-KDD, UNSW-NB15, and
CIC-IDS-2017 datasets to conduct experiments and compare the performance with that of
other studies. Conclusions are drawn, and future work is presented in Section 5.

2. Related Works

Intrusion detection aims to identify and alert you to security threats such as unau-
thorized access, malicious activity, or policy violations [9]. It primarily works based on
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predefined intrusion signatures, which are derived from known attack types. Identifying
malicious traffic with a specific pattern, such as DDoS attacks, is an example of intrusion
detection. Time series anomaly detection aims to detect unusual patterns, fluctuations, or
anomalies in time series data [10]. It is used in a variety of fields to analyze changes in data
over time. It is used by leveraging machine learning or deep learning techniques to analyze
the statistical characteristics or behavioral patterns of data. Both methodologies process
and analyze large amounts of data to detect anomalies. They also monitor data flows and
raise alerts when anomalies are detected. This requires fast analytics on continuous data
streams. In terms of detecting anomalies in large and complex network data, intrusion
detection and time series anomaly detection techniques can be used in combination to
improve the effectiveness of security systems and help detect and respond to more diverse
and sophisticated attacks and threats.

2.1. Deep-Learning-Based Network Intrusion Detection

Yang et al. [11] proposed a model that combines an improved conditional variational
autoencoder (ICVAE) and a deep neural network (DNN). New attack samples were gener-
ated according to the specified intrusion categories to balance the training data and increase
the diversity of training samples to improve the detection rate of unbalanced attacks. Since
the class labels are only used as additional input to the decoder, the learned weights can be
reused. By automatically reducing the data dimensionality and reusing ICVAE to initialize
the weights of the DNN’s hidden layers, global optimization can be easily achieved through
backpropagation and fine-tuning.

Radford et al. [12] tokenize netflows and compress them into word sequences that
form sentences representing conversations between computers and then create a model
that learns the semantic and syntactic grammar of the generated language. It uses long
short-term memory (LSTM) and recurrent neural networks (RNNs) to capture the complex
relationships and nuances of language. It predicts the communication between two IPs
and uses the error to measure how typical or pessimistic the observed communication
is. By training a model that is unique to each network but generalized to typical traffic,
both internal and external, sequences of network activity that are outliers can be identified.
Positive unsupervised attack identification performance was demonstrated on an ISCX IDS
dataset containing normal traffic and four attack patterns.

Kim et al. [13] developed a deep-learning-based CNN model focusing on Dos attacks.
They used the KDD99 dataset and classified the attacks into two categories, attack and
benign, focusing on different attacks that fall into the same category rather than broad
categories. In addition to KDD 99, they also used CIC IDS 2018 to use a sufficient sample of
data and compared its performance with RNNs, showing good performance.

Tian et al. [14] proposed a method called ramp-OCSVM by introducing a ramp loss
function to develop a robust and sparse methodology to address the shortcomings of
traditional noise-sensitive SVMs. By utilizing the advantages of its non-convexity property,
a robust and sparse semi-supervised algorithm was created. The concave–convex procedure
(CCCP) was utilized to solve the obtained model, which is an infeasible non-convex
optimization problem. The performance was measured using the NSL-KDD and UNSW-
NB15 datasets, and the superiority of the model in terms of parameter sensitivity analysis
and sparsity was demonstrated.

Zavrak et al. [15] used a variational autoencoder (VAE) with a focus on detecting
anomalous network traffic rather than flow-based data. They used flow features to identify
unknown attacks and flow-based features extracted from network traffic data, including
common and different types of attacks. To analyze the performance of the method at
different thresholds, the Receiver Operating Characteristic (ROC) curves were examined in
detail, and it was found that the method outperforms other models.

Kim et al. [16] used LSTM networks to model system call sequences and interpret
program execution into the system call language. They used a robust ensemble method
that combines multiple models to reduce the high false alarm rate and demonstrated an
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improved ability to identify both known and unknown attacks. Their method is efficient
in detecting host-based anomalies and demonstrates improved precision in detecting
intrusions by focusing on short sequences of system calls.

Aldwairi et al. [17] recognized the ability to recognize new attack patterns due to the
high dimensionality of network traffic data as one of the key requirements for anomaly
detection systems. Restricted Boltzmann machine (RBM) was used to distinguish between
normal and abnormal traffic in the ISCX dataset. The effectiveness of the RBM was tested
using real-world positive and negative measurements along with its accuracy, and the
bias that appears during training was reduced by eliminating data imbalance and using a
balanced dataset.

Sharma et al. [18] proposed a feed-forward deep neural network (FFDNN) method
based on deep learning methodology using a filter-based feature selection model. The
feature selection strategy aims to determine and select the most relevant subset of attributes
from the feature importance scores for training a deep learning model. They implemented a
method to remove unnecessary and inefficient features from the feature importance scores
and experimented with NSL-KDD, UNSW-NB15, and CIC-IDS-2017 datasets, showing
good performance. While this provides good generalization power, there is a risk that not
enough features of the data exist or that important information is missing as parameter
values change.

Sharma et al. [19] used a concatenative learning model based on different convolutional
neural network (CNN) models, VGG16, VGGG19, and Xception, and experimented with
the UNSW-NB15 and CIC-DDOS-2019 datasets. During pre-training, the images were
converted into square color images suitable for CNN model application using feature
selection techniques based on information gain values. However, while combining multiple
neural network layers improves performance, it also increases the size and complexity of
the model, which increases training time and computational cost. Because they are based
on DNN models, additional tuning is essential to adapt to new types of attacks or changing
data patterns.

While the above-mentioned studies have contributed a lot, there are a few problems.
Some of the studies were conducted on only one dataset instead of multiple datasets,
and since attackers rarely leave traces in real-world network environments, their practical
application is limited. To solve this problem, this research conducts experiments on various
datasets and conducts anomaly detection research on normal datasets, excluding anomalous
data to measure suspicious data from trace-free network traffic records.

2.2. Deep Belief Network

A deep belief network (DBN) is one of the generative probabilistic graphical models,
which consists of several layers of unsupervised learning models, most notably RBMs. Each
layer trains independently, and the training results of the lower layers are used as input
data for the higher layers. The DBN structure can be seen in Figure 1, where the RBMs in
each layer use an energy function to determine the probability distribution of the system.

The energy function can be represented as in Equation (1), where v is the state of
the neurons in the visible layer, b and c are the biases of the visible and hidden neurons,
respectively, and wij is the weight between neurons i and j.

E(v, h) = −
(

∑
i

bivi + ∑
j

cjhj + ∑
i,j

viwijhj

)
(1)

This can be expressed as the combined probability of a neuron and a hidden neuron
as shown in Equation (2). Z is the partition function; normalize the probability distribution
so that the sum of the probabilities is 1.

P(v, h) =
e−E(v,h)

Z
(2)
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The conditional probabilities of the visible and hidden neurons can be calculated as
shown in Equations (3) and (4); let σ(x) be a sigmoid function, where σ(x) = 1/(1 + e−x).

P
(
hj = 1

∣∣v) = σ

(
cj + ∑

i
wijvi

)
(3)

P
(
vj = 1

∣∣h) = σ

(
bi + ∑

j
wijhj

)
(4)Symmetry 2024, 16, x FOR PEER REVIEW 5 of 15 
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2.3. Contrastive Divergence

The contrastive divergence (CD) algorithm, commonly used in machine learning,
updates the weights as shown in Equation (5) [20].

w(t+1)
ij = w(t)

ij + η
(〈

vihj
〉

data −
〈
vihj

〉
model

)
(5)

The data expectation (
〈
vihj

〉
data) represents the product of the average visible units vi

and hidden units hj computed from the model’s response to the input data and represents
the average activation state based on the actual data distribution. The model expectation
value (

〈
vihj

〉
model) is calculated based on the data reconstructed by the model and represents

the average activation state from the data distribution generated by the model. In the CDn
algorithm, n refers to the number of Gibbs sampling steps performed between the visible
and hidden units, which has a significant impact on the learning rate or weights.

Persistent contrastive divergence (PCD) is a method that does not randomly initialize
the initial state of a Markov chain, but instead continuously maintains the state of the chain
from the previous training step and uses it as the starting point for the next training [21].
It helps the chain better converge to the data distribution and generate idealized, theoret-
ically accurate samples. Continuous chaining reduces the mismatch between the model
distribution and the data distribution and provides stable and balanced learning. However,
it has the disadvantage of slow convergence compared to the CD algorithm, which makes
learning take longer.

To solve this problem, a method that uses fast weights is applied. Fast weights and
fast learning rates are used to fine-tune the energy surface and are related to stochastic
gradient ascent or gradient-based optimization methods [22].

h+ = P
(
h
∣∣v+, θ − regular

)
(6)

g+ = v+
T

h+ (7)

In the positive phase, we calculate the probability of the hidden layer h+ as shown
in Equation (6). We then calculate the positive gradient between the actual data v+ and
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the activation of the hidden layer h+ by the extrinsic, as shown in Equation (7). θ − regular
is used to compute the probability of the hiding layer h+ for v+ and to find the positive
gradient g+.

h− = P
(
h
∣∣v−, θ − regular + θ − f ast

)
(8)

g− = v−
T

h− (9)

In Equation (8), the sum of θ− regular and θ− f ast is used to calculate the probability
of the hiding layer h− for v−. Here, θ − f ast helps the model adapt to the rapidly changing
nature of the data. In Equation (9), v−T and v− are used to find the negative gradient g−.
Then, θ − f ast is used to perform a Gibbs sampling step to update the Markov chain and
compute the full gradient g. θ − f ast is then adjusted by updating the value of θ − regular
and applying a fast learning rate. The difference maximized by the parameter can measure
the deviation of the model distribution from the distribution from which the fantasy
particles were sampled, and this parameter update alternates with the Gibbs update of
the chain. This ensures that the slope has a positive cosine value for a discrete probability
distribution but prevents it from becoming too large. The weight updates increase this
slope, but the persistent chains quickly mix, which quickly decreases the slope, resulting in
the two products canceling out.

3. Fast-Persistent-Contrastive-Divergence-Method-Based Deep Belief Network
3.1. Dataset Preprocessing

To detect anomalies using artificial intelligence models, a network intrusion detection
dataset needs to be available. Open datasets for model training contain symbolic data that
cannot be used as input. They contain values that are missing, too small, too large, or
diverge into infinity. To address this, the dataset needs to be transformed into a form that is
easier for the model to learn from, a process known as data preprocessing.

To improve the quality of the data so that the model can learn effectively, data cleaning
fixes or removes incomplete or inaccurate data. Missing values can be removed from
the data, imputed using statistical methods, or estimated using a predictive model. If a
predictive model is used, all instances of data containing missing values should be removed
before training, as this could cast doubt on the reliability of the results. Simple incremental
counters, attributes that contain meaningless information, and fields with constant values
are also removed to reduce training time and increase efficiency.

Sometimes, a piece of data has multiple attribute values, and those attributes are
in different formats. Information like time can be changed to a simple real value like
unix timestamp, or text information like a network address can be converted to a real or
integer value. This is known as data transformation and embedding, which is the process
of transforming data that is difficult to represent into a form that is easier to capture its
characteristics through embedding. Since data values are often spread over a wide range,
it is necessary to unify the units and ranges. This is called data normalization, and it is
essential to embed non-numerical values by scaling them to a certain range of values.

To account for the nature of each attribute and preserve as many existing values as
possible, we used min–max scaling for numeric data (including both integers and real
numbers). Min–max scaling is a method of scaling an attribute to a specific range. In this
study, we used a scale between 0 and 1 to train the model. This research used a logarithmic
transformation because large variations in values, such as the number of bytes in a packet,
load data, or rate, can cause normal data to be misclassified as outliers. Logarithmic
transformation is an effective way to reduce the scale of the data and reduce the impact
of large values or outliers. This transformation can significantly reduce the scale of the
values, reducing their skewing of the overall data distribution. For data represented as
strings, such as protocol, state, attack category, and label, we used encoding to convert
them to integers. One of the methods considered was one-hot encoding, but due to the
large number of categories in the data, the dimensionality of the data increased rapidly, so
we used a simple method, label encoding, to sequentially number and convert them.
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Learning all the features is a very bad choice for efficiency. Instead, it is essential to
select and learn the key features that contain the unique information in the data. Traditional
dimensionality reduction techniques, such as principal component analysis (PCA), can re-
duce dimensionality by summarizing the main variability into a few principal components.
However, it has limitations in capturing the characteristics of data with non-linear structure,
such as network data, and is sensitive to noise because it is based on the covariance of
all variables.

In this study, we use the FPCD algorithm for dynamic evaluation of attribute impor-
tance. It allows us to evaluate the degree of activation of each trait in the hidden layer, select
only those traits that really contribute to the model, and remove less important traits. DBNs
are multi-layered, with each layer reconstructing the data and producing more abstract
and information-dense attributes as one moves to higher layers. Although there are other
methods of entropy-based attribute selection and correlation analysis between attributes,
we use the attribute importance method because it does not involve complex preprocessing
by analyzing each weight value in the model and does not change the overall structure
of the neural network model, allowing for efficient processing. The attribute importance
can be represented using the contribution of each attribute, which can be expressed as in
Equation (10). The activation probability is calculated as in Equation (3). The activation
probability is calculated from Equation (3), which quantitatively evaluates the influence of
each input characteristic in hidden layer learning.

Attribution(i) = ∑
j

∣∣wij
∣∣×P

(
hj = 1

∣∣v) (10)

3.2. Training FPCD-DBN

The probability of a data point is calculated from the distribution of the joint probability
of the states of the hidden layer neurons h for a given state v of the visible neurons in the
RBM. It is calculated using an energy function, such as Equation (2) described in Section 2.2,
and represents how well a particular data point is explained. To simplify the training data
points, data likelihood, or the log-likelihood of the data points, is used. It indicates how
well the model describes the dataset, and is calculated as follows:

logP(v) = log∑
h

e−E(v,h) − log Z (11)

It plays an important role in optimizing the parameters of the model and uses a
positive gradient of the log-likelihood over the data points. It guides the model’s parameter
updates based on the actual data distribution. It represents the gradient of the log-likelihood
calculated from the samples generated by the model and based on the model distribution.
This difference is used to update the model parameters. Equations (12) and (13) describe
how the regular parameter θ-regular and the fast parameter θ-fast are updated, respectively.
These equations represent the process of updating the parameters using the difference
between the positive gradient g+ and the negative gradient g−, which is used as a metric
to measure how well the model reproduces the training data. The regular parameters
provide the stability and generalization ability of the model, while the fast parameters
help the model adapt quickly to changes in the data. Using a harmonized update of the
two variables allows the model to learn the data more accurately and quickly. And we
can see that the learning rate adjusts over time in Equation (14). It starts with a high
learning rate at the beginning and gradually tapers off, with the model quickly finding
approximate parameter values early in training and fine-tuning over time to achieve a more
precise optimization.

θregular ←− θregular + ηregular·
(

g+ − g−
)

(12)

θ f ast ←− θ f ast + η f ast·
(

g+ − g−
)

(13)
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ηregular(t) = ηinital ×
(

1− t
Tmax

)
(14)

4. Experiments

Several experiments were conducted to validate the FPCD-DBN model in a network
intrusion detection environment. Experiments were performed on three different datasets
and compared with results from other studies. Instead of multi-class detection, a binary
classification problem was pursued to classify normal and attack instances. Since the
boundary between the two classes can be clearly defined and optimized, the characteristics
of the classes can be better understood, and accurate predictions can be made. And because
it uses data from both classes, it can effectively handle data imbalance. It is believed that
binary classification is more suitable than single-class classification because the performance
of the model does not need to be reduced as long as clear labels are present in the public
dataset, which has already been proven reliable by many studies. The DBN configuration
used in the experiments is shown in Table 1.

Table 1. The DBN configuration.

Parameter Value

Hidden Layer Dimension 12-6-3
Batch Size 64

Momentum 0.9
Activation Function ReLU, Sigmoid

Optimizer/Learning Rate Adam/0.001
Loss Function MSE

4.1. Datasets

Among publicly available datasets for network intrusion detection, the NSL-KDD
dataset, the UNSW-NB15 dataset, and the CIC-IDS-2017 dataset are used in this paper. The
NSL-KDD dataset was developed to address issues with the widely used KDD Cup 99
dataset. While the KDD Cup 99 dataset was useful for training models to detect specific
types of attacks, it tended to have poor generalization performance due to a large number of
duplicate records and unrealistically different test and training sets. The NSL-KDD dataset
reduces the risk of overfitting by removing duplicate data and ensuring data diversity.
It also better reflects real-world network environments, making the model’s performance
evaluation more reliable. The dataset includes different types of attack scenarios, allowing
us to evaluate the ability of network security systems to detect different intrusions. It in-
cludes four types of attacks, with categories such as denial of service (Dos), user-2-root
(U2R), remote local-to-local (R2L), and probing attack (Probe). However, since the dataset
is outdated, the UNSW-NB15 dataset was used as an additional dataset. The UNSW-NB15
dataset contains more network traffic characteristics, ranging from low-level network
packet data to high-level characteristics, which allows for more complex analysis and
algorithm development [23]. It better reflects network technologies and environments, such
as IoT environments and cloud services, and includes detailed descriptions and metadata
to help simulate specific situations. Furthermore, the training and test data were effectively
separated, ensuring reliable performance evaluation. The main types of attacks covered
by the UNSW-NB15 dataset are categorized as fuzzers, analysis, backdoors, DoS, exploits,
generic, reconnaissance, shellcode, worms, and normal. CIC-IDS-2017 includes a variety of
the latest attack scenarios and provides more realistic traffic patterns and attack scenarios
based on traffic generated by real networks [24]. It has the advantage of providing detailed
labels for each network event and more than 80 network traffic features, which is superior
in both the quality and quantity of data. It includes attack types such as Heartbleed, web
attack, infiltration, botnet, DDos, ftp-patator, ssh-patator, etc.

The NSL-KDD and UNSW-NB15 datasets were used as they were distributed as
separate training and testing datasets. For the CIC-IDS-2017 dataset, since the types of
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attacks vary by day of the week, the provided data were combined, and 200,000 samples
were randomly selected for training. Table 2 shows the number of benigns and attacks in
the training and test datasets for each dataset.

Table 2. The number of normal and attacks in the dataset used in the experiment.

Title 1
Train Dataset Test Dataset

Benign Attack Benign Attack

NSL-KDD 67,343 58,630 12,833 9711
UNSW-NB15 119,341 56,000 45,332 37,000
CIC-IDS-2017 1,704,822 418,234 568,275 139,412

Since network traffic data are represented as high-dimensional vectors, they can be
visualized using various methods. Among them, the t-distributed Stochastic Neighbor
Embedded (t-SNE) method is capable of embedding in low dimensions while preserving
the binary structure between data represented by high-dimensional vectors. Figures 2–4 vi-
sualize the NSL-KDD, UNSW-NB15, and CIC-IDS-2017 datasets using the t-SNE technique.
They show that the benign and attack samples share the same feature space in some places,
making anomaly detection difficult and linear separation impossible.
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4.2. Performance Evaluation

Performance is measured using the confusion matrix, a metric often utilized in the
literature to evaluate the performance of models, as shown in Table 3. Accuracy describes
the percentage of times a model correctly predicts the total predictions, but it is not as
reliable when there is a class imbalance, as high accuracy can be achieved by predicting
a large number of classes if samples from one class dominate. Precision is measured to
determine how accurate a prediction is and is considered an important metric when the goal
is to minimize the number of false positives. Recall, also called sensitivity, is an important
metric to ensure that true positive cases are not missed. F1− Score represents the harmonic
mean of Precision and Recall and is useful when considering both metrics simultaneously.
It allows for the evaluation of how well-balanced the model is and is characterized by a
sharp drop in score if either aspect is low.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1− score = 2× Precision× Recall
Precision + Recall

(18)

Table 3. Confusion matrix.

Predicted

Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

4.3. Experimental Results

For the classification performance results of each model to be meaningful in the
experiments, it is necessary to verify whether each model is sensitive to changes in the
threshold value. To verify this, the FPCD-DBN, RBM, DNN, and RNN models proposed
in this paper, along with the area under receiver operating characteristic (AU-ROC), were
used. By analyzing the performance metrics on each dataset, the extent of the changes in
model performance can be observed. Basically, the closer the ROC curve is to the upper
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left, the better the model, which indicates that the normal and attack error distributions
are very far apart. It also means that the performance is not sensitive to small changes in
the determined threshold, which means that this threshold can be used as a good decision
boundary in testing. Figures 5–7 show the AUROC of the models for each dataset.
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In our experiments, the AUROC performance for each dataset is shown in Table 4.
In our experiments using the NSL-KDD dataset which following Table 5, the FPCD-DBN
model showed an accuracy of 89.39% and an F1 score of 89.72%. This compares favorably
to the 88.28% and 88.65% accuracies of similar autoencoders [25] in terms of identifying and
reconstructing key features of the data. This can be explained by the fact that FPCD-DBN
better captures the importance of the features in the data through continuous Markov chains,
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enabling high data adaptability. It also shows a high F1 score of 89.72% on the UNSW-
NB15 dataset which following Table 6, compared to 83.2% and 85.26% for SSAE [26] and
MemAE [27], respectively. This can be attributed to the predictive model’s ability to accurately
identify the multi-layered structure and complex patterns in the data and learn the non-linear
data characteristics more effectively, resulting in higher sensitivity and specificity.

Table 4. AUROC performance for each dataset.

Parameter
Value

NSL-KDD UNSW-NB15 CIC-IDS-2017

DBN 0.9637 0.9646 0.9825
DNN 0.9437 0.9262 0.9678
RBM 0.9127 0.9560 0.9779
RNN 0.9301 0.9375 0.9753

Table 5. Comparison of experimental results on the NSL-KDD dataset with other studies.

Methods
Metrics

Accuracy Precision Recall F1 Score

DNN [28] 0.7575 - - -
RNN-IDS [29] 0.8129 - - -

RT [30] 0.8621 0.8078 0.9416 0.8696
AE [25] 0.8828 0.9123 0.8786 0.8951

DAE [25] 0.8865 0.9648 0.8308 0.8928
LSTM [31] 0.8900 - - -

FPCD-DBN 0.8939 0.8951 0.8983 0.8972

Table 6. Comparison of experimental results on the UNSW-NB15 dataset with other studies.

Methods
Metrics

Accuracy Precision Recall F1 Score

NB [32] 0.7639 0.7820 0.7640 0.7729
SVM [33] 0.8190 0.9730 0.7560 0.8210
RF [26] 0.8363 0.8690 0.8360 0.8522

SSAE [26] - 0.7310 0.9630 0.8320
MemAE [27] 0.8530 0.8774 0.8530 0.8526
FPCD-DBN 0.8662 0.8841 0.8816 0.8828

5. Conclusions

In this study, a deep belief network (DBN) was implemented using the fast persistent
contrastive divergence (FPCD) technique to evaluate its performance on the NSL-KDD,
UNSW-NB15, and CIC-IDS-2017 datasets. These datasets are significant in the area of
network anomaly detection, and each reflects different levels of cybersecurity issues. During
the experimental phase, the area under the receiver operating characteristic (AUROC) was
used as the main measure to indirectly validate the performance of the model. This
approach facilitated the identification of the appropriate threshold to be applied to each
dataset, ensuring consistency in the evaluation.

The experimental results showed that the FPCD-enhanced DBN outperformed the
existing models in terms of accuracy and F1 score. In particular, the model achieved impres-
sive AUROC values. This suggests that the derived thresholds are not only appropriate for
the various attack scenarios presented in the dataset but also effective as decision bound-
aries. When these results were compared to those of other studies, it was found that the
model was able to handle imbalanced data, a common problem. The model demonstrates
excellent classification results, achieving 89.4% on the NSL-KDD dataset and 86.6% on
the UNSW-NB15 dataset. These results highlight not only the efficiency of the proposed
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model but also its robustness to detect a wide range of network anomalies under a variety
of conditions. These findings confirm that the learning capabilities of the network can
be greatly enhanced, making it highly effective for complex anomaly detection tasks in
network security, considering the symmetry between performance and training time.
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