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Abstract: In this review, we summarize recent studies on nuclear matter and finite nuclei based on
parity doublet models. We first construct a parity doublet model (PDM), which includes the chiral
invariant mass m0 of nucleons together with the mass generated by the spontaneous chiral symmetry
breaking. We then study the density dependence of the symmetry energy in the PDM, which shows
that the symmetry energy is larger for smaller chiral inavariant mass. Then, we investigate some
finite nuclei by applying the Relativistic Continuum Hartree–Bogoliubov (RCHB) theory to the PDM.
We present the root-mean-square deviation (RMSD) of the binding energies and charge radii, and
show that m0 = 700 MeV is preferred by the nuclear properties. Finally, we modify the PDM by
adding the isovector scalar meson a0(980), and show that the inclusion of the a0(980) enlarges the
symmetry energy of the infinite nuclear matter.

Keywords: parity doublet model; chiral invariant mass; isovector scalar meson; finite nuclei; nuclear
matter; symmetry energy

1. Introduction

Spontaneous chiral symmetry breaking plays an important role in low-energy hadron
physics, contributing substantially to the generation of hadron masses and the manifestation
of mass differences between chiral partners. In recent decades, there has been a growing
focus on investigating the restoration of chiral symmetry in hot and dense matter. Nucleon
masses will be changed in such extreme conditions, which provides hints for us towards a
further understanding to the mass of hadrons and further understanding to the dynamics
of the strongly interacting matter.

In the traditional linear sigma model, the entire nucleon mass is generated from the
spontaneous chiral symmetry breaking, in which the chiral partner to ordinary nucleon is
the nucleon itself. When the chiral symmetry is restored, the nucleon and its chiral partner
will be degenerate in mass. However, increasing evidence from the lattice calculations [1,2]
show that, with increasing temperature, the mass of negative parity baryon decreases to be
degenerate with the mass of positive baryon at the critical temperature.

The Parity Doublet Model (PDM) was proposed in Ref. [3] as an extended linear
sigma model with parity doubling structure to model the parity doubling of nucleon.
In the PDM, the excited nucleon, such as N(1535), is regarded as the chiral partner to
the ordinary nucleon, in which the spontaneous symmetry breaking generates the mass
difference between them. By considering the symmetry properties of the chiral partner, the
PDM predicts that the masses of the parity partners are degenerate into a finite mass, the
so-called chiral invariant mass m0, when the chiral symmetry is restored. In addition to the
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lattice simulations mentioned above, a recent analysis based on the QCD sum rules [4] also
supports the existence of the chiral invariant mass. Therefore, quantitative and qualitative
study of the chiral invariant mass will help us to understand the origin of hadron masses.

Studying the chiral invariant mass m0 is an essential measure to the origin of the mass
of a nucleon. There are several analyses to determine the value of m0 by studying the
nucleon properties in vacuum. For example, the analysis in Ref. [5] shows that m0 is smaller
than 500 MeV using the decay width of N(1535), while Ref. [6] includes higher derivative
interaction, which makes the large m0 consistent with the decay width.

Chiral symmetry is expected to be partially restored in the high density region,
the study of which will provide some information on the chiral invariant mass. Ac-
tually, the PDM is applied to study high density matter in several analyses, such as
in Refs. [7–40]. Recently, in Refs. [33,35,37,38,40], the EoS of neutron star (NS) matter
constructed from an extended PDM [19] was connected to the one from the NJL-type
quark model, following Refs. [41,42]. The analysis of Ref. [33] used the observational
data of NS given in Refs. [43–48] to put a constraint on the chiral invariant mass m0 as
600 MeV ≲ m0 ≲ 900 MeV, which was updated in Refs. [37,38] to 400 MeV≲ m0 ≲ 700 MeV
by considering the effect of anomaly, as well as new data analysis [49–51]. Ref. [40] showed
that m0 ≃ 850 MeV with the consideration of central compact object (CCO) within the
supernova remnant HESS J1731-347 [52].

In recent decades, increasing attention is paid to the effect of isovector-scalar a0(980)
meson (also called the δ meson) on asymmetric matter such as NS because it accounts
for the attractive force in the isovector channel. References [53–63] use Walecka-type
relativistic mean-field (RMF) models, and Refs. [64,65] use density-dependent RMF models
to study the effect of a0(980) meson to the symmetry energy as well as to the EoS of
asymmetric matter. It was pointed that the existence of a0 meson increases the symmetry
energy [53,55,56,59–63], and that it stiffens the NS EoS [54–56,58,59] and asymmetric matter
EoS [65]. Therefore, the a0(980) meson is influential for the study of asymmetric matter.
Recently, in Ref. [66], the effect of a0(980) in neutron star is studied in the PDM and
the constraint to the chiral invariant mass is obtained as 580 MeV ≲ m0 ≲ 860 MeV. In
particular, this work shows that the a0(980) meson has large influence to the symmetry
energy at density larger than saturation density. Therefore, it is expected that further
experimental constraints on the symmetry energy will provide hints to the chiral invariant
mass and the origin of the mass of a nucleon.

To put an additional constraint on the value of the chiral invariant mass, the properties
of stable nuclei were studied in Ref. [67] with the PDM in the frame work of a self-consistent
relativistic mean field theory. For the nuclear structure calculations, the Relativistic Contin-
uum Hartree–Bogoliubov (RCHB) theory [68] was employed. It was found in Ref. [67] that
the calculated binding energies and charge radii of selected fifteen nuclei are closest to the
experimental values when m0 = 700 MeV.

In this review, we summarize the recent works on the study of chiral invariant mass in
infinite nuclear matter in Ref. [66] and finite nuclei in Ref. [67]. In Section 2.1, we introduce a
PDM including a0 meson based on the chiral U(2)L × U(2)R symmetry with U(1)A anomaly
included. Then, as a first step, we drop the a0 meson and construct the infinite nuclear
matter using mean field approximation in Sections 2.2–2.4. In Section 3, the construction
of finite nuclei in mean field model using Relativistic Continuum Hartree–Bogoliubov
(RCHB) theory is introduced. After a brief introduction on the construction of finite nuclei,
the finite nuclei are constructed using PDM, as in Ref. [67], and the method to constrain
the value of chiral invariant mass using experimental data of finite nuclei are discussed.
Some results on the specific nuclei, such as the nuclei properties and effective mass of a
nucleon in finite nuclei, are also shown. In Section 4, we review an extension of the PDM by
including the isovector scalar meson a0(980) performed in Ref. [66]. We also compute the
results for the extended PDM without vector meson mixing interaction for comparison. The
symmetry energy for these models are compared to the PDM without a0 meson introduced
in Section 2. Finally, a summary is given in Section 5.
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2. Dense Nuclear Matter with Parity Doublet Model
2.1. A Parity Doublet Model with U(2)L×U(2)R Symmetry

Here, we introduce the parity doublet model (PDM) based on the U(2)L × U(2)R chiral
symmetry constructed in Ref. [66]. The Lagrangian is given by

L = LN + LM + LV , (1)

where LN is for the nucleons, LM for the scalar and pseudoscalar mesons and LV for the
vector mesons.

In LM, the scalar meson field M is introduced as the (2, 2)−2 representation under the
SU(2)L×SU(2)R×U(1)A symmetry, which transforms as

M → e−2iθA gL Mg†
R , (2)

where gR,L ∈ SU(2)R,L and e−2iθA ∈ U(1)A. We parameterize M as

M = [σ + iπ⃗ · τ⃗]− [a⃗0 · τ⃗ + iη] , (3)

where σ, π⃗, a⃗0, η are fields for the sigma meson, pions, the lightest isovector scalar meson
a0(980) and η meson, respectively, and τ⃗ are the Pauli matrices. The vacuum expectation
value (VEV) of M is

⟨0|M|0⟩ =
(

σ0 0
0 σ0

)
, (4)

where σ0 = ⟨0|σ|0⟩ is the VEV of the σ field, which is equal to the pion decay constant
fπ = 93 MeV in vacuum. The explicit form of the Lagrangian LM is given by

LM =
1
4

tr
[
∂µ M∂µ M†

]
− VM , (5)

where VM is the potential for M. In the present model, VM is taken as [66]

VM =− µ̄2

4
tr[M† M] +

λ41

8
tr[(M† M)2]

− λ42

16
{tr[M† M]}2 − λ61

12
tr[(M† M)3]

− λ62

24
tr[(M† M)2]tr[M† M]− λ63

48
{tr[M† M]}3

− m2
π fπ

4
tr[M + M†]− K

8
{det M + det M†} , (6)

where we included all the terms invariant under SU(2)L × SU(2)R×U(1)A symmetry up
to the sixth order in M fields. The six-point interaction terms are introduced to reproduce
the nuclear saturation properties following Ref. [19]. The term proportional to m2

π is the
explicit chiral symmetry breaking term due to the non-zero current quark masses, which
generates the mass of pion. The last term is introduced to account for the U(1)A anomaly.

For vector mesons, the iso-triplet ρ meson and iso-singlet ω meson are included based
on the hidden local symmetry (HLS) [69–71] to account for the repulsive force in the hadronic
matter. The HLS is introduced by performing polar decomposition of the field M as

M = ξ†
LSξR , (7)

where S = σ +
3
∑

b=1
ab

0τb/2 is the 2 × 2 matrix field for scalar mesons. The fields ξL,R

transform as
ξL,R → hωhρξL,Rg†

L,Re±iθA , (8)
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with hω ∈ U(1)HLS and hρ ∈ SU(2)HLS. Here, e+iθA for ξL and e−iθA for ξR. In the unitary
gauge of the HLS, ξL,R are parameterized as

ξR = ξ†
L = exp(iP/ fπ) , (9)

where P = η +
3
∑

a=1
πaτa/2 is the 2 × 2 matrix field for pseudoscalar mesons. In the HLS,

vector mesons are introduced as the gauge bosons of the HLS. They transform as

ωµ → hωωµh†
ω +

i
gω

∂µhωh†
ω, (10)

ρµ → hρρµh†
ρ +

i
gρ

∂µhρh†
ρ, (11)

where ωµ and ρµ =
3
∑

a=1
ρa

µτa/2 are the gauge fields for SU(2)HLS and U(1)HLS, respectively,

and gω and gρ are the corresponding gauge coupling constants.
To construct the Lagrangian invariant under the HLS, it is convenient to define the

covariantized Maurer–Cartan 1-forms:

α̂
µ
⊥ ≡ 1

2i
[DµξRξ†

R − DµξLξ†
L], (12)

α̂
µ

∥ ≡ 1
2i
[DµξRξ†

R + DµξLξ†
L], (13)

where the covariant derivatives of ξL,R are given by

DµξL = ∂µξL − igρρµξL − igωωµξL + iξLLµ − iξLAµ , (14)

DµξR = ∂µξR − igρρµξR − igωωµξR + iξRRµ + iξRAµ , (15)

with Lµ, Rµ and Aµ being the external gauge fields corresponding to SU(2)L×SU(2)R×U(1)A
global symmetry. We note that mesons do not carry the baryon number, so that the external
gauge field corresponding to U(1) baryon number does not appear in the above covariant
derivative. We also note that the covariant derivative acting on the baryon fields includes
the external gauge field Aµ.)

By using these 1-forms, the HLS-invariant Lagrangian including the interaction terms
among the nucleons and the vector mesons is given by

LV = aVNN

[
N̄1lγ

µξ†
Lα̂∥µξLN1l + N̄1rγµξ†

Rα̂∥µξRN1r

]
+ aVNN

[
N̄2lγ

µξ†
Rα̂∥µξRN2l + N̄2rγµξ†

Lα̂∥µξLN2r

]
+ a0NN ∑

i=1,2

[
N̄ilγ

µtr[α̂∥µ]Nil + N̄irγµtr[α̂∥µ]Nir

]
+

mρ
2

gρ
2 tr[α̂µ

∥ α̂∥µ] +

(
mω

2

8gω
2 −

mρ
2

2gρ
2

)
tr[α̂µ

∥ ]tr[α̂∥µ]−
1

8gω
2 tr[ωµνωµν]−

1
2gρ

2 tr[ρµνρµν]

+ λωρ(aVNN + a0NN)
2a2

VNN

[
1
2

tr[α̂µ

∥ α̂∥µ]tr[α̂
ν
∥]tr[α̂∥ν]−

1
4

{
tr[α̂µ

∥ ]tr[α̂∥µ]
}2
]

,

(16)

where ρµν and ωµν are the field strengths of the ρ meson and the ω meson, given by

ρµν =∂µρν − ∂νρµ − igρ

[
ρµ , ρν

]
,

ωµν =∂µων − ∂νωµ . (17)

We note that the last term in Equation (16) is a mixing term of ρ and ω mesons, as
introduced in Ref. [66] to the a0 model to reduce the slope parameter, following Ref. [37].
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As we will show in Section 4.3, when we just add the effect of a0(980) meson to the PDM
without this vector meson mixing term, the slope parameter becomes too large compared
with the recent constraints as summarized in Ref. [72].

Finally, the baryonic Lagrangian LN based on the parity doubling structure [3,5] is
given by

LN = N̄1iγµDµN1 + N̄2iγµDµN2

− m0[N̄1γ5N2 − N̄2γ5N1]

− g1[N̄1l MN1r + N̄1r M†N1l ]

− g2[N̄2r MN2l + N̄2l M†N2r],

(18)

where Nir =
1+γ5

2 Ni (Nil =
1−γ5

2 Ni) (i = 1, 2) is the right-handed (left-handed) component
of the nucleon fields Ni, and the covariant derivatives of the nucleon fields are defined as

DµN1l,2r = (∂µ − iLµ − iVµ + iAµ)N1l,2r ,

DµN1r,2l = (∂µ − iRµ − iVµ − iAµ)N1r,2l ,
(19)

where Vµ is the external gauge field corresponding to the U(1) baryon number. By diagonal-
izing LN , we obtain two baryon fields N+ and N− corresponding to the positive parity and
negative parity nucleon fields, respectively. Their masses in vacuum are obtained as [3,5]

m(vac)
± =

1
2

[√
(g1 + g2)2σ2

0 + 4m2
0 ± (g1 − g2)σ0

]
. (20)

In the present work, N+ and N− are identified as N(939) and N(1535), respectively.

2.2. Dense Nuclear Matter in PDM with Mean Field Approximation

To construct the nuclear matter from the model introduced in the previous section,
we adopt the mean-field approximation following Ref. [19]. As a first step, we reduce the
effect of a0(980) meson and vector meson mixing interaction to study the dense nuclear
matter. The effect of a0(980) meson and vector meson mixing will be studied in Section 4.

The meson fields are then given by

σ(x) → σ , π⃗(x) → 0 , a⃗0(x) → 0 , η(x) → 0 , (21)

and then, the mean field for M becomes

⟨M⟩ =
(

σ 0
0 σ

)
. (22)

Now, the potential VM is written in terms of the meson mean fields as

VM =− µ̄2
σ

2
σ2 +

λ4

4
σ4 − λ6

6
σ6 − m2

π fπσ. (23)

Here, the parameters are defined as

µ̄2
σ ≡ µ̄2 +

1
2

K ,

λ4 ≡ λ41 − λ42,

λ6 ≡ λ61 + λ62 + λ63.

(24)

In the mean-field approximation, the vector meson fields are taken as

ωµ(x) → ωδµ0, ρi
µ(x) → ρδµ0δi3, (25)
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according to the rotational symmetry and isospin symmetry. Subsequently, the Lagrangian
of the vector mesons is expressed in terms of the mean fields as

LV = −gωNN ∑
αj

N̄αjγ
0ωNαj − gρNN ∑

αj
N̄αjγ

0 τ3

2
ρNαj +

1
2

m2
ωω2 +

1
2

m2
ρρ2. (26)

with

gωNN = (aVNN + a0NN)gω , (27)

gρNN = aVNN gρ . (28)

We note that, as we stated in the beginning of this subsection, we take λωρ = 0 to turn off
the vector meson mixing interaction for the moment.

Then, the thermodynamic potential for the nucleons is written as

ΩN = −2 ∑
α=±,j=±

∫ k f d3 p
(2π)3

[
µ∗

j − ωαj

]
, (29)

where α = ± denotes the parity and j = ± the iso-spin of nucleons. µ∗
j is the effective

chemical potential, given by

µ∗
j ≡ (µB − gωNNω) +

j
2
(µI − gρNNρ) , (30)

and ωαj is the energy of the nucleon defined as ωαj =
√
( p⃗)2 + (m∗

αj)
2, with p⃗ and m∗

αj

being the momentum and the effective mass of the nucleon. The effective mass m∗
αj is

given by

m∗
αj =

1
2

[√
(g1 + g2)2σ2 + 4m2

0 + α(g1 − g2)σ

]
. (31)

The entire thermodynamic potential for hadronic matter is expressed as

ΩH = ΩN − µ̄2
σ

2
σ2 +

λ4

4
σ4 − λ6

6
σ6 − m2

π fπσ − 1
2

m2
ωω2 − 1

2
m2

ρρ2 − Ω0 , (32)

where we subtracted the potential at the vacuum

Ω0 ≡ − µ̄2
σ

2
f 2
π +

λ4

4
f 4
π − λ6

6
f 6
π − m2

π f 2
π . (33)

2.3. Nuclear Saturation Properties

Nuclear properties at the saturation density n0 = 0.16 fm−3 are very important to be
satisfied in nuclear physics. At the saturation, the energy per nucleon of the infinite sym-
metric nuclear matter is minimized. There are several fundamental nuclear properties at
the saturation density: the binding energy B0, the nuclear incompressibility K0, the nuclear
symmetry energy S0, and the slope parameter L0. In the present work, the model parameters
are determined such that the saturation properties of the nuclear matter are reproduced.

We first obtain the pressure of hadronic matter P from the thermodynamic potential
in Equation (86) as

P(µB, µI) = −ΩH(µB, µH ; σ = σ0, ω = ω0, ρ = ρ0) , (34)

where µB and µI are the chemical potentials for the baryon number and the isospin number,
and σ0, ω0 and ρ0 are the solutions of the stationary conditions of ΩH , given by

∂ΩH
∂σ

= 0 ,
∂ΩH
∂ω

= 0 ,
∂ΩH

∂ρ
= 0 . (35)
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From the pressure P, we define the baryon number density nB and the isospin density
nI as

nB =
∂P

∂µB
, nI =

∂P
∂µI

. (36)

They are related to the proton number density np and the neutron number density nn as

nB = np + nn , nI =
1
2

np −
1
2

nn . (37)

As usual, from these densities and the pressure, we obtain the energy density ϵ via the
Legendre transformation as

ϵ(nB, nI) = −P + µBnB + µInI . (38)

It is convenient to define the energy per nucleon as

w(x, δ) ≡ ϵ(nB, nI)

nB
− mN , (39)

where
x ≡ nB − n0

3n0
, δ ≡ −2nI

nB
. (40)

At the saturation density nB = n0, the symmetric nuclear matter (nI = 0) forms
the most stable state with minimized energy. In other words, w(x, δ) is stationary when
(x, δ) = (0, 0), with w(0, 0) < 0. Then,

∂w
∂δ

∣∣∣
0
=

∂w
∂nB

∂nB
∂δ

+
∂w
∂nI

∂nI
∂δ

∣∣∣
0
= −1

2
µI

∣∣∣
0
= 0, (41)

∂w
∂x

∣∣∣
0
=

3P
n0

∣∣∣
0
= 0 , (42)

where
∣∣∣
0

means that the derivatives are evaluated at (x, δ) = (0, 0). These imply that the

pressure P and isospin chemical potential µI are zero at the saturation density. The binding
energy B0 is obtained as

B0 = −w(0, 0) = − ϵ

nB

∣∣∣
0
+ mN = −µB

∣∣∣
0
+ mN . (43)

In this review, we take B0 = −16 MeV as an input.
Expanding w(x, δ) around the stationary point (x, δ) = (0, 0), we obtain

w(x, δ) = w(0, 0) +
1
2

∂2w
∂x2

∣∣∣
0
x2 +

1
2

∂2w
∂δ2

∣∣∣
0
δ2 +

1
2

∂3w
∂x∂δ2

∣∣∣
0
xδ2 + O(x3)

≡ −B0 +
1
2

K0x2 + (S0 + L0x)δ2 + O(x3) ,
(44)

where K0, S0, and L0 are called as the incompressibility, the symmetry energy, and the slope
parameter at the saturation density, respectively.

The incompressibility K0 represents the curvature of w(x, δ) in the direction of the
baryon number density. It corresponds to the rate of increase of the baryon chemical
potential µB with respect to nB around the saturation density. K0 is calculated as

K0 ≡ ∂2w
∂x2

∣∣∣
0
= 9n2

0
∂2

∂n2
B

(
ϵ

nB

)∣∣∣
0
= 9n0

∂µB
∂nB

∣∣∣
0
. (45)
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We note that K0 corresponds to the hardness of the (symmetric) matter around the saturation
density; the larger K0 corresponds to the larger pressure at high baryon density. Thus, it is
called the incompressibility of nuclear matter because a larger K0 corresponds to a matter
that is more resistant to compression. The generally accepted values are K0 = 240 ± 40 (see
recent review [73] for detailed discussion and summary of the values of K0). In this review,
the results are mainly computed with K0 = 215, 240 MeV for comparison.

The symmetry energy S0 is defined to be the slope of w(x, δ) in the isospin density
direction around n0 as

S0 ≡ 1
2

∂2w
∂δ2

∣∣∣
0
=

n2
0

8
∂2

∂n2
I

(
ϵ

nB

)∣∣∣
0
=

n0

8
∂µI
∂nI

∣∣∣
0
. (46)

The symmetry energy is the energy that arises from the asymmetry of the matter. If we
ignore the O(x3) contribution in Equation (44), the symmetry energy at the saturation
density S0 can be approximated by

S0 ≈ w(0, 1)− w(0, 0), (47)

which is the energy difference between pure neutron matter and symmetric matter. Then,
the term S0δ2 can be seen as the energy arises from the difference of np and nn (the
asymmetry of the matter) around the saturation density. For later convenience, we define
the symmetry energy at arbitrary baryon density nB as

S(nB) ≡
1
2

∂2w(x, δ)

∂δ2

∣∣∣∣∣
δ=0

. (48)

This S(nB) approximately corresponds to the energy difference between pure neutron
matter and symmetric matter at nB:

S(nB) ≈ w(x, 1)− w(x, 0). (49)

The value of S0 is well-studied with little ambiguity. In this review, S0 is taken to be 31 MeV.
Finally, the slope parameter L0 is given by

L0 ≡ 1
2

∂3w
∂x∂δ2

∣∣∣
0
=

∂S(nB)

∂x

∣∣∣
0
= 3S0 +

3n2
0

8
∂2µI

∂nBnI

∣∣∣
0
. (50)

The slope parameter approximates the slope of the symmetry energy in the direction of
baryon number density around the saturation density. The larger L0 results in the larger
symmetry energy S(nB) at higher density. Due to the experimental difficulties, the value of
L0 possesses large uncertainty and has been discussed for many years. The recent accepted
values are L0 = 57.7 ± 19 MeV, as summarized in Ref. [72].

2.4. Determination of Model Parameters

In the present model, the model parameters are fitted to reproduce the nuclear satura-
tion properties, as well as physical masses and the decay constant in vacuum. Under the
mean field approximation in Section 2.2, there are seven parameters to be determined for a
given value of the chiral invariant mass m0:

g1 , g2 , µ̄2
σ , λ4 , λ6 , gωNN , gρNN . (51)

The vacuum expectation value of σ is taken to be σ0 = fπ with the pion decay constant
fπ = 93 MeV. The Yukawa coupling constants g1 and g2 are determined by fitting them
to the nucleon masses in vacuum given in Equation (20), with m+ = mN = 939 MeV and
m− = mN∗ = 1535 MeV for fixed value of the chiral invariant mass m0. The values of
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µ̄2
σ, λ4, λ6, gωNN , and gρNN are determined by the saturation properties shown in Table 1

together with the stationary condition of the potential in vacuum given by

µ̄2
σ fπ − λ4 f 3

π + λ6 f 5
π + m2

π fπ = 0 . (52)

For the meson masses, we use the values listed in Table 2. We should note that there is a
relatively large uncertainty in the incompressibility, so we use K0 = 215 and 240 MeV as
inputs for studying the dependence. The determined values of the parameters for a fixed
value of m0 are summarized in Table 3.

Table 1. Saturation properties that are used to determine the model parameters: saturation density
n0, binding energy B0, incompressibility K0, and symmetry energy S0.

n0 [fm−3] B0 [MeV] K0 [MeV] S0 [MeV]

0.16 16 215, 240 31

Table 2. Values of meson masses and pion decay constant in the vacuum in unit of MeV.

mπ mω mρ fπ

140 783 776 93

Table 3. Values of g1, g2, µ̄2
σ, λ4, λ6, gωNN , gρNN for m0 = 600–900 MeV, K0 = 215, 240 MeV.

m0 [MeV] 600 700 800 900

K0 = 215 MeV

g1 8.427 7.762 6.941 5.921
g2 14.836 14.171 13.349 12.329

µ̄2
σ/ f 2

π 23.377 20.979 13.346 2.502
λ4 42.368 38.92 26.128 6.673

λ6 f 2
π 16.79 15.739 10.58 1.969

gωNN 8.902 7.055 5.471 3.389
gρNN 7.896 8.16 8.314 8.442

K0 = 240 MeV

g1 8.427 7.762 6.941 5.921
g2 14.836 14.171 13.349 12.329

µ̄2
σ/ f 2

π 21.821 18.842 11.692 1.537
λ4 39.367 34.583 22.577 4.388

λ6 f 2
π 15.344 13.54 8.683 0.649

gωNN 9.132 7.305 5.66 3.522
gρNN 7.854 8.13 8.298 8.436

The slope parameter L0 is computed as an output, and the resultant values are shown
in Table 4. We note that the computed L0 is slightly larger than the recently accepted
values L0 = 57.7 ± 19 MeV, as summarized in Ref. [72]. We also observe that the value of
incompressibility has little effect on L0, even with a large K0 = 260 MeV.

Table 4. Slope parameter L0 computed as a output from the model with K0 = 215, 240, 260 MeV.
S0 = 31 MeV.

m0 [MeV] 600 700 800 900

K0 = 215 MeV L0 [MeV] 85.91 82.87 81.32 80.15

K0 = 240 MeV L0 [MeV] 86.25 83.04 81.33 80.08

K0 = 260 MeV L0 [MeV] 86.45 83.14 81.33 80.03

The dependence of L0 on S0 is compared in Table 5. We observe that the value of S0
have a relatively large impact on the value of L0.
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Table 5. Slope parameter L0 with S0 = 24, 31, 36 MeV. K0 = 215 MeV.

m0 [MeV] 600 700 800 900

S0 = 24 MeV L0 [MeV] 64.91 61.87 60.32 59.15

S0 = 31 MeV L0 [MeV] 85.91 82.87 81.32 80.15

S0 = 36 MeV L0 [MeV] 100.91 97.87 96.32 95.15

3. Finite Nuclei

In the previous section, we observed that the parity doublet model reproduces reason-
ably the nuclear matter saturation properties with the chiral invariant nucleon mass m0 in
the range of 600–900 MeV. In this section, we study the properties of nuclei in self-consistent
relativistic mean field theory to see if the parity doublet model can explain some nuclear
properties, and to find out the value of the chiral invariant mass preferred by nuclear
structures. As a first step, we use the PDM without the a0 meson, focusing on the properties
of stable nuclei. Nuclear properties in the PDM with the a0 meson is being studied and the
results will be reported elsewhere.

Before we investigate the properties of nuclei using the PDM, we first describe how
one obtains the nuclear energy density functional based on the relativistic mean field theory
and the corresponding equation of motion for nucleons and mesons. We also discuss,
in brief, how to solve the equation of motion, especially for exotic nuclei in which the
continuum effect is important. For this, we closely follow the description in Ref. [68], where
a Walecka-type model was adopted. The Relativistic Continuum Hartree–Bogoliubov
(RCHB) theory [68] is an extension of the relativistic mean field theory in a self-consistent
way with both bound and (discretized) continuum states.

The starting Lagrangian is given by

L = ψ̄[i̸∂ − M − gσσ − gω ̸ω − gρ ̸ρ − e̸A
1 − τ3

2
]ψ +

1
2

∂µσ∂µσ − U(σ)

−ΩµνΩµν + Uω(ωµ)−
1
4

R⃗µν · R⃗µν + Uρ (⃗ρµ)−
1
4

FµνFµν , (53)

where Ωµν, R⃗µν and Fµν are the field strength tensors of the ω meson, ρ meson and electro-
magnetic field, respectively and

U(σ) =
1
2

m2
σσ2 +

1
3

g2σ3 +
1
4

g3σ4 ,

Uω(ωµ) =
1
2

m2
ωωµωµ +

1
4

c3(ωµωµ)2 ,

Uρ (⃗ρµ) =
1
2

m2
ρρ⃗µρ⃗µ +

1
4

d3 (⃗ρµρ⃗µ)2 , ρ = ρ⃗ · τ⃗ . (54)

We refer to Table 2 in Ref. [68] for the value of the masses and coupling constants in
the above Lagrangian that were determined by studying the properties of nuclear matter
and a few doubly magic nuclei with no-sea and mean-field approximations. After taking
the mean field approximation on the above Lagrangian and performing the Legendre
transformation, we obtain the corresponding mean field Hamiltonian HRMF and the energy
density functional ERMF = ⟨Φ|HRMF|Φ⟩. Here, |Φ⟩ is the ground state of a nucleus with

the mass number A, |Φ⟩ =
A

∏
a=1

c†
a |0⟩, and c†

a is the creation operator of the nucleon field,

ψ(x) = ∑
a

ψa(x)ca. Then, the expectation value of the Hamiltonian with the mean field

approximation reads
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ERMF(ρ, ϕ) = ⟨Φ|HRMF|Φ⟩

=
∫

d3xTr[β(γ⃗ · p⃗ + M + gσσ + gω βω0 + gρβρ3
0τ3 + e̸A

1 − τ3

2
)ρ]

+
∫

d3x[−1
2

∂iσ∂iσ + Uσ(σ) +
1
4

ΩijΩij − Uω(ω0) +
1
4

R⃗ij · R⃗ij − Uρ(ρ
3
0)

−1
4

F0jF0j] , (55)

where ρ is the density matrix, ϕ represents bosonic fields, and γµ = (β, β⃗α). Here, we
assumed that the mean field is time-independent. Also, we have applied the fact that the
spatial components of the vector fields are zero in a system with the time reversal symmetry.
By performing variations on ERMF with respect to ρ and ϕ, we obtain the equations for the
nucleon and bosons [68].

hDψi(x⃗) = ϵiψi(x⃗) , (56)

where the Dirac Hamiltonian hD is given by

hD = α⃗ · p⃗ + β[M + S(x⃗)] + V(x⃗) (57)

with the scalar S(x⃗) and vector V(x⃗) potentials given by

S(x⃗) = gσσ(x⃗) ,

V(x⃗) = gωω0(x⃗) + gρτ3ρ3
0(x⃗) +

1
2

e(1 − τ3)A0(x⃗) .

In general, the equations of motion for the nucleon moving in the mean field potentials
are solved by using the harmonic oscillator basis. However, for exotic nuclei, whose density
profile can have a long tail, it is preferable to solve the equations in coordinate space and
adopt a basis which can treat the asymptotic behavior of the nucleon wave function. In
Ref. [68], the Woods–Saxon basis was used to solve the equations of motion for the nucleon.

Similarly, by doing variations on ERMF with respect to ϕ, we obtain the equations for
the bosons [68],

−▽⃗2σ + U′
σ(σ) = −gρρ3 ,

−▽⃗2ω0 + U′
ω(ω0) = gωρω ,

−▽⃗2ρ3
0 + U′

ρ(ρ
3
0) = gρρ3 ,

−▽⃗2 A0 = eρc . (58)

where

ρs = Tr[βρ] ,

ρω = Tr[ρ] ,

ρ3 = Tr[τ3ρ] ,

ρc = Tr[(1 − τ3)ρ] . (59)

Using Equation (58) in Equation (55), one can obtain the total energy of the system as

E =
∫

d3xTr[β(γ⃗ · p⃗ + M)ρ +
1
2
(gσβσ + gωω0 + gρρ3

0τ3 + A0
1 − τ3

2
)ρ]

+
∫

d3x[Uσ(σ)− Uω(ω0)− Uρ(ρ
3
0)−

1
2
(σU′

σ(σ)− ω0U′
ω(ω0)− ρ3

0U′
ρ(ρ

3
0))] . (60)
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Now, we move onto the PDM without the a0 meson. To pin down the value of m0, we
study the properties of nuclei using the parity doublet model without the a0 meson in the
framework of a self-consistent relativistic mean field theory.

Using the Lagrangian of the parity doublet model without the a0 meson in
Equation (1), we obtain the equations of motion (EoM) for the stationary mean fields
σ, ω0, ρ3

0 and A0 [67],

(
− ∇⃗2 + m2

σ

)
⟨σ(x⃗)⟩ = −N̄(x⃗)N(x⃗)

∂ m∗
N(σ)

∂σ

∣∣∣∣
σ=⟨σ(x⃗)⟩

+
(
−3 fπλ4 + 10 f 3

πλ6

)
⟨σ(x⃗)⟩2

+
(
−λ4 + 10 f 2

πλ6

)
⟨σ(x⃗)⟩3

+5 fπλ6⟨σ(x⃗)⟩4 + λ6⟨σ(x⃗)⟩5 , (61)(
− ∇⃗2 + m2

ω

)
⟨ω0(x⃗)⟩ = gωNN N†(x⃗)N(x⃗) , (62)(

− ∇⃗2 + m2
ρ

)
⟨ρ3

0(x⃗)⟩ = gρNN N†(x⃗)
τ3

2
N(x⃗) , (63)

−∇⃗2⟨A0(x⃗)⟩ = eN†(x⃗)
1 − τ3

2
N(x⃗) . (64)

Note here that we take the shift σ → fπ + σ, since the scalar field in the parity doublet
model is a chiral partner of the pion field, whose vacuum expectation value in free space is
fπ , while that of the widely used scalar field in nuclear structure studies is zero in free space.
Since we are interested in finite nuclei, we will not consider the EoM for the parity partner
of the nucleon, N∗(1535), which does not form its Fermi sea near the saturation density.
In addition, since our primary goal here is to see if the parity doublet model can explain
some basic nuclear properties, such as the binding energy with a reasonable value of the
chiral invariant mass, we will not consider pairing correlations, which are essential for
odd–even staggering in nuclear properties. For instance, according to the semi-empirical
mass formula, the contribution from the pairing term to the binding energy per nucleon of
58Ni is only about 0.03 MeV.

The EoM for the nucleon is given by[⃗
α · p⃗ + β m∗

N(⟨σ(x⃗)⟩) + V(x⃗)
]
Ni(x⃗) = ϵi Ni(x⃗) , (65)

where Ni is the single-particle wave function, and

V(x⃗) = gωNN⟨ω0(x⃗)⟩+ gρNN⟨ρ3
0(x⃗)⟩τ3

2
+ e

(1 − τ3)

2
⟨A0(x⃗)⟩ . (66)

With assuming the spherical shape of the nucleus, we can solve Equations (61)–(65)
simultaneously to obtain the energy

E =
∫

d3x H(x⃗) . (67)

After subtracting out the vacuum contribution, we write the Hamiltonian density
H(x⃗) in the mean field approximation as

H = N̄
(
−iγi∂i + m∗

N

)
N + gωNN⟨ω0⟩N† N + gρNN⟨ρ3

0⟩N† τ3

2
N + e⟨A0⟩N† 1 − τ3

2
N

− 1
2

∂i⟨σ⟩∂i⟨σ⟩+
1
2

∂i⟨ω0⟩∂i⟨ω0⟩+
1
2

∂i⟨ρ3
0⟩∂i⟨ρ3

0⟩+
1
2

∂i⟨A0⟩∂i⟨A0⟩

− µ̄2
σ

2

[
( fπ + ⟨σ⟩)2 − f 2

π

]
+

λ4

4

[
( fπ + ⟨σ⟩)4 − f 4

π

]
− λ6

6

[
( fπ + ⟨σ⟩)6 − f 6

π

]
− m2

π fπ⟨σ⟩

− 1
2

m2
ω⟨ω0⟩2 − 1

2
m2

ρ⟨ρ3
0⟩2 . (68)
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Then, the binding energy (BE) per nucleon is given by

BE/A = − E
A

+ mN . (69)

To put an additional constraint on the value of the chiral invariant mass, using the
model parameters summarized in Table 3, we calculate the binding energies per nucleon
and charge radii of selected nuclei: 16O, 40Ca, 48Ca, 58Ni, 70Ge, 82Se, 92Mo, 112Sn, 126Sn,
138Ba, 154Sm, 170Er, 182W, 202Pb and 208Pb [67]. Before we compare our results for the
binding energies and charge radii with the experiments, we show the nucleon density
profile, mean-field value and effective nucleon mass in a nucleus with different values
of the chiral invariant mass to visualize how the chiral invariant mass affects them. We
first plot the nucleon density profile in 112Sn and 126Sn for different values of the chiral
invariant mass in Figure 1. It is interesting to see that 112Sn has a depleted central density
and, therefore, can be a candidate of bubble nuclei, which was also observed in the previous
studies based on relativistic mean field models; for example, see Ref. [74].
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Figure 1. Nucleon density profile in 112Sn (left) and 126Sn (right) calculated with K0 = 215 MeV.

In Figure 2, we present the value of ⟨σ⟩ and ⟨ω0⟩ in 112Sn and 126Sn for different values
of the chiral invariant mass. As expected, the value of ⟨σ⟩ decreases and ⟨ω0⟩ increases as
r → 0, from zero density to the saturation density.
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Figure 2. ⟨σ⟩ and ⟨ω0⟩ in 112Sn (left) and 126Sn (right) with K0 = 215 MeV.

The effective neutron and proton masses in 112Sn and 126Sn are shown in Figure 3,
where the effective mass is defined as the energy of the nucleon at rest:

m(eff)
n = m∗

n + gωNN⟨ω0⟩ −
gρNN

2
⟨ρ0⟩ ,

m(eff)
p = m∗

p + gωNN⟨ω0⟩+
gρNN

2
⟨ρ0⟩ .

As observed in Ref. [67], the neutron–proton mass difference becomes larger in a nucleus
with larger isospin asymmetry.
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Figure 3. Neutron and proton effective masses in 112Sn and 126Sn with K0 = 215 MeV. Here, solid
(dashed) lines are for the neutron (proton).

Now, as in Ref. [67], we compare our results with experiments to check which value of
the chiral invariant mass reproduces the experimental results well. In Tables 6 and 7, we
present the binding energies per nucleon and the charge radii as well as the root-mean-
square deviation (RMSD) with m0 = 600, 700, 800, 900 MeV for selected nuclei: 16O, 40Ca,
48Ca, 58Ni, 70Ge, 82Se, 92Mo, 112Sn, 126Sn, 138Ba, 154Sm, 170Er, 182W, 202Pb, and 208Pb [67]. It
can be seen from Tables 6 and 7 that the case with m0 = 700 MeV has the smallest RMS
deviation both in the binding energies and charge radii. Therefore, as concluded in Ref. [67],
m0 = 700 MeV is preferred by the nuclear properties of selected isotopes.

Table 6. Binding energy per nucleon and the charge radius (RC) with the parameter set in Table 3 for
K = 215 MeV. The table is taken from Ref. [67].

m0 (MeV) 600 700 800 900 Exp.

BE/A (MeV)

16O 7.489 7.781 7.298 5.698 7.976
40Ca 8.063 8.301 7.942 6.693 8.551
48Ca 7.978 8.134 7.757 6.541 8.667
58Ni 7.685 7.841 7.473 6.308 8.732
70Ge 8.044 8.239 7.932 6.866 8.722
82Se 8.066 8.219 7.910 6.881 8.693

92Mo 7.993 8.123 7.822 6.828 8.658
112Sn 7.911 8.050 7.774 6.844 8.514
126Sn 7.980 8.070 7.802 6.909 8.443
138Ba 7.920 8.028 7.764 6.890 8.393
154Sm 7.821 7.958 7.724 6.894 8.227
170Er 7.733 7.837 7.618 6.830 8.112
182W 7.616 7.707 7.494 6.726 8.018
202Pb 7.468 7.535 7.310 6.549 7.882
208Pb 7.496 7.552 7.321 6.558 7.867

RMS deviation 0.573 0.438 0.727 1.734 −

RC (fm)

16O 2.845 2.763 2.772 2.796 2.699
40Ca 3.546 3.469 3.473 3.479 3.478
48Ca 3.585 3.521 3.525 3.527 3.478
58Ni 3.912 3.848 3.856 3.863 3.776
70Ge 4.085 4.013 4.013 4.008 4.041
82Se 4.209 4.145 4.144 4.135 4.140

92Mo 4.401 4.339 4.344 4.344 4.315
112Sn 4.671 4.608 4.609 4.602 4.594
126Sn 4.754 4.697 4.698 4.688 4.685
138Ba 4.920 4.862 4.861 4.849 4.838
154Sm 5.111 5.045 5.039 5.022 5.105
170Er 5.242 5.178 5.175 5.160 5.279
182W 5.364 5.301 5.298 5.286 5.356
202Pb 5.549 5.493 5.493 5.481 5.471
208Pb 5.584 5.531 5.532 5.519 5.501

RMS deviation 0.082 0.046 0.049 0.056 −
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Table 7. Binding energy per nucleon and the charge radius (RC) with the parameter set in Table 3 for
K = 240 MeV. The table is taken from Ref. [67].

m0 (MeV) 600 700 800 900 Exp.

BE/A (MeV)

16O 7.087 7.280 6.792 5.093 7.976
40Ca 7.736 7.906 7.538 6.191 8.551
48Ca 7.676 7.768 7.378 6.061 8.667
58Ni 7.391 7.486 7.108 5.849 8.732
70Ge 7.761 7.900 7.584 6.429 8.722
82Se 7.799 7.899 7.580 6.462 8.693

92Mo 7.741 7.821 7.507 6.424 8.658
112Sn 7.668 7.760 7.474 6.460 8.514
126Sn 7.757 7.801 7.516 6.536 8.443
138Ba 7.695 7.758 7.482 6.526 8.393
154Sm 7.596 7.691 7.447 6.540 8.227
170Er 7.526 7.587 7.354 6.484 8.112
182W 7.418 7.466 7.237 6.387 8.018
202Pb 7.277 7.303 7.062 6.221 7.882
208Pb 7.306 7.322 7.075 6.232 7.867

RMS deviation 0.827 0.737 1.047 2.147 −

RC (fm)

16O 2.877 2.792 2.790 2.803 2.699
40Ca 3.572 3.491 3.485 3.479 3.478
48Ca 3.605 3.537 3.532 3.522 3.478
58Ni 3.932 3.863 3.861 3.855 3.776
70Ge 4.104 4.028 4.018 4.001 4.041
82Se 4.223 4.154 4.145 4.125 4.140

92Mo 4.418 4.351 4.347 4.335 4.315
112Sn 4.684 4.616 4.608 4.591 4.594
126Sn 4.764 4.703 4.695 4.675 4.685
138Ba 4.928 4.865 4.856 4.834 4.838
154Sm 5.117 5.045 5.031 5.004 5.105
170Er 5.250 5.181 5.169 5.144 5.279
182W 5.374 5.305 5.294 5.270 5.356
202Pb 5.555 5.493 5.485 5.462 5.471
208Pb 5.588 5.529 5.521 5.499 5.501

RMS deviation 0.097 0.052 0.053 0.062 −

With m0 = 700 MeV, we try to improve our results of nuclear properties. For this, we
use the following nuclear matter properties as inputs,

E
A

− mN = −16.3 MeV , n0 = 0.16 fm−3,

K0 = 215 MeV , S0 = 30 MeV , (70)

and determine the model parameters again given in Table 8 [67]. With the new parameter set in
Table 8, we calculate the properties of selected nuclei and compare our results with experiments
and the ones obtained in RCHB with PC-PK1 [75,76] in Table 9. As in Table 9, our results are
in quantitative agreement with experiments. As stated in Ref. [67], pairing correlations are not
included in our current results, which will be improved in our future publications.

Table 8. Parameter set with the inputs in Equation (70). All the parameters are dimensionless except mσ.

g1 g2 gωNN gρNN µ̄2
σ / f 2

π λ4 λ6 f 2
π mσ [MeV]

7.762 14.171 7.036 3.958 21.135 39.332 15.996 382.140
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Table 9. Binding energy per nucleon and the charge radius (RC) with the parameters in Table 8.

BE/A [MeV] RC [fm]

PDM RCHB Exp. PDM RCHB Exp.
16O 8.040 7.956 7.976 2.757 2.768 2.699

40Ca 8.574 8.577 8.551 3.464 3.481 3.478
48Ca 8.419 8.654 8.667 3.517 3.494 3.478
58Ni 8.118 8.691 8.732 3.843 3.737 3.776
70Ge 8.521 8.650 8.722 4.010 4.001 4.041
82Se 8.513 8.664 8.693 4.142 4.125 4.140

92Mo 8.408 8.662 8.658 4.335 4.310 4.315
112Sn 8.339 8.489 8.514 4.605 4.582 4.594
126Sn 8.372 8.447 8.443 4.695 4.683 4.685
138Ba 8.329 8.406 8.393 4.860 4.848 4.838
154Sm 8.263 8.149 8.227 5.042 5.062 5.105
170Er 8.140 8.000 8.112 5.176 5.224 5.279
182W 8.007 7.927 8.018 5.299 5.342 5.356
202Pb 7.837 7.869 7.882 5.491 5.490 5.471
208Pb 7.860 7.875 7.867 5.529 5.518 5.501

RMS deviation 0.204 0.05 − 0.045 0.031 −

4. Effect of a0 Meson to Nuclear Matter

In the previous sections, we omitted the effect of the a0 meson when we studied nuclear
matter and finite nuclei. However, the isovector scalar meson may play an important role in
the asymmetric matter, such as neutron star matter and neutron-rich nuclei. In this section,
we study the effect of the a0 meson on nuclear properties such as symmetry energy and
slope parameter. As we will see, the a0 meson stiffens the matter strongly and causing a
large slope parameter L0. We include also the vector meson mixing interaction to effectively
reduce the slope parameter and study the effect of it.

4.1. Dense Nuclear Matter with a0(980)

To construct the nuclear matter with a0(980), we adopt the mean-field approximation
by taking

σ(x) → σ, π(x) → 0, ai
0(x) → a δi3, η(x) → 0. (71)

Then, the mean field for M becomes

⟨M⟩ =
(

σ − a 0
0 σ + a

)
. (72)

Now, the potential VM is written in terms of the meson mean fields as

VM =− µ̄2
σ

2
σ2 − µ̄2

a
2

a2 +
λ4

4
(σ4 + a4) +

γ4

2
σ2a2

− λ6

6
(σ6 + 15σ2a4 + 15σ4a2 + a6) + λ

′
6(σ

2a4 + σ4a2)

− m2
π fπσ ,

(73)

where the parameters are defined as

µ̄2
σ ≡ µ̄2 +

1
2

K ,

µ̄2
a ≡ µ̄2 − 1

2
K = µ̄2

σ − K ,

λ4 ≡ λ41 − λ42 ,

γ4 ≡ 3λ41 − λ42 ,

λ6 ≡ λ61 + λ62 + λ63 ,

λ
′
6 ≡ 4

3
λ62 + 2λ63 .

(74)
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In the present model, λ′
6 is taken as a free parameter to examine the effect of λ62 and

λ63 interactions, which are of sub-leading order in the large Nc expansion. Given that the
λ′

6 term is suppressed by 1/Nc compared to the λ6 term in the large Nc expansion, we
assume |λ′

6| ≲ |λ6| holds. Consequently, we consider λ′
6 = 0,±λ6 to assess the impact of

the sub-leading order six-point interactions on the symmetry energy. By default, we first
set λ′

6 = 0. In the end of Sections 4.3 and 4.4, we investigate the impact of λ′
6 on the results

by comparing the cases with λ′
6 = 0,±λ6.

In the mean-field approximation, the vector meson fields are taken as

ωµ(x) → ωδµ0, ρi
µ(x) → ρδµ0δi3, (75)

according to the rotational symmetry and isospin symmetry. Subsequently, the Lagrangian
of the vector mesons is expressed in terms of the mean fields as

LV =− gωNN ∑
αj

N̄αjγ
0ωNαj − gρNN ∑

αj
N̄αjγ

0 τ3

2
ρNαj

+
1
2

m2
ωω2 +

1
2

m2
ρρ2 + λωρg2

ωNN g2
ρNNω2ρ2 .

(76)

with

gωNN = (aVNN + a0NN)gω , (77)

gρNN = aVNN gρ . (78)

It is crucial to note that λωρ ≥ 0 is required to realize ω = ρ = 0 in vacuum. To show
it, we start from the vector meson potential in vacuum given as

VV ≡ −1
2

m2
ωω2 − 1

2
m2

ρρ2 − λωρg2
ωNN g2

ρNNω2ρ2 . (79)

The vacuum expectation values of the vector meson fields are chosen at the stationary point
of VV with minimal energy. The stationary conditions are given by

∂VV
∂ω

= ω[m2
ω + 2λωρg2

ωNN g2
ρNNρ2] = 0 ,

∂VV
∂ρ

= ρ[m2
ρ + 2λωρg2

ωNN g2
ρNNω2] = 0 ,

(80)

leading to two distinct stationary points,

(ω2, ρ2) = (0, 0), (−
m2

ρ

2λωρg2
ωNN g2

ρNN
,− m2

ω

2λωρg2
ωNN g2

ρNN
) . (81)

Then, the values of potential at stationary points are

VV =

0, for (ω2, ρ2) = (0, 0) ,
m2

ωm2
ρ

4λωρg2
ωNN g2

ρNN
, for (ω2, ρ2) = (− m2

ρ

2λωρg2
ωNN g2

ρNN
,− m2

ω

2λωρg2
ωNN g2

ρNN
) .

(82)

In the present model, vanishing vacuum expectation values of the vector meson fields are
required at zero density due to the Lorentz-invariance of the vacuum. Consequently, we
must require λωρ ≥ 0 here, such that (ω2, ρ2) = (0, 0) minimizes the effective potential VV
in vacuum.

Then, the thermodynamic potential for the nucleons is written as

ΩN = −2 ∑
α=±,j=±

∫ k f d3 p
(2π)3

[
µ∗

j − ωαj

]
, (83)
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where α = ± denotes the parity and j = ± the iso-spin of nucleons (j = + for proton and
j = − for neutron). µ∗

j is the effective chemical potential given by

µ∗
j ≡ (µB − gωNNω) +

j
2
(µI − gρNNρ) , (84)

and ωαj is the energy of the nucleon defined as ωαj =
√
( p⃗)2 + (m∗

αj)
2, where p⃗ and m∗

αj are

the momentum and the effective mass of the nucleon. The effective mass m∗
αj is given by

m∗
αj =

1
2

[√
(g1 + g2)2(σ − ja)2 + 4m2

0 + α(g1 − g2)(σ − ja)
]

. (85)

We note that the masses of proton and neutron become non-degenerate in the asymmetric
matter due to the non-zero mean field of a0(980).

The entire thermodynamic potential for hadronic matter is expressed as

ΩH = ΩN

− µ̄2
σ

2
σ2 − µ̄2

a
2

a2 +
λ4

4
(σ4 + a4) +

γ4

2
σ2a2

− λ6

6
(σ6 + 15σ2a4 + 15σ4a2 + a6) + λ

′
6(σ

2a4 + σ4a2)

− m2
π fπσ − 1

2
m2

ωω2 − 1
2

m2
ρρ2 − λωρg2

ωNN g2
ρNNω2ρ2

− Ω0 ,

(86)

where we subtracted the potential at the vacuum

Ω0 ≡ − µ̄2
σ

2
f 2
π +

λ4

4
f 4
π − λ6

6
f 6
π − m2

π f 2
π . (87)

4.2. Determination of Model Parameters

In the present model, there are seven parameters in the meson potential, µ2
σ, µ2

a = µ2
σ −K,

λ4, γ4, λ6, λ′
6, and λωρ, in addition to the meson masses mπ , mω, mρ, and the pion decay

constant fπ . We also have four parameters, g1, g2, gωNN , and gρNN for the couplings of
mesons to baryons. As in Section 2, we use the physical values of three masses mπ , mω,
and mρ, together with the pion decay constant fπ as listed in Table 2. In addition, we use
the masses of a0(980) and η mesons listed in Table 10 as inputs. Similarly to Section 2, we
determine the values of µ2

σ, λ4, λ6 and gωNN from the saturation properties: the saturation
density n0, the binding energy B0, and the incompressibility K0 summarized in Table 1,
combined with the vacuum condition given in Equation (52). g1 and g2 are determined
from the vacuum mass of nucleon N(939) and its parity partner N∗(1535). The resultant
values are same as those shown in Table 3. Then, the parameters K and γ4 are determined
from the meson masses and the other parameters as

K = m2
η − m2

π ,

γ4 =
m2

a0
+ (5λ6 − 2λ′

6) f 4
π + µ̄2

a

f 2
π

, (88)

where mη and ma0 are the masses of η and a0.

Table 10. Values of masses of a0(980) and η mesons in unit of MeV.

ma0 mη

980 550
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As we stated in the previous subsection, we take λ′
6 = 0 for a while. The resultant

values of µ̄2
a and γ4 corresponding to a given m0 are presented in Table 11.

Table 11. Values of parameters µ̄2
a and γ4 for several choices of m0 and K0 with λ′

6 = 0.

m0 [MeV] 600 700 800 900

K0 = 215 MeV µ̄2
a/ f 2

π −9.40 −11.79 −19.43 −30.27
γ4 185.59 177.94 144.51 90.62

K0 = 240 MeV µ̄2
a/ f 2

π −10.95 −13.93 −21.08 −31.24
γ4 176.81 164.81 133.38 83.05

To demonstrate the effect of a0(980) on the matter, we consider both the a0 model with
vector-meson mixing (λωρ ̸= 0) and that without the mixing (λωρ = 0). In the a0 model
without vector meson mixing, parameter gρNN is determined from the symmetry energy
at the saturation density S0, while the slope parameter L0 is computed from the model as
an output.

Table 12 shows the values of gρNN together with L0. We note that the slope parameters
are much larger than the recently accepted value L0 = 57.7 ± 19 MeV [72]. We also note
that the effect of K0 on the value of L0 is larger when we include the a0 meson into the
model. The value of L0 with different S0 is shown in Table 13.

Table 12. The values of gρNN and slope parameter L0 in the a0 model without vector meson mixing,
for several choices of m0 and K0 with λ′

6 = 0. S0 = 31 MeV.

m0 [MeV] 600 700 800 900

K0 = 215 MeV gρNN 12.52 11.20 9.94 8.90
L0 [MeV] 120.14 105.21 97.05 87.65

K0 = 240 MeV gρNN 12.47 11.16 9.90 8.86
L0 [MeV] 126.58 108.78 98.67 87.75

K0 = 260 MeV gρNN 12.43 11.13 9.86 8.83
L0 [MeV] 131.19 111.45 99.86 87.75

Table 13. Values of gρNN and slope parameter L0 in the a0 model without vector meson mixing, for
several choices of m0 and S0 with λ′

6 = 0. K0 = 215 MeV.

m0 [MeV] 600 700 800 900

S0 = 24 MeV gρNN 11.37 9.9 8.45 7.2
L0 [MeV] 99.14 84.21 76.05 66.65

S0 = 31 MeV gρNN 12.52 11.2 9.94 8.9
L0 [MeV] 120.14 105.21 97.05 87.65

S0 = 36 MeV gρNN 13.28 12.04 10.88 9.94
L0 [MeV] 135.14 120.21 112.05 102.65

For making the slope parameter consistent with L0 = 57.7 ± 19 MeV, we include
the vector meson mixing interaction, which allows us to reduce L0. In the a0 model with
vector meson mixing, the parameters gρNN and λωρ are determined by fitting them to the
symmetry energy S0, as well as the slope parameter L0. To reproduce the matter for recent
accepted value of L0 = 57.7 ± 19 MeV, we compute our results for L0 = 40–80 MeV. The
resultant parameters are shown in Tables 14 and 15. Here, we only show the results for
λ′

6 = 0 because the values of the parameters for λ′
6 = ±λ6 are similar to the values listed in

Tables 14 and 15.
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Table 14. Values of gρNN for several choices of m0, L0, with λ′
6 = 0. Vector meson mixing is considered.

m0 [MeV] 600 700 800 900

K0 = 215 MeV

L0 = 40 MeV 15.34 13.78 12.59 11.42
L0 = 50 MeV 14.88 13.27 11.97 10.72
L0 = 60 MeV 14.46 12.81 11.44 10.13
L0 = 70 MeV 14.08 12.39 10.97 9.63
L0 = 80 MeV 13.72 12.02 10.55 9.19

K0 = 240 MeV

L0 = 40 MeV 15.63 13.96 12.68 11.41
L0 = 50 MeV 15.14 13.42 12.04 10.7
L0 = 60 MeV 14.69 12.94 11.49 10.11
L0 = 70 MeV 14.28 12.51 11.0 9.6
L0 = 80 MeV 13.9 12.11 10.58 9.16

Table 15. Values of λωρ for several choices of m0, L0, with λ′
6 = 0. Vector meson mixing is considered.

m0 [MeV] 600 700 800 900

K0 = 215 MeV

L0 = 40 MeV 0.0254 0.0818 0.3191 2.8164
L0 = 50 MeV 0.0222 0.0693 0.2632 2.2253
L0 = 60 MeV 0.0191 0.0567 0.2072 1.6342
L0 = 70 MeV 0.0159 0.0442 0.1513 1.0431
L0 = 80 MeV 0.0127 0.0316 0.0954 0.4519

K0 = 240 MeV

L0 = 40 MeV 0.0252 0.0761 0.2914 2.4593
L0 = 50 MeV 0.0223 0.065 0.2418 1.9443
L0 = 60 MeV 0.0194 0.054 0.1921 1.4293
L0 = 70 MeV 0.0165 0.0429 0.1424 0.9142
L0 = 80 MeV 0.0135 0.0318 0.0927 0.3992

4.3. Effect of a0(980) to Symmetry Energy in Model Without Vector Meson Mixing

The a0(980) meson should affect the properties of the matter via the asymmetry of the
matter. Therefore, we expect that symmetry energy is essential to study the effect of a0(980)
meson to the matter. In the following, we study how the inclusion of the a0(980) meson
affects the symmetry energy.

In the present model, the symmetry energy S(nB) for a given density nB is expressed as

S(nB) =
nB
8

∂µI
∂nI

∣∣∣
nI=0

=
(k∗+)2

6µ∗
+

+
nB
2

(gρNN/2)2

m2
ρ

− nB
4

m∗
+

µ∗
+

∂m∗
+n

∂nI

∣∣∣
nI=0

,
(89)

where µ∗
+ ≡ µ∗

p
∣∣
nI=0 = µ∗

n
∣∣
nI=0 is the effective chemical potential for N(939) in the sym-

metric matter, k∗+ ≡
√
(µ∗

p)
2 − (m∗

+p)
2
∣∣
nI=0 =

√
(µ∗

n)
2 − (m∗

+n)
2
∣∣
nI=0 the corresponding

Fermi momentum, m∗
+ ≡ m∗

+p
∣∣
nI=0 = m∗

+n
∣∣
nI=0 the mass. In Equation (89), there are three

contributions to the symmetry energy: the nucleon contribution, the ρ meson contribution,
and the a0 meson contribution.

The nucleon contribution SN(nB) is given by

SN(nB) ≡
(k∗+)2

6µ∗
+

, (90)

which arises from the effective kinetic contribution of nucleons. Figure 4 shows SN(nB)
for m0 = 600–900 MeV with K0 = 215, 240 MeV. It is observed that SN(nB) increases with
density, as the effective kinetic energy of nucleons rises with density. Additionally, it is
noted that SN(nB) is larger for smaller m0 due to the stiffening of matter for smaller m0. It
can be also seen that SN(nB) is larger for larger K0. However, the change in K0 has little
effect on SN(nB). We note that, since SN(nB) arises from the effective kinetic contribution
of a nucleon, SN(nB) is not affected by the inclusion of a0 meson.
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Figure 4. Nucleon contribution SN(nB) for m0 = 600–900 MeV. Solid, dashed, and dash-dot curves
represent SN(nB) with K0 = 215, 240, 260 MeV, respectively.

The contribution from the a0(980) meson is expressed as

Sa0(nB) ≡ −nB
4

m∗
+

µ∗
+

∂m∗
+n

∂nI

∣∣∣
nI=0

. (91)

Figure 5 shows Sa0 computed in the present model. We note that Sa0 is negative and, thus,

reduces the total symmetry energy S(nB). This is because ∂m∗
+n

∂nI
|nI=0 is always positive,

as shown in Figure 6. Intuitively, this can be understood from the dependence of m∗
+n

on the mean field a given in Equation (85). If we vary the mean field a, m∗
+n will also

change correspondingly. However, the effective chemical potential µ∗
n does not depend on

the mean field a directly, as we can see from Equation (84). This change in the effective
mass m∗

+n due to the mean field a leads to a change in the momentum of the neutron

k+n =
√
(µ∗

n)
2 − (m∗

+n)
2. When nI = (np − nn)/2 is increased for a fixed nB, the density

of the neutron nn and, thus, the momentum k+n is decreased. Accordingly, the effective
mass of the neutron is increasing as nI increase, causing a positive ∂m+n

∂nI
|nI=0. Therefore, the

a0(980) meson contribution Sa0(nB) reduces the total symmetry energy S(nB) in the present
model. We also find that the a0(980) effect on the symmetry energy is stronger for smaller m0.
This is because the coupling constants of a0(980) meson to the nucleon, g1 and g2, are larger
for smaller m0, as shown in Table 3. As a result, the symmetry energy becomes larger by
a0(980) meson more when m0 is smaller. In addition, we note that the a0(980) effect on the
symmetry energy is decreasing as the density increases since ∂m+n

∂nI
|nI=0 decreases. We also

observe that K0 has a larger effect on Sa0 due to the effect of K0 on the coupling constants of
a0 meson, as indicated in Tables 3 and 11. Since the effect of the a0 meson becomes smaller
as the density increases, Sa0 becomes less negative and spreads at higher densities. We
also note that the difference of Sa0 with different K0 becomes smaller as m0 increase due to
a weaker a0 meson effect. Notice that this contribution does not exist in models without
the a0 meson.
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Figure 5. a0 meson contribution to the symmetry energy Sa0 (nB) for m0 = 600–900 MeV. Solid,
dashed, and dash-dot curves represent Sa0 (nB) with K0 = 215, 240, 260 MeV, respectively.
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Figure 6. ∂m∗
+n

∂nI
|nI=0 for m0 = 600–900 MeV. Solid, dashed, and dash-dot curves represent ∂m∗

+n
∂nI

|nI=0

with K0 = 215, 240, 260 MeV, respectively.

The ρ meson contribution is given by

Sρ(nB) ≡
nB
2

(gρNN/2)2

m2
ρ

. (92)

This shows that the contribution is always positive and, thus, provides repulsive force to
the matter. Figure 7 shows the behavior of Sρ(nB) for m0 = 600–900 MeV with K0 = 215,
240 MeV. It is noteworthy that Sρ(nB) is directly proportional to the baryon density nB,
rendering it an increasing function with density. We also note that Sρ(nB) exhibits larger
values for heavier m0. This is understood as follows: at the saturation density, the symmetry
energy S0 is fixed to be 31 MeV. Since the total symmetry energy is given by Equation (89),
a larger m0 corresponds to a smaller SN(n0) and, consequently, a larger Sρ(n0). This larger
Sρ(n0) yields a larger coupling constant gρNN for larger m0. As a result, Sρ(nB) is larger
for larger m0 at density higher than the saturation density. Figure 7 also shows that K0 has
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little effect on Sρ. We note that SN and Sa0 is determined from K0. Then, we obtain Sρ(nB)
from S0, SN and Sa0 . Since SN and Sa0 are larger as K0 increases, these two contributions
compensate with Sρ to maintain S0 = 31 MeV at nB = n0. Thus, Sρ is smaller as K0
increases, which is opposite to SN and Sa0 . We also observe that the value of Sρ for the
present model is very large compared with the value of model without a0 meson. This is
because the ρ meson coupling is much larger in the present model due to the attractive
interaction of a0(980) when comparing to the model without a0 meson.
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Figure 7. ρ meson contribution Sρ(nB) in a0 model for m0 = 600–900 MeV and λ′
6 = 0. Solid, dashed,

and dash-dot curves represent Sρ(nB) with K0 = 215, 240, 260 MeV, respectively.

Based on the above properties of three contributions, the symmetry energy can be
understood as a result of the competition between the repulsive ρ meson interaction and
the attractive a0(980) interaction, in addition to the kinetic contribution from the nucleons.
On the other hand, in the model without a0 meson, only repulsive contributions exist.
Since the symmetry energy at the saturation density is fixed as S0 = 31 MeV in the both
models with and without a0(980) meson, the ρ meson coupling gρNN is strengthened by
the existence of the attractive a0(980) contribution in the model with a0 comparing to the
model without a0. Actually, it is clear from Tables 3 and 12 that gρNN is larger in the a0
model than in the no-a0 model for a fixed m0. Figure 8 shows the symmetry energy for
m0 = 600–900 MeV and K0 = 215 MeV, with the results of the model with a0 meson and
without a0 meson are shown in solid curve and dashed curve, respectively. We observe
that the symmetry energy is indeed stiffened by the existence of a0(980). Furthermore, the
difference of the symmetry energy between the models is larger for smaller m0 because the
coupling to the a0 meson is stronger, as indicated by Table 3. At nB = 2n0, the symmetry
energy S(2n0) is enlarged by a0(980) meson as large as ∼60% or more in the present model
depending on the choice of input parameters.

In Figure 9, we compare the total symmetry energy with different choices of K0, and
the results show that the symmetry energy is not sensitive to the value of K0 because the
effect of K0 to the total symmetry energy is canceled by the compensation between SN , Sa0 ,
and Sρ.

The effect of S0 to the total symmetry energy S(nB) is also studied. Figure 10 shows
the difference of the symmetry energy S(nB)− S0. We note that S0 has large impact to the
symmetry energy, since S0 affects the determination of gρNN . As expected, larger S0 results
in larger S(nB).

In addition, we investigate the effect of higher-order terms in the large Nc expansion
for the six-point interaction on the symmetry energy by taking λ′

6 = ±λ6. The results of
the symmetry energies with different values of λ′

6 are shown in Figure 11. We can see
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that the difference between the symmetry energies for models with the same m0 is small,
which indicates that the effect of λ′

6 on the symmetry energy is small. Notice also that the
difference becomes smaller for larger m0, due to a smaller a0(980) effect.
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Figure 8. Symmetry energy S(nB) for m0 = 600–900 MeV, K0 = 215 MeV, and λ′
6 = 0. Solid curves

represent the S(nB) of the model, including a0(980) with λ′
6 = 0, while the dash-dot curves show the

results of the model without a0(980).
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Figure 9. Symmetry energy S(nB) for m0 = 600–900 MeV, λ′
6 = 0, with different choices of K0 com-

pared. Solid, dashed, and dash-dot curves represent S(nB) with K0 = 215, 240, 260 MeV, respectively.
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Figure 10. Difference of the symmetry energy S(nB)− S0 in a0 model for m0 = 600–900 MeV and
λ′

6 = 0. K0 = 215 MeV. Solid, dashed, and dash-dot curves represent Sρ(nB) with S0 = 24, 31,
36 MeV, respectively.
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Figure 11. Symmetry energy S(nB) for m0 = 600–900 MeV and K0 = 215 MeV, with the effect of λ′
6

compared. Solid, dash-dot, and dotted curves show the S(nB) with λ′
6 = 0, λ6, and −λ6, respectively.

4.4. Symmetry Energy of a0 Model with Vector Meson Mixing

As we see from the previous sections, PDM predicts a rather large slope parameter L0,
which does not seem compatible with the recently accepted value of L0 = 57.7± 19 MeV. In
particular, the model with a0 meson predicts a very large L0, as well as the symmetry energy
at density nB > n0. In order to soften the matter to reproduce the accepted value of L0, we
include the ω-ρ vector mixing term to reduce the stiffness of the matter in our model. In this
section, we study the symmetry energy with vector meson mixing interaction.
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In the current model, the symmetry energy S(nB) for a given density nB is expressed
as follows:

S(nB) =
nB
8

∂µI
∂nI

∣∣∣
nI=0

=
(k∗+)2

6µ∗
+

+
nB
2

(gρNN/2)2

m2
ρ + (2λωρg4

ωNN g2
ρNNn2

B/m4
ω)

− nB
4

m∗
+

µ∗
+

∂m∗
+n

∂nI

∣∣∣
nI=0

.
(93)

Similarly to Equation (89), the symmetry energy is divided into sum of three contributions:
the nucleon contribution SN(nB), ρ meson contribution Sρ(nB), and a0 meson contribution
Sa0(nB). Notably, the nucleon contribution and a0 meson contribution are unaffected by
the vector meson mixing, since their related parameters are determined from symmetric
matter properties. Therefore, the results of SN(nB) and Sa0(nB) are the same as given in
Figures 4 and 5.

On the other hand, the ρ meson contribution receives a correction from the vector
meson mixing interaction as

Sρ(nB) ≡
nB
2

[ (gρNN/2)2

m2
ρ + (2λωρg4

ωNN g2
ρNNn2

B/m4
ω)

]
, (94)

where the ρ meson appears to have an effective mass (m∗
ρ)

2 = m2
ρ + (2λωρg4

ωNNg2
ρNNn2

B/m4
ω)

exhibiting density-dependence. We note that the ω meson influences the symmetry en-
ergy through 2λωρg4

ωNNg2
ρNNn2

B/m4
ω in the denominator. Given that λωρ > 0, as shown

in Section 4.1, the ω-ρ mixing term always reduces the symmetry energy. The density de-
pendence of Sρ is illustrated in Figure 12. It is observed that Sρ increases with rising nB
in the low-density region, but decreases in the high-density region. This is understood as
follows: in the low-density region where m2

ρ ≫ 2λωρg4
ωNNg2

ρNNn2
B/m4

ω, the density depen-
dence of Sρ(nB) is primarily determined by the pre-factor nB. In the high density region,
on the other hand, the denominator is dominated by 2λωρg4

ωNNg2
ρNNn2

B/m4
ω, which leads to

Sρ(nB) ∝ 1/nB. As a result, the behavior of Sρ smoothly transforms from ∼ nB →∼ 1/nB.
We also observe that the value of K0 has larger influence to Sρ(nB) due to the vector meson
mixing. Sρ(nB) receives a extra correction from gωNN coming from the vector meson mixing
as we read from Equation (94). Since the repulsive gωNN coupling increase as K0 becomes
larger, Sρ ∼ 1/g4

ωNN is smaller with larger K0 and further spread at higher densities.
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Figure 12. ρ meson contribution Sρ(nB) in a0 model for m0 = 600–900 MeV, λ′
6 = 0, and L0 = 60 MeV.

Solid, dashed, and dash-dot curves represent Sρ(nB) with K0 = 215, 240, 260 MeV, respectively.
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Figure 13 shows the total symmetry energy S(nB) for m0 = 600–900 MeV and
L0 = 60 MeV. For comparison, we also show the results of the no-a0 model with vec-
tor meson mixing by dashed curves, as retrieved from Ref. [66]. We note that when the
vector meson mixing is included, the slope of the symmetry energy is reduced in the high
density region. We also observe that, in most cases, the symmetry energy is stiffened by
the existence of a0(980), and the difference of the symmetry energy between two models
is larger for smaller m0. In the case of large m0, such as m0 = 900 MeV where the a0(980)
meson effect is small, the softening effect of λωρ term overrides the stiffening effect from the
a0(980) meson. As a result, the symmetry energy S(nB) is reduced even after the inclusion
of a0 meson. A similar reduction in the symmetry energy in the intermediate density region
was also reported in Ref. [56], which includes both the scalar meson mixing and the vector
meson mixing interactions in an RMF model with the presence of isovector-scalar meson.
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Figure 13. Symmetry energy S(nB) in a0 model with vector meson mixing for m0 = 600–900 MeV,
λ′

6 = 0, K0 = 215 MeV, and L0 = 60 MeV. Solid curves represent the S(nB) of the model, including
a0(980) with λ′

6 = 0, while the dash-dot curves show the results of the model without a0(980).

In Figure 14, we study the K0 dependence of the symmetry energy. Similarly to the
models introduced in the previous sections, K0 has very little effect to the symmetry energy.
Due to the extra correction of the vector meson mixing to Sρ, the effect of K0 is further
suppressed due to the compensation of the effect of K0 to SN , Sa0 , and Sρ.

In particular, the results of m0 = 700 MeV and L0 = 60 MeV from the present model is
compared to the results of other mean field models such as FSU-δ6.7 [56] and B. Liu et al. [63],
and density dependent RMF models such as DD-MEδ [65] in Figure 15. We observe that the
vector meson mixing reduces the symmetry energy at high density similarly to the model
with density dependent couplings without vector meson mixing interaction. In addition,
our a0 model without vector meson mixing predicts a large symmetry energy similarly to
the RMF model without vector meson mixing, while the symmetry energy in models with
vector meson mixing is effectively reduced.
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Figure 14. K0 dependence of the symmetry energy S(nB) in the a0 model with vector meson mixing
for λ′

6 = 0, and L0 = 60 MeV. Solid, dashed, and dash-dot curves represent S(nB) with K0 = 215, 240,
260 MeV, respectively.
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Figure 15. Comparison of the symmetry energy S(nB) of the present model with the ones of other
models. The results from density dependent RMF model DD-MEδ [65] and RMF model from
B. Liu et al. [63] and FSU-δ6.7 [56] are compared. The results from present model shown in the figure
takes the typical value of m0 = 700 MeV, λ′

6 = 0, K0 = 215 MeV, and L0 = 60 MeV for result with
vector meson mixing.

Finally, we compare the symmetry energy in the models with different λ′
6 in Figure 16.

As expected, the effect to symmetry energy is smaller than the effect of m0, because λ′
6

interactions are of sub-leading order in large Nc expansion.
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Figure 16. Symmetry energy S(nB) for m0 = 600–900 MeV, K0 = 215 MeV, and L0 = 60 MeV with
the effect of λ′

6 compared. Solid, dash-dot, and dotted curves show the S(nB) with λ′
6 = 0,±λ6.

5. Summary

In this review, we summarized the recent studies on infinite nuclear matter and fi-
nite nuclei based on parity doublet models (PDMs). We first introduced a PDM, which
is constructed in Ref. [19]. Under the mean field approximation, the nuclear proper-
ties such as slope parameter and symmetry energy were computed. In particular, we
observed that the slope parameter is relatively larger than the recently accepted value
L0 = 57.7 ± 19 MeV [72]. We also investigated the impact of the value of K0 to the model.
We found that the value of K0 has little impact to the matter properties, such as the sym-
metry energy and slope parameter L0 in the model without a0 meson. We also studied the
effect of S0 to the slope parameter L0. We find that the value of S0 will affect the value of
L0 significantly.

We then considered the properties of some stable nuclei in the mean field approxima-
tion to pin down the value of the chiral invariant mass preferred by the nuclear binding
energies and charge radii. We found that our results are closest to the experiments when
we take m0 = 700 MeV. We also calculated the neutron and proton masses in a nucleus
and observed, as expected, that the neutron–proton mass difference becomes larger in an
isospin asymmetric nucleus.

Then, we studied the effect of isovector scalar meson a0(980) to the matter. The isovec-
tor scalar meson provides the attractive force in the isovector channel, and is important in
the asymmetric matter. We found that the inclusion of a0(980) has a very strong influence
on the symmetry energy and slope parameter. We observed that the symmetry energy
at densities nB > n0 is largely enhanced by the existence of a0(980). By analyzing the
different contributions to the symmetry energy, we concluded that this enhancement is
originated from the strengthening of the ρ meson coupling gρNN . The a0(980) meson
generates the attractive force in the isovector channel, which requires the repulsive force
from ρ meson to be larger for reproducing the saturation property. As a result, a larger
repulsive ρ interaction increases the symmetry energy at densities nB > n0. However, we
also observed that this stiffening of nuclear matter produces a large slope parameter that is
much larger than the recently accepted value suggested by other studies. Therefore, we
introduced the ω-ρ mixing interaction to reduce the slope parameter in the model. It was
found that the symmetry energy at density nB > n0 is reduced after the inclusion of ω-ρ
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mixing interaction. Furthermore, we observed that the ω-ρ mixing interaction modifies the
density dependence of the symmetry energy at density nB > n0. We also observed that
the value of K0 has relatively large impact on the a0 contribution to symmetry energy Sa0

and L0 due to the effect of K0 to the a0 meson. However, similarly to the case of model
without the a0 meson, K0 has limited effect to the total symmetry energy S(nB) because of
the compensation of the K0 effect between SN , Sa0 , and Sρ. The effect is further suppressed
when vector meson mixing effect is included. We also investigated the effect of S0 to
the total symmetry energy. As expected, the value of S0 has large impact to the ρ meson
coupling gρNN and thus the symmetry energy. There are also some microscopic nuclear
force models in, e.g., Refs. [77–79]. It would be also interesting to compare the result of the
present model to the results of these models.

We expect that future experiments on the study of symmetry energy at higher densities
will provide further constraints on the chiral invariant mass of the nucleon. We also expect
that a0(980) will have a significant influence on asymmetric nuclei. It would be interesting
to study finite nuclei using the extended PDM including the a0(980) meson, which may
give new information to constraints on the chiral invariant mass of the nucleon and the
behavior of nucleon mass in dense matter. We leave this as future project.
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