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Abstract: Billions of paper Electrocardiograms (ECGs) are recorded annually worldwide,
particularly in the Global South. Manual review of this massive dataset is time-consuming
and inefficient. Accurate digital reconstruction of these records is essential for efficient
cardiac disease diagnosis. This paper proposes a systematic framework for digitizing
paper ECGs with 12 symmetrically distributed leads and identifying abnormal samples.
This method consists of three main components. First, we introduce an adaptive rotated
convolution network to detect the positions of lead waveforms. By exploiting the sym-
metric distribution of 12 leads, a novel loss is proposed to improve the detection model’s
performance. Second, image processing techniques, including denoising and connected
component analysis, are employed to digitize ECG waveforms. Finally, we propose a
transformer-based classification method combined with a state space model. Our process
is evaluated on a large synthetic dataset, including ECG images characterized by rotations,
noise, and creases. The results demonstrate that the proposed detection method can ef-
fectively reconstruct paper ECGs, achieving an 11% improvement in SNR compared to
the baseline. Moreover, our classification model exhibits slightly higher performance than
other counterparts. The proposed approach offers a promising solution for the automated
analysis of paper ECGs, supporting clinical decision-making.

Keywords: paper ECGs; digitization; rotated object detection; state space model; transformer

1. Introduction
The electrocardiogram (ECG) is the most common pre-screening tool for diagnosing

cardiovascular diseases (CVDs) [1,2]. Currently, devices for detecting ECG signals include
standard 12-lead electrocardiographs and portable or wearable ECG devices. Compared to
other devices, 12-lead electrocardiographs can provide comprehensive, high-quality ECG
signals, enabling more accurate classification and diagnosis of CVDs. Recently, researchers
have developed many algorithmic approaches to interpreting the digital representations of
the ECG waveforms. Although digital ECG methods offer the potential for increased access
to ECG-based diagnoses and cardiac care, physical or paper ECGs have been a cornerstone
of cardiac care for nearly a century and continue to be widely used, particularly in the
Global South. There are likely billions of paper ECGs recorded each year globally [3]. This
legacy embodies the variation and evolution of CVDs across different populations, regions,
and time. However, proprietary systems with limited interoperability artificially exacerbate
barriers to data analysis. Consequently, the digitization of ECGs and access to low-cost
analytical tools are essential for capturing the full spectrum of ECG data and enhancing
global accessibility of cardiac care [4]. The diagnosis of heart diseases using paper ECGs
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consists of two stages: digitization of paper ECGs and classification of the resulting digital
signals. Currently, several models have been explored to process paper ECGs.

(1) Digitization
There are two main paths to digitizing paper-based ECGs. One path combines tradi-
tional image processing techniques such as filtering, edge detection, and binary image
segmentation with human expertise. Sibel et al. [5] introduced a method to digitize
paper ECGs using 2D median filtering and simple image segmentation steps. Then,
empirical mode decomposition and SVM were applied to detect abnormalities in the
ECG signal. Sun et al. [6] developed an automated algorithm using edge detection
and connected component analysis to separate ECG signals from scanned 12-lead
paper ECGs. Wu et al. [7] presented a novel approach to digitizing paper ECGs
employing automated horizontal and vertical anchor point detection and a dynamic
morphological algorithm. Randazzo et al. [8] proposed a conversion algorithm from
paper ECGs to digital ECGs by cropping images manually and binary thresholding
segmentation. Ref. [9] reported a MATLAB-based tool that digitized paper ECGs
through grayscale thresholding, column-wise pixel scanning, and template-based
optical character recognition. Ref. [10] presented a MATLAB-based tool and algorithm
that digitized printed or scanned ECG signals through image processing and serial
steps, achieving high validation accuracy on a dataset of 30 scanned ECG images.
Ref. [11] proposed a method that extracts features of varying grayscale levels from
binarized paper ECGs rather than directly digitizing the ECG curves. These features
are subsequently fed into a classifier for anomaly detection.
The other path is based on end-to-end deep learning models. Ref. [12] proposed
a novel method combining U-Net and ResNet architectures to digitize and classify
relatively clean paper-based ECGs. Digitizing paper ECGs with high-level noise
currently remains a challenging task. Ref. [13] addressed this issue by a U-Net-
based deep learning approach incorporating grid removal and connected component
analysis. Although this method can handle images with diverse lead layouts, it
struggles with rotated images.
Generally, current methods for digitizing paper ECGs have some shortcomings. First,
deep learning models for digitizing 12-lead paper ECGs with symmetrical distribu-
tions need further investigation. Second, large-scale labeled datasets of paper ECGs
are difficult to obtain, and existing methods are typically evaluated on small datasets
of a few hundred samples [7,8,13]. Third, most methods achieve high performance
only on high-quality paper ECG images. Little effort addresses low-quality paper
ECG images, such as those with rotations, wrinkles, high-level noise, or missing
signal leads.

(2) Classification
A growing body of research has highlighted the potential of deep learning models for
accurate classification in various tasks [14–16]. Ref. [17] reported a wide and deep
transformer neural network to classify 12-lead ECG sequences into 27 cardiac abnor-
mality classes, combining handcrafted ECG features. Ref. [18] explored the application
of structured state space models for ECG classification (SSM_ECG), demonstrating
significant improvements over convolutional architectures in capturing long-term
dependencies within time series data. Ref. [19] developed a multi-view and multi-
scale deep neural network for ECG classification (MVMS), which treats different leads
as distinct views and uses a multi-scale convolutional neural network to capture
temporal features at various scales.
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Although classification models for ECGs have been extensively investigated [20], the
classification of digitized ECG signals warrants further research. A comprehensive
evaluation of existing methods in this domain is necessary.

This paper proposes a deep learning-based approach for systematically processing
large-scale paper ECG images to address these challenges:

(1) We generated a PTB-XL dataset containing 21,837 labeled paper ECG samples using
the simulation tool provided by the 2024 PhysioNet/CinC (CinC2024) challenge.
These images include 12-lead ECG signals and contain various distortions such as
rotations, wrinkles, and high-level noise.

(2) The proposed model employs oriented R-CNN with adaptive rotated convolutions
for 12-lead object detection. A new paper-ECG loss is introduced by leveraging the
symmetrical distribution of leads to improve the model accuracy of detecting different
leads. Each lead curve is segmented and digitized using a set of rectifiers.

(3) This work trains a state space augmented transformer model combining handcrafted
features to identify abnormal ECG signals.

The following contents are structured as follows. Section 2 reviewed some related
work in this work, covering essential backgrounds of rotated object detection, state space
model, and transformers. In Section 3, we elaborated on the details of our model. Section 4
showed the experimental results and discussion. Section 5 is the conclusion.

2. Related Work
2.1. Rotated Object Detection

The accurate rotated object detection is quite significant in various tasks, including
scene text detection [21], face detection [22], and aerial image recognition [23]. Recent
research has yielded significant advancements in rotated object detection, particularly in
the development of rotated object representations [24–26] and their associated loss func-
tions [27–29]. Studies have also extensively explored the structure of detection networks,
including the network’s neck [30,31], the detection head [32], and rotated region proposal
networks [33].

Pu et al. (2023) [34] proposed an adaptively rotated convolution (ARC) module to
construct a backbone model for the rotated object detection task. This module employs
adaptive rotation of the convolution kernel according to the input feature maps. By
employing a conditional computation mechanism, it can dynamically adjust its operations
to handle multi-oriented objects. An ARC module comprises n kernels (W1, · · · , Wn), each
possessing a shape of [Cout, Cin, k, k]. Using the input feature x, the routing function f
calculates the rotation angles θ and the corresponding combination weights λ:

θ, λ = f (x).

Each of the n kernels is first rotated according to its predicted rotation angle θ = [θ1, θ2, · · · , θn],

W′
i = Rotate(Wi; θi), i = 1, 2, · · · , n.

Here, θi represents the rotation angle for Wi, W′
i is the rotated kernel, and Rotate(·) denotes

the rotation procedure for a k × k convolution kernel. Applying conditional parameteriza-
tion, the output features y can be represented as

y = (λ1W′
1 + λ2W′

2 + · · ·+ λnW′
n) ∗ x.
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The ARC module can increase the network’s representation ability by capturing the features
of multiple-oriented objects. It can be readily integrated into any backbone network
featuring convolutional layers.

Convolutional neural networks (CNNs), the most prevalent deep learning framework,
are fundamental to image object detection. Variants of CNNs have surpassed traditional
machine learning approaches in various tasks [35]. In this work, we build an ARC-based
ResNet-50-FPN [36] to detect different leads from paper ECGs with various orientations.

2.2. Structured State Space Sequence (S4) Model

The structured state space model (SSSM) leverages a linear state space transition
equation to link input and output sequences through a hidden state. Specifically, given a
one-dimensional sequence u(t) (input) and a one-dimensional sequence y(t) (output), the
transition equation can be defined as:

x′(t) =Ax(t)+ Bu(t),

y(t) =Cx(t)+ Du(t),
(1)

where x(t) represents an N-dimensional hidden state vector, and A, B, C, D denote the
transition matrices.

Given a step size ∆, the continuous-time parameters can be mapped to discrete-time
parameter Ā, B̄, and C̄. These discrete parameters form the state-space model convolutional
kernel K(Ā, B̄, C̄), enabling the calculation of the output y using convolution: y = K ∗ u.
A significant contribution of [37] lies in developing a stable and efficient method for
evaluating the kernel K. Building upon their previous work [38], they propose a specific
initialization strategy for the matrix A ∈ Rn×n, inspired by HiPPO theory, to facilitate the
capture of long-range interactions. By concatenating and fusing H copies of these layers,
each performing a mapping from R to R, an S4 layer is formed, capable of mapping from
RH to RH .

To further enhance SSSM capabilities, an S4 model can be built by stacking multiple
S4 layers with normalization and point-wise fully connected layers. This architecture has
demonstrated impressive performance on various long-range sequence tasks, including
12-lead ECG classification and generation [18,39], object detection [40], and probabilistic
time series forecasting [41,42].

2.3. Transformers

Transformers [43], relying on self-attention mechanisms, have been widely employed
across AI fields for analyzing temporal features of long sequences, such as computer vision,
audio processing, and natural language processing [44]. Various transformer-based models
have been developed to process highly long sequences and reduce computational cost, such
as Informer [45], FEDformer [46], and Quatformer [47]. Ref. [48] introduced Pyraformer,
which utilized a pyramidal attention module to analyze long-term and short-term trends
within the data and efficiently capture the complex time relationships. Ref. [49] have
proposed the Autoformer, which takes the series as a fundamental building block of deep
models and uses an auto-correlation mechanism to capture long-range dependencies more
efficiently than self-attention methods.

Transformers exhibit high computational costs for long sequences and are sus-
ceptible to overfitting due to the absence of structural biases [44]. Local attention
mechanisms [50,51] introduce structural biases but compromise the ability to capture global
context. A state space augmented transformer (SPADE) [52] addresses this by incorporating
S4 model to provide strong structural biases and global information. This work transfers
this approach to ECG signal classification, leveraging hand-crafted features.
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3. Methodology
3.1. Datasets & Problem Statements

Our work is based on the PTB-XL dataset [53], which comprises 21,837 12-lead ECG
recordings at a rate of 100 Hz. These ECGs are obtained from six limb leads (I, II, III, aVF,
aVL, aVR) and six precordial leads (V1, V2, V3, V4, V5, V6). All annotations for each
sample cover five superclasses comprising normal (NORM), myocardial infarction (MI),
ST/T changes (STTC), conduction disturbance (CD), and hypertrophy (HYP).

We employed the publicly available ECG-Image-Kit toolbox (version 1.0) [4] to gen-
erate corresponding paper ECGs for the recordings in PTB-XL. These images encompass
12-lead ECG signal segments subjected to various distortions such as rotations, creases,
cropping, wrinkles, and high-level noise. Each ECG image consists of 26 classes: 13 lead
waveforms and their names. The first 12 lead waveforms represent 2.5 s segments of each
lead, while the 13th waveform corresponds to the entire 10 s ECG curve of lead II. Each
ECG “lead” and “lead name” are annotated with a rotated bounding box defined by its
four vertex coordinates.

This work introduces a three-stage approach to diagnose abnormal cardiac diseases
based on paper ECGs, as depicted in Figure 1. The method leverages an ECG-ARCResNet
model for signal detection, followed by a comprehensive image processing pipeline to
digitize the ECG signals. The digitized ECG samples are then fed into a transformer-based
classification model to identify diverse CDVs.

ECG-
ARCResNet

Digitize
• Rotate

• Denoising

• Connected 

components analysis

• Find zero-lines

MFECGFormer

NORM

MI

STTC

CD

HYP

Paper ECGs

Figure 1. System flowchart for digitizing paper ECGs and classifying five CDVs.

3.2. Waveform Detection

In this work, we employ the oriented R-CNN as the body of the detection model.
Given ARC modules’ superior ability to learn feature representations of rotated objects, we
have adopted ARC-ResNet50 as our backbone, as shown in Figure 2.

Oriented R-CNN, a two-stage detector based on FPN, comprises an oriented RPN and
an oriented R-CNN head. The former generates high-quality oriented proposals, while
the latter classifies these proposals and refines their spatial locations through bounding
box regression. Oriented R-CNN leverages cross-entropy loss to classify proposals and
determine object categories. Smooth L1 loss is adopted to regress the bounding boxes,
refining their position, size, and orientation to localize the objects better. The positional
distribution of the 26 classes in paper ECG records produced by unified ECG devices is
fixed. By leveraging this structural information, this paper proposes paperECGLoss to
improve detection performance. Next, we describe it in detail.
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ARC-FPN

Feature map

Rotated 
RoIAlign

2. Oriented ROI Head

FC1 FC2

Decoding

1. Oriented RPN
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paperECGLoss
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aVL
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ARC-FPN

Feature map

Rotated 
RoIAlign

2. Oriented ROI Head

FC1 FC2

Decoding

1. Oriented RPN

1 x 1 Conv

paperECGLoss

full_II

aVR

aVL

aVF

V1

V2

V3

V4
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V6

I

II

III

regression

classification

Figure 2. As a two-stage detector, Oriented R-CNN first generates oriented proposals via an oriented
RPN, followed by a second stage using an oriented R-CNN head for classification and regression.

As shown in Figure 2, the first 12 ECG leads are arranged symmetrically in a 3 × 4
grid. The spatial relationships among these classes can be summarized as follows: (1) All
lead bounding boxes are parallel along the X-coordinate direction. (2) The bounding boxes
of the first 12 leads have a uniform length. (3) The bounding boxes at the two extremities
are collinear along the Y-direction. (4) The full_II bounding box has a length four times that
of the others.

diff-1i,j = kX:i − kX:j, 1 ≤ i, j ≤ 13 (2)

diff-2i,j = lenX:i − lenX:j, 1 ≤ i, j ≤ 12 (3)

diff-3i = lenX:13 − 4 × lenX:i, 1 ≤ i ≤ 12 (4)

diff-4i,j,k = kY:i,j − kY:i,k, i, j, k ∈ {1, 5, 9, 13}or{4, 8, 12, 13} (5)

where kX:i and lenX:i denote the slope, and the length of the bounding box corresponding
to the i-th lead in the X-direction, respectively. kY:i,j means the slope of the line segment
joining the top-left corners of the i-th and j-th lead bounding boxes. The paperECGLoss is
defined as follows:

paperECGLoss = MSE(diff-1) + MSE(diff-2) + MSE(diff-3) + MSE(diff-4)

where MSE(diff-1) means the mean of the squared error for diff-1. Finally, we train the
detection model with a combination of smooth L1 loss and paperECGLoss to achieve more
precise localization of target bounding boxes.

3.3. Digitization

Segmenting and digitizing the lead curves from paper ECG images is essential to
identify abnormal samples automatically. The specific procedures are as follows:

(1) Zero-line Alignment: The center points of the bounding boxes for lead names on
the same row should align on a straight line. By calculating the slope of the lines
connecting these center points, the rotation angle of the image can be determined,
enabling the correction of rotated images.

(2) Noise Reduction and Segmentation: an unsupervised denoising model, Noise2Void [54],
is trained to denoise the original image and enhance the foreground, making it easier
to segment the ECG signal curves. Based on the output coordinates from the detection
model, each lead curve region is segmented from the denoised image. For each sub-
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image containing a lead, binarization is performed, followed by clustering of pixels
to separate the background, grid, and signal curve. Finally, connected component
analysis is employed to isolate the lead curve.

(3) Zero-line Detection: A “multi-level sliding window” technique is employed to approx-
imate the zero-line of each lead curve. Specifically, a window with a decreasing width
is slid along the vertical axis iteratively. At each iteration, the window containing the
most data points is considered the region where the zero-line is. The average vertical
coordinate of the data points within the final 4-pixel-wide window is taken as the
vertical coordinate of the zero-line.

(4) Horizontal Coordinate Determination: Based on the range of each lead curve, the
horizontal coordinate range of the 10 s curve is determined. Given the image resolution
res and the horizontal time resolution of 25 mm/s, the number of data points contained
in a 10 s segment can be calculated as:

N =
10[s]× 25[mm/s]

25.4[mm/inch]
× res[/inch]. (6)

By combining the position of each curve, the horizontal coordinate range of each 2.5 s
signal segment is separated.

(5) Vertical Coordinate Determination: The signal intensity y corresponding to each data
point can be determined using the following formula:

y =
pixel_y

res[/inch]
× 25.4[mm/inch]

10[mm/mv]
. (7)

Here, pixel_y represents the vertical coordinate of the data point relative to the zero-
line, and the spatial resolution is 10 mm/mv.

The digitization process may result in the loss of a few pixels in the curves, which are then
interpolated linearly. Due to varying image resolutions, the digitized signals have different
lengths. All digitized signals are resampled to 250 or 1000 samples using interpolation or
averaging for consistency.

3.4. Classification

Based on the S4-augmented transformer (SPADE), this work trains a multi-feature
ECGFormer for classifying abnormal ECG samples, as illustrated in Figure 3. SPADE
can capture both global and local dependencies through a hierarchical transformer-based
architecture. At the bottom layer, a S4 model captures coarse global information by inducing
a strong structural bias. The subsequent conventional transformer layers extract more
intricate local dependencies. The implementation details of this model are described below.

Let x ∈ RL×D be an input sample where the length is L, and the embedding size is
D. The preliminary features across dimensions at each time step are processed through a
one-dimensional convolution operation. It expands the feature dimension, enabling the
model to learn richer representations. The SPADE module comprises three multi-head
self-attention (MSA) encoders. The first layer is a S4-augmented self-attention encoder. The
computational process is as follows:

xS4 = LN (S4(xi)),

xMSA = MSA (xi),

x̄i = LN (W [xS4, xMSA] + xi),

xi+1 = LN (FFN(x̄i) + x̄i),

(8)
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where xi denotes the input of the i-th layer. The subsequent two layers employ standard
MSA networks [44]. Subsequently, the SPADE output feature vector y is compressed via
max pooling and serves as the classifier’s input.

GlobalSPADE Local

MSAS4

LNLN

Combine

FFN

Add & LN

Add & LN

MSA

FFN

Add & LN

Add & LN

Global

Local

Local

MaxPooling

Conv1d SPADE

NORM
MI

STTC
CD

HYP

Digitized 
ECG

• • Handcrafted features MLP

(B, L, 12) (B, L, D)

LN

Figure 3. The overall architecture of MFECGFormer for ECG signals classification. This model’s
backbone, SPADE, consists of one S4-augmented attention network and two standard multi-head
self-attention networks.

In this work, we design a set of time-frequency domain features from the lead II of ECG
signals. These features, which encompass waveform statistics and two crucial metadata
attributes (age and sex), are integrated into the input feature vector. The main handcrafted
features (HCFeats) are listed in Appendix A. Finally, these features are concatenated with
the output of SPADE and fed into a two-layer perceptron for ECG classification.

Outputs = MLP([MaxPooling(y); HCFeats]). (9)

4. Experiments
4.1. Experiment Settings

All models were carried out using the PyTorch Library. All experiments took place on
a Linux server with an Intel(R) Xeon(R) CPU E5-2680, 256 GB of RAM, and an NVIDIA
GeForce RTX 3090 GPU. Using hierarchical sampling, we stratified the real dataset into ten
folds to ensure class balance. The model was trained on folds 1 through 8, with fold 9 used
for validation and fold 10 reserved for testing. The network’s hyperparameter settings are
elaborated in Appendix B. The training process utilized the following parameters: a batch
size of 32, a learning rate of 0.001, and the AdamW optimizer.

4.2. Results and Discussion

This work employs the average precision (AP) and signal-to-noise ratio (SNR) to
evaluate the performance of paper ECG digitization methods.

SNR = 10 log10

(
∑N

i=1 s[i]2

∑N
i=1(x[i]− s[i])2

)
,

where s[i] and x[i] signify the original and digitized ECG signals, respectively.
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AUROC, Precision, Recall, F1-score, and accuracy are used to compare the performance
of different classification models.

Precision =
TP

TP+FP
,

Recall =
TP

TP+FN
,

F1-score = 2 · Precision · Recall
Precision + Recall

,

Accuracy =
TP + TN

TP + TN+FP+FN
,

(10)

where FP, TN, TP, and FN represent the number of false positives, true negatives, true
positives, and false negatives, respectively.

Digitization

Accurately detecting each lead’s location and name serves two primary purposes.
Firstly, the image skew angles can be corrected using the bounding box coordinates of the
lead names. Secondly, the lead curves can be separated from their respective image regions,
reducing the impact of image noise from other areas.

This work built the detection model with hyperparameters from Appendix B Table A2
and trained for 20 epochs. We report detailed experimental results, including category-
wise average precision (AP) and the mean average precision (mAP), for comparison with
existing state-of-the-art oriented object detectors. The AP and mAP for all lead names and
curves are presented in Table 1 and Table 2, respectively.

Table 1. Comparison of the average precision of each lead name and the mean average precision
(mAP) with state-of-the-art methods.

Methods I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 full_II mAP

Oriented R-CNN 58.16 77.39 89.62 97.11 98.04 95.80 95.46 95.78 95.43 94.56 94.62 95.71 77.55 89.63

ARC R-CNN 57.44 79.92 90.20 97.92 98.20 96.35 96.60 95.89 96.33 94.51 94.92 95.22 78.59 90.16

Ours 60.33 76.98 92.49 97.95 98.71 97.15 96.32 97.02 97.12 97.03 96.93 96.75 89.30 91.85

Table 2. Comparison of the average precision of each lead curve and the mean average precision
(mAP) with state-of-the-art methods. The evaluation metrics are mAP and SNR.

Methods I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 full_II mAP SNR

Oriented R-CNN 91.89 92.67 92.71 93.41 93.71 93.02 93.63 94.42 94.06 92.87 92.14 92.16 89.75 92.80 7.20

ARC R-CNN 91.61 92.67 92.99 92.93 94.36 93.20 93.94 94.76 94.31 93.04 92.36 92.39 90.27 92.99 7.38

Ours 92.52 93.18 93.26 93.36 94.72 93.27 94.11 94.75 94.53 93.45 92.58 93.01 91.28 93.39 8.22

The ARC R-CNN model is used as the baseline model. The proposed model performs
better in detecting most categories than other oriented R-CNN-based rotation object de-
tection models. However, we observed a lower accuracy in predicting the names of lead I
and II. This issue can be attributed to these two classes’ relatively small pixel occupancy,
making them difficult to distinguish from image noise in many samples. Visualization
results of detection and digitization for three ECG images from the test set are shown in
Figure 4.
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(1) Ground truth

(2) Baseline

(3) Ours

(4) Digitized ECGs

Figure 4. The visualization results of detection and digitization for three ECG images with different
noise levels and rotation angles are presented. The rows show ground truth (1), baseline predictions
(2), our detection model’s results (3), and digitized ECGs (4). Curves of all leads with their names are
marked with distinct color boxes.

The first row corresponds to the ground truth annotations. Curves of all leads with
their names are marked with distinct color boxes. The second row displays the bounding
box predictions generated by the baseline model (i.e., oriented R-CNN with ARC modules).
The results obtained by our detection model are shown in the third row. The fourth row
illustrates the digitized ECG signals. It can be observed that, compared with the baseline,
our method can more accurately detect all targets, especially the curves of each ECG lead.
Taking the 10 s lead II waveform as an example, the bounding boxes identified by our model
are closer to the ground truth. For the second image, the baseline misses the names of leads
I and II, while our model identifies the bounding box for the name of lead II but also misses
the name of lead I. Upon examination of the digitized ECG signals, minor data distortions
can be observed, namely, partial discontinuities within the signal waveforms. This issue
reduces the accuracy of the reconstructed digital signal, mainly due to the high-level noise
in the image, causing some curves to be misclassified as noise. Overall, the digitized ECGs
can recover the waveform characteristics of the original signal.
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To further assess the similarity between the digitized ECG and the original signal,
we extracted the 10 s lead II and identified the P waves, QRS complexes, T waves, and R
peaks [55]. As shown in Figure 5, we examined the Pearson correlation coefficients [56]
of seven indices, including QRS duration, PR interval, RR interval, QT interval, P wave
amplitude, R peak amplitude, and T wave amplitude.

Figure 5. A graphical depiction of fundamental ECG waves and intervals.

Table 3 presents the experimental results. It indicates that all correlation coefficients for
intervals and peak amplitudes fall between 0.901 and 0.981, suggesting the effectiveness of
the digitalization method. Notably, the QRS duration and RR interval, which are crucial for
clinical diagnosis of cardiovascular diseases, exhibited the highest correlation coefficients,
suggesting that the proposed digitization method is reliable for assisting clinical diagnosis.
The slightly lower correlation coefficients for P wave and T wave amplitudes might be
attributed to slight data loss during digitization.

Table 3. Correlation coefficients between the original and digitized ECGs for seven ECG characteristics.

Index Correlation Coefficient p-Value 95% Confidence Interval
LCB UCB

QRS (ms) 0.979 <0.001 0.947 0.989
PR (ms) 0.933 <0.001 0.909 0.959
RR (ms) 0.981 <0.001 0.978 0.985
QT (ms) 0.936 <0.001 0.927 0.944
P (mV) 0.906 <0.002 0.863 0.949
R (mV) 0.959 <0.001 0.939 0.972
T (mV) 0.901 <0.002 0.866 0.938

Classification

We trained a classification model, MFECGFormer, for abnormal ECG signal identifi-
cation, configured with parameters detailed in Appendix B Table A3. Trained on the real
data and the synthetic data (Appendix C) for 50 epochs, our model outperforms other
counterparts, including Trans [17], SSM_ECG [18], and MVMS [19], on the real test set.
Trans employs four self-attention encoders, each composed of three multi-head attention
layers and a ResNet18 module to model ECG features. MVMS adopts a multi-view ap-
proach to capture multi-scale features from each lead and utilizes knowledge distillation
to reduce model parameters. It outperforms other models on the 5-way classification
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task of the PTB-XL dataset. SSM_ECG is a novel deep structural state space model for
ECG classification.

In this paper, we conducted experiments using original and digitized ECG data as
ground truth. We trained and evaluated our model on an identical test set. As shown
in Table 4, the proposed model consistently outperforms other methods. However, the
classification accuracy of the digitized data is relatively lower than that of the original data,
suggesting that information loss and potential biases introduced during digitization may
hinder performance.

Table 4. Predictive performance comparison of baseline methods and our classification model on the
test set.

Methods AUROC Precision Recall F1-Score Accuracy

Trans [17] original 0.921 0.730 0.756 0.741 0.914
digitized 0.909 0.713 0.725 0.717 0.904

SSM_ECG [18] original 0.920 0.737 0.770 0.752 0.915
digitized 0.919 0.732 0.758 0.744 0.912

MVMS [19] original 0.949 0.813 0.845 0.827 0.943
digitized 0.922 0.752 0.762 0.757 0.918

Ours original 0.951 0.831 0.846 0.838 0.947
digitized 0.927 0.775 0.788 0.781 0.926

Furthermore, the confusion matrices of different models are illustrated in Figure 6, in
which each row shows the predicted distribution for the corresponding category. These
results indicate that all models tend to misclassify samples as NORM. This observation
aligns with clinical findings where certain ECGs are labeled as both NORM and other
abnormal patterns. Moreover, the relatively low recall for the STTC category is mainly
attributed to its small proportion in the test set (8.9%). However, although the proportion
of the MI category (15.8%) in the test set is comparable to other abnormal categories, its
recall is higher, potentially indicating that the proposed model is more effective in learning
the characteristic ECG morphologies associated with this category.

The proposed model achieves higher classification accuracy, but this comes at the
expense of increased computational cost. As shown in Table 5, the proposed model, based
on the transformer framework, exhibits higher parameter counts and computational com-
plexity compared with MVMS and SSM_ECG. This may limit its applicability in real-time
scenarios. Notably, while SSM_ECG demonstrates slightly lower classification performance,
its utilization of the Hippo theory and Fast Fourier Transform for convolutional computa-
tions results in significantly higher computational efficiency, rendering it more suitable for
deployment on the embedded devices.

Table 5. For each model, the number of parameters, FLOPs, and inference time are reported.

Methods Params (106) FLOPs (106) Inference (ms)

Trans 13.64 103.93 11.91
SSM_ECG 2.15 4.61 6.36

MVMS 0.39 82.27 7.04

Ours 6.72 69.33 8.12
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(a) (b)

(c)
(d)

Figure 6. The figure presents the confusion matrices for four classification models (Trans, MVMS,
SSM_ECG, and Ours) evaluated on the same test set. The x-axis and y-axis denote the predicted and
actual categories, respectively. Each row shows the predicted distribution for the corresponding category.

5. Limitation and Future Work
While the proposed models demonstrate promising results, there are several limita-

tions. First, the model exhibits lower accuracy in detecting the names of lead I and II in
paper ECGs. Second, a small amount of information loss occurs during the digitization
process, which can affect the accuracy of the reconstructed ECG signals and the classifi-
cation performance of abnormal samples. These issues are primarily due to high-level
noise in paper ECGs. Future work should investigate more robust denoising techniques or
curve segmentation models. Third, our model’s performance depends on a specific lead
layout on paper ECGs. Future research should explore methods to adapt to various layouts.
Additionally, the computational efficiency of the classification model needs to be improved.

6. Conclusions
This work proposes a systematic approach for automatically identifying abnormal

samples in paper ECGs characterized by rotations, noise, and creases. Our method in-
troduces paperECGLoss, which utilizes the symmetric distribution of 12 leads in paper
ECGs to enhance detection model’s performance. The reliability of the digitized ECGs is
evaluated using multiple metrics. Then, we build an S4-augmented transformer for classifi-
cation, combining handcrafted features. Using the PTB-XL dataset, we comprehensively
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evaluate the proposed models. The results demonstrate that the model effectively improves
the detection accuracy of ECG waveforms and achieves competitive results on the five-
class classification task compared with other counterparts. Our proposed method offers
a promising solution for the automated analysis of paper ECGs. This model significantly
improves diagnostic efficiency by automating the identification of critical cases. It enhances
diagnostic accuracy by detecting subtle signal variations and reduces the risk of human
error. Furthermore, it facilitates the digitization of paper ECGs for large-scale analysis.
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Appendix A. Data Extraction

Table A1. Handcrafted Features.

Name Description

SDNN Standard deviation of NN (normal-to-normal heartbeat) intervals.

RMSSD Root mean square of successive differences between normal heartbeats.

NN50 The number of successive NN intervals with a difference exceeding 50 ms.

pNN50 The ratio of NN50 to the total number of NN intervals.

DSD Standard deviation of successive differences between adjacent NN intervals.

Mean NN Mean of NN intervals.

CVNN Coefficient of variation of NN intervals, calculated as the ratio of SDNN to mean NN.

CVSD Coefficient of variation of successive differences, calculated as the ratio of RMSSD to mean NN.

HR_min The minimum heart rate value

HR_max The maximum heart rate value

HTI Heart rate turbulence index

TINN Application of triangular interpolation to the histogram of NN intervals

PSEmedian The median of the Shannon entropy values of the P wave segments.

PAEmedian The median of the approximate entropy values of the P wave segments.

PPEmedian The median of the permutation entropy values of the P wave segments.

RAE The approximate entropy of the R wave segments.

RSE The Shannon entropy of the R wave segments.

RPE The permutation entropy of the R wave segments.

SWTL2E The entropy value of the signal after being decomposed to level 2 using SWT.

fftmean Z1 = 1
N ∑N

k=1 F(k)

fftvar Z2 = 1
N−1 ∑N

k=1(F(k)− Z1)
2
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Table A1. Cont.

Name Description

fftentropy Z3 = −1 × ∑N
k=1(

F(k)
Z1 N log2

F(k)
Z1 N )

fftenergy Z4 = 1
N ∑N

k=1(F(k))2

fftskew Z5 = 1
N ∑N

k=1(
F(k)−Z1√

Z2
)3

fftkurt Z6 = 1
N ∑N

k=1(
F(k)−Z1√

Z2
)4

age

sex

Appendix B. Hyperparameters

Table A2. Hyperparameters for ECG-ARCResNet.

Hyperparameter Value

Backbone ResNet-50-FPN

Rotation angles’ number 512

FPN: pyramid levels 4

RPN: anchor scales [16, 32, 64]
RPN: anchor ratios [0.5, 1.0, 2.0]
RPN: IoU threshold 0.3, 0.7

RPN: NMS threshold 0.4

ROI: fc 1024

Table A3. Hyperparameters for MFECGFormer.

Hyperparameter Value

Embedding size 512

S4: state_num 64
Encoder layers 3

d_model 256
header_num 4

MLP: fc 1024
Activation GELU

Appendix C. Data Augmentation
Given the scarcity of balanced datasets for CDVs, this work employs a diffusion model

with structured state-space architecture (SSSD-ECG) to augment the training set. This
method, initially proposed by [39], has presented a conditional generative model for 71
ECG classes. The classification model trained on the generated ECG data performs better
than other generative models, including a conditional generative adversarial network
(CGAN), despite a slight performance gap relative to the model trained on real data.

In this work, we reproduce this model and introduce slight modifications to generate
samples for four abnormal classes. Figure A1 illustrates the framework, which comprises
three stacked SSSD layers, each containing two S4 modules. The S4 module better captures
long-term dependencies in time series, which has been proven effective in various time
series prediction tasks [42]. We add more skip connections (red lines) in each SSSD layer to
make the model robust.
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Figure A1. The architecture of conditional SSSD-ECG.

To handle the imbalanced class distribution in the original dataset (Table A4), we
trained the SSSD-ECG model to generate synthetic ECG samples, following the hyperpa-
rameters in Table A5.

Table A4. Statistics of the original and augmented datasets.

Category NORM MI STTC CD HYP

Original 46.3% 15.8% 8.9% 15.3% 13.7%
Augmented 32.2% 16.9% 16.9% 16.9% 16.9%

Table A5. Hyperparameters for SSSD-ECG.

Hyperparameter Value

S4 layers 36
S4: state_num 64

Residual channels 256
Diffusion embedding fc1 128
Diffusion embedding fc2 256
Diffusion embedding fc3 256

Schedule Linear
Diffusion steps T 200

B0 0.0001
B1 0.02

Loss function MSE

Figure A2 illustrates the generated ECG samples for each class. The generated sam-
ples generally replicate the characteristics of real ECG data, including trends and QRS
complex counts. To mitigate the potential negative impact of oversampling, we balanced
the class distribution by expanding the minority classes to approximately half the size of
the Norm class.

Figure A2. Cont.
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Figure A2. Comparison of original and generated data for four abnormal classes. Each image
comprises 12 lead curves of 2.5 s duration (separated by red dashed lines) and a 10 s waveform of
Lead II.
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