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Abstract: In off-road environments, the lateral rollover stability of articulated unmanned
rollers (URs) is critical to ensure operational safety and efficiency. This paper introduces
the concept of a rollover energy barrier (REB), a symmetry-based metric that quantifies the
energy margin between the current state and the critical rollover threshold of articulated
rollers. URs exhibit dynamic asymmetry due to their hydraulic steering systems, which
differ significantly from traditional passenger vehicles. To address these challenges, we
propose a hierarchical control framework inspired by the principles of dynamic symmetry.
This framework integrates Nonlinear Model Predictive Control (NMPC) and Active Distur-
bance Rejection Control (ADRC): NMPC is used for trajectory planning by incorporating
the REB into the cost function, ensuring rollover stability, while ADRC compensates for
dynamic asymmetries, model uncertainties, and external disturbances during trajectory
tracking. Simulation and experimental results validate the effectiveness of the proposed
control strategy in enhancing the rollover stability and tracking performance of the URs
under off-road conditions.

Keywords: NMPC; ADRC; rollover energy barrier; rollover stability; unmanned articulated
rollers

1. Introduction
Single-drum articulated rollers are widely used in construction and road maintenance

for soil compaction tasks [1]. Advancements in control technology have made URs increas-
ingly indispensable [2,3]. The URs not only enhance operational safety and reduce labor
costs but also allow for precise control and data monitoring.

In practical applications, the special working environment and vehicle structure of URs
as illustrated in Figure 1 make trajectory tracking control difficult. The URs typically operate
in off-road environments with bumps and depressions [4], posing significant challenges to
rollover stability [5]. These challenges arise from the dynamic asymmetry caused by uneven
terrain and the articulated structure, disrupting the energy balance and stability. In addition,
the dynamics of articulated vehicles are inherently nonlinear and involve strong coupling
between mechanical and hydraulic components [6]. The hydraulic steering system, in
particular, exhibits complex behaviors, introducing functional asymmetry between the
vehicle’s front and rear bodies, which imposes a substantial computational burden on the
MPC solver [7]. There are also some unmodeled disturbances from the environment and
vehicles that affect the control performance. This complexity necessitates advanced control
strategies capable of handling nonlinearities and uncertainties to ensure rollover stability.
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Figure 1. The structure of the single-drum articulated roller. 

The cause of rollover can be aĴributed to road factors and operational factors, such 
as uneven road surfaces and aggressive driving by drivers. Based on these factors, the 
rollovers are categorized into two types: tripped rollovers and untripped rollovers [8,9]. 
An untripped rollover occurs due to aggressive maneuvering on flat ground, while a 
tripped rollover is often caused by unbalanced roll torque generated by uneven terrains, 
such as one wheel hiĴing a protruding rock. This study focuses primarily on tripped roll-
overs, with untripped rollovers receiving only brief consideration. To ensure rollover sta-
bility in trajectory tracking control, the control strategy has evolved into two key compo-
nents: rollover stability assessment and trajectory tracking control [10]. 

To access the rollover risk, some indices have been developed. Initially, the Static 
Stability Index (SSI) was adopted [11–14], often defined as the threshold values of specific 
state variables, such as roll angle, roll rate, lateral acceleration, and side-slip angle [13]. 
Lateral acceleration is a fundamental index for describing a vehicle’s dynamic behavior. 
The SAE Standard J266 [11] considers lateral acceleration to be one of the indicators of 
lateral stability for vehicles. Rakheja et al. [12] proposed the load transfer ratio (LTR), 
which quantifies the impact of center-of-gravity shifts on the load distribution among the 
wheels. As one of the most popular indices, the LTR has numerous adaptation aĴempts 
[15–17]. Zhang et al. [18] proposed an improved LTR, estimating tire force and expressing 
the change in load indirectly with measurable parameters. Yang et al. [19] developed a 
predictive LTR, demonstrating stronger evaluation and predictive capabilities compared 
to the traditional LTR. However, once the vehicle load shifts entirely onto one side of the 
wheels, the LTR stabilizes at 1.0 and no longer increases, resulting in a dead zone in roll-
over risk prediction [20]. The zero-moment point (ZMP) [21] is another approach that cal-
culates a point on the support surface where the net moment of all external forces is zero, 
preventing rollover by ensuring ZMP remains within the support area [22]. Wang et al. 
[23] introduced a secondary predictive ZMP, which assesses the rate of ZMP variation, 
enhancing the evaluation index with forward-looking predictive capabilities. Moreover, 
time to rollover (TTR) [24] is also a widely used index, providing an estimate of the time 
needed to reach rollover from the current state. In addition, artificial intelligence algo-
rithms have also been explored for application in rollover risk detection [25,26]. For ex-
ample, Zhu et al. [27] validated the effectiveness of Support Vector Machine (SVM) algo-
rithms in predicting rollover risk during the turning process of heavy articulated trucks. 
Chen et al. [25] employed a data-driven approach, using wavelet transformation and re-
current neural networks (RNNs) to develop a rollover risk assessment model. While AI-
based methods show promise, their reliance on extensive real-world data and high train-
ing costs limit their practical feasibility. 

After an extensive and in-depth review of the existing research, we found that studies 
on tripping rollovers of articulated rollers under off-road conditions are insufficient, par-
ticularly in addressing the coupling rollover characteristics between the front and rear 
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The cause of rollover can be attributed to road factors and operational factors, such
as uneven road surfaces and aggressive driving by drivers. Based on these factors, the
rollovers are categorized into two types: tripped rollovers and untripped rollovers [8,9]. An
untripped rollover occurs due to aggressive maneuvering on flat ground, while a tripped
rollover is often caused by unbalanced roll torque generated by uneven terrains, such as
one wheel hitting a protruding rock. This study focuses primarily on tripped rollovers,
with untripped rollovers receiving only brief consideration. To ensure rollover stability
in trajectory tracking control, the control strategy has evolved into two key components:
rollover stability assessment and trajectory tracking control [10].

To access the rollover risk, some indices have been developed. Initially, the Static
Stability Index (SSI) was adopted [11–14], often defined as the threshold values of specific
state variables, such as roll angle, roll rate, lateral acceleration, and side-slip angle [13].
Lateral acceleration is a fundamental index for describing a vehicle’s dynamic behavior.
The SAE Standard J266 [11] considers lateral acceleration to be one of the indicators of
lateral stability for vehicles. Rakheja et al. [12] proposed the load transfer ratio (LTR), which
quantifies the impact of center-of-gravity shifts on the load distribution among the wheels.
As one of the most popular indices, the LTR has numerous adaptation attempts [15–17].
Zhang et al. [18] proposed an improved LTR, estimating tire force and expressing the
change in load indirectly with measurable parameters. Yang et al. [19] developed a predic-
tive LTR, demonstrating stronger evaluation and predictive capabilities compared to the
traditional LTR. However, once the vehicle load shifts entirely onto one side of the wheels,
the LTR stabilizes at 1.0 and no longer increases, resulting in a dead zone in rollover risk
prediction [20]. The zero-moment point (ZMP) [21] is another approach that calculates a
point on the support surface where the net moment of all external forces is zero, preventing
rollover by ensuring ZMP remains within the support area [22]. Wang et al. [23] introduced
a secondary predictive ZMP, which assesses the rate of ZMP variation, enhancing the
evaluation index with forward-looking predictive capabilities. Moreover, time to rollover
(TTR) [24] is also a widely used index, providing an estimate of the time needed to reach
rollover from the current state. In addition, artificial intelligence algorithms have also been
explored for application in rollover risk detection [25,26]. For example, Zhu et al. [27] vali-
dated the effectiveness of Support Vector Machine (SVM) algorithms in predicting rollover
risk during the turning process of heavy articulated trucks. Chen et al. [25] employed a
data-driven approach, using wavelet transformation and recurrent neural networks (RNNs)
to develop a rollover risk assessment model. While AI-based methods show promise, their
reliance on extensive real-world data and high training costs limit their practical feasibility.

After an extensive and in-depth review of the existing research, we found that stud-
ies on tripping rollovers of articulated rollers under off-road conditions are insufficient,
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particularly in addressing the coupling rollover characteristics between the front and rear
bodies. This paper contributes to the detection and prevention of rollover risk by addressing
dynamic symmetry and asymmetry in the following ways:

• Modeling: We develop a six-degree-of-freedom dynamic model to capture the ve-
hicle’s roll behavior on uneven terrains. This model also incorporates roll coupling
characteristics to accurately describe the articulated compactor’s dynamic interaction
between front and rear bodies.

• Rollover stability Index: This study introduces the rollover energy barrier (REB) as the
key risk assessment index, quantifying the critical rollover energy from the current
state, overcoming the limitation of traditional indices, such as non-additivity across
front and rear bodies and lack of precision.

• Control Strategy: A hierarchical stability controller (HSC) based on NMPC and ADRC
is proposed. By employing limited model prediction, the computational burden of
NMPC is reduced, while ADRC is utilized for vehicle motion control, enhancing
system response speed and disturbance rejection capability.

The manuscript is organized as follows. Section 2 introduces the experimental subject
and platforms in this study. Section 3 presents the dynamic modeling of the UR, including
the hydraulic steering system. Section 4 introduces the index REB concept. Section 5
discusses the hierarchical stability controller based on NMPC and ADRC. Section 6 provides
simulation and real UR experimental results validating the proposed REB and control
scheme. Finally, Section 7 concludes this work and suggests directions for future research.

2. Experimental Platforms
To validate the proposed REB and HSC, two complementary experimental platforms

were developed: a real UR platform and a high-fidelity simulation platform.

2.1. Real UR Platform

The experimental platform is a single-drum articulated UR specifically modified for
autonomous operation. It features an articulated frame design, with the front drum serving
as the primary compaction element and the rear wheels providing propulsion. The steering
system of the UR is hydraulically driven, with two parallel hydraulic cylinders controlling
the articulated angle to achieve a steering angle range of ±35 degrees.

The system design prioritizes low cost, high safety, stability, and ease of expansion
to ensure efficient implementation and upgrade. The autonomous modifications of the
UR include the integration of several key components to enable precise control and data
acquisition. The control system is built around a real-time embedded controller utilizing
Infineon’s automotive-grade chip, which offers a robust and reliable platform capable
of stable operation under conditions of strong vibration and extreme conditions. As
illustrated in Figure 2, a GNSS-based dual-antenna positioning system provides real-time,
high-accuracy location data and heading angle, while two inertial measurement units
(IMUs) measure the orientation angles (yaw, pitch, and roll), angular velocities, angular
accelerations, and linear acceleration, providing a comprehensive understanding of the
UR’s orientation and dynamics. A rotational angle sensor, mounted at the steering joint,
measures the articulation angle between the front and rear frames. These sensors are
managed and coordinated by a real-time embedded controller, which executes autonomous
navigation and control algorithms in real time. All of these components are interconnected
via a CAN bus for efficient and synchronized communication.
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incorporated to provide a realistic representation of varying working conditions. By com-
bining these physical and environmental parameters, this model offers high fidelity and 
supports comprehensive testing of control strategies under diverse scenarios, including 
extreme conditions that are difficult to replicate experimentally. 

3. Control-Oriented Modeling 
This chapter presents a six-degree-of-freedom (6-DOF) dynamic model for URs, aim-

ing to accurately capture the roll and dynamic behavior of URs. By considering the cou-
pling characteristics between the front and rear bodies, this model effectively reflects ve-
hicle behavior on uneven terrains. 

3.1. 6-DOF Dynamic Model 
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ure 3, we denote by Pg,f and Pg,r the centers of gravity (CG) of front and rear bodies, re-
spectively; by Pt,f and Pt,r the CGs of the front and rear axles, respectively; and by Pj the 
joint point that connects both bodies. The hypothesis behind the model is as follows. 

Figure 2. The single-drum articulated roller in this research.

2.2. Simulation Platform

Due to the lack of mature commercial software capable of directly simulating the
UR, the simulation platform was developed using non-causal modeling tools (such as
OpenModelica [28] and Dymola [29]) to accurately simulate the dynamic behavior of
the UR.

The simulation platform model includes key components such as the articulated frame
structure, hydraulic steering system, and wheel–ground interaction, capturing the complex
interactions between the roller/tire and its operating environment. Ground characteristics,
including soil stiffness, damping characteristics, and terrain unevenness, were incorporated
to provide a realistic representation of varying working conditions. By combining these
physical and environmental parameters, this model offers high fidelity and supports
comprehensive testing of control strategies under diverse scenarios, including extreme
conditions that are difficult to replicate experimentally.

3. Control-Oriented Modeling
This chapter presents a six-degree-of-freedom (6-DOF) dynamic model for URs, aiming

to accurately capture the roll and dynamic behavior of URs. By considering the coupling
characteristics between the front and rear bodies, this model effectively reflects vehicle
behavior on uneven terrains.

3.1. 6-DOF Dynamic Model

The proposed 6-DOF model includes two translational (longitudinal, lateral of front
body), two yaw rotational (yaw of front body and articulated angle), and two roll rotational
(roll angle of both bodies) degrees of freedom, the scheme of which is presented in Figure 3,
and details of the variables and parameters are provided in Appendix A. In Figure 3, we
denote by Pg,f and Pg,r the centers of gravity (CG) of front and rear bodies, respectively; by
Pt,f and Pt,r the CGs of the front and rear axles, respectively; and by Pj the joint point that
connects both bodies. The hypothesis behind the model is as follows.
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Figure 3. The dynamic model of the UR: (a) the front body roll dynamic; (b) the rear body roll
dynamic; (c) the UR’s horizontal dynamic.

1. Rigid suspension hypothesis: The suspension system is assumed to have a negligible
effect on vehicle dynamics. This simplification is justified by the UR’s primary appli-
cation in compaction work, where a stiffer suspension is necessary to transmit larger
instantaneous impact forces to the ground.

2. Idealized tire-ground roll moment model: The tire-ground interaction is represented
by a rotational spring-damper system to simulate the tire’s mechanical response in
roll rotational directions, ignoring plastic deformation.

3. Neglecting pitch dynamics: Pitch dynamics are excluded from the analysis under the
assumption that their effect on overall stability is minimal. This simplification allows
the model to focus on roll dynamics and reduces computational complexity.

4. Single-track model assumption: The left and right wheels of each axle are simplified as
a single, centralized wheel, ignoring the lateral load transfer and side force differences
between them. This assumption applies exclusively to in-plane dynamics analysis.

To address the complexity introduced by the internal forces between the articulated
bodies, the Lagrangian method is utilized, enabling efficient computation of the vehicle’s
dynamic equations. From Figure 3c, the equilibrium equations for horizontal forces and
moments acting on the entire vehicle are as follows:

m f a f x cos γ − m f a f y sin γ + mrarx = Ft, f x cos γ − Ft, f y sin γ + Ft,rx − m f g sin ϕ f

m f a f x sin γ + m f a f y cos γ + mrary = Ft, f x sin γ + Ft, f y cos γ + Ft,ry − mrg sin ϕr(
I f z + m f l2

f 1

) ..
θ f − m f a f xl f 1 = −Ft, f xl f 2 + m f gl f 1 sin ϕ f + Mj(

Irz + mrl2
r1
) ..
θr + mrarxlr1 = Ft,rxlr2 − mrglr1 sin ϕr − Mj

(1)

In addition, the roll moment equilibrium of the front and rear bodies is influenced
by inertial forces, gravitational forces, and tire–ground interaction forces. Therefore, the
equilibrium equations are established as follows:{

I f y
..
ϕ f − m f hc, f a f x = −m f ghc, f sin ϕ f + Mt, f y

Iry
..
ϕr − mrhc,rarx = −mrghc,r sin ϕr + Mt,ry

(2)



Symmetry 2025, 17, 118 6 of 25

The accelerations (a f x, a f y, arx, ary) include translational acceleration and centripetal
acceleration, so they can be derived as

a f x =
.
v f x − v f y

.
θ f

a f y =
.
v f y + v f x

.
θ f

arx =
.
vrx − vry

.
θr

ary =
.
vry + vrx

.
θr

(3)

Considering the kinematic constraints between the states of the front and rear bodies,
especially the yaw angle constraint θr = θ f − γ, the state variables of the front body and
the articulated angle can be used to the rear body velocities in Equation (4).

vrx = −v f y sin γ +
(

v f x + l f 1
.
θ f

)
cos γ + lr1

.
θr

vry = v f y cos γ +
(

v f x + l f 1
.
θ f

)
sin γ

.
vrx = − .

v f y sin γ − v f y
.
γ cos γ +

( .
v f x + l f 1

..
θ f

)
cos γ −

(
v f x + l f 1

.
θ f

) .
γ sin γ + lr1

..
θr

.
vry =

.
v f y cos γ − v f y

.
γ sin γ +

( .
v f x + l f

..
θ f

)
sin γ +

(
v f x + l f 1

.
θ f

) .
γ cos γ

(4)

Tire forces and torques of the front and rear wheels are given by the following:
Ft, f x = f f x

(
α f , s f , µ, Ff z

)
Ft, f y = f f y

(
α f , s f , µ, Ff z

)
Ft,rx = frx(αr, sr, µ, Frz)

Ft,ry = fry(αr, sr, µ, Frz)

(5)

where fix(·) and fiy(·) are the functions of lateral force and longitudinal force, respectively,
and they are described in detail in Section 3.2. The index i represents the variables for the
front body (i = f ) and rear body (i = r). Ft, f z and Ft,rz, the loads of the front and rear wheels,
are equal to m f g and mrg, respectively, based on Assumption 4.

In Equation (5), s f and sr are the slip ratios of the front and rear wheels, respectively.
α f and αr are the slip angles of the front and rear wheel, respectively, representing the angle
between the wheel velocity and wheel heading angle, which can be derived as follows:{

α f = tan−1 vt, f x
vt, f y

αr = tan−1 vt,rx
vt,ry

(6)

where vt, f x and vt,rx are the lateral velocities of the front and rear wheels, respectively, and
vt, f y and vt,ry are the longitudinal velocities of the front and rear wheels, respectively. Since
the wheels of UR can only roll and cannot turn, the center of gravity (CG) of the front/rear
wheel and front/rear body can be considered part of a single rigid body, sharing the same
motion characteristics when analyzing the motion at wheels’ CG. So, the velocities can be
expressed as follows: 

vt, f x = v f x +
(

l f 2 − l f 1

) .
θ f

vt, f y = v f y

vt,rx = vrx + (lr2 − lr1)
.
θr

vt,ry = vry

(7)

The slip ratio quantifies the difference between the tire’s actual rolling speed and its
ideal rolling speed. For the front wheel, the slip ratio sf is defined as follows:
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s f =


r f ω f
vt, f y

− 1, if vt, f y > r f ω f , vt, f y ̸= 0 for braking

1 − vt, f y
r f ω f

, if vt, f y < r f ω f , ω f ̸= 0 for driving
(8)

where ω f and r f are the front wheel’s angular speed and radius, respectively.
The Mt, f y and Mt,ry are the roll moments of the front and rear bodies, generated

by vertical deformation at the tire–ground interface. Based on Assumption 2, the plastic
deformation of both the ground and tires is neglected, modeling the moments as the effect
of a torsional spring-damper system.{

Mt, f y = kroll, f ϕ f + croll, f
.
ϕ f

Mt,ry = kroll,rϕr + croll,r
.
ϕr

(9)

where kroll, f and kroll,r are the torsional spring coefficients of the front body and rear
body, respectively; croll, f and croll,r are the damping coefficients of the front body and rear
body, respectively.

Using Equations (1)–(4), the dynamic model of the UR is established as follows:{ .
x = f (x, u)
y = Cx

(10)

where the state vector is x =
[
v f x v f y

.
θ f

.
γ γ ϕ f ϕr X f Yf

]T
, u = Mj,

C =
[
I2 02×7

]
, f (x, u) denotes the nonlinear function, which is expressed in Appendix B.

3.2. Rear Tires and Front Drum Model

The Magic Formula (MF) [30,31] is a widely used semi-empirical model capable of
describing the traction and lateral force characteristics of tires. The MF relates the longitu-
dinal and lateral forces of a tire to variables such as slip ratio and sideslip angle through a
series of parametric equations. It effectively captures the interaction between traction and
sideslip forces under combined conditions, including steering, braking, and driving.

Figure 4a illustrates the lateral and longitudinal forces as functions of the cornering
angle and slip ratio under varying tire loads. Unlike conventional rubber tires, the front
drum of the UR is made of steel, which exhibits negligible elastic rebound characteristics.
This poses a challenge when directly applying the MF to describe the front drum’s behavior.
To address this issue, prior studies have investigated the shear stress characteristics of
steel–rock interactions [32–37]. Figure 4b illustrates the experimental data [37] for steel–rock
contact surfaces, which were fitted to the Magic Formula. The resulting fit achieved an
average correlation coefficient of 0.992, demonstrating that the MF effectively captures
the nonlinear mechanical characteristics arising from plastic deformation, sliding, and
particle rearrangement at the interface. Considering that the contact between the URs’ front
drum and the ground can be regarded as a macroscopic representation of metal–sandstone
interactions, the nonlinear contact mechanics between the front drum and the rock surface
can also be accurately described by the MF.
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3.3. Hydraulic Steering Model

The hydraulic steering system is illustrated in Figure 5. The hydraulic pump pressur-
izes the hydraulic oil from p0 to ps. The pressurized oil is then delivered to a 3-position,
4-way directional control valve, the opening of which (Av) and connected flow paths are
regulated by the steering input.
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In Figure 5, Line 1 is connected to the supply line, and Line 2 to the return line, with
flow rates q1 and q2, respectively. When hydraulic oil flows into hydraulic cylinders, it
drives the pistons, generating mechanical force. The relief valve prevents the pressure in
the hydraulic lines from exceeding the designated threshold. The check valve, on the other
hand, prevents the backflow of hydraulic oil.

The change rate of steering torque
.

Mj is generated by the hydraulic forces and is
expressed as follows:

.
Mj =

.
Frlh,r −

.
Fl lh,l (11)
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where lh,l and lh,r are the vertical distance from joint Pj to the left and right piston rods. The
hydraulic forces Fl and Fr acting on the left and right piston rods are determined by the
pressure differences within the piston chambers and are given by the following:{ .

Fl(t) =
.
p2 Ap −

.
p1
(

Ap − Ar
)

.
Fr(t) =

.
p1 Ap −

.
p2
(

Ap − Ar
) (12)

where Ap is the piston area and Ar is the rod area. The dynamic of pressure p1 and p2 in
the left and right chambers are influenced by the volume flow, chamber volume change,
and hydraulic oil leakage. These dynamics are described by the following equations:

.
p1(t) = fp1

(
Av,

.
lhy,l ,

.
lhy,r

)
= Koil

V1

(
−cd Av

√
p1 − p0 − 2kleak(p1 − p2)− Ap

.
lhy,l + Ar

.
lhy,r

)
.
p2(t) = fp2

(
Av,

.
lhy,l ,

.
lhy,r

)
= Koil

V2

(
cd Av

√
ps − p2 + 2kleak(p1 − p2) + Ar

.
lhy,l − Ap

.
lhy,r

) (13)

where Koil is the fluid bulk modulus of hydraulic oil; and V1 and V2 are the volumes of the
cylinder chambers connected to Line 1 and Line 2, respectively. cd is the flow coefficient. Av

is the opening of a 3-position, 4-way directional control valve. kleak is the leakage coefficient.
lhy,l and lhy,r are the lengths of the left and right cylinders.

4. Rollover Energy Barrier
The rollover energy barrier (REB) serves as a critical metric for evaluating the safety of

articulated vehicles. It quantifies the energy barrier separating the vehicle’s current state
(see Figure 6b) from its critical rollover state (see Figure 6a), offering a direct measure of
rollover risk. A higher REB value signifies that the vehicle needs more energy from rollover,
which means greater rollover stability and safety.
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Figure 6b shows the state variables influencing the REB in the general state, which
represent the contributions of potential energy and kinetic energy. The REB can thus be
expressed as follows:

REBi =

REBc,i − Ep,i − Ek,i, |ϕi| <
(

π
2 − σi

)
REBc,i, |ϕi| >

(
π
2 − σi

) (14)
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where REBc,i is the potential energy of the critical rollover state, the Ep,i is the generalized
roll potential energy, and the Ek,i is the roll kinetic energy. Neglecting the energy absorption
of the roll limit block during the roll energy transfer between the front and rear bodies, the
REB of the vehicle can be defined as follows:

REB = REB f + REBr (15)

4.1. The Critical Rollover Energy

Figure 6a illustrates the critical rollover state, that is, the vertical projection of the
CG coincides with the wheel support point. In this state, both roll angular velocity and
angular acceleration are zero, and the potential energy reaches its critical rollover value

REBc,i. Considering that the critical rollover height of CG is
√

w2
i /4 + h2

c,i, the REBc,i can
be obtained as follows:

REBc,i = mig

√
w2

i
4

+ h2
c,i (16)

4.2. Generalized Potential Energy

In addition to the potential energy generated by gravitational acceleration g, the roll
tangential acceleration ri

..
ϕi in the x–z plane plays a significant role in influencing tripped

rollover risk. To comprehensively evaluate the impact of ri
..
ϕi and g on rollover risk, the

concept of virtual gravitational acceleration (VGA) is introduced. The VGA unifies these
two components within a generalized potential energy framework, simplifying the analysis
of rollover dynamics.

The VGA g̃i is defined as the vector sum of the gravitational and roll tangential
accelerations. This reconfiguration transforms Figure 6b into Figure 6c, and the magnitude
of g̃i is expressed as follows:

g̃i =

√(
g sin ϕi + ri

..
ϕi sin σi

)2
+
(

g cos ϕi + ri
..
ϕi cos σi

)2
(17)

where σi = arctan(2hci/wi), ri =
√

h2
ci + w2

i /4.

The artificial roll angle ϕ̃i can be derived as follows:

ϕ̃i = arctan
g sin ϕi + ri

..
ϕi sin σi

g cos ϕi − ri
..
ϕi cos σi

(18)

In Figure 6c, the height of the virtual CG is
(
0.5wi sin ϕ̃i + hci cos ϕ̃i

)
, so the generalized

potential energy Ep,i is given by

Ep,i = mi g̃i

(wi
2

sin ϕ̃i + hci cos ϕ̃i

)
(19)

4.3. Roll Kinetic Energy

Roll kinetic energy is related to roll tangential acceleration ri
..
ϕi, and its rotation center

is the support point of the wheel on the ground. So, the roll kinetic energy is given by

Ep,i =
1
2

I′y
.
ϕ

2
i (20)

where I′iy = Iiy + mir2
i is the moment of inertia of the vehicle bodies with the supposed

point as the center of rotation.



Symmetry 2025, 17, 118 11 of 25

5. Hierarchical Controller Design
The hierarchical stability controller (HSC), as illustrated in Figure 7, comprises a high-

level planner and a low-level controller, responsible for a feasible anti-rollover trajectory
generation and motion control, respectively.
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The high-level planner employs NMPC to generate feasible trajectories [38], which are
executed by the low-level controller. These trajectories are designed to satisfy the vehicle’s
dynamic constraints, steering torque change rate limit, with low rollover risk.

The low-level controller adopts a cascaded disturbance rejection control strategy [39,40]
based on ADRC [41] to achieve precise tracking of the target trajectory. This method
strikes a balance between computational efficiency and control accuracy, ensuring reliable
real-time performance [40].

5.1. High-Level NMPC

The high-level planner employs an NMPC to replan a feasible reference trajectory
that aligns with the UR’s dynamic characteristics, specifically minimizing the rollover
risk. Due to the complexity of the hydraulic steering system, which imposes a significant
computational burden, the NMPC reference model simplifies the input by using hydraulic
steering torque instead of steering angle. This approach eliminates the need to model the
hydraulic steering system. Nevertheless, to ensure trajectory feasibility and comply with
the physical constraint of UR’s steering torque, the change rate of the hydraulic steering
torque is incorporated as a constraint in NMPC. This approach balances computational
efficiency with trajectory executability.

The continuous-time model (Equation (10)) is discretized using a sampling interval ∆t,
resulting in the following discrete-time formulation:

xk+1 = xk + ∆t · f (xk, uk) (21)

where the index k, k + 1, and k + m in the following sections, respectively, donate the
predicted value at the k, k + 1, and k + m step.

To constrain the steering torque change rate, uk is replaced by its increment ∆uk,
leading to a reformulation of Equation (21) as follows:{

ξk+1 = ξk + ∆t · g(ξk, ∆uk)

yk = C̃ξk
(22)

where ∆u = ∆Mj = ∆t ·
.

Mj, and
.

Mj is derived from Formula (11). The new state variable

vector ξ is formed as ξ = [u Mj], which yields C̃ =
[
C 02×1

]
.
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The cost function is designed to track the reference path and reduce the risk of rollover
while optimizing the control rate to ensure lateral stability. So, the cost function can be
expressed as follows:

J(yk, ∆uk, REBk) =
Np

∑
m=1

(∥∥yk+m
∥∥2

Q +
∥∥∥REBc, f + REBc,r − REBk+m

∥∥∥2

S

)
+

Nc
∑

m=1
∥∆uk+m∥2

R (23)

where Np and Nc are the predictive horizon and control horizon, respectively, and Q, R,
and S are positive semidefinite, representing the relative importance of each term.

Over the Np-step prediction horizon, the following optimal control problem is solved
at each time step:

min J(yk, ∆uk, REBk)

s.t.


ξk+1 = ξk + ∆T · g(ξk, ∆uk)

ξmin ≤ ξk+j ≤ ξmax

∆Mj,min ≤ ∆Mj,k ≤ ∆Mj,max

(24)

where ∆Mj,max = −∆Mj,min, which can be derived from Equation (11) by assuming
.
γ and

Av reach their maximum limits.
The nonlinear optimization problem (Equation (24)) is solved using a Sequential

Quadratic Programming method. This approach iteratively linearizes the constraints and
approximates the objective function quadratically, enabling the solution of a series of
quadratic programming subproblems [42]. The implementation utilizes solver CasADi [43]
for the efficient computation of gradients and Hessians. Solving the optimization problem
yields the optimal control sequence:

u∗ =
{

u∗
k+m

∣∣m = 0, 1, 2, . . . , Nc
}

(25)

By substituting the optimized control sequence u∗ into the discrete dynamic model
(Equation (22)), the resulting optimal tracking trajectory set P with low rollover risk can be
expressed as

P =

{(
X∗

re f , Y∗
re f

)
k+m

∣∣∣∣m = 1, 2, 3, . . . , Np

}
(26)

5.2. Low-Level CDRC

In the low-level controller, a cascaded disturbance rejection control (CDRC) strategy
is designed to enhance the system’s tracking and disturbance rejection performance. As
depicted in Figure 7, the cascaded structure consists of an outer loop for lateral error
tracking and an inner loop for heading error (HE) tracking. In addition, two extended
state observers (ESOs) are designed for disturbance estimation and model compensation.
In previous studies [39,40], by leveraging the CDRC framework, the controller actively
estimates and compensates for system uncertainties and external disturbances, ensuring
robust and precise control under varying operating conditions.

The classic articulated vehicle kinematic models [44] of heading angle and lateral
error are 

.
θ f =

v f sin γ

l f cos γ+lr
+

.
γl f

l f cos γ+lr
.
eCTE = v f sin

(
θ f − θre f

) (27)

The dynamics of the steering system are approximated by a simple linear system, i.e.,
.
γ = (−γ + ksδ + bs)/τ, enabling the heading angle model as

.
θ f =

τv f sin γ − γlr + bslr

τ
(

l f cos γ + lr
) +

kslrδ

τ
(

l f cos γ + lr
) (28)
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where δ is the steering wheel angle, and ks, bs, and τ are, respectively, the slope, intercept,
and time constant from the steer motor angle to the articulated angle.

The CDRC lumped all the discrepancies in the kinematic model [44] into the outer-loop
and inner-loop total disturbance, fol and fil , respectively. Hence, the extended state model
of heading angle is rewritten as follows:{ .

θ f = f0,il + b0,ilδcmd + fil.
f il = h

(29)

where δcmd is the final output of CDRC, and h, an unknown variable, is the derivative of
the total disturbance fil . b0,il and f0,il can be expressed as follows:

b0,il =
ks lr

τ(l f cos γ+lr)

f0,il =
τv f sin γ−γlr+bs lr

τ(l f cos γ+lr)
+ ks lrδcmd

τ(l f cos γ+lr)

(30)

Then, Equation (29) can be rewritten as a state space model as follows.{ .
Xil = AilXil + BilUil + Eil f0,il + Gilh
Yil = CilXil

(31)

where Xil =

[
θ f

fil

]
, Ail =

[
0 1
0 0

]
, Bil =

[
b0,il

0

]
, Cil =

[
1 0

]
, Uil = [δcmd],

Yil =
[
θ f

]
, Gil =

[
0
1

]
. To obtain the unknown disturbance fil , the following extended

state observer is designed based on state space (31).{ .
Xil = AilXil + BilUil + Eil f0,il + Gilh
Yil = CilXil

(32)

where Lil =
[

βil1 βil2

]T
is a parameter matrix that adjusts the performance of ESO. Thus,

the estimated disturbance f̂il can be obtained. Then, the inner-loop control is designed as

δcmd =
kp,il

(
θre f ,il − θ f

)
− f0,il − f̂il +

.
θre f ,il

b0,il
. (33)

where kp,il is the proportional gain of the low-level controller to be tuned, and θre f ,il is the
reference orientation for the inner-loop controller and output by the outer-loop controller.
Equation (33) enforces the plant in Equation (29) to behave as an integrator as follows:

.
θ f = kp,il

(
θre f ,il − θ f

)
+

.
θre f ,il (34)

So far, the inner-loop controller design has been completed. Similar to the design of the
inner-loop controller, the outer-loop controller can be designed based on Equation (27) as

θre f ,il = θre f + sin−1

(
−koleCTE − f̂ol

b0,ol

)
(35)

The feasibility and stability of the CDRC are well proved in previous research [39,40],
showing high trajectory tracking accuracy and robustness under complex road conditions.



Symmetry 2025, 17, 118 14 of 25

6. Experimental Verification
This chapter evaluates the proposed anti-rollover solution through experiments con-

ducted under different scenarios. The REB is compared with traditional indices to highlight its
advantages in predicting rollover risks. Following this, the chapter evaluates the HSC based
on REB, focusing on its effectiveness in mitigating rollover risks under uneven scenarios.

6.1. Validation of REB

The proposed REB is evaluated and compared with two widely used rollover risk indices:
the Load Transfer Ratio (LTR) [10,18] and the Critical Lateral Acceleration (CLA) [8,45], due
to their widespread use in rollover risk evaluation. The experimental conditions include
two distinct scenarios selected for evaluation:

• Untripped Rollover: This scenario simulates the lateral moment imbalance caused by
improper operations. In the experiment, a non-zero articulated angle remains constant,
while the UR’s longitudinal speed increases linearly, ultimately leading to rollover.

• Tripped rollover: This scenario simulates sudden vertical disturbances to the front
drum and rear tires caused by ground irregularities, represented as three predefined
obstacle heights within the simulation environment.

6.1.1. Untripped Rollover Scenario

In this scenario, three experiments were conducted with articulated angles of 15◦, 25◦,
and 35◦, while the longitudinal velocity of the UR increased at a constant acceleration of
1 m/s2 until rollover occurred. Figure 8 illustrates the trajectories, showing that the UR’s
critical rollovers occurred at 16.33 s, 12.31 s, and 9.15 s, respectively. The results are shown
in Figure 9. The bold dashed lines in each subplot represent the critical rollover threshold,
beyond which the state is considered unstable. The intersection points of the bold dashed
lines with the respective indicator curves are identified as the warning points, marked by
black circles in Figure 9. The time between the warning points and the actual occurrence of
rollover is defined as the lead time, which is summarized in Table 1.
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Table 1. Prediction lead time of untripped rollover.

Indicators
Prediction Lead Time (s)

15◦ 25◦ 35◦ Average

CLA -- 0.21 0.35 0.280
LTR 0.36 0.46 0.53 0.450
REB 0.30 0.56 0.59 0.483

As shown in Figure 9a, the CLA values for the front and rear bodies are 8.8 m/s2 and
10.2 m/s2, respectively. The true rollover threshold acceleration increases as the articulated
angle decreases. Consequently, the CLA fails to predict rollover at a 35◦ articulated angle
and demonstrates the shortest lead time among the three indices, at just 0.280 s.

An absolute LTR value of 1.0 indicates that the entire vehicle load has shifted to one
wheel, signaling an imminent rollover. As illustrated in Figure 9b, LTR accurately predicts
rollover risk in all three experiments, achieving an average lead time of 0.450 s before
rollover occurs.

For the REB, a value below zero signifies that the UR’s rollover energy has exceeded the
threshold, indicating a significant rollover risk. As shown in Figure 9c, the REB effectively
predicts all three rollover risks, achieving the longest average lead time of 0.483 s.

6.1.2. Tripped Rollover Scenario

In the tripped rollover experiment, considering the complexity of real-world conditions
(such as surface materials, bump shapes, and dynamic impacts), the experiment was
designed to select the steepest possible slope and the material with the highest elastic
modulus, while ensuring the possibility that, specifically, the UR moves along a straight
path with three obstacles of varying heights (0.5 m, 0.8 m, and 1.1 m) positioned on the
right side to generate a leftward roll moment, as shown in Figure 10. To accurately simulate
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the mechanical properties of the ground, the ground parameters were selected as follows:
a stiffness of 4.5 × 108 N/m2, a damping coefficient of 9.5 × 105 Ns/m, and a friction
coefficient of 0.75 (under dry conditions). It is noteworthy that the UR stabilizes after
brief disturbances at the 0.5 m and 0.8 m obstacles, while excessive excitation at the 1.1 m
obstacle causes rollover. The experimental results are presented in Figure 11, and the bold
dashed lines, as the Figure 9, represent the critical rollover thresholds in each subplot.
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Figure 11. Tripped rollover experimental results: (a) Lateral acceleration; (b) LTR; (c) REB.

As illustrated in Figure 11a, at the 0.5 m and 0.8 m obstacles, the lateral acceleration
of the front body exceeds 8.8 m/s2, incorrectly signaling rollover risks and demonstrating
over-sensitivity, whereas the rear body’s lateral acceleration remains below the 10.2 m/s2

threshold. This reveals CLA’s inability to adapt to dynamic responses under varying
excitations and its failure to comprehensively evaluate the rollover risk of the UR’s dual-
body structure.
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For LTR, as shown in Figure 11b, frequent wheel lift-offs caused by uneven terrain
repeatedly drive the LTR to its ±1 threshold, reflecting its inability to distinguish true
rollover risks from transient disturbances, significantly limiting its applicability in tripped
rollover scenarios.

In contrast, REB demonstrates superior adaptability and accuracy as seen in Figure 11c.
At the 0.5 m and 0.8 m obstacles, REBs remain positive, indicating the vehicle maintains
stability and avoids false alarms. In contrast, at the 1.1 m obstacle, REB rapidly drops below
zero, signaling that the rollover threshold has been exceeded and a rollover has occurred.

In the two sets of experiments above, REB effectively addresses the rollover coupling
between the front and rear bodies of articulated vehicles by quantifying rollover energy,
enabling a unified evaluation of rollover risk. It demonstrates clear advantages, including
earlier warning times and fewer false alarms. In contrast, LTR and CLA inherently fail
to account for the coupling between the dual-body structure, as they can only assess the
rollover risk of a single body, limiting their performance in articulated vehicle risk assess-
ments. Moreover, CLA struggles to adapt to dynamic changes under varying excitations,
restricting its predictive accuracy. In the tripped rollover experiment, the frequent occur-
rence of brief wheel lift-off causes LTR to repeatedly hit the warning threshold, increasing
false alarms and significantly limiting its effectiveness.

6.2. Validation of HSC

To validate the effectiveness and advantages of the proposed HSC, this section presents
a comprehensive evaluation through both simulation and real UR experiments in uneven
terrain scenarios. As shown in Figure 12, the scenarios illustrate sections of bumpy roads
in both the simulation environment and real-world experiments.
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6.2.1. Simulation Experiment

The simulation experiments compare the proposed HSC with single CDRC, LMPC, and
PID controllers, focusing on trajectory tracking accuracy, roll stability, and computational
efficiency. The PID has already proven its effectiveness in the practice of autonomous
driving [46,47], and the LMPC [48], based on a kinematic model, is also widely adopted
in autonomous vehicle applications. In addition, a modified HSC, with the weight matrix
S in Equation (23) set to zero (i.e., without considering REB), was also included in the
experiments. The CDRC, as part of the HSC, can function effectively as an independent
controller, demonstrating strong capabilities in disturbance rejection. Building on our
previous research [39,40], a CDRC with well-turned ESOs performs well in addressing
disturbances such as uneven roads, sensor measurement bias, and ground friction changes,
which encompass both slow-varying and rapidly changing disturbances. The parameters
of all controllers were optimized using a grid search method. This approach systematically
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explores the parameter space by testing predefined combinations to identify the set that
minimizes key performance metrics, such as overshoot, average error, and maximum REB.

The results of the lateral stability of the UR are illustrated in Figure 13, and the
corresponding quantitative indices are summarized in Table 2. The lateral error over time
(Figure 13a) indicates that the proposed HSC (REB-based) demonstrates excellent trajectory
tracking performance, with an average lateral error of 0.16 m and a standard deviation of
0.19 m. However, HSC without REB performs even better, with a smaller average lateral
error of 0.11 m and a standard deviation of 0.13 m. In contrast, both LMPC and CDRC show
moderate performance but exhibit significant oscillatory behavior with lateral error ranges
of 1.27 m and 2.06 m, respectively, highlighting their limited robustness in handling bumpy
road conditions. The PID controller performs the worst, with its lateral error exceeding
±2 m and standard deviation of 1.13 m, clearly indicating its inability to maintain accurate
tracking on uneven terrain.

Symmetry 2025, 17, x FOR PEER REVIEW 19 of 27 
 

 

0 5 10 15 20
−3

−2

−1

0

1

2

3

4

0 5 10 15 20

−40

−20

0

20

40

60

La
te

ra
l e

rr
or

 (m
)

Time (s)

 HSC (REB-based)  CDRC
 HSC (without REB)   PID
 LMPC

(a) (b)

A
rti

cu
la

te
d 

an
gl

e 
(°

)

Time (s)

 HSC (REB-based)  CDRC
 HSC (without REB)   PID
 LMPC

 

Figure 13. Lateral stability experimental results: (a) Lateral error; (b) Articulated angle. 

The articulated angle in Figure 13b also highlights the lateral stability differences be-
tween controllers. The two HSCs and LMPC maintain small articulated angle ranges, ef-
fectively avoiding excessive oscillations. In contrast, PID and CDRC exhibit articulated 
angle ranges of 62.2° and 56.0°, respectively. Notably, the oscillations of CDRC are damp-
ing and convergent, whereas those of PID are divergent. 

Table 2. Lateral stability experimental results. 

Controllers 
Average Lateral  

Error (m) 
Lateral Error 

Range (m) 
Articulated Angle 

Range (°) 
The Standard Deviation 

of Lateral Error (m) 
HSC (REB-based) 0.16 0.90 25.2 0.19 

HSC (without REB) 0.11 0.61 17.1 0.13 
LMPC 0.23 1.27 34.7 0.27 
CDRC 0.43 2.06 62.2 0.52 

PID 0.91 4.38 56.0 1.13 

With regard to the roll stability, due to the approximate performance of the front and 
rear body, the discussion primarily focuses on the front body. Figure 14 illustrates the roll 
angle and LTR, highlighting the superior roll stability of HSC (REB-based) compared to 
other controllers. The corresponding quantitative data is provided in Table 3. The HSC 
(REB-based) achieves the smallest roll angle range of 42.3°, the lowest instability propor-
tion (i.e., the proportion of LTR = 1) at 2.5%, and the highest average REB value of 9.35 × 
104 J. In contrast, while the HSC (without REB) demonstrates highest accuracy, it performs 
worse in roll stability. Specifically, its average REB is 22.7% lower than that of HSC (REB-
based), and its instability proportion increases by 44.0%. In addition, the distribution of 
REB shown in Figure 15 further supports this result. The HSC (REB-based) exhibits the 
smallest standard deviation of 12,125 J. In contrast, the standard deviations of the other 
controllers are more than 34.3% higher compared to the HSC (REB-based), reflecting sig-
nificantly more dispersed distributions and less stable roll energy behavior. This indicates 
that removing the REB component from the cost function reduces the roll stability of the 
HSC framework. Furthermore, LMPC, CDRC, and PID exhibit even worse performance 
than the HSC methods, with larger roll angle ranges and lower average REB values, high-
lighting a noticeable decline in roll stability compared to HSC (REB-based). Among them, 
PID performs the worst, with the lowest average REB of 5.23 × 104 J and a minimum REB 
of only 0.46 × 104 J, severely compromising roll stability. 

Figure 13. Lateral stability experimental results: (a) Lateral error; (b) Articulated angle.

Table 2. Lateral stability experimental results.

Controllers Average Lateral
Error (m)

Lateral Error Range
(m)

Articulated Angle
Range (◦)

The Standard
Deviation of Lateral

Error (m)

HSC (REB-based) 0.16 0.90 25.2 0.19
HSC (without REB) 0.11 0.61 17.1 0.13

LMPC 0.23 1.27 34.7 0.27
CDRC 0.43 2.06 62.2 0.52

PID 0.91 4.38 56.0 1.13

The articulated angle in Figure 13b also highlights the lateral stability differences
between controllers. The two HSCs and LMPC maintain small articulated angle ranges,
effectively avoiding excessive oscillations. In contrast, PID and CDRC exhibit articulated
angle ranges of 62.2◦ and 56.0◦, respectively. Notably, the oscillations of CDRC are damping
and convergent, whereas those of PID are divergent.

With regard to the roll stability, due to the approximate performance of the front and
rear body, the discussion primarily focuses on the front body. Figure 14 illustrates the
roll angle and LTR, highlighting the superior roll stability of HSC (REB-based) compared
to other controllers. The corresponding quantitative data is provided in Table 3. The
HSC (REB-based) achieves the smallest roll angle range of 42.3◦, the lowest instability
proportion (i.e., the proportion of LTR = 1) at 2.5%, and the highest average REB value
of 9.35 × 104 J. In contrast, while the HSC (without REB) demonstrates highest accuracy,
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it performs worse in roll stability. Specifically, its average REB is 22.7% lower than that
of HSC (REB-based), and its instability proportion increases by 44.0%. In addition, the
distribution of REB shown in Figure 15 further supports this result. The HSC (REB-based)
exhibits the smallest standard deviation of 12,125 J. In contrast, the standard deviations
of the other controllers are more than 34.3% higher compared to the HSC (REB-based),
reflecting significantly more dispersed distributions and less stable roll energy behavior.
This indicates that removing the REB component from the cost function reduces the roll
stability of the HSC framework. Furthermore, LMPC, CDRC, and PID exhibit even worse
performance than the HSC methods, with larger roll angle ranges and lower average REB
values, highlighting a noticeable decline in roll stability compared to HSC (REB-based).
Among them, PID performs the worst, with the lowest average REB of 5.23 × 104 J and a
minimum REB of only 0.46 × 104 J, severely compromising roll stability.
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Table 3. Roll stability experimental results.

Controllers Roll Angle
Range (◦)

Instability Proportion
(LTR = 1) (%) Average REB (J) The Standard

Deviation of REB (J)

HSC (REB-based) 42.3 2.5 93,481 12,125
HSC (without REB) 53.2 3.6 72,192 16,286

LMPC 65.2 4.3 66,069 17,627
CDRC 60.1 5.9 61,615 19,094

PID 67.7 6.9 52,275 24,420

It is worth noting that the computational real-time performance of the algorithm is
a critical factor in practical applications. Leveraging Infineon’s automotive-grade chip
platform with a multi-core architecture, we employed parallel computing and code opti-
mization to significantly enhance efficiency. Test results demonstrated that the average
computation time of NMPC was reduced to 12.16 ms, while CDRC’s computation time
averaged just 0.098 ms. These optimizations ensure stable operation within a 50 ms time
slice, achieving a reliable control frequency of 20 Hz.

Overall, the analysis clearly demonstrates the advantages of the HSC (REB-based)
in maintaining superior roll stability, followed by the HSC (without REB). The remain-
ing controllers, particularly PID, exhibit significant limitations in handling dynamic
rollover conditions.

Considering lateral tracking accuracy, articulated angle stability, and roll stability,
the proposed HSC (REB-based) clearly outperforms all the other control methods. The
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comparison between HSC (REB-based) and HSC (No REB) confirms that incorporating
REB into the control framework significantly enhances vehicle performance under bumpy
conditions. LMPC and CDRC provide reasonable performance but suffer from higher
oscillations and reduced stability, particularly in roll and articulated angle control. PID,
while computationally efficient, exhibits the poorest performance across all indices, failing
to maintain either trajectory accuracy or stability under challenging conditions.
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It is worth noting that the computational real-time performance of the algorithm is a 
critical factor in practical applications. Leveraging Infineon’s automotive-grade chip plat-
form with a multi-core architecture, we employed parallel computing and code optimiza-
tion to significantly enhance efficiency. Test results demonstrated that the average com-
putation time of NMPC was reduced to 12.16 ms, while CDRC’s computation time aver-
aged just 0.098 ms. These optimizations ensure stable operation within a 50 ms time slice, 
achieving a reliable control frequency of 20 Hz. 

Overall, the analysis clearly demonstrates the advantages of the HSC (REB-based) in 
maintaining superior roll stability, followed by the HSC (without REB). The remaining 
controllers, particularly PID, exhibit significant limitations in handling dynamic rollover 
conditions. 

Table 3. Roll stability experimental results. 

Controllers Roll Angle 
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Instability Proportion 
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HSC (REB-based) 42.3 2.5 93,481 12,125 
HSC (without REB) 53.2 3.6 72,192 16,286 

LMPC 65.2 4.3 66,069 17,627 
CDRC 60.1 5.9 61,615 19,094 

Figure 15. The distribution of REB.

6.2.2. Real UR Experiment

To further validate the effectiveness of the proposed HSC framework compared to
LMPC, a real UR experiment was conducted on a bumpy road scenario, as shown in
Figure 12b. A protruding rock was intentionally placed in the middle of the path to
simulate severe terrain disturbances. The objective was to evaluate the lateral stability and
rollover stability of the controllers under dynamic and unpredictable conditions. Figure 16
illustrates the lateral error and roll angle responses for HSC and LMPC, respectively, while
Figures 17 and 18 compare the articulated angle and REB, respectively.
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As shown in Figure 16, after encountering the protruding rock, HSC initially exhibits a
larger lateral error of −0.65 m compared to LMPC. This is due to the sudden disturbance and
active steering adjustments, which prioritize roll stability over immediate trajectory accuracy.
This prioritization is further evidenced by Figure 17, which indicates that the maximum
articulated angle of HSC in the protruding area is 10.34◦, larger than that of LMPC. This trade-
off allows HSC to rapidly stabilize the lateral error after the initial adjustment phase while



Symmetry 2025, 17, 118 21 of 25

simultaneously enhancing roll stability. As shown in Figure 18, HSC reaches the minimum
REB 0.12 s earlier than LMPC, and its minimum REB is increased by 57.8%.

HSC emphasizes stability by prioritizing faster recovery from rollover risk and overall
system robustness, even at the expense of temporary trajectory accuracy. This is demon-
strated by its coordinated steering adjustments, effectively countering destabilizing factors
such as protruding rocks. In contrast, LMPC’s rigidity in maintaining accuracy hinders its
ability to stabilize quickly, increasing rollover risks during sudden disturbances.
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7. Conclusions
This study presents a comprehensive approach to improving rollover stability and

trajectory tracking control for URs by introducing the symmetry-inspired REB index and
the HSC strategy. The REB index provides a reliable and accurate assessment of rollover risk
by quantifying the dynamic balance between the current state and the rollover threshold,
while HSC leverages this index to achieve enhanced stability under dynamic conditions.

The REB index demonstrates significant advantages over traditional metrics, includ-
ing a 32.3% increase in rollover prediction lead time. Additionally, REB shows a notable
improvement in handling common challenges such as false positives and missed detec-
tions in tripped rollover scenarios. By reflecting the system’s dynamic symmetry and its
tendency toward instability, REB provides a sensitive and reliable foundation for precise
and consistent control strategies.

Building on the REB index, the HSC control strategy effectively balances lateral and
roll stability, showcasing its ability to manage dynamic asymmetries introduced by articu-
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lated vehicle dynamics and uneven terrain. Across multiple experiments, HSC maintains
trajectory tracking accuracy comparable to other advanced algorithms while achieving a
substantial improvement in rollover stability, with an average REB increase of 35.6%. These
results underscore HSC’s capability to restore and maintain dynamic symmetry, ensuring
faster recovery and enhanced robustness under challenging off-road conditions.

In summary, the combination of REB and HSC offers a superior balance between
stability and trajectory-tracking performance, providing a symmetry-inspired framework
for improving the safety and robustness of URs. However, challenges remain, particularly
in scenarios where uneven ground and side-slip coexist, as well as in cases involving
abrupt changes in ground parameters such as tire–road friction coefficients. To address
these challenges, future work will focus on enhancing the system’s adaptability to more
complex and dynamic road conditions. This may involve integrating HSC with more
advanced sensors and improving its control performance under such conditions, ensuring
the system can effectively handle a wider range of real-world environments.
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Appendix A
Appendix A.1

Table A1. The variables of the dynamic model.

Parameters Description

a f x The x-axis acceleration (front body)
arx The x-axis acceleration (rear body)
a f y The y-axis acceleration (front body)
ary The y-axis acceleration (rear body)
v f x The x-axis velocity (front body)
vrx The x-axis velocity (rear body)
v f y The y-axis velocity (front body)
vry The y-axis velocity (rear body)
θ f The orientation angle (front body)
θr The orientation angle (rear body)
α f The yaw angle (front body)
αr The yaw angle (rear body)
γ The articulated angle of the front and rear bodies
ϕ f The roll angle (front body)
ϕr The roll angle (rear body)

Ft, f x The lateral force applied by the tire (front body)
Ft, f y The longitudinal force applied by the tire (front body)
Ft,rx The lateral force applied by the tire (front body)
Ft,ry The longitudinal force applied by the tire (front body)

Mt, f z The aligning torque applied by the tire (front body)
Mt,rz The aligning torque applied by the tire (rear body)
Mj The steering torque applied by the hydraulic system
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Appendix A.2

Table A2. The constant parameters of the dynamic model.

Parameter Description Value Unit

m f The front body mass 22,500 kg
mr The rear body mass 11,000 kg
l f 1 The distance from the joint point to the front CG 1.45 m
l f 2 The distance from the joint point to the front axle 1.58 m
lr1 The distance from the joint point to the rear CG 1.52 m
lr2 The distance from the joint point to the rear axle 1.69 m
w f The width of the front body 2.02 m
wr The width of the rear body 1.85 m
hc, f The height of the front body CG 0.85 m
hc,r The height of the rear body CG 1.02 m
I f z The rotational inertia around the z-axis (front body) 15,630 kg·m2

Irz The rotational inertia around the z-axis (rear body) 11,792 kg·m2

I f y The rotational inertia around the y-axis (front body) 8515 kg·m2

Iry The rotational inertia around the y-axis (rear body) 7332 kg·m2

g The acceleration of gravity 9.81 m/s2

Appendix B
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