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Abstract: In this paper, we investigate the differential topological properties of a large class of singular
spaces: subcarteisan space. First, a minor further result on the partition of unity for differential
spaces is derived. Second, the tubular neighborhood theorem for subcartesian spaces with constant
structural dimensions is established. Third, the concept of Morse functions on smooth manifolds is
generalized to differential spaces. For subcartesian space with constant structural dimension, a class
of examples of Morse functions is provided. With the assumption that the subcartesian space can be
embedded as a bounded subset of an Euclidean space, it is proved that any smooth bounded function
on this space can be approximated by Morse functions. The infinitesimal stability of Morse functions
on subcartesian spaces is studied. Classical results on Morse functions on smooth manifolds can be
treated directly as corollaries of our results here.
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1. Introduction

The framework of smooth manifolds has long been the core of differential geometry.
However, in theoretical physics, there have been some objects that not possess smooth
manifold structures. Hence, it is necessary to extend the framework of smooth manifolds
to singular spaces, which admit certain basic geometric intuitions. There have been several
different definitions which attempt to describe singular spaces, for example, Spallek’s
differentiable spaces [1], real algebraic varieties [2,3], orbifolds [4], diffeology [5], etc.
Among them, Sikorski’s [6] theory of differential spaces provides a framework of a large
class of singular spaces by endowing the topological space S with a differential structure
C∞(S). Once a differential structure C∞(S) is specified, we study geometric constructs on
S in terms of their compatibility with C∞(S).

It follows that an n-dimensional smooth manifold M can be treated as a differential
space with a differential structure given by all smooth functions on it. Further, every
point p on the manifold has a neighborhood U diffeomorphic to an open subset V of
Rn, by endowing U and V with differential structure generated by restrictions of smooth
functions on M and Rn, respectively, and by considering the diffeomorphism in the sense
of differential space. If n is allowed to be an arbitrary non-negative integer depending on
point p and V is allowed to be any subset in Rn, it follows the concept of subcartesian space,
as a special case of differential spaces.

The differential geometry of differential spaces was developed by Śniatycki et al. in
recent years. There have been a lot of results on this topic [7–16], where the geometry of
differential spaces, including their tangent and cotangent bundles, integration of vector
fields, and distributions, are discussed. Detailed results are presented under the assumption
that differential spaces are subcartesian. See [17] for a systematic review on this topic.

In this paper, we investigate the properties of subcartesian spaces from the perspec-
tive of differential topology. We will show that some important differential topological
properties of smooth manifolds have solutions in subcartesian spaces.
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The first property we want to address is the partition of unity. The existence of a
partition of unity on a smooth manifold is well-known. In case of differential spaces, as
has been shown in [17], any locally compact, Hausdorff, and second countable differential
space possesses a partition of unity. In this paper we first review the existing result and
then present a minor further result on the partition of unity for differential spaces, which
will be used in the following sections.

The second property we will investigate for subcartesian space is the tubular neighbor-
hood property. As is well-known, any smooth manifold possesses a tubular neighborhood.
In the case of subcartesian space, it can be assumed that the subcatesian space is with
constant structural dimension, letting i : S → Rm be an embedding, which is ensured
in [14]. Then, the normal bundle N of S in Rm becomes a subcartesian space by endowing it
with a proper differential structure. We first prove that there exists a local diffeomorphism
between an open neighborhood of the zero section of the normal bundle N of S in Rm

and a subset containing S of Rm with constant structural dimension m, where the open
neighborhood of the zero section and the subset containing S of Rm are considered as dif-
ferential subspace of N and Rm, respectively. Further, by taking advantage of the partition
of unity, we get a global tubular neighborhood: there exists a diffeomorphism between
an open neighborhood of the zero section of the normal bundle N of S in Rm defined by
∆ϵ = {ξ ∈ N||ξ| < ϵ(τ(ξ))}, and a subset containing S of Rm with a constant structural
dimension m. We finally get a global result in the paper: there exists a diffeomorphism
between the normal bundle N of S in Rm and a subset containing S of Rm. Our results
generalize the tubular neighborhood theorem in smooth manifolds to more general cases,
i.e., subcartesian space with a constant structural dimension.

The third property we will investigate for subcartesian space is the Morse theory. In
classical Morse theory [18], Morse functions on smooth manifolds are defined as smooth
functions whose critical points are nondegenerate. In this paper, by taking advantage of the
definition of derivation on differential space, we extend the definition of Morse functions
on smooth manifolds to differential spaces. We then study some basic properties of Morse
functions on subcartesian spaces. Precisely, by assuming a constant structural dimensional
subcartesian space S, we will prove the following results in the paper:

1. Morse functions on S are plentiful. Let i : S → Rm be an embedding. For almost all
p ∈ S, the function Lp in S defined by Lp(q) = ||p − q||2 is a Morse function on S;

2. Let i : S → Rm be an embedding such that i(S) is a bounded subset of Rm. Then, any
smooth bounded function on S can be approximated by Morse functions;

3. The set of critical points of a Morse function on S is discrete;
4. If S is compact, then the Morse functions are infinitesimal stable.

Consider smooth manifolds as subcartesian spaces with a differential structure defined
by smooth functions on the manifolds. It follows immediately that the corresponding
classical results on Morse functions on smooth manifolds [18] can be treated directly as
corollaries of our results on subcartesian spaces here.

To the best of our knowledge, our work is the first attempt to initiate a systematic
study of the differential topological properties of differential spaces.

The paper is organized as follows. In Section 2, some basic definitions and theorems
on differential and subcartesian spaces, which will be used in our paper, are reviewed. We
then define Morse functions on differential spaces. In Section 3, we present existing results
and prove further results on the partition of unity for differential spaces. In Section 4, we
investigate the tubular neighborhood property for subcartesian spaces with a constant
structural dimension. In Section 5, we first provide examples of Morse functions on
subcartesian spaces with a constant structural dimension, using which we then prove the
approximation theorem for subcartesian spaces, which can be embedded as a bounded
subset ofRm. In Section 6, we study the stability of Morse functions on compact subcartesian
spaces with constant structural dimensions. We present our conclusions in Section 7.



Symmetry 2024, 16, 1235 3 of 15

2. Differential Space and Subcartesian Space

Definition 1 ([17]). A differential structure on a topological space S is a family C∞(S) of real-
valued functions on S satisfying the following conditions:

1. The family
{ f−1(I)| f ∈ C∞(S)and I is an open interval inR}

is a sub-basis for the topology of S.
2. If f1, · · · , fn ∈ C∞(S) and F ∈ C∞(Rn), then F( f1, · · · , fn) ∈ C∞(S).
3. If f : S → R is a function such that, for every x ∈ S, there exist an open neighborhood U of x,

and a function fx ∈ C∞(S) satisfying

fx|U = f |U ,

then f ∈ C∞(S). Here, the subscript vertical bar | denotes a restriction. (S, C∞(S)) is said to
be a differential space. Functions in C∞(S) are called smooth functions on S.

Example 1. Let S be an arbitrary set endowed with the trivial topology, i.e., the empty set, and S
are the only open sets. Let differential structure C∞(S) be defined as the set of all constant functions
on S. (S, C∞(S)) is a differential space.

Definition 2 ([17]). Let S1 and S2 be two differential spaces. A map ϕ : S1 → S2 is smooth
if ϕ∗ f = f ◦ ϕ ∈ C∞(S1) for each f ∈ C∞(S2). A map ϕ between differential spaces is a
diffeomorphism if it is smooth, invertible, and its inverse is smooth.

Let F be a family of real-valued functions on S. Endow S with the topology generated
by a subbasis

{ f−1(I)| f ∈ F and I is an open interval inR}.

We can construct a differential structure on S as follows.
Define C∞(S) by requiring that h ∈ C∞(S) if, for each x ∈ S, there exist an open subset

U of S, functions f1, · · · , fn ∈ F , and F ∈ C∞(Rn) such that

h|U = F( f1, · · · , fn)|U .

Clearly, F ⊆ C∞(S). It is proved in [17] that C∞(S) defined here is a differential
structure on S. We refer to it as the differential structure on S generated by F .

Let (S, C∞(S)) be a differential space, and let T ⊆ S be a subset of S endowed with
the subspace topology. Let

S(T) = { f |T | f ∈ C∞(S)}.

Proposition 1 ([17]). The family of functions S(T) of restrictions to T ⊆ S of smooth functions
on S generates a differential structure C∞(T) on T such that the differential-space topology of S
coincides with its subspace topology. In this differential structure, the inclusion map i : T → S
is smooth.

Definition 3 ([17]). A differential space (S, C∞(S)) is said to be subcartesian if every point p of S
has a neighborhood U diffeomorphic to a subset of some Cartesian space Rn, where (U, Φ,Rn) is a
local chart of p, and Φ : U → Φ(U) ⊆ Rn is the diffeomorphism.

Example 2. Let S be any subset ofRn and (S, C∞(S)) be the differential subspace ofRn. (S, C∞(S))
is a subcartesian space.

Example 3. Let S be a smooth manifold and C∞(S) be the set of all smooth functions on S.
(S, C∞(S)) is a subcartesian space.
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In the following, we restrict our attention to locally compact, Hausdorff, second
countable subcartesian spaces. Based the above assumptions, the existence of a partition
of unity on a subcartesian space is ensured. This will be detailed in the following section.
Note that it follows directly from Definition 3 that a subcartesian space must be Hausdorff.
Moreover, it follows from Definition 3 and Condition 1 of Definition 1 that a subcartesian
space must be locally compact. Thus, we only need the following assumption.

Assumption 1. All subcartesian spaces considered here are second countable.

Definition 4 ([17]). Let (S, C∞(S)) be a differential space. A derivation of C∞(S) is a linear map

X : C∞(S) → C∞(S)

f → X( f ),

which satisfies Leibniz‘s rule

X( f1 f2) = X( f1) f2 + f1X( f2)

for every f1, f2 ∈ C∞(S).

We denote by DerC∞(S) the space of derivations of C∞(S). This has the structure of
Lie algebra, with the Lie bracket [X1, X2] defined by

[X1, X2]( f ) = X1(X2( f ))− X2(X1( f ))

for every X1, X2 ∈ DerC∞(S) and f ∈ C∞(S).

Definition 5 ([17]). Let (S, C∞(S)) be a differential space. A derivation of C∞(S) at x ∈ S is a
linear map v : C∞(S) → R such that

v( f1 f2) = v( f1) f2(x) + f1(x)v( f2)

for every f1, f2 ∈ C∞(S).

We denote by Derx(C∞(S)) the space of derivations of C∞(S) at x ∈ S.
We interpret derivations of C∞(S) at x ∈ S as tangent vectors to S at x. The set of all

derivations of C∞(S) at x is denoted by TxS and is called the tangent space to S at x.
If X is a derivation of C∞(S) then, for every x ∈ S, we have a derivation X(x) of C∞(S)

at x given by
X(x) : C∞(S) → R : f → X(x) f = (X f )(x). (1)

The derivation (1) is called the value of X at x. Clearly, the derivation X is uniquely
determined by the collection {X(x)|x ∈ S} of its values at all points in S.

Let S be a differential subspace of Rn. Let N(s) denote the ideal of functions in C∞(Rn)
that vanish identically on S:

N(s) = {F ∈ C∞(Rn)|F|S = 0}.

Proposition 2 ([17]). A smooth vector field Y on Rn restricts to a derivation of C∞(S) if
Y(F) ∈ N(S) for every F ∈ N(S).

Definition 6 ([17]). Let (S, C∞(S)) be a differential space. Point x ∈ S is called a critical point of
f ∈ C∞(S) if X( f ) = 0 for each X ∈ Derx(C∞(S)).

If x is a critical point of f ∈ C∞(S), then consider the smooth distribution on S defined
by TS = spanR{X|X ∈ Der(C∞(S))}. We can define a bilinear symmetric functional f ∗∗x
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on TS(x), called the Hessian of f at x, as follows. Let v, w ∈ TS(x). Then, there exist
V, W ∈ Der(C∞(S)), such that V(x) = v, W(x) = w. We define

f ∗∗x : TS(x)×TS(x) → R
f ∗∗x (v, w) = VW( f )(x). (2)

f ∗∗x is well-defined. Let Ṽ, W̃ ∈ Der(C∞(S)), such that Ṽ(x) = v, W̃(x) = w. We have

ṼW̃( f )(x) = Ṽ(x)W̃ f = V(x)W̃( f ) = VW̃( f )(x) = [V, W̃]( f )(x) + W̃V( f )(x)

= 0 + W(x)V( f ) = WV( f )(x) = [W, V] f (x) + VW( f )(x)

= VW( f )(x), (3)

where [W, V] f (x) = 0 because [W, V] ∈ Der(C∞(S)), and x is a critical point of f . From (3),
we also know that f ∗∗x is symmetrical and bilinear.

Definition 7. Let (S, C∞(S)) be a differential space. Point x ∈ S is called a nondegenerate critical
point of f ∈ C∞(S) if x is a critical point of f , such that f ∗∗x is nondegenerate.

Definition 8. Let (S, C∞(S)) be a differential space. A smooth function f ∈ C∞(S) is said to be a
Morse function if each critical point x ∈ S of f is nondegenerate.

Remark 1. A Morse function on a smooth manifold is defined as a smooth function whose critical
points are nondegenerate. It is natural to generalize the concept of critical points on smooth manifolds
to the case of differential space by using the definition of derivation on differential spaces. To define
the nondegenerate property we need to restrict to TS instead of TS. We know TS and TS coincide
when S is a subcartesian with constant structural dimension.

We have the following definition of structural dimension for subcartesian space.

Definition 9 ([17]). Let S be a subcartesian space. The structural dimension of S at a point x ∈ S
is the smallest integer n such that for some open neighborhood U ⊆ S of x, there is a diffeomorphism
of U onto a subset V ⊆ Rn. The structural dimension of S is the smallest integer n such that for
every point x ∈ S, the structural dimension nx of S at x satisfies nx ≤ n.

Theorem 1 ([17]). For a subcartesian space S, the structural dimension at x is equal to dim TxS.

We have the embedding theorem for subcartesian space.

Theorem 2 ([14]). Let S be a subcartesian space with structural dimension n. Then, there exists a
proper embedding map Ψ : S → Rm, where m ≥ 2n + 1.

The subcartesian space is said to be with constant structural dimension if the structural
dimension of each x ∈ S is the same.

Example 4. The Koch curve is a subset K of R2 defined as follows. The set K0 = {(0, 0), (1, 0)}
consists of the end points of the line segment C0 = [0, 1] × {0} ∈ R2. Construct a set C1
by removing the middle third from the segment C0, replacing it with two equal segments that
would form an equilateral triangle with the removed piece. The resulting four-sided zigzag has
vertices K1 = {(0, 0), (0, 1

3 ), (
1
2 ,

√
3

6 ), ( 2
3 , 0), (1, 0)}. Next, construct a set C2 by applying the same

construction to each line segment of the set C1. We denote the set of vertices of C2 by K2. Continuing
in this way, we obtain a sequence of piecewise linear sets Cn and the sets Kn of their vertices. Let
K∞ be the union of all sets Kn, i.e., K∞ = ∪∞

n=0Kn. The Koch curve K is the topological closure of
K∞. Since K is a closed subset of R2, its differential structure C∞(K) consists of the restrictions
to K of smooth functions on R2. We can show that dim TxK = 2 for each x ∈ K. Hence, K is a
subcartesian space with constant structural dimension.
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We make the following assumption.

Assumption 2. All subcartesian spaces considered here have constant structural dimensions.

Lemma 1. Let S be a subcartesian space with a constant structural dimension n and Φ : S → Rm

be a smooth map. Let O be an open cover of S. Then, there exist locally finite open covers
(Uj)j∈Z>0 , (Vj)j∈Z>0 , (Wj)j∈Z>0 , such that cl(Uj) ⊆ Vj, cl(Vj) ⊆ Wj, cl(Wj) is compact for each
j > 0, where (Wj,Rn, ϕj) is a local chart of S and W = {Wj} ≺ O. Furthermore, there exists a
smooth extension Φ̃ of Φ on Uj; that is, Φ̃ ◦ ϕj|Uj = Φ|Uj.

Proof. The proof follows by replacing (2)p ∈ W ⊆ (Gh+1/cl(Gh−2)) ∩ V in the proof of
Lemma 3.3 in [14] with (2)p ∈ W ⊆ (Gh+1/cl(Gh−2)) ∩ V ∩ Q, where Q ∈ O is an open
subset containing p, and by replacing f , Φ, and nj in the proof of Lemma 3.3 in [14] with Φ,
Φ̃, and n.

In the remaining part of this section, we will show that the subcartesian space S with
structural dimension is a metric space.

Definition 10. A smooth Riemannian metric on a subcartesian space is a symmetric positive
definite bilinear form g(x) in TxS for each x ∈ S, such that for each smooth section σ of TS, the
function g(x)(σ(x), σ(x)) ∈ C∞(S).

Theorem 3 ([19]). Let S be a subcartesian space with structural dimension n. Then, there exists a
smooth Riemannian metric on S.

Definition 11. Let S be a subcartesian space with a constant structural dimension. Given two
points p, q ∈ S, the distance d(p, q) is defined by d(p, q) = infimum of the lengths of all curves γp,q,
where γp,q is a piecewise differentiable curve joining p to q.

Proposition 3. With the distance d, the subcartesian S with constant structural dimension is a
metric space.

(1) d(p, x) ≤ d(p, q) + d(q, x) for p, q, x ∈ S;
(2) d(p, q) = d(q, p);
(3) d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q.

Proof. We only need to show that if d(p, q) = 0, then p = q. Assume that p, q are two
distinct points. It follows that there is a normal ball Br(p) (which is diffeomorphic to a
subset V of TpS with g(p)(v, v) < r2, for v ∈ V) that does not contain q. Since d(p, q) = 0,
there exists a curve c joining p and q of length less than r. Hence, the segment of c must
contain in Br(p); hence, c cannot join p and q. This makes a contradiction.

The remaining item follows on directly from the definition of d(p, q).

3. Partition of Unity

Definition 12. A countable partition of unity on a differential space S is a countable family of
functions { fi} ∈ C∞(S):

(a) The collection of their supports is locally finite.
(b) fi(x) ≥ 0 for each i and each x ∈ S.
(c) ∑∞

i=1 fi(x) = 1 for each x ∈ S.

The following theorem in [17] establishes the existence of a partition of unity for locally
compact, second countable Hausdorff differential spaces.

Theorem 4 ([17]). Let S be a differential space with differential structure C∞(S), and let {Uα}
be an open cover of S. If S is Hausdorff, locally compact, and second countable, then there exists a
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countable partition of unity { fi} ∈ C∞(S) subordinate to {Uα}, such that the support of each fi
is compact.

We present a minor further result on the partition of unity for differential spaces,
which will be used in the following section.

Lemma 2. Let S be a Hausdorff, locally compact, and second countable differential space with
differential structure C∞(S). Let F ⊆ S be a non-empty closed subset and G ⊆ S be an open subset
such that F ⊆ G. Then, there exists a smooth function g ∈ C∞(S), such that F ⊆ {p ∈ S|g(p) =
1} ⊆ suppg ⊆ G.

Proof. Let H = S \ F. Then, {S \ F, G} is an open cover of S. It follows from Theorem 4
that there exists a countable partition of unity { fi} ∈ C∞(S) subordinate to {S \ F, G}, such
that the support of each fi is compact.

Define g = ∑supp fi⊆G fi. Since the collection of the supports of { fi} is locally finite, it
follows from condition 3 in Definition 1 that g ∈ C∞(S). And, we have

F = S \ H ⊆ {p ∈ S|g(p) = 1} ⊆ suppg ⊆ G.

Then, the result follows immediately.

Corollary 1. Let S be a Hausdorff, locally compact, and second countable differential space with
differential structure C∞(S). Let {Gi} be a family of locally finite open subsets. Let Ki ⊆ Gi be
compact, such that ∪iKi = S. Then, there exists a family of smooth functions {vi}, such that

(1) 0 ≤ vi ≤ 1, ∑i vi = 1;
(2) Ki ⊆ suppvi ⊆ Gi.

Proof. It follows from Lemma 2 that there exists µi ∈ C∞(S), such that Ki ⊆ {p ∈
S|µi(p) = 1} ⊆ suppµi ⊆ Gi.

Since {Gi} is locally finite, it follows that ∑j µj < +∞. Further, ∑j µj ∈ C∞(S). On the
other hand, since ∪iKi = S, it follows that ∑j µj ≥ 1.

Define vi = µi/ ∑j µj. vi ∈ C∞(S). It follows immediately that {vi} satisfies conditions
(1) and (2).

4. Tubular Neighborhoods

Let S be a subcartesian space with a constant structural dimension n. From Theorem 2,
we know that there exists a proper embedding map i : S → Rm, where m ≥ 2n + 1.

Define N ⊆ S ×Rm by

N = {(q, v)|q ∈ S, v perpendicular to i∗(TqS) at q}. (4)

Denote by τ : N → S the projection π(q, v) = q. The differential structural C∞(N) of
N is generated by the family of functions { f ◦ τ, d f | f ∈ C∞(Rm)}.

Since S is a subcartesian space with a constant structural dimension n, it follows
that dim TqS = n for each q ∈ N. Hence, the dimension of the linear space Q =
{v|v perpendicular to i∗(TqS) at q} is m − n for each q ∈ S. (N, τ, S,Rm−n) is a vector
bundle on S, where τ : N → S is a smooth map and τ−1(U) is diffeomorphic to U ×Rm−n,
where U is an open subset of S. Hence, N is a subcartesian space with a constant structural
dimension n + (m − n) = m.

Lemma 3 ([20]). Let X, Y be metric spaces. X is locally compact and second countable. Let A be a
closed subset of X. Assume that the continuous map ψ : X → Y satisfies that

(1) ψ : X → Y is a local homeomorphism;
(2) ψ|A is an injection.
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Then, there exists an open neighborhood G of A in X and an open neighborhood H = ψ(G) of
B = ψ(A) in Y, such that ψ|G is a homeomorphism from G to H.

Let ψ : N → Rm be defined by ψ((q, v)) = i(q) + v.

Lemma 4. There exists an open neighborhood G of the zero section Z of N, such that ψ|G : G →
ψ(G) is a diffeomorphism between the subcartesian space G and ψ(G).

Proof. For any q ∈ S and 0q ∈ Z, ψ(0q) = q ∈ S consider (dψ)0q : T0q N → Rm =

i∗(TqS)⊕ (i∗(TqS))⊥. Due to the local product property of (N, τ, S,Rm−n), we have T0q N =
T0q Z ⊕ T0q Nq. Since ψ|Z : Z → N is a diffeomorphism, we have (dψ)0q |(T0q Z) : T0q Z →
TqS is an linear isomorphism. Furthermore, (dψ)0q(T0q Nq) : T0q Nq → (TqS)⊥ is an linear
isomorphism. Hence, (dψ)0q(T0q N) : T0q N → (TqS)⊥ ⊕ TqS = Rm is a linear isomorphism.
Since N is a subcartesian space with constant structural dimension m, let (U, ϕ,Rm) be
a local chart of N; then, ψ can be locally extended to be a smooth map ψ̃ from an open
subset of Rm to Rm. Since (dψ)0q : T0q N → Rm is a linear isomorphism, it follows that
(dψ̃)0 is a linear isomorphism. Hence, ψ̃ is a local diffeomorphism around 0, which yields
that ψ is a local diffeomorphism around 0q. Since q is arbitrary, we get that there exists
an open neighborhood X of zero section Z of N, such that ψ|X : X → ψ(X) is a local
diffeomorphism. On the other hand, ψ : Z → S is a diffeomorphism.

Since N is a subcartesian space with a constant structural dimension, it follows from
Proposition 3 that N is a metric space; hence, X is a metric space as an open subset of N.
Then, it follows from Lemma 3 that there exists an open neighborhood G ⊆ X of Z and an
open neighborhood H = ψ(G) of S in ψ(X), such that ψ|G : G → H is a homeomorphism.
Since ψ|X : X → ψ(X) is a local diffeomorphism, it follows immediately that ψ|G is a
diffeomorphism. This completes the proof of the lemma.

Consider the vector bundle (N, τ, S,Rm−n) on S. Due to the local trivial property of
the vector bundle together with existence of a partition of unity on S, there exists a smooth
Riemannian metric on (N, τ, S,Rm−n).

Lemma 5. Let β be a smooth Riemannian metric on (N, τ, S,Rm−n). Let Z be a zero section of N
and G be an open neighborhood of Z. Then, there exists a smooth function ϵ > 0 on S, such that

∆ϵ = {ξ ∈ N||ξ| < ϵ(τ(ξ))} ⊆ G,

where | · | is the norm determined by the Riemannian metric β.

Proof. We first claim that for any q ∈ S, there exist an open neighborhood Q of q on S and
δ > 0, such that

{ξ ∈ τ−1(Q)||ξ| < δ} ⊆ G.

Consider the local trivial neighborhood U of q. Then, there exists a diffeomorphism
h : τ−1(U) → U ×Rm−n. Since h(τ−1(U) ∩ G) is an open neighborhood of Z in U ×Rm−n

and since S is locally compact, it follows that there exist an open neighborhood Q ⊆ U of q,
where Q ⊆ cl(Q) ⊆ U and cl(Q) are compact and γ > 0, such that

{(x, v) ∈ cl(Q)×Rm−n|||v|| < γ} ⊆ h(τ−1(U) ∩ G).

Denote λ(x, v) = |h−1(x, v)| for all (x, v) ∈ cl(Q) × Rm−n. Since cl(Q) × Sm−n−1

is compact, there exists µ > 0, such that λ(x, v) ≥ µ for any (x, v) ∈ cl(Q) × Sm−n−1.
Hence, λ(x, v) ≥ µ||v|| for any (x, v) ∈ cl(Q)× Rm−n. Let δ = µγ. We have λ(x, v) =
|h−1(x, v)| < δ, which yields that ||v|| < γ. Hence, we have

h({ξ ∈ τ−1(Q)||ξ| < δ}) ⊆ {(x, v) ∈ cl(Q)×Rm−n|||v|| < γ} ⊆ h(τ−1(U) ∩ G).
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It follows immediately that {ξ ∈ τ−1(Q)||ξ| < δ} ⊆ G.
Hence, there exist an open cover O = {Q} of S and a family {δQ}, such that {ξ ∈

τ−1(Q)||ξ| < δQ} ⊆ G.
It follows from Lemma 1 that there exist locally finite open covers

(Uj)j∈Z>0 , (Vj)j∈Z>0 , (Wj)j∈Z>0 ,

such that cl(Uj) ⊆ Vj, cl(Vj) ⊆ Wj, and cl(Wj) is compact for each j > 0, where
W = {Wj} ≺ O. For each Wj, there exists δj > 0, such that {ξ ∈ τ−1(Wj)||ξ| < δj} ⊆ G.

We claim that there exists a smooth function ϵ > 0 on S, such that ϵ(x) < δk for any
x ∈ Uk, k ∈ N. It follows from Corollary 1 that there exists partition of unity {λi} ⊆ C∞(S),
such that Uk ⊆ {x ∈ S|λk(x) > 0} ⊆ suppλk ⊆ Vk, k = 1, 2, · · · .

Given j ∈ N, ϵj = min{δk|cl(Vk) ∩ cl(Vj) ̸= ∅, k ∈ N}, j = 1, 2 · · · . Let ϵ(x) =

∑∞
j=1 ϵjλj(x). For x ∈ Uk, we have ϵ(x) < ∑clVj∩cl(vk) ̸=∅ ϵjλj(x) ≤ δk ∑∞

j=1 λj(x) = δk.
Hence, we have proved that

∆ϵ = {ξ ∈ N||ξ < ϵ(τ(ξ))} ⊆ G. (5)

We have the following tubular neighborhood theorem for subcartesian space.

Theorem 5. Let S be a subcartesian space with constant structural dimensions. Let i : S → Rm be
an embedding. Let N be defined by

N = {(q, v)|q ∈ S, v perpendicular to i∗(TqS) at q}.

N is a subcartesian space with a constant structural dimension m. Let τ : N → S be the
projection. Let ψ : N → Rm be defined by ψ((q, v)) = i(q) + v. There exists a smooth function
ϵ > 0 on S, such that ψ|∆ϵ

: ∆ϵ → ψ(∆ϵ) is a diffeomorphism between the subcartesian space
∆ϵ and ψ(∆ϵ), where ∆ϵ = {ξ ∈ N|||ξ|| < ϵ(τ(ξ))} and || · || is the Euclidean norm in Rm.
Further, define ρ = τ ◦ ψ−1. Then, ρ : ψ(∆ϵ) → S is a smooth map satisfying that ρ(x) = x for
any x ∈ S. Furthermore, ρ ◦ ψ|∆ϵ

= τ|∆ϵ
. ψ(∆ϵ) is said to be a tubular neighborhood of S in Rm,

and ρ : ψ(∆ϵ) → S is said to be the contraction map of the tubular neighborhood.

The above result can be extended to the following global result.

Theorem 6. Let S be a subcartesian space with constant structural dimensions. Let i : S → Rm be
an embedding. Let N be defined by

N = {(q, v)|q ∈ S, v perpendicular to i∗(TqS) at q}.

N is a subcartesian space with a constant structural dimension m. Let τ : N → S be the
projection. Then, there exists a diffeomorphism ω : N → ω(N) ⊆ Rm, such that ω(0x) = x for
any x ∈ S. Further, there exists a smooth contraction map ρ : ω(N) → S, such that ρ ◦ ω = τ.

Proof. It follows from Theorem 5 that there exists a smooth function ϵ > 0 on S, such that
ψ : ∆ϵ → ψ(∆ϵ) ⊆ Rm is a diffeomorphism. Furthermore, there exists a contraction map
ρ : ψ(∆ϵ) → S, such that ρ ◦ ψ|∆ϵ

= τ|∆ϵ
.

Define a smooth map θ : N → ∆ϵ by θ(ξ) = ϵ(τ(ξ))√
1+||ξ||2

ξ. We claim that θ is a diffeomor-

phism. Consider the smooth map γ : ∆ϵ → N by γ(η) = η√
ϵ(τ(η))2−||η||2

. It follows that

γ ◦ θ = Id : N → N and θ ◦ γ = Id : ∆ϵ → ∆ϵ. Hence, θ is an bijection. Since both θ and γ
are smooth, it follows immediately that θ is a diffeomorphism.
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Let ω = ψ ◦ θ : N → ϕ(∆ϵ). Then, ω is a diffeomorphism, which satisfies that
ω(0x) = ψ ◦ θ(0x) = ψ(0x) = x for all x ∈ S. Furthermore, ρ ◦ ω = ρ ◦ ψ ◦ θ = τ ◦ θ = τ.
This completes the proof of the theorem.

5. Approximating Bounded Smooth Functions by Morse Functions on
Subcartesian Spaces

Let S be a subcartesian space with constant structural dimension n embedded in Rm,
i.e., i : S → Rm. Let p ∈ Rm. Define the function Lp : S → R by

Lp(q) = ||p − q||2. (6)

It will be proven that for almost all p, the function Lp is a Morse function on S.
From the above section, we know that N defined by (4) is a subcartesian space with a

constant structural dimension m.
Consider ψ : N → Rm is ψ(q, v) = q + v.

Definition 13. e ∈ Rm is a focal point of (S, q) if e = q+ v, where (q, v) ∈ N and ker(dψ)(q,v) ̸=
0. Point e is a focal point of S if e is a focal point of (S, q) for some q ∈ S.

Theorem 7. Let S be a subcartesian space with constant structural dimension n and let Φ : S → Rn

be smooth. The image of the set of the points where dΦ is singular has measure 0 in Rn.

Proof. It follows from Lemma 1 that there exist an open cover (Uj)j∈Z>0 and a local chart
(Uj,Rk, ϕj) for each j, such that there exists a smooth extension Φ̃ of Φ on Uj; that is,
Φ̃ ◦ ϕj|Uj = Φ|Uj.

Since the structural dimension of S is n, it follows that the set of points on Uj where dΦ
is singular is the same as the set of points on Uj, where d(Φ̃ ◦ ϕj) is singular. From Sard’s
Theorem we know that the image of the set of points where dΦ̃ is singular has measure 0 in
Rn. It follows that the image of the set of points on Uj where dΦ is singular has measure 0
in Rn. Then, the image of the set of the points where dΦ is singular is a union of countable
sets, where each set has measure 0 in Rn. Hence, the image of the set of the points where
dΦ is singular has measure 0 in Rn.

Corollary 2. For almost all x ∈ Rm, the point x is not a focal point of S.

Proof. The point x is a focal point of S if and only if x is in the image of the set of points,
where dψ is singular. The result follows from Theorem 7.

Let q ∈ S with (u1, · · · , un) being local coordinates for q. Then, the inclusion i : S →
Rm can be locally extended to be a smooth map x = (x1(u1, · · · , un), · · · , xm(u1, · · · , un)).

Define the matrices associated with the coordinate system by

(gij) = ((
∂x
∂ui

)T ∂x
∂uj

).

Consider the vector ∂2x
∂ui∂uj

. Let v be a unit vector that is perpendicular to i∗(TqS).

Define the vector lij to be the normal component of ∂2x
∂ui∂uj

. Given any unit vector v, which
is normal to S at q, we have the matrix

(vT ∂2x
∂ui∂uj

) = (vT lij).

The coordinates (u1, · · · , un) can be chosen such that (gij) evaluated at q is the identity
matrix. Then, the eigenvalues of the matrix (vT lij) are called the principal curvature
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K1, · · · , Kn of S at q in the normal direction v. K−1
1 , · · · , K−1

n are called principle radii of
curvature. If the matrix (vT lij) is singular, one or more of the Ki will be zero; hence, the
corresponding K−1

i will not be defined.
Now consider the normal line l = q + tv.

Lemma 6. The focal points of (S, q) along l are precisely the points q + K−1
i v, where 1 ≤ i ≤ n,

Ki ̸= 0. Thus, there are at most n focal points of (S, q) along l, each being counted with its
proper multiplicity.

Proof. Choose m − n vector fields wi(u1, u2, · · · , un), which are unit vectors orthogonal to
each other and to i∗(TS). We can introduce local coordinates (u1, · · · , un, t1, · · · , tm−n) for
N, which corresponds to the point (x(u1, · · · , un), ∑m−n

i=1 tiwi(u1, · · · , un)) ∈ N. Then, the
map ψ : N → Rn has the local coordinate expression

(u1, · · · , un, t1, · · · , tm−n) → x(u1, · · · , un) +
m−n

∑
i=1

tiwi(u1, · · · , un).

Since S has constant structural dimension n, we have { ∂
∂ui

, ∂
∂ti
} span TN around

τ−1(q). Hence, we have

dψ(
∂

∂ui
) =

∂x
∂ui

+
m−n

∑
j=1

tj
∂wj

∂ui
,

dψ(
∂

∂ti
) = wi. (7)

Taking the inner products of these vectors with the basis vector ∂x
∂ui

, wj, we then get
the following matrix:(

(( ∂x
∂ui

)T ∂x
∂uj

+ ∑m−n
l=1 tl(

∂wl
∂ui

)T ∂x
∂uj

) (∑m−n
l=1 tl(

∂wl
∂ui

)Twj)

0 identity matrix

)
,

since ∂x
∂ui

, wj are orthogonal.
Since

0 =
∂

∂ui
(wT

l
∂x
∂uj

) = (
∂wl
∂ui

)T ∂x
∂uj

+ wT
l

∂2x
∂ui∂uj

,

we have (( ∂x
∂ui

)T ∂x
∂uj

+ ∑m−n
l=1 tl(

∂wl
∂ui

)T ∂x
∂uj

) = (gij − ∑m−n
l=1 tlwT

l lij)) = (gij − tvT lij).

Since (gij) evaluated at q is the identity matrix, it follows that the above matrix is
singular at (q, tv) if and only if t = K−1

i , where Ki the principal curvature of S at q in the
normal direction v.

Since q + tv is the focal point of (S, q) if and only if dψ is singular at (q, tv) if and only
if the above matrix is singular at (q, tv), the result follows immediately.

Now, to fix p ∈ Rm, let us study the function Lp defined above.

Lp(x(u1, · · · , uk)) = ||x(u1, · · · , uk)− p||2 = xTx − 2xT p + pT p.

We have
(Lp)∗

∂

∂ui
= 2(

∂x
∂ui

)T(x − p).

Hence, q is a critical point of Lp if and only if q − p is normal to i∗(TqS) at q.

Since ∂
∂ui

∂
∂uj

Lp = 2(( ∂x
∂ui

)T ∂x
∂uj

+( ∂2x
∂ui∂uj

)T(x− p)). It follows from the proof of Lemma 6

that ( ∂
∂ui

∂
∂uj

Lp) is singular at q if and only if p = q + tv, where v is unit vector normal
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to i∗(TqS) at q and t = Ki, where Ki is the principal curvature of S at q in the normal
direction v.

Lemma 7. The point q ∈ S is a degenerate critical point of Lp if and only if p is a focal point
of (S, q).

Theorem 8. For almost all p ∈ Rm, the function Lp : S → R has no degenerate critical point.

Proof. The result follows from Lemma 7 and Corollary 2.

Theorem 9. Assume that S can be embedded as a bounded subset of Rm. Let f ∈ C∞(S) be
bounded. Then, for any ϵ > 0, there exists a Morse function g ∈ C∞(S), such that

|g(y)− f (y)| < ϵ,

for any y ∈ S.

Proof. Let h : S → Rm be the bounded embedding, with the first coordinate h1 being
precisely the given smooth function f . Let c be a large number. Choose a point

p = (−c + ϵ1, ϵ2, · · · , ϵm)

close to (−c, 0, · · · , 0) ∈ Rm, such that the function Lp : S → R is a Morse function and let

g(x) =
Lp(x)− c2

2c
.

g is a Morse function, and by computation we have

g(x) = f (x) +
m

∑
i=1

hi(x)2

2c
−

m

∑
i=1

ϵi
hi(x)

c
+

m

∑
i=1

ϵ2
i

2c
− ϵ1.

Since hi, i = 1, · · · , m is bounded, choose c to be sufficiently large and ϵi to be suffi-
ciently small; then,

|g(y)− f (y)| < ϵ

for any y ∈ S. This completes the proof.

6. Infinitesimal Stability of Morse Functions on Subcartesian Spaces

In this section, we study the stability of Morse functions on a subcartesian space S
with constant structural dimensions. See [21] for a systematic treatment on stability theory
of Morse functions on smooth manifolds.

Lemma 8 ([21]). Let f be a smooth function on Rn with f (0) = 0. Then,

f (x1, · · · , xn) =
n

∑
i=1

xigi(x1, · · · , xn),

where gi are smooth functions on Rn, such that gi(0) =
∂ f
∂xi

(0).

Lemma 9 ([21]). Let p be a non-degenerate critical point for f ∈ C∞(Rn). Then, there is a
local coordinate system (y1, · · · , yn) in a neighborhood U of p with yi(p) = 0 for all i, such that
the identity

f (y1, · · · , yn) = f (p)− (y1)
2 − ... − (yλ)

2 + (yλ+l)
2 + · · ·+ (yn)

2

holds throughout U.
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Lemma 10. Let (S, C∞(S)) be a subcartesian space with constant structural dimension. Let
f ∈ C∞(S). Let x ∈ S be a nondegenerate critical point of f . Then, there is a local coordinate
system (ϕ, U,Rn) of x with local coordinate system (y1, · · · , yn) in Rn, such that f has a smooth
extension f̃ on Rn

f̃ (y1, · · · , yn) = f (p)− (y1)
2 − · · · − (yλ)

2 + (yλ+1)
2 + · · ·+ (yn)

2. (8)

Proof. Let (ϕ, U,Rn) be a local coordinate system of x, such that ϕ(x) = 0. Let f̃ be a
smooth extension of f . Hence, f̃ (0) = f (p). Since S has constant structural dimension and
x is a nondegenerate critical point of f , it follows that 0 is a nondegenerate critical point of
f̃ . Then, the result follows immediately from Lemma 9.

Corollary 3. The set of critical points of a Morse function on S is discrete.

Proof. The result follows from Lemma 10 directly.

Definition 14. Let S1, S2 be two subcartesian spaces. Let Φ : S1 → S2 be smooth.

(a) Let πS2 : TS2 → S2 be the canonical projection, and let w : S1 → TS2 be smooth. Then, w
is a derivation along Φ if πS2 ◦ w = Φ. Let C∞

Φ (S1, S2) denote the set of derivation along Φ.
(b) Φ is infinitesimally stable if for every w, a derivation along Φ, there is a derivation s on S1

and a derivation t on S2 such that

w = (dΦ)s + t ◦ Φ.

Theorem 10. Let (S, C∞(S)) be a subcartesian space with constant structural dimensions. Assume
that S is compact. Let f ∈ C∞(S) be a Morse function, all of whose critical values are distinct, i.e.,
if p and q are distinct critical points of f in S, then f (p) ̸= f (q). Then, f is infinitesimal stable.

Proof. Let w : S → R×R be a derivation along f . Then w(x) = ( f (x), w̄(x)) for every
x ∈ S, where w̄ ∈ C∞(S). Let s be a derivation of S. Then, d f (s)(x) = ( f (x), s( f )(x)). Let t
be a vector field on R. Then, t ◦ f (x) = ( f (x), t̄( f (x))), where t̄ ∈ C∞(R). The condition
of infinitesimal stability reduces in this case to the following: for every w ∈ C∞(S), there
exists a derivation s of S and a function t ∈ C∞(R) such that

w = d f (s) + t ◦ f . (9)

We now show how to solve the above equation. Since S is compact, it follows that
there is only a finite number of critical points of f . Since all the critical values of f are
distinct, we choose t ∈ C∞(R), such that t( f (x)) = w(x) for every critical point x of f . To
solve (9), it is sufficient to solve

w = d f (s), (10)

where w ∈ C∞(S) satisfies that w(x) = 0 for x being critical point of f . We now construct s.
Around each point p in S, choose an open neighborhood Up with local coordinates

(Up, Φp,Rn), such that both f and w have smooth extensions f̃ and w̃ on Rn with f̃ ◦ Φ = f
and w̃ ◦ Φ = w.

(a) If p is a regular point, choose Up so small that (d f )q ̸= 0 for every q ∈ Up. Choose a
derivation sp on Up, such that (d f )(sp) ̸= 0 on Up.

(b) If p is a critical point, then f̃ = c + ϵ1x2
1 + · · · + ϵnx2

n, where ϵ1, · · · , ϵn = ±1.
w(p) = 0, and since w̃(0) = 0, it follows from Lemma 8 that w̃ = ∑n

i=1 hi(x)xi,
where hi, i = 1, · · · , n are smooth functions on Rn.

The collection {Up}p∈S forms an open covering of S. Since S is compact, there exists a
finite subcovering U1, · · · , Um corresponding to pl , . . . , pm. Let ρ1, . . . , ρm be a partition of
unity subordinate to this covering. Choose derivations si on S (1 ≤ i ≤ m) as follows:



Symmetry 2024, 16, 1235 14 of 15

(a) if pi is a regular point, then let

si(x) =

{
w(x)ρi(x)spi (x)

d f (spi )(x) , x ∈ Upi

0, x ∈ S\Upi .

(b) If pi is a critical point, let s̃i = ∑n
i=1

ϵihi
2

∂
∂xi

on Rn. Since S has a constant structural
dimension n, it follows from Proposition 2 that s̃i defines a derivation ŝi on Ui, since
for any f ∈ N(S), ∂

∂xi
( f ) ∈ N(S); otherwise, f−1(0) has a dimension less than n.

Let si = ρi ŝi.

If pi is a regular point, then

si( f ) =

{
wρispi ( f )

d f (spi )
= wρi, x ∈ Ui

0, x ∈ S\Ui.

If pi is a singular point, then

si( f ) =

{
ρi ∑n

j=1
ϵjhj

2
∂

∂xj
(c + ϵ1x2

1 + · · ·+ ϵnx2
n) = ρi ∑n

j=1 hjxj = ρiw, x ∈ Ui

0, x ∈ S\Ui.

Let s = s1 + · · ·+ sn. It follows that s( f ) = ρ1w + · · ·+ ρnw = ∑n
i=1 ρiw = w. Hence,

(10) is solved. The result follows immediately.

7. Conclusions

In this paper, we have initiated a study of the differential topological properties for a
subclass of singular space, subcartesian space. The purpose of our study was to discover
important and interesting problems on smooth manifolds with solutions in subcartesian
spaces when working in the framework of subcartesian spaces. Along this line, we mainly
studied three aspects of differential topological properties for subcartesian spaces.

The first property concerns the partition of unity. The existence of a partition of unity
on a differential space was already proven in the existing literature. After reviewing the
result, we presented a minor further result on this point for differential space.

The second property we studied was the tubular neighborhood property, which is
well-known for a smooth manifold. We established the tubular neighborhood theorem for
subcartesian spaces with constant structural dimensions, both locally and globally.

The third property we studied is the Morse theory on subcartesian spaces. By taking
advantage of the definition of derivations, we defined Morse functions on differential
spaces. For a subcartesian space S with constant structural dimensions, we provided a
class of examples of Morse functions, showing that Morse functions are plentiful. Further,
we assumed that S admits a bounded embedding in some Euclidean space, showing that
bounded smooth functions on S can be approximated by Morse functions. We proved that
the set of critical points of any Morse function is discrete on S. Further, if S is compact, we
proved that the Morse functions are infinitesimal stable.

In the future, we would like to conduct a further study of the Morse theory on
subcartesian space and obtain more results on the differential topological properties of
subcartesian spaces.
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