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Abstract: In business process management, business process change analysis is the key link to ensure
the flexibility and adaptability of the system. The existing methods mostly focus on the change
analysis of a single business process from the perspective of control flow, ignoring the influence of
data changes on collaborative processes with information interaction. In order to compensate for
this deficiency, this paper proposes a rule-driven consistency analysis method for data changes in
collaborative processes. Firstly, it analyzes the influence of data changes on other elements (such as
activities, data, roles, and guards) in collaborative processes, and gives the definition of data influence.
Secondly, the optimal alignment technology is used to explore how data changes interfere with the
expected behavior of deviation activities, and decision rules are integrated into the Petri net model to
accurately evaluate and screen out the effective expected behavior that conforms to business logic and
established rules. Finally, the initial optimal alignment is repaired according to the screened effective
expected behavior, and the consistency of business processes is recalculated. The experimental
results show that the introduced rule constraint mechanism can effectively avoid the misjudgment of
abnormal behavior. Compared with the traditional method, the average accuracy, recall rate, and
F1-score of effective expected behavior are improved by 4%, 4.7%, and 4.3%, respectively. In addition,
the repaired optimal alignment significantly enhances the system’s ability to respond quickly and self-
adjust to data changes, providing a strong support for the intelligent and automated transformation
of business process management.

Keywords: data change; decision rules; consistency; collaborative process

1. Introduction

Data are an important component of business processes [1,2]. With the variety of
business requirements, business processes become complicated, especially collaborative
processes with information interaction. Once a certain data point changes, a series of
changes may occur in related processes, and the actual execution behavior of the process
will deviate from the predefined behavior of the process. Therefore, it is very necessary to
study data changes in collaborative processes.

At present, the research on change in the process is mainly divided into three aspects:
change mining, change domain analysis, and change propagation. Change mining is an
important branch of process mining, and it is the cross-integration of process mining and
adaptive process management, aiming at discovering hidden changes in the operating sys-
tem and contributing to process repair and optimization [3,4]. Günther et al. [5] proposed
a method of mining change logs in an adaptive process management system, taking the
mined changes as the basis of process improvement. Fang et al. [6] studied the use of incom-
plete logs and joint log relationships to mining change operations in logs when the model is
unknown. Sun et al. [7] studied a behavior change mining method for complete logs with
hidden transitions based on Fang et al. [6], and applied it to oil spill accidents to explore the
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dynamic evolution process of disaster chains in different scenarios. Fang et al. [8] proposed
a log-induced change mining method and combined it with structural causal relationships
to locate potential faults in the system. Hmami et al. [9,10] compared the merged and
filtered mutation event logs with the mutation files to mine the change logs, and then used
the mining results as the basis for the recommendation system.

Change region analysis is the analysis of differences between similar models. These
differences are the unique characteristics and advantages of each model, which can provide
a basis for process optimization. Weidlich et al. [11] first gives the change in the process
model, and determines the change region in another model by using the behavior rela-
tionship in the behavior profile. This method can cope with the changes in model pairs
unrelated to the hierarchical structure and can show the inconsistency of behavior. The
disadvantage is that the degree of inconsistency may be increased by wrongly identifying
the corresponding relationship. Zhao et al. [12] analyzed the suspicious change region
of the target model and the source model from the perspective of behavior profile, and
obtained the minimum change region of the target model by using dynamic slicing tech-
nology. Fang et al. [13] analyzed the change region propagation from two aspects, namely
projection inheritance and protocol inheritance, and finally found the same change region
of the target model. Fang et al. [14] dynamically analyzed the changeable region module of
business process, and obtained the accurate changeable region module through T-variable.
Zhao et al. [15] analyzed the change region by establishing a fusion process with the data
flow and control flow, but did not consider the impact of data changes.

The essence of change propagation is to ensure the consistency of the same process at
different levels, and to maintain the compatibility of the behavior and structure with related
processes. Mahfouz et al. [16] introduced the concept of propagation, but how to spread it
is not clear. Weidlich et al. [17] analyzed the behavioral relationships between nodes and
identified the change areas caused by changes based on the structural characteristics of the
model. At the same time, changes can be propagated to other similar processes, but this
method only considers the control flow of the process and does not consider data attributes,
which is not comprehensive enough. Kolb et al. [18] used a set of update operations to
update the user view, propagated their changes to the underlying process model, and
provided migration rules to ensure the consistency and compatibility of related processes.
Fdhila et al. [19] and Dahman et al. [20] propagated the changes in centralized process
model to its divided subprocesses based on the basic change pattern. Wootton et al. [21]
pointed out that in processes where multiple process partners collaborate together, it may
be more complicated to deal with changes, and changes in one process may have an impact
on other process partners. Wang et al. [22] analyzed the influence of 10 change patterns
of business processes on the basis of services, and applied these influences to the change
propagation of services and processes. Dam et al. [23] predicted the impact of future
changes by mining the version history in the business process repository. Experiments
show that this method is more accurate than the analysis based on basic dependencies.

Based on the above methods, it is found that in the current business process man-
agement research, the analysis of process changes focuses on the dynamic adjustment
and optimization of the control flow, ignoring the impact of data changes on the process.
Data play an important role in the process, and the existence of data helps to describe the
business process more comprehensively and to determine the accuracy of model execution.
At present, the research on data is mainly in the fields of data flow error detection [24],
model correctness verification [25], process consistency research [26], etc. But the analysis
on how data changes directly and specifically affect the business process execution path and
its results is still insufficient. Especially in the complex collaborative process environment,
the sudden change in data may not only lead to the execution of a single process deviating
from the preset model, but also aggravate this inconsistency due to the data dependence
between multiple processes, which makes the stability and predictability of the overall
business process face challenges. It is worth noting that although some data changes seem
to be inconsistent with the expectations of the process, they may actually contain reasonable
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business logic or requirement changes. Therefore, how to effectively identify and repair
such “reasonable deviations” to restore or optimize the execution behavior of the process
has become an urgent problem to be solved.

Although the existing studies, such as references [27,28], have preliminarily explored
the impact of data changes on process behavior and the corresponding adaptive mechanism,
there is still a problem of insufficient accuracy in capturing the adaptive behavior of
response deviation, because for data changes, we should not only consider how the data
changes affect process behavior, but also analyze whether the data changes conform to the
decision rules of process operation. In addition, the consistency of the data changes they
studied was analyzed in a single process, which cannot solve the consistency analysis of
collaborative processes with data dependence. Therefore, this paper proposes a rule-driven
consistency analysis method for collaborative process data changes. The main contributions
of this paper are as follows:

(1) Integrating the data information involved in the collaboration process into a decision
analysis table, and establishing a decision Petri net model by combining it with a Petri
net model to achieve an accurate description of the relationship between data changes
and process behavior;

(2) A rule-driven effective expected behavior retrieval method is proposed, which obtains
the expected behavior of deviation activities through optimal alignment, and verifies
the effectiveness of expected behavior using decision rules, improving the accuracy of
effective expected behavior and reducing the false negative rate;

(3) A method of repairing the alignment is proposed, and the consistency of business
processes is improved by repairing the initial optimal alignment.

2. Motivating Example and Preliminaries
2.1. Motivating Example

Data are crucial for the operation of the processes. If we only consider the control
flow of the process and ignore the data, it may lead to premature termination, incorrect
route selection, deadlocks, and so on. Figure 1 shows a seller’s sales process. Figure 1 is
a real-life process design about the seller’s sales process, which is independent of event
logs. If there are real-life logs, they can be mined using mining tools. The common mining
algorithms include the α algorithm [29], heuristic mining algorithm [30], genetic process
mining [31], inductive mining [32], etc. The process begins with receiving the order and
then checking the goods. There are three options, namely direct rejection, insufficient
goods, and sufficient goods, and subsequent activities include sending order information,
checking order information, checking the fee, checking payments, and delivery.
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Figure 1. Petri net model.

In Figure 1, if the data are ignored and only the basic process behavior is considered,
the seller may directly reject the order after checking the goods, and the process ends. It
is also possible to directly load goods without purchasing, resulting in an inconsistency
between the actual implementation of the later process and the behavior of the process.
The three execution traces are as follows:

σ1 = ⟨t8, t9, t13, t14, t15, t16, t9, t13, t14, t16, t17, t18⟩

σ2 = ⟨t8, t9, t13, t14, t15, t16, t9, t11, t12, t14, t16, t17, t18⟩
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σ3 = ⟨t8, t9, t13, t14, t15, t16, t9, t11, t12, t16, t17, t18⟩

It is obvious that none of these three traces meet the process model, as they all
generate deviations after the activity check fee, which is also a normal phenomenon in
real life. Because the requirements are constantly changing, the data in the business
process may change, and the change in these data may cause a series of changes in system
behavior. Especially in the collaborative process, the change in data will not only lead to
changes within the process, but also leads to changes in the partner’s process. Figure 2 is
a collaborative process of commodity wholesale, involving three processes: buyer, seller,
and logistics, in which the dotted line part represents some data interaction information.
There is an unexpected situation where the seller has already reviewed the payment, and
the buyer suddenly increases the quantity of goods. The seller finds that the goods are
insufficient, which requires repurchasing. The freight may increase, and there may be data
change propagation in the collaboration process. This change propagation is reasonable in
practice, so the trace offset process may also be reasonable.
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Example 1. Assuming that the traces σ2 and σ3 are traces generated by the buyer’s demand for
goods, which changed after the seller checked the fees, and the goods are insufficient after the demand
increased, it is necessary to purchase again, and the freight may change; σ1 is produced because
the quantity is sufficient after the demand is reduced, and the freight may also change. According
to the method proposed by Mannhardt et al. [33], the consistency between the three traces and the
process is calculated, respectively, and the fitness values of σ1, σ2, and σ3 are 0.67, 0.62, and 0.67,
respectively. It is found that the consistency of the three traces is not very high, and the fitness of σ1
and σ3 is the same. However, if some deviations may be reasonable considering the actual situation,
the fitness of σ1 and σ3 is not necessarily the same, and it remains to be determined which of the
three traces has the higher fitness. Take traces σ2 and σ3 as examples. Both of them are insufficient
goods, and, in principle, they should be repurchased. However, if they do not meet the specified
rules of data, they may be directly rejected without subsequent execution, resulting in a greater
difference. Therefore, not only data but also data rules should be considered in the consistency of an
alignment-based trace and process.
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2.2. Preliminaries

Definition 1 (Labeled Petri net [34]). A 5-tuple N = (P, T, F, ∑, λ) that satisfies the following
conditions is called a labeled Petri net:

(1) P ∪ T ̸= ∅;
(2) P ∩ T = ∅;
(3) F ⊆ (P× T) ∪ (T × P);
(4) Σ is the set of active labels for transitions;
(5) λ : T → ∑ is a function of assigning labels to transitions;

Where P is the place set, T is the transition set, and F is the flow relation.

Definition 2 (Event [35]). Let ε be the event space, which is the set of all possible event identifiers,
and AT is the set of all event attributes. For any event e ∈ ε , e = (case id, event id, activity,
timestamp, attributes) is a tuple. case id, event id, activity ∈ T, timestamp, and attributes ∈ AT
represent the process case identifier, event identifier, activity name, timestamp, and a set of other
attributes of the event, respectively, and other attributes of different events in the trace may not be
the same.

Definition 3 (trace, event log [36]). Trace σ = ⟨e1, e2, e3, · · · , en⟩ is a sequence of length
n, where e ∈ ε∗, ε∗ represents the set of all sequences on ε, σ(i) represents the i-th event, πat
represents the value of the obtained event attribute at ∈ AT, 1 ≤ i < j ≤ n, n = |σ|, and the event
log L ∈ P(ε∗) is the set of traces, P represents a power set.

3. Consistency Analysis of Data Changes Based on a Rule-Driven Method
3.1. Data Change Impact Analysis

Business processes often face various uncertain factors during execution, among which
data change is one of the key factors affecting the accuracy of process execution. Especially
in the collaborative process, the relationship between data sharing and dependence is more
complicated, and data changes may lead to process behavior deviating from expectations,
thus affecting the efficiency and effectiveness of the whole business process. Therefore, it is
of great theoretical and practical significance to study the impact of data changes.

When the process is running, activities are executed according to the order determined
in the process, and activities can read or write data; therefore, unexpected changes in data
values may have an impact on activities, data, roles, and gateways in the process. The
impact of data on activities is as follows: data affects the creation and execution of activities;
when placing an order in the buyer’s process, an order will be created, that is, the data
item will be used as the input of the activity to create the output; in the seller’s process,
different activities are performed by different choices of goods quantity. The impact of
data on data is as follows: the change in one datum causes another datum to change or
remain unchanged; increase the purchase quantity of goods, and the freight may increase
or remain the same. The impact of data on roles is as follows: an activity itself is executed
by role A, and after the quantity changes, it may be executed by role B; with the change
in the goods purchase, the delivery mode in the logistics process may be changed from a
truck to a car. The impact of data on the gateway is as follows: a datum itself meets rule 1,
and, after the change, rule 2 is true; if the goods qualification rate is between (0.85, 1) and
becomes 1 after the rework, the goods will be received directly.

Definition 4 (Data impact). Given a data element d and a trace σ, the active set represented by
events in the trace σ and affected (directly or indirectly) by the value of d is called the data impact of
d in σ, and is marked as DI (d, σ).

For example, in Figure 2, the buyer’s goods quantity suddenly decreases, and the
seller finds that the goods quantity is sufficient based on the received order and does not
need to repurchase. The corresponding data impact in part traces σ = ⟨t8, t9, t11, t12⟩ is
DI(goods quantity, σ) = {t11, t12}.
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3.2. Analysis of Effective Expected Behavior

During the process execution, there are various reasons that can cause changes in
business processes, such as the implementation of new regulations and the emergence of
new market demands [37], and so on. Once the data involved in the process change, the
execution of activities may deviate from the actual model, and in the optimal alignment of
process and log, it may be manifested as the movement of the log or model. For the activities
after deviation, these are mainly a series of activities to make up for these deviations, which
can be regarded as the expected behavior of deviation activities. In the optimal alignment, if
the model moves, it means that the activity that should have occurred in the model did not
occur, so the expected behavior is the activity that should have occurred but did not occur.
If the log moves, it means that activities that should have occurred in the current location
log have occurred. Assuming that the reason for this deviation is caused by changes in
data related to previous execution activities, its expected behavior is the activity that may
be affected by the data changes. If synchronous move occurs, that is, there is no deviation,
then the expected behavior is recorded as an empty set. However, these expected behaviors
may not be effective expected behaviors, because it remains to be determined whether
the data context rules are met after some data changes. Therefore, in order to analyze the
effective expected behavior based on optimal alignment under the impact of data, decision
rules are introduced, which are represented as decision analysis tables in the process model.

Definition 5 (Alignment [38]). Let the alignment of net N and trace σ be a sequence pair in the
form of (ei, ti), where ei ∈ σ ∪ {≫}, ti ∈ T ∪ {≫}, if ei ̸=≫, ti ̸=≫, then ei.activity = ti.

The three legal moves in alignment can be defined as follows:

(1) If ei ̸=≫, ti ̸=≫, (ei, ti) is a synchronous move;
(2) If ei ̸=≫, ti =≫, (ei, ti) is a model move;
(3) If ei =≫, ti ̸=≫, (ei, ti) is a log move.

Definition 6 (Cost function and optimal alignment [33]). Let σ and N be a trace and a Petri
net, respectively. Assuming Λ as the set of all legal alignment moves, a cost function c assigns a
non-negative cost to each legal move: Λ→ R+

0 . The cost of an alignment γ between σ and N is
computed as the sum of the cost of all constituent moves: C(γ) = ∑(ei ,ti)∈γ c(ei, ti). Alignment γ
is an optimal alignment if, for any complete alignment γ′ of N and σ, c(γ) ≤ c(γ′).

Definition 7 (Decision place). Let N and p ∈ P be a Petri net and a place, respectively. If it is
satisfied |p·| > 1, p· represents the successor of p, and p is called a decision place.

Definition 8 (Decision rule). Gives a set of attributes Attr = {at1, at2, · · · , atk}, k ∈ N∗, and

decision rule r is a mapping function: r(Attr) = c :
(
at1 op q1, at1 op q2

)
, · · · ,(

atw op q2w−1, atw op q2w
)
→ cl , 1 ≤ w ≤ k

,

where attribute at1, at2, · · · , atk is the input of decision; op is a comparison predicate; q1, q2, · · · , q2w
is a constant; cl is the output of the decision, cl ∈ Cp· , h = |p·|, h, l ∈ N∗, 1 ≤ l ≤ h, and
Cp· = { c|λ(t), t ∈ p·} is the activity name set of the successor of the decision place.

For example, in Figure 3, the rule formed by a data dependency behind the decision
place p1 is as follows: quantity ∈ (3, 5]→ Sufficient goods .

Definition 9 (Decision analysis table). The decision analysis table dt = (Name, I; O; R) is
a tabular form, Name is the name of the table, I contains the attributes of the variables used for
decision-making in the process model, and O is a finite non-empty set of outputs, where R is the set
of decision rules r.

It should be noted that the input–output set of the decision table is not fixed and
unchanging. In this paper, only the output is used for output O, which indicates the name
of the activity to occur, and the other three are not involved. For example, the decision
analysis table involved in Figure 1 is shown in Figure 3.
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Definition 10 (Decision Petri net). Let DN = (N, V, U, DT) be a decision Petri net, where N is
a label Petri net and V is a set of variables; U is a function to determine the possible value assigned
to each variable, U(v) = DOv, v ∈ V, and DOv is the domain of v; DT is the set of decision
analysis tables dt, dt ∈ DT; flow relation F ⊆ (P× T) ∪ (T × P) ∪ (DT × DP), and DP is the
set of decision place p, DP = { p|p ∈ P, |p·| > 1}.
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In Algorithm 1, lines 1–2 initialize the expected behavior and valid expected behavior
as empty sets, and then obtain the optimal alignment between the trace and the model
DN. Lines 3–19 analyze the occurrence of expected behavior after synchronous move, log
move, and model move, respectively, and when a synchronous move occurs, the expected
behaviors remain an empty set. When a model move occurs, the expected behaviors are
expanded by adding activity a; when a log move occurs, the algorithm first analyzes the
data items associated with a, and then considers the impact set of those data items, which
is the set of activities that should be added to the expected behaviors. Finally, Lines 20–24
evaluate whether the expected behaviors satisfy the decision rules to determine their
validity. If an expected behavior does not meet the rule, it is considered anomalous and is
removed from the effective expected behaviors set.

Algorithm 1. Rule-driven effective expected behavior retrieval method

Input: trace σ, decision Petri net DN
Output: effective expected behavior Θ′

1. Θ = ∅, Θ′ = ∅
2. γ← ObtainOptimalalignment(σ, N)
3. for each move (e, a) ∈ γ

4. if e = a then
5. Θ← Θ
6. else if e =>> then
7. Θ← Θ ∪ {a}
8. else if a=>> then
9. Da← ObtainRelatedDataItems(a)
10. if Da = ∅ then
11. Θ← Θ
12. else if Da ̸= ∅ then
13. for each d ∈ Da do
14. DI ← ObtainRelatedActivity(d)
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Algorithm 1. Cont.

15. Θ← Θ ∪ DI
16. end for
17. end if
18. end if
19. end for
20. for each activity θ ∈ Θ do
21. if r(θ.Attr) = c is false then
22. Θ′ ← Θ− {θ}
23. end if
24. end for
25. return Θ′

For example, consider a collaborative process involving buyers, sellers, and logistics
with a decision analysis table, as shown in Figure 4. We will now analyze the specific
execution of three traces in a motivating example. Under normal circumstances, after t16
(Check fee) occurs, according to the prescribed behavior in the process model, t17 (Review
payment) and t18 (Delivery) should occur. However, in all three traces, t9 (Check goods)
suddenly occurs, indicating that the buyer has unexpectedly increased or decreased the
quantity of goods, prompting a recheck of the goods’ quantity before deciding on sufficiency
or insufficiency.
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Assuming the initial intended purchase quantity by the buyer was 3000 units:
1. In the first trace, a decrease of 1000 units: After t9 occurs, the quantity is still deemed

sufficient. The order information is then sent to logistics. Due to the decrease in quantity,
the transportation mode changes according to Figure 4, resulting in a change in freight. The
seller then rechecks the fees. In this trace, the expected behaviors of t9 are {t13, t14, t16}, all of
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which satisfy the rule for a quantity less than 3000 units. Therefore, the effective expected
behaviors are the same as the expected behaviors.

2. In the second trace, an increase of 1000 units: After t9 occurs, the quantity is
insufficient at this time, and it needs to be purchased. The order information is then sent to
logistics. With the increase in quantity, the transportation mode and freight also changes,
so it is necessary to recheck the fees. In this trace, the expected behaviors of t9 are {t11, t12,
t14, t16}, all of which satisfy the rule for a quantity between 3000 and 5000 units. Thus, these
are the effective expected behaviors.

3. In the third trace, an increase of 3000 units: The quantity is clearly insufficient, and
procurement would be the next logical step in reality. The expected behaviors of t9 in this
scenario would typically include {t11, t12, t14, t16}. However, from the decision analysis
table in Figure 4, it is found that the increased quantity does not meet the specified rule,
and should be rejected, preventing any further actions. Consequently, in the third trace, t9
has no effective expected behaviors.

3.3. Alignment Repair Based on Effective Expected Behavior

Process consistency analysis aims to identify and quantify the differences between the
actual execution behavior (i.e., the event log) and the predefined process behavior (i.e., the
process model) [38]. As two interrelated and independent entities, the event log and process
model show a significant symmetry in consistency analysis. On the one hand, from the
perspective of the event log, we carefully check every activity in the log to ensure that they
can find a one-to-one corresponding execution path in the process model, which reflects
the symmetry of mapping from log to model. On the other hand, based on the process
model, we examine each activity in the model one by one to confirm whether they can
find the actual records in the event log, which reflects the verification symmetry from the
model to the log. This analysis is very important for ensuring the smooth implementation
of business processes and finding potential problems in time. When the data changes, the
collaborative process may be automatically adjusted to respond to these changes, in order
to restore the execution trace to the normal process execution state. However, in practice,
although some execution traces seem to deviate from the established process model, they
are actually based on effective expected behavior in specific situations. These behaviors
may align better with the needs of real-world operations; thus, simply treating them as
anomalies or errors may not be appropriate. To more accurately reflect the execution of
processes, it is necessary to identify these seemingly deviant but actually effective behaviors
and repair the original alignment (i.e., the correspondence between execution traces and
process models).

In Algorithm 2, Line 1 initializes the repaired alignment γ′ to be a copy of the original
alignment γ and the set of effective expected behaviors Θ′ to be an empty set. Lines 2–20
iterate through each move in the optimal alignment. When a move is a model move, it
checks if the corresponding activity ai is in Θ′. If so, it modifies the corresponding >> in
the repaired alignment to ρ, removes ai from Θ′, and, if not, the effective expected behavior
of ai is obtained by Algorithm 1 and added to Θ′. When a move is a log move, it checks if
the corresponding event ei is in Θ′. If so, it modifies the corresponding >> in the repaired
alignment to ρ and removes ei from Θ′, and, if not, the effective expected behavior of ei is
obtained by using Algorithm 1 and added to Θ′. For a synchronous move, if ai is in Θ′, it
removes ai from Θ′. After iterating through all moves, the repaired alignment is achieved.

Algorithm 2. Repair Alignment

Input: original alignment γ, decision Petri net DN, trace σ

Output: alignment after repair γ′

1. γ′ = γ, Θ′ = ∅, i = 0
2. for i ≤ |γ| do
3. for each move (ei, ai) ∈ γ do
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Algorithm 2. Cont.

4. if ei =>> then
5. if ai ∈ Θ′ then
6. γ′[i].ei = ρ

7. Θ′ ← Θ′ − {ai}
8. else use Algorithm 1 to obtain the effective expected behavior of ai and add it to Θ′

9. end if
10. else if ai =>> then
11. if ei ∈ Θ′ then
12. γ′[i].ai = ρ

13. Θ′ ← Θ′ − {ei}
14. else if use Algorithm 1 to obtain the effective expected behavior of ei and add it to Θ′

15. end if
16. else if ei = ai then
17. if ai ∈ Θ′ then
18. Θ′ ← Θ′ − {ai}
19. end if
20. end if
21. i++
22. end for
23. return γ′,Θ′

Example 2. Continue to analyze the three traces in the motivating example and repair the alignment
in Table 1, and obtain Table 2 as follows:

Table 1. Alignment.

σ1 t8 t9 t13 t14 t15 t16 t9 t13 t14 t16 t17 t18

Model t8 t9 t13 t14 t15 t16 >> >> >> >> t17 t18

σ2 t8 t9 t13 t14 t15 t16 t9 t11 t12 t14 t16 t17 t18

Model t8 t9 t13 t14 t15 t16 >> >> >> >> >> t17 t18

σ3 t8 t9 t13 t14 t15 t16 t9 t11 t12 t16 t17 t18

Model t8 t9 t13 t14 t15 t16 >> >> >> >> t17 t18

Table 2. Repair of alignment.

σ1 t8 t9 t13 t14 t15 t16 t9 t13 t14 t16 t17 t18

Model t8 t9 t13 t14 t15 t16 >> ρ ρ ρ t17 t18

σ2 t8 t9 t13 t14 t15 t16 t9 t11 t12 t14 t16 t17 t18

Model t8 t9 t13 t14 t15 t16 >> ρ ρ ρ ρ t17 t18

σ3 t8 t9 t13 t14 t15 t16 t9 t11 t12 t16 t17 t18

Model t8 t9 t13 t14 t15 t16 >> >> >> >> t17 t18

The fitness of the three traces and the model are calculated again to be 0.917, 0.923,
and 0.67, respectively. It is found that σ2, which had the lowest fitness, became the largest
after repair, while σ3 has no change in fitness, changing from the original maximum to the
minimum. This indicates that in the fitness calculation based on optimal alignment, the
original optimal alignment can be corrected for reasonable deviation, and then the fitness
can be re-calculated. This is a response to unexpected situations and is also different from
other consistency calculation methods.
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4. Experimental Analysis and Evaluation
4.1. Experimental Setup

In this paper, two kinds of data sets are used for the experiment: an artificial data set
and a real data set. The artificial data set is the artificial event log generated by PLG2.0, and
the real data set is the event log in the public data set BPIC2015.

4.2. Experimental Process and Results

In order to evaluate the effectiveness, feasibility, and accuracy of the method proposed
in this paper, the relevant experimental steps are as follows: firstly, the event log is mined by
process mining technology to obtain the corresponding process model. Secondly, different
degrees and types of noise are randomly inserted into the event log to generate event
logs with different noise ratios and types. The inserted noise includes the following three
situations: randomly inserting n events or deleting n events in the event sequence, randomly
modifying the data value of the event, and a mixture of the two. The three noise types
are evenly distributed according to the deviation ratio of 5%, 10%, and 15%. Then the
deviation sequence is aligned with the process model, and the effective expected behavior
of deviation activities and the consistency between the deviation sequence and the process
model are obtained according to the algorithm. Finally, the effectiveness of our method is
evaluated by comparing it with method1 [38] and method2 [39].

Analyze the manual event log: Compare the precision, recall, and F1-score of effective
expected behavior with and without rule constraints when deviations occur.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall

Precision + Recal
(1)

where TP is the number of positive samples judged as positive, and FN is the number
of positive samples judged as negative. FP is the number of negative samples judged
as positive.

From Figure 5, it can be seen that when the control flow changes, considering the rule
constraints is generally better than not considering the rule constraints in terms of recall and
F1-score, which indicates that considering the rule constraints is more comprehensive in
identifying the effective expected behavior, and performs better in balancing accuracy and
recall. Not considering rule constraints is close in accuracy to considering rule constraints,
and even slightly higher in the first four points, but slightly lower in recall and F1-score than
considering rule constraints. Therefore, the impact of rule constraints on the effectiveness of
expected behavior is not great, but most of them are better than those without considering
rule constraints.

As can be seen from Figure 6, when the data value changes, in terms of accuracy,
the average accuracy of the effective expected behavior considering the rule constraints is
improved by about 4.7%, reaching a peak at 0.945, which means that the accuracy of the
effectiveness of the obtained expected behavior is relatively high. The overall accuracy
without considering the rule constraints is lower than that when considering the rule
constraints. The lower accuracy may mean that there are more false positives when judging
as positive, that is, the expected behavior that is not effective originally is judged as effective,
which affects the reliability of the results. In terms of recall, the average recall of effective
expected behavior increased by about 4% when considering the rule constraints, and the
peak value reached 0.865. This indicates that the actual effective expected behavior can be
found more effectively, and the situation of missing detection is reduced. The recall without
considering the rule constraint is lower than that with considering the rule constraint. A
lower recall may mean that not all positive samples are fully identified, and there are more
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false negatives. In terms of F1-score, the average F1-score of effective expected behavior
is increased by 4.3% when considering the rule constraints, indicating the comprehensive
performance of precision and recall is better. The increase in F1-score shows that the
rule constraint not only improves the accuracy and recall, but also maintains the balance
between them. The F1-score of the method without considering the rule constraint is
generally lower than that of the method when considering the rule constraint. The lower
F1-score indicates that the balance between precision and recall is poor, and that the
comprehensive performance is weak without considering the rule constraint. Therefore,
when analyzing the impact of data changes on the process, rule constraints should be
considered to avoid identifying abnormal behavior as effective expected behaviors, thus
reducing the false negative rate of effective expected behaviors and laying a foundation for
the consistency analysis of event logs and models in the future.
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When comparing the consistency calculation method proposed in this paper (here-
inafter referred to as “our method”) with the existing method1 and method2, we use fitness
as the evaluation index and make a systematic analysis based on the experimental results
in Figures 7 and 8 and Table 3. Specifically, when faced with different levels of noise
interference (5%, 10%, and 15%, respectively), the performance of the new method shows
good robustness. In a 5% noise environment, compared with the method1, the average
fitness of our method is improved by about 2.94% and 2.9% on the artificial and real event
logs, respectively. Compared with method2, the growth rates are about 2.54% and 5.4%,
respectively. This result preliminarily verifies the effectiveness of the new method in deal-
ing with slight data disturbances. With the noise level increasing to 10%, compared with
method1, the average fitness on artificial and real event logs is further improved by about
3.3% and 3.96%, respectively. Compared with method2, the improvement is about 3.96%
and 6.78%, respectively. When the noise level reaches a high level of 15%, compared with
method1, the average fitness of our method in artificial and real event logs is improved by
about 7.3% and 8.3%, respectively. Even compared with method2, significant increases of
about 4.5% and 7.1% were achieved, respectively. Based on the above data, it shows that
our method has good robustness and adaptability under different noise conditions, and
its overall adaptability is relatively stable. Although there is slight fluctuation, its overall
performance is better than the other two methods, indicating that this method has good
noise resistance and adaptability.

Table 3. Average fitness under different noise levels.

Fitness
Noise = 5% Noise = 10% Noise = 15%

Artificial Data Real Data Artificial Data Real Data Artificial Data Real Data

Our method 94.56% 89.94% 92.72% 81.48% 88.34% 78.64%
Method1 91.62% 87.04% 89.36% 77.52% 81.04 74.54%
Method2 92.02% 84.54% 88.18% 74.7% 79.96% 71.5%

To sum up, the method proposed in this paper can effectively retrieve the expected
behavior of deviation activities, reduce the false negative rate of effective expected behavior,
and improve the consistency between the process and event log.
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4.3. CPN Tools Simulation

In addition, in order to show the impact of data changes, the change propagation
process of the collaborative process is simulated based on CPN Tools. Figure 9 corresponds
to the collaboration process with the decision analysis table in Figure 4, and the black
part represents the basic collaboration process, including the control flow, data elements,
and transition guards, where the decision analysis table in Figure 4 is transformed into
transition guards in Figure 4. The green part represents the initial mark, and the model
must contain the green part in order to run. For processes that contain data elements and
complex rule constraints, there may be some defects, and the red part indicates the defect
status under the initial marking.
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Figure 10a,b simulate the path trends of collaborative processes under different data
elements. Figure 10a corresponds to that when the quality of goods is “False” and the
qualified rate is “good”, according to the description of the decision analysis table, “re-
ceive2” should be selected at this time, and if the goods quality becomes “True” and the
qualified rate is “excellent” after rework, “receive3” should be selected. Here, in order to
better express the qualified rate, 100% is equivalent to “excellent”, 85–100% is equivalent to
“good”, and less than 85% is equivalent to “bad”. Figure 10b shows that when the quantity
of goods is changed from 3000 to 2000, and the corresponding constraint rules are also
changed, it is also reasonable to execute quantity1-Mode2-Receive2, and the deviation
activity in the trace is {t9}.

Figure 11 describes the impact of data changes on process execution behavior and
continues to analyze the motivating example. When the number of goods increases by
3000, the process execution should choose “quantity3”—reject1, but actually executes
quantity2-delivery in the trace. Obviously, if the data constraint rules are not met, the
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change propagation cannot be carried out smoothly, so t9 in the trace has no effective
expected behavior, and the deviation activities are {t9, t13, t14, t16}.

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 23 
 

 

change propagation cannot be carried out smoothly, so t9 in the trace has no effective ex-
pected behavior, and the deviation activities are {t9, t13, t14, t16}.  

 
Figure 9. Collaboration process in CPN Tools. 

  
(a) (b) 

Figure 10. Initial marking changes in the collaboration process. 
Figure 10. Initial marking changes in the collaboration process.

Symmetry 2024, 16, x FOR PEER REVIEW 21 of 23 
 

 

 
Figure 11. Data changes in the collaboration process. 

5. Conclusions and Future 
In the field of business process management, process change analysis is one of the 

core topics. Researchers have put forward various methods to analyze the impact of 
change, but the existing research mainly focuses on the change analysis at the control flow 
level, ignoring the impact of data changes. In view of this, this paper innovatively puts 
forward a method to evaluate and repair the consistency of collaborative process data 
changes with rule constraints. Firstly, this method deeply analyzes how data changes af-
fect other components in the process and determines the expected behavior of deviation 
activities affected by data changes under the optimal process alignment state through a 
refined analysis. Subsequently, the decision rules are introduced as the evaluation frame-
work to evaluate the rationality and effectiveness of these expected behaviors in order to 
screen out the set of effective expected behaviors that conform to the logic and business 
rules. Based on this set, the repair strategy of process alignment is further designed, aimed 
at adjusting and optimizing the initial optimal alignment state, ensuring that the repaired 
process not only solves the problems caused by data changes, but also improves the con-
sistency of the process. The experimental simulation data verify the advantages of this 
method in accurately identifying expected behaviors and improving process consistency. 

Figure 11. Data changes in the collaboration process.



Symmetry 2024, 16, 1233 19 of 21

5. Conclusions and Future

In the field of business process management, process change analysis is one of the core
topics. Researchers have put forward various methods to analyze the impact of change,
but the existing research mainly focuses on the change analysis at the control flow level,
ignoring the impact of data changes. In view of this, this paper innovatively puts forward
a method to evaluate and repair the consistency of collaborative process data changes
with rule constraints. Firstly, this method deeply analyzes how data changes affect other
components in the process and determines the expected behavior of deviation activities
affected by data changes under the optimal process alignment state through a refined
analysis. Subsequently, the decision rules are introduced as the evaluation framework to
evaluate the rationality and effectiveness of these expected behaviors in order to screen out
the set of effective expected behaviors that conform to the logic and business rules. Based
on this set, the repair strategy of process alignment is further designed, aimed at adjusting
and optimizing the initial optimal alignment state, ensuring that the repaired process not
only solves the problems caused by data changes, but also improves the consistency of
the process. The experimental simulation data verify the advantages of this method in
accurately identifying expected behaviors and improving process consistency. The average
accuracy, recall, and F1-score of effective expected behaviors with rule constraints are
improved by 4%, 4.7%, and 4.3%, respectively, and the average fitness values of artificial
event logs/real event logs with different noise levels are 94.56%/89.94%, 92.72%/81.48%,
and 88.34%/78.64%, respectively. It is worth noting that the research in this paper starts
with optimal alignment, which has certain limitations. In the future, we can study the
consistency of process behavior related to data and guard change, and then analyze the
impact of data change and guard change on process consistency and apply it to electronic
payment systems and data leakage to improve security.
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