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Abstract: In this paper, we present Proinov-type fixed point theorems in the setting of
bi-polar metric spaces and fuzzy bi-polar metric spaces. Fuzzy bi-polar metric spaces
with symmetric property extend classical metric spaces to address dual structures and
uncertainty, ensuring consistency and balance. We provide different concrete conditions
on the real-valued functions Ω, Π : (0, ∞) → R for the existence of fixed points via the
(Ω, Π)-contraction in bi-polar metric spaces. Further, we define real-valued functions
Ω, Π : (0, 1] → R to obtain fixed point theorems in fuzzy bi-polar metric spaces. We apply
(Ω, Π) fuzzy bi-polar version of a Banach fixed point theorem to show the existence of
solutions. Furthermore, we provide some non-trivial examples to show the validity of our
results. In the end, we find the existence and uniqueness of a solution of integral equations
and boundary value problem used in chemical sciences by applying main results.

Keywords: fuzzy bi-polar metric space; fixed point; existence and uniqueness; boundary
value problem

1. Introduction
A point g is a fixed point of a self-mapping of A(g) if A(g) = g. In 1960, the notion of

continuous t-norm was presented by Schweizer and Sklar [1]. In 1965, Zadeh [2] presented
the notion of a fuzzy set. Fuzzy sets extend fixed point theory to handle uncertainty and
imprecision, enabling the analysis of systems with vague or incomplete information. They
facilitate the generalization of classical fixed point results to fuzzy settings, broadening
their applicability to real-world problems in optimization, decision making, and dynamic
systems. First, Karamosil and Michlek [3] established the notion of fuzzy metric space
(FMS). Gregori and Sapena [4] presented a fuzzy contractive mapping and proved some
fixed point theorems in the context of the Karamosil and Michlek FMS. In 2008, Mihet [5]
established some fixed point results by using Ψ-contractive mappings in non-Archimedean
FMS. A novel family of contractions was introduced Hierro et al. [6] in the framework
of non-Archimedean FMSs, offering a significant advancement in the field. The primary
advantage of this family lies in its incorporation of general auxiliary functions, enhanc-
ing its flexibility and applicability across diverse mathematical and practical contexts.
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Zhou et al. [7] presented some auxiliary functions in FMS and established a novel family of
contractions based on Proinov-type contractions and proved some fixed point theorems.
Sessa et al. [8] established some fixed point theorems by using the fuzzy orthogonal contrac-
tion αΓ − F and provided an application for non-linear equations. Ishtiaq et al. [9] proved
some fixed point theorems using different types of interpolative contraction mappings.

In 2020, Afshari et al. [10] initiated some fixed point results by using (α, Ψ)-contractive
mappings in b-metric spaces. In 2020 Proinov [11] obtained fixed point results in a metric
space (MS) by using generalized contractive mappings. Then, in 2021, Alqahtani et al. [12]
determined some fixed point theorems by modifying Proinov-type [11] fixed point results
using certain conditions to the corresponding contraction. Hiero et al. [13] proved several
fixed point theorems by utilizing multi-parametric contractions and related Hardy Rogers-
type fixed point theorem.

Mutlu and Gurdal [14] presented a new idea of bi-polar metric space (in short, BMS)
and proved several fixed point results. They used E and F two nonempty sets and define a
mapping α : E × F → R+, where R+. Khajasteh et al. [15] presented some simulation func-
tions and proved various fixed-point results in the setting of MS. Semet et al. [16] presented
some fixed point results for α − Ψ contractive mappings in complete MS. Murthy et al. [17]
proved some common fixed point theorems for BMS by using Meir-Keeler type contractions.
Prasad [18] established several common fixed point theorems in BMS by using covariant
mappings. Jahangeer et al. [19] proved several best proximity point theorems in BMS by
using certain interpolative contractions. Bartwal et al. [20] established a new idea of fuzzy
bi-polar metric space (in short, FBMS) and proved some fixed point theorems. An FMS
uses a fuzzy membership value to describe the degree of closeness between two points,
with larger values indicating greater proximity. It involves a single non-empty set with
parameter t > 0 and is mostly used to deal with ambiguity in distance measurements.
In an FBM space, two different non-empty sets with parameter t > 0 are used to represent
dual features evaluations of distance. Meanwhile, FMSs are simpler and widely used in
applications like image processing and fixed point theory. FBMSs are more complex and
suited for scenarios involving bi-polar evaluations, such as satisfaction/dissatisfaction or
attraction/repulsion in decision making and psychology. Beg et al. [21] proved several
common coupled fixed point results in the setting of FBMSs. Ramalingam et al. [22] used
the triangular property of a fuzzy bi-polar b-metric space to derive fixed point theorems
without continuity, expanding on previously proven results. Bi-polar metric spaces provide
a dual framework for evaluating relationships, and fuzzy bi-polar metric spaces extend this
framework to uncertain environments using fuzzified metrics. Symmetry in both settings
ensures balanced and consistent evaluation of distances, making these spaces suitable for a
wide range of theoretical and applied problems.

Motivated from the above discussion, we prove some fixed point results in the context
of BMS and FBMS. We introduce the L family of functions in the setting of BMS and FBMS.
Further, we provide some corollaries and remarks which relate our results to the existing
ones in the literature. We divide this paper into four parts. The first part is dedicated for
basic definitions and results from the existing literature. In the second part, we present
some lemmas, propositions and fixed point results in the setting of BMS and FBMS with
several non-trivial examples. In the third part, we find the existence and uniqueness of a
solution of a boundary value problem by applying the main result. In the fourth part, we
provide a conclusion of our work.

2. Preliminaries
This section contains several definitions and results from the existing literature.
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Definition 1 ([14]). Suppose E and F are nonempty sets and let a mapping α : E × F → R+ be
a function, where R+ denotes the set of non-negative real numbers. Then, (E, F, α) is said to be a
BMS if it fulfills the following conditions:

(bp1) If α(g, j) = 0, then g = j for all (g, j) ∈ E × F;
(bp2) If g = j, then α(g, j) = 0 for all (g, j) ∈ E × F;
(bp3) α(g, j) = α(j, g) for all g, j ∈ E ∩ F;
(bp4) α(g1, j2) ≤ α(g1, j1) + α(g2, j1) + α(g2, j2) for all g1, g2 ∈ E and j1, j2 ∈ F.

Definition 2 ([14]). Let (E, F, α) be a BMS.
(i) A sequence (gn, jn) on the set E × F is called a bi-sequence on (E, F, α).
(ii) If both (gn) and (jn) are convergent, then the bi-sequence is said to be convergent. If both

sequences (gn) and (jn) both converges to the same point s ∈ E ∩ F, then the bi-sequence is said to
be bi-convergent.

(iii) A bi-sequence (gn, jn) on (E, F, α) is called a Cauchy bi-sequence if, for every ϵ > 0, there
exists a number n0 ∈ N, such that for all positive integers n, m ≥ n0, α(gn, jm) < ϵ.

Definition 3 ([14]). Let (E, F, α) be a BMS. A left sequence (gn) converges to a right point j
(symbolically (gn) → j or limn gn = j) if and only if ϵ > 0 exists as n0 ∈ N such that α(gn, j) < ϵ

for all n ≥ n0. Similarly, a right sequence (jn) converges to a right point g (symbolically (jn) → g
or limn jn = g) if and only if ϵ > 0 exists n0 ∈ N such that α(g, jn) < ϵ for all n ≥ n0. When
(gn → j or limn gn = j for a BMS (E, F, α), without exact information about the domain of the
sequence, this means that (gn) is a left sequence and j is a right point, or (gn) a right sequence and
j is a left point.

Definition 4 ([14]). A BMS is called complete if every Cauchy bi-sequence in this space is
convergent.

Theorem 1 ([14]). Let (E, F, α) be a complete BMS and a contraction A : (E, F, α) ⇒ (E, F, α)

(here, “⇒” shows the covariant map). Then, the function A : E ∪ F → E ∪ F has a unique
fixed point.

Definition 5 ([1]). A binary operation ◦ : [0, 1]× [0, 1] → [0, 1] is called a continuous t-norm
(ctn) if it satisfies the following conditions:
(T1) g1 ◦ g2 = g2 ◦ g1 and g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g for all g1, g2, g3 ∈ [0, 1];
(T2) ◦ is continuous;
(T3) g ◦ 1 = g for all g ∈ [0, 1];
(T4) g1 ◦ g2 ≤ g3 ◦ g4 when g1 ≤ g3 and g2 ≤ g4, with g1, g2, g3, g4 ∈ [0, 1].

Definition 6 ([20]). Suppose E ̸= Φ and ◦ is a ctn. A mapping α : E × E × (0, ∞) → [0, 1] is
called a fuzzy b-metric if it satisfies the following axioms for all g1, g2, g3 ∈ E and p, ν > 0 :

(A1) α(g1, g2, p) > 0;
(A2) α(g1, g2, p) = 1 if and only if g1 = g2;
(A3) α(g1, g2, p) = α(g2, g1, p);
(A4) α(g1, g3, p + ν) ≥ α(g1, g2, p) ◦ α(g2, g3, ν);
(A5) α(g1, g2, ·) : (0, ∞) → [0, 1] is continuous.

Then, (E, α, ◦) is called an FMS.

Example 1. Let E ̸= Φ and define a mapping α : E × E × (0, ∞) → [0, 1] by α(g1, g2, p) =
p

p+|g1−g2|
. Then, (E, α, ◦) is an FMS with ctn α ◦ β = αβ.
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Definition 7 ([20]). Suppose E, F ̸= Φ and ◦ is a ctn. A mapping α : E × F × (0, ∞) → [0, 1] is
said to be fuzzy bi-polar metric if it satisfies the below axioms for all p, ν, λ > 0 :

(A1) α(g, j, p) > 0 for all (g, j) ∈ E × F;
(A2) α(g, j, p) = 1 if and only if g = j for g ∈ E and j ∈ F;
(A3) α(g, j, p) = α(j, g, p) for all g, j ∈ E ∩ F;
(A4) α(g1, j2, p + ν + λ) ≥ α(g1, j1, p) ◦ α(g2, j1, ν) ◦ (g2, j2, λ) for all g1, g2 ∈ E and

j1, j2 ∈ F;
(A5) α(g, j, ·) : [0, ∞) → [0, 1] is left continuous;
(A6) α(g, j, ·) is non-decreasing for all g ∈ E and j ∈ F.

Then, (E, F, α, ◦) is called an FBMS.

Example 2. For all g ∈ E, j ∈ F and p > 0, define a mapping α : E × F × (0, ∞) → [0, 1] by

α(g, j, p) = e−
|g−j|

p .

Then, (E, F, α, ◦) is an FBMS with ctn a ◦ b = ab.

Definition 8 ([20]). Suppose (E, F, α, ◦) is an FBMS. The points belonging to E, F and E ∩ F are
named as left, right, and central points respectively, and sequences belonging to E, F and E ∩ F are
called left, right, and central sequences, respectively.

Lemma 1 ([20]). Suppose (E, F, α, ◦) is an FBMS such that

α(g, j, lp) ≥ α(g, j, p)

for all g ∈ E, j ∈ F, p > 0, and l ∈ (0, 1). Then, g = j.

Definition 9 ([20]). Suppose (E, F, α, ◦) is an FBMS. A sequence {gn} ∈ E converges to a right
point j if and only if for each ϵ > 0 and p > 0, there exists n0 ∈ N such that α(gn, j, p) > 1 − ϵ

for all n ≥ n0. Similarly, a right sequence {jn} converges to a left point g if and only if, for each
ϵ > 0 and p > 0, there exists n0 ∈ N such that α(g, jn, p) > 1 − ϵ for all n ≥ n0.

Definition 10 ([20]). Suppose (E, F, α, ◦) is an FBMS; then,
(i) A sequence (gn, jn) ∈ E × F is called a bi-sequence on (E, F, α, ◦)
(ii) If both sequences (gn) and (jn) converge, then the sequence (gn, sn) ∈ E × F is said to be

bi-convergent. If both (gn) and (jn) converge to the same center point, the bi-sequence (gn, jn) is
said to be bi-convergent.

(iii) A bi-sequence (gn, jn) on (E, F, α, ◦) is called a Cauchy bi-sequence if, for each ϵ > 0, there
exists a n0 ∈ N, such that for every positive integer n, m ≥ n0,(n, m ∈ N) α(gn, jm, p) > 1 − ϵ

for each p > 0, i.e., a bi-sequence (gn, jn) is said to be a Cauchy bi-sequence if α(gn, jm, p) → 1 as
n, m → ∞ for all p > 0.

Definition 11 ([20]). The FBMS (E, F, α, ◦) is known as complete if every Cauchy bi-sequence in
E × F is convergent in it.

Proposition 1 ([20]). In FBMS, every bi-convergent bi-sequence is a Cauchy bi-sequence.

Lemma 2 ([20]). Suppose (E, F, α, ◦) is an FBMS. If g ∈ E ∩ F is a limit of the sequence, then it
is a unique limit of the sequence.

Theorem 2 ([20]). Let (E, F, α, ◦) be a complete FBMS such that limp→∞ α(g, j, p) = 1 for all
g ∈ E, j ∈ F. Then, A : E ∪ F → E ∪ F is a mapping verifying
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(i) A(E) ⊆ E and A(F) ⊆ F;
(ii) α(A(g), A(j), lp) ≥ α(g, j, p) for all g ∈ E, j ∈ F, p > 0, where l ∈ (0, 1).
Then, A has a unique fixed point.

Proposition 2 ([7]). Let {gn} be a Picard sequence in FMS (E, α, ◦) such that limn→∞ α(gn, gn+1,
p) = 1 if for each sequence {gn} ⊆ E for all p > 0. If there are m0, n0 ∈ N such that m0 < n0 and
gm0 = gn0 , then there is s0 ∈ N and g∗ ∈ E such that gn = g∗ for all n ≥ s0. In such a case, g∗ is
a fixed point of the self-mapping for which {gn} is a Picard sequence.

Proposition 3 ([7]). Every Picard sequence is either infinite or almost periodic.

Proposition 4 ([7]). We say that an FMS verifies the property if for each {gn} ⊆ E, which is
not Cauchy sequence and holds limn→∞ α(gn, gn+1, p) = 1 for all p > 0, there are ϵ0 ∈ (0, 1)
and p0 > 0 and two partial subsequences

{
gmk

}
and

{
gnk

}
of {gn}, such that, for all k ∈ N,

the following is fulfilled:
k < mk < nk < mk+1 and

α
(

gmk , gnk−1, p0
)
> 1 − ϵ0 ≥ α

(
gmk , gnk , p0

)
,

lim
n→∞

α
(

gmk , gnk , p0
)
= lim

n→∞
α
(

gmk−1 , gnk−1, p0
)
= 1 − ϵ0.

Definition 12 ([7]). Let (E, α, ◦) be an FMS. We denote, by L, the family of pairs (Ω, Π) of the
functions Ω, Π : (0, 1] → R fulfills the following axioms:

(p1) Ω is non-decreasing;
(p2) Π(g) > Ω(g) for any g ∈ (0, 1);
(p3) limg→H− inf Π(g) > limg→H− Ω(g) for any H ∈ (0, 1);
(p4) If p ∈ (0, 1] is such that Ω(p) ≥ Π(1), then p = 1.

Example 3.
(1) Ω(g) = g and Π(g) =

√
g for all g ∈ (0, 1].

(2) Ω(g) = 1
ln g and Π(g) = 1

ln g2 for all g ∈ (0, 1].

(3) Ω(g) = 1
2ln 2g and Π(g) = 1

2ln g for all g ∈ (0, 1].

3. Main Results
This section contains several fixed point results in the setting of BMS and FBMS.

3.1. Fixed Point Theorems for (Ω, Π)-Contractions in BMS

We provide a fixed point theorem for a self-mapping A on a complete BMS (in short,
CBMS) (E, F, α) satisfying a contractive condition

Ω(α(Ag, Aj)) ≤ Π(α(g, j)) for all (g, j) ∈ E × F and α(Ag, Aj) > 0, (1)

where Ω, Π : (0, ∞) → R are two function such that Π(g) < Ω(g) for g > 0.

Lemma 3. Let (E, F, α) be a BMS and {gn, jn} be a bi-sequence in E ∪ F which is not Cauchy
bi-sequence and limn→∞ α(gn, jn+1) = 0. Then, there exists ϵ > 0 and two bi-subsequences

{
gnk

}
and

{
gmk

}
of {gn} and

{
jnk

}
,
{

jmk

}
of {jn} such that

lim
k→∞

α
(

gnk+1, jmk+1
)
= ϵ, (2)

lim
k→∞

α
(

gnk , jmk

)
= lim

k→∞
α
(

gnk+1, jmk

)
= lim

k→∞
α
(

gnk , jmk+1
)
= ϵ. (3)
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Proof. Since {gn, jn} is not a Cauchy bi-sequence and limn→∞ α(gn, jn) = 0, there exists for
ϵ > 0 and n0 ≥ 1 such that for each n > n0 there exists n, m > n0 such that n ≥ m

α(gn+1, jm+1) > ϵ and α(gn+1, jn) ≤ ϵ.

Thus, we can make two subsequences
{

jnk

}
and

{
jmk

}
of {jn}, such that

α
(

gnk+1, jmk+1
)
> ϵ and α

(
gnk+1, jmk

)
≤ ϵ.

From these inequalities and triangular inequality, we obtain

ϵ < α
(

gnk+1, jmk+1
)
≤ α

(
gnk+1, jnk

)
+ α

(
jnk , jmk

)
+ α

(
jmk , jmk+1

)
≤ ϵα

(
jmk , jmk+1

)
.

By the Sandwich theorem, we get (2). Furthermore, we have

α
(

gnk+1, jmk+1
)
− α

(
jmk+1, jmk

)
≤ α

(
gnk+1, jnk

)
+ α

(
jnk , jmk

)
≤ 2ϵ,

which implies the second limit (3). From the following two inequalities,

α
(

gnk+1, jmk+1
)
− α

(
jnk , jnk+1

)
≤ α

(
jnk , jmk

)
+ α

(
gnk+1, jmk+1

)
≤ ϵα

(
jnk , jnk+1

)
,

ϵ − α
(

gnk , jnk+1
)
< α

(
gnk , jmk+1

)
+ α

(
jnk , jmk

)
≤ α

(
jnk+1, jmk+1

)
+ α

(
jnk , jnk+1

)
,

we deduce the first and third limits in (3).

Lemma 4. Let Ω : (0, ∞) → R. Then, Conditions (i), (ii) and (iii) are equivalent, as follows:
(i) infg>ϵ Ω(g) > −∞ for each ϵ > 0;
(ii) limg→ϵ inf Ω(g) > −∞ for each ϵ > 0;
(iii) limn→∞ Ω(gn) = −∞ =⇒ limn→∞ gn = 0.

Proof. (i)⇒(ii): Suppose that Condition (i) is satisfied and infg>ϵ Ω(g) = S for some ϵ > 0.
Then, Ω(g) ≥ S for each g > ϵ. However, lim infg→ϵ Ω(g) ≥ S, i.e., Condition (ii) holds.

(ii) →(iii): Suppose that Condition (ii) is satisfied and limn→∞ Ω(gn) = −∞ for
a sequence (gn) ⊆ (0, ∞). Suppose that (gn) does not converge to 0. Then, there
exists ϵ > 0 and a subsequence

(
gnk

)
such that gnk > ϵ for every k ≥ 1. Since

limn→∞ Ω(gn) = −∞ implies limk→∞ Ω
(

gnk

)
= −∞ also for limk→∞ Ω

(
jnk

)
= −∞, we

conclude that limn→ϵ Ω(g) = −∞, which is a contradiction to Condition (ii). Hence,
limn→∞ gn = 0, that is, (iii) is satisfied.

(iii)⇒(i): Suppose that Condition (iii) is satisfied. Suppose that a infg>ϵ Ω(g) = −∞
for some ϵ > 0. Then, there exists a subsequence (gn) ⊆ (0, ∞) such that (gn) > ϵ for
each n ≥ 1 and limn→∞ Ω(gn) = −∞. From Condition (iii), we obtain that limn→∞ gn = 0,
which contradicts (gn) > ϵ. That is, Condition (i) is satisfied.

Lemma 5. Suppose Π : (0, ∞) → R. Then, Condition (i) =⇒ Condition (ii), where
(i) limn→∞ Π(gn) = 0 implies limn→∞ gn = 0;
(ii) limg→ϵ inf Π(g) > 0 for every ϵ > 0.

Proof. Let Condition (i) be fulfilled and lim infg→ϵ Π(g) = 0 for some ϵ > 0. Then, there
exists a sequence (gn) ⊆ (0, ∞) such that gn, → ϵ and Π(gn) → 0. From (i), we have
gn → 0, which is a contradiction.
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Definition 13. Let E, F ̸= Φ. A self-mapping A on BMS (E, F, α) is said to be asymptotically
regular (in short, ATR) at a point g ∈ E and j ∈ F if

lim
n→∞

α(Ang, An j) = 0.

Lemma 6. Suppose (E, F, α) is BMS and let A : E∪ F → E∪ F be a mapping, where the functions
Ω, Π : (0,+∞) → R are such that

(i) infg>ϵ Ω(g) > −∞ for any ϵ > 0;
Let one of the following be satisfied:
(ii) Ω is non-decreasing and limg→ϵ sup Π(g) < Ω(ϵ) for any ϵ > 0;
(iii) if (Ω(gn)) and Π((gn)) are convergent sequences with the same limit and (Ω(gn)) is

strictly decreasing, then limn→∞ gn = 0. Then, A is an ATR.

Proof. Put gn = Ang and Jn = An j and Hn = α(gn, jn). We examine that Hn → 0 every
n ≥ 0. If Hn = 0 for some n ≥ 0, then it is obvious. Applying inequality (1) with s = gn

and e = jn, and taking into account Condition (i), we obtain

Ω(Hn+1) ≤ Π(Hn) < Ω(Hn). (4)

Suppose that Condition (ii) holds. Then, by utilizing (4), that is, Hn+1 < Hn for each n ≥ 0,
(Hn) is a strictly decreasing and positive sequence. Therefore, there exists H ≥ 0 such that
Hn → H as n → ∞. Now, we investigate that H = 0. Suppose that H > 0. Letting n → ∞
in (4), we deduce

Ω(H) = lim
n→∞

Ω(Hn+1) ≤ lim
n→∞

sup Π(Hn) ≤ lim
l→H

sup Π(l),

which is a contradiction of Condition (ii). That is, H = 0.
Let Condition (iv) be satisfied. By utilizing (4), the sequence Ω(Hn) is strictly decreas-

ing. We take (Ω(Hn)) as not bounded below. Then, we apply Condition (i) and Lemma 4,
that is Hn → 0, as n → ∞. Now let (Ω(Hn)) be bounded below. Then, (Ω(Hn)) is a
convergent bi-sequence. From (4), (Π(Hn)) is also a convergent bi-sequence with the same
limit. Therefore, by utilizing Condition (iv), that is, Hn → 0 as n → ∞.

Lemma 7. Suppose that (E, F, α) is BMS and let A : E ∪ F → E ∪ F be a mapping verifying (1),
with the functions Ω, Π : (0,+∞) → R which fulfills at least one of the following:

(i) limg→ϵ+ sup Π(g) < Ω(ϵ) for any ϵ > 0;
(ii) lim supg→ϵ Π(g) < lim infg→ϵ+ Ω(g) for any ϵ > 0;
If A is an ATR at a point g ∈ E and j ∈ F, then (Ang, An j) is a Cauchy bi-sequence.

Proof. Suppose A is an ATR mapping at an element s ∈ E ∩ F. Let bi-sequence (Ang, An j),
which is not Cauchy bi-sequence. Set gn = Ang and jn = An j for every n ≥ 0.

Suppose that Ω, Π verify Condition (i). By applying Lemma 3, there exist ϵ > 0 and
two subsequences

(
jnk

)
and

(
jmk

)
of (jn) such that limits (2) and (3) fulfilled. By utilizing (2),

limk→∞ α
(

gnk+1, jmk

)
> ϵ for each k ≥ 1. By using (1) with g = gnk and j = jmk , we obtain

Ω
(
α
(

gnk+1, jnk+1
))

≤ Π
(
α
(

gnk , jnk

))
(5)

for all k ≥ 1. We set bk = α
(

gnk+1, jnk+1
)

and ck = α
(

gnk , jnk

)
. Then, from (5), we obtain

Ω(bk) ≤ Π(ck). (6)
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Hence, taking into account Lemma (6) (i), we get

Ω(bk) ≤ Π(ck) < Ω(ck). (7)

For this and the monotonicity of Ω, we obtain bk < ck. Then, we use (2) and (3), that is,
bk → ϵ and ck → ϵ. Taking the superior limit in (6) as k → ∞, we obtain

Ω(ϵ) = lim
k→∞

Ω(ak) ≤ lim
k→∞

sup Π(ck) ≤ lim
g→ϵ

sup Π(g)

which contradicts Condition (i).
Assume that Ω and Π verify Condition (ii). By utilizing Lemma 3, there exist ϵ > 0

and two bi-subsequences of
{

gnk

}
and

{
gmk

}
of {gn} and

{
jnk

}
and

{
jmk

}
of {jn} such

that the limits (2) and (3) hold. From (6), we conclude that

α
(

Agnk , Ajmk

)
= α

(
gnk+1, jmk+1

)
> 0

for every k. By applying (1) with g = gnk and j = jmk , (5) is satisfied for every k. Again,
take bk = α

(
gnk+1, jmk+1

)
and ck = α

(
gnk , jmk

)
. Then, (5) takes from (6). It follows from

(2) and (3) that bk → ϵ and ck → ϵ. From (5), we obtain

lim
g→ϵ

inf Ω(g) ≤ lim
k→∞

inf Ω(bk) ≤ lim
k→∞

sup Π(ck) ≤ lim
g→ϵ

sup Ω(g),

which is a contradiction. However, (Ang, An j) is a Cauchy bi-sequence.

Definition 14. A self-mapping A on a BMS (E, F, α) is called a closed graph if

Graph(A) = {(g, j) ∈ E ∪ F × E ∪ F : j = Ag}

is closed in its product E × F topology. Also, A has a closed graph if and only if, for each bi-sequence
(gn) and (jn) in E ∪ F such that gn → s and jn → s as n → ∞, we have j = Ag.

Lemma 8. Let (E, F, α) be a BMS and let a mapping A : E ∪ F → E ∪ F verify (1), with the
function Ω, Π : (0, ∞) → R which fulfills at least one of the following:

(i) A has a closed graph;
any g > 0;
(ii) lim supg→0 Π(g) < lim infg→ϵ Ω(g) for any ϵ > 0.
If limn→∞(Ang, An j) = ζ for some g, j ∈ E ∪ F, then ζ is a fixed point of A.

Proof. If we take (ii), then the proof of (i) is obvious. Suppose gn = Ang. If α(Agn, Aζ) = 0
for each n, then

α(ζ, Aζ) ≤ α(ζ, Agn) + α(Agn, gn+1) + α(Agn, Aζ) = α(ζ, gn+1).

Since A has a closed graph, by letting n → ∞, we obtain α(ζ, Aζ) ≤ 0, which implies
α(ζ, Aζ) = 0. This means that ζ = Aζ. This means that ζ ∈ E ∩ F is a fixed point of A.
Let α(Agn, Aζ) > 0 be satisfied for every n. Then, by utilizing (1) with g = gn and j = ζ,
we obtain

Ω(α(Agn, Aζ)) ≤ Π(α(gn, ζ)) (8)

which hold for the values of n.
Let Ω and Π satisfy (1). Then, it follows from (8) that

Ω(α(Agn, Aζ)) ≤ Π(α(gn, ζ)) < Ω(α(gn, ζ)) (9)
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This implies α(Agn, Aζ) < α(gn, ζ). Taking the limit as n → ∞, we obtain α(ζ, Aζ) ≤ 0.
This means that ζ is an fixed point of A.

Suppose that Ω and Π fulfill Condition (iii). By utilizing (8), we deduce

Ω(bn) ≤ Π(cn) (10)

for each n, where bn = α(gn+1, Aζ) and cn = α(gn, ζ). Obviously, bn → ϵ and cn → 0 as
n → ∞, where ϵ = α(ζ, Aζ). By applying (10), we obtain

lim
g→ϵ

inf Ω(g) ≤ lim
n→∞

inf Ω(bn) ≤ lim
n→∞

sup Π(cn) ≤ lim
g→0

sup Π(g).

If we take ϵ > 0, then it is a contradiction to Condition (ii). Therefore, α(ζ, Aζ) = 0. This
means that ζ is a fixed point of A.

Theorem 3. Assume that (E, F, α) is a BMS and that a mapping A : E ∪ F → E ∪ F satisfies (1),
with the functions Ω, Π : (0, ∞) → R, fulfilling at least one of the following:

(i) Ω is non-decreasing;
(ii) lim supg→ϵ Π(g) < Ω(ϵ) for any ϵ > 0.
Then, A has a unique fixed point ζ ∈ E∩ F and the iterative bi-sequence (Ang, An j) converges

to ζ for every g ∈ E and j ∈ F.

Proof. Let g0 ∈ E and j0 ∈ F. For each n ∈ N, define A(gn) = gn+1 and A(jn) = jn+1.
Then, (gn, jn) is a bi-sequence in (E, F, α). By applying Conditions (i) and (ii) and Lemma 6,
A is asymptotically regular. Also, by utilizing Conditions (i) and (ii) and Lemma 7, the bi-
sequence (Ang, An j) is a Cauchy bi-sequence. However, if (E, F, α) is complete, then the
bi-sequence converges to a point ζ ∈ E ∩ F. From Condition (i) and Lemma 8, it is clear that
ζ is a fixed point of A. The uniqueness of the fixed point is easy to determine using (1).

Remark 1. If Ω(g) = g, and Π(g) = λg, where 0 ≤ λ < 1, then Theorem 3 is reduced to a
Banach contraction principle.

Example 4. Let E = [0, 1] and F = [1, 2] be equipped with α(g, j) = |g−j|
1+|g−j| for all g ∈ E and

j ∈ F. Then, (E, F, α) is a complete bi-polar metric space. Define A : E ∪ F → E ∪ F by

A(s) =
s + 4

5

for all s ∈ E ∪ F. Now, define the function Ω, Π : (0, ∞) → R by

Ω(r) = r Π(r) =
r
2

for all r ∈ (0, ∞).

Now, we have to show that A satisfies (1). Therefore,
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Ω(α(A(g), A(j))) = Ω
(

α

(
g + 4

5
,

j + 4
5

))
= Ω

(
| g+4

5 − j+4
5 |

1+ | g+4
5 − j+4

5 |

)

=
| g+4

5 − j+4
5 |

1+ | g+4
5 − j+4

5 |

=
| g

5 − j
5 |

1+ | g
5 − j

5 |

=
| g − j |

5+ | g − j |

⩽
1
2

(
| g − j |

1+ | g − j |

)
= Π(α(g, j)).

Hence, all the other conditions of Theorem 3 hold. Moreover, 1 is the fixed point of A.

Now, we see that without (Ω, Π), g = 0 and j = 1 do not hold; thus, we take λ = 1
6

(α(A(0), A(1))) ≤ λα(0, 1)

α

(
4
5

, 1
)

≤ λα(0, 1)

0.1667 ≤ 1
5
(0.5)

0.1667 ≤ 0.1,

which is a contradiction. Hence, it does not hold without (Ω, Π).

Theorem 4. Assume that (E, F, α) is a BMS and that A : E ∪ F → E ∪ F is a mapping that
satisfies (1), with the functions Ω, Π : (0, ∞) → R, verifying at least one from the following:

(i) infg>ϵ Ω(g) > −∞ for any ϵ > 0;
(ii) If (Ω(gn)) and Π((gn)) are convergent sequences with the same limit and (Ω(gn)) is

strictly decreasing, then gn → 0 as n → ∞;
(iii) A has closed graph or limg→0 Π(g) < limg→ϵ inf Ω(g) for any ϵ > 0.
Then, A has a unique fixed point ζ ∈ E∩ F and the iterative bi-sequence (Ang, An j) converges

to ζ for every g ∈ E and j ∈ F.

Proof. Let g0 ∈ E and j0 ∈ F. For each n ∈ N, define A(gn) = gn+1 and A(jn) = jn+1.
Then, (gn, jn) is a bi-sequence in (E, F, α). By applying Conditions (i) and (ii) and Lemma 6,
A is asymptotically regular at g and j. By using Condition (iii) and Lemma 7, it is clear that
bi-sequence (Ang, An j) is Cauchy. Therefore, (Ang, An j) converges to a point ζ ∈ E ∩ F.
Moreover, by applying Condition (iii) and Lemma 8, it is clear that ζ is a fixed point of A.
The uniqueness is easy to determine by using (1).

Remark 2. If Ω(g) = g, and Π(g) = λg, where 0 ≤ λ < 1, then Theorem 4 is reduced to Banach
contraction principle.

3.2. Fixed Point Theorem for (Ω, Π)-Contraction in Fuzzy Bi-Polar Metric Spaces

In this part, we prove fixed point theorems in FBMS.
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Proposition 5. Let {gn, jn} be a Picard bi-sequence in FBMS (E, F, α, ◦) such that limn→∞ α(gn,
jn, p) = 1 if the bi-sequence (gn, jn) ⊆ E ∪ F for all p > 0. If there are m0, n0 ∈ N such that
m0 < n0 and gm0 = jn0 , then there is s0 ∈ N and s∗ ∈ E ∩ F such that limn→∞ α(gn, jn, p) = s∗.
In such a case, s∗ is a fixed point of the self-mapping for which {gn, jn} is a Picard bi-sequence.

Lemma 9. We say that an FBMS sequence is not Cauchy if for each (gn, jn) ⊆ E ∪ F, which is not
a Cauchy sequence and holds limn→∞ α(gn, jn, p) = 1 for each p > 0, there are ϵ0 ∈ (0, 1) and
p0 > 0 and two partial bi-subsequences, two bi-subsequences

{
gnk

}
and

{
gmk

}
of {gn} and

{
jnk

}
and

{
jmk

}
of {jn} such that for each k ∈ N, the following holds:

k < mk < nk < mk+1 and

α
(

gmk , jnk−1, p0
)
> 1 − ϵ0 ≥ α

(
gmk , jnk , p0

)
,

lim
n→∞

α
(

gmk , jnk , p0
)
= lim

n→∞
α
(

gmk , jnk−1, p0
)
= 1 − ϵ0.

Theorem 5. Suppose that (E, F, α, ◦) is a complete FBMS and suppose that A : E ∪ F → E ∪ F is
a mapping for which there exists (Ω, Π) ∈ L such that

Ω(α(Ag, Aj, p)) ≥ Π(α(g, j, p)) for all g ∈ E and j ∈ F with Ag ̸= Aj and p > 0. (11)

Then, each iterative Picard bi-sequence {Ang, Ang}n∈N is bi-convergent to the unique fixed point
of A.

Proof. Choose g0 ∈ E and j0 ∈ F and suppose that A(gn) = gn+1 and A(jn) = jn+1 ∀
n ∈ N∪ {0}. Then, we obtain (gn, jn) as a bi-sequence on FBMS (E, F, α, ◦). Now, we have

Ω(α(g1, j1, p)) = Ω(α(Ag0, Aj0, p)) ≥ Π(α(g0, j0, p))

for all p > 0 and n ∈ N. By continuing this process, we obtain

Ω(α(gn+1, jn+1, p)) = Ω(α(Agn, Ajn, p)) ≥ Π(α(gn, jn, p)) (12)

for all p > 0 and n ∈ N. For the next proof, we use six steps to prove the statement.
Step 1. For all p > 0, the bi-sequence {α(gn, jn, p)}n∈N ⊆ (0, 1] is non-decreasing.
Let p > 0 be arbitrary. We consider two cases depending on α(gn+1, jn+1, p) = 1 or

α(gn+1, jn+1, p) < 1.
• If α(gn+1, jn+1, p) = 1, then

Ω(α(gn+1, jn+1, p)) ≥ Π(α(gn, jn, p)) = Π(1).

In such a case, Property (p4) leads to

α(gn+1, jn+1, p) = α(gn, jn, p) = 1

Specifically,
α(gn+1, jn+1, p) ≥ α(gn, jn, p).

• If α(gn, jn, p) ∈ (0, 1), then (12) and Property (p2) certify that

Ω(α(gn+1, jn+1, p)) ≥ Π(α(gn, jn, p)) > Ω(α(gn, jn, p)).
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As Ω is non-decreasing according to Property (p1), then

α(gn+1, jn+1, p) ≥ α(gn, jn, p).

We proved that the bi-sequence {α(gn, jn, p)}n∈N ⊆ (0, 1] is non-decreasing. This property
allows us to define the function τ : (0, ∞) → (0, 1] as

τ(p) = lim
n→∞

α(gn, jn, p) for all p > 0.

Step 2. τ(p) = 1 for all p > 0
Suppose p > 0. If there is n0 ∈ N such that α(gn0 , jn0 , p) = 1, then α

(
gn0+1, jn0+1, p

)
≥

α(gn0 , jn0 , p) = 1, so, α(gn0 , jn0 , p) = 1. In this case, by induction, we can check that
α(gn0 , jn0 , p) = 1 for all n ≥ n0, which implies that τ(p) = limn→∞ α(gn, jn, p) = 1. Next,
suppose that

τ(p) = lim
n→∞

α(gn, jn, p) < 1 for all n ∈ N.

In this case, (12) and Property (p2) confirm that

Ω(α(gn+1, jn+1, p)) ≥ Π(α(gn, jn, p)) > Ω(α(gn, jn, p)). (13)

As Ω is non-decreasing, then

α(gn+1, jn+1, p) > α(gn, jn, p) for all n ∈ N.

In order to prove that τ(p) = 1, suppose, by contradiction, that τ(p) < 1. In such a case,

0 < α(gn, jn, p) < α(gn+1, jn+1, p) < τ(p) < 1 for all n ∈ N.

Consider
lim

n→∞
α(gn, jn, p) = lim

n→∞
α(gn+1, jn+1, p) = τ(p);

thus, it follows that

lim
n→∞

Ω(α(gn, jn, p)) = lim
n→∞

Ω(α(gn+1, jn+1, p)) = lim
c→τ(p)−

Ω(c).

This limit exists and is finite because Ω is well defined on (0, 1] and is non-decreasing on
(0, 1). By letting n → ∞, we obtain

lim
n→∞

Π(α(gn, jn, p)) = lim
c→τ(p)−

Ω(c).

However, this contradicts Property (p3) because

lim
c→τ(p)−

Ω(c) = lim
n→∞

Π(α(gn, jn, p)) ≥ lim
c→τ(p)−

inf Π(r) > lim
c→τ(p)−

Ω(c).

This contraction shows that τ(p) = 1 for all p > 0, which completes Step 2 and proves that

lim
n→∞

α(gn, jn, p) = 1 for all p > 0. (14)

Step 3. The bi-sequence (gn, jn) is either almost constant or infinite, and in this last case,

Agn1 ̸= Ajn1 for all n1, n2 ∈ N such that n1 ̸= n2. (15)
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If we suppose that gn1 = jn1 for n1, n2 ∈ N and we consider (14), Proposition 5 guarantees
that the bi-sequence (gn, jn) is almost constant. This means that there are n0 ∈ N and
s ∈ E ∩ F. Therefore, s is a fixed point of A, and we are finished. Oppositely, let gn1 ̸= jn1

for any n1, n2 ∈ N such that n1 ̸= n2. For the second case, by continuing the process, we
can see that (15) is satisfied.

Step 4. We claim that (gn, jn) is a Cauchy bi-sequence.
Contrarily, assume that (gn, jn) is not a Cauchy bi-sequence. Hence, there are H0 ∈ (0, 1),

p0 > 0, and two partial bi-subsequences
{

gnk

}
and

{
gmk

}
of {gn} and

{
jnk

}
and

{
jmk

}
of

{jn}, such that for each k ∈ N, the following holds:

k < mk < nk < mk+1 and

α
(

gmk , jnk−1, p0
)
> H0 ≥ α

(
gmk , jnk , p0

)
, (16)

and
lim
k→∞

α
(

gmk , jnk , p0
)
= lim

k→∞
α
(

gmk , jnk−1, p0
)
= H0. (17)

Since limn→∞ α
(

gmk , jnk , p0
)
= H0 < 1, there is n0 ∈ N such that

α
(

gmk , jnk , p0
)
< 1 for all n ≥ n0.

Assume that
α
(

gmk , jnk , p0
)
< 1 for all n ∈ N. (18)

By applying (11), Property (p2), and (18), we conclude that, for all n ∈ N,

Ω
(
α
(

gmk , jnk , p0
))

= Ω
(
α
(

Agmk−1, Ajnk−1, p0
))

≥ Π
(
α
(

gmk−1, jnk−1, p0
))

> Ω
(
α
(

gmk−1, jnk−1, p0
))

.

In particular,

Ω
(
α
(

gmk , jnk , p0
))

= Ω
(
α
(

Agmk−1, Ajnk−1, p0
))

> Ω
(
α
(

gmk−1, jnk−1, p0
))

. (19)

Since Ω is non-decreasing, then

α
(

gmk , jnk , p0
)
> α

(
gmk−1, jnk−1, p0

)
,

With (19), we obtain

α
(

gmk−1, jnk−1, p0
)
< α

(
gmk , jnk , p0

)
≤ H0 < 1 for all n ∈ N. (20)

Using (19) and (20), we conclude that

lim
k→∞

Ω
(
α
(

gmk , jnk , p0
))

= lim
k→∞

Ω
(
α
(

gmk−1, jnk−1, p0
))

= lim
c→H−

0

Ω(c).

If n → ∞ in (19), it follows that

lim
k→∞

Π
(
α
(

gmk−1, jnk−1, p0
))

= lim
c→H−

0

Ω(c).

However, this is a contradiction to Property (p3) because
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lim
c→H−

0

Ω(c) = lim
k→∞

Π
(
α
(

gmk−1, jnk−1, p0
))

≥ lim
p→H−

0

inf Π(p) > lim
c→H−

0

Ω(c).

which is contradiction, stating that (gn, jn) is a Cauchy bi-sequence.
As (E, F, α, ◦) is a complete FBMS, there is s ∈ E ∩ F such that (gn, jn) is bi-convergent

to s. As stated in Proposition 1, the bi-sequence
(
h̄p, ℓp

)
is bi-convergent.

As bi-sequence (gn, jn) is bi-convergent, then ∃ s ∈ E ∩ F, which is a limit of both
sequences {gn} and {jn}. Using Lemma 2, we have a unique limit for both bi-sequences
{gn} and {jn}, that is,

lim
n→∞

(gn, s, p) = 1 for all p > 0.

Step 5. An element s ∈ E ∩ F is a fixed point of A.
Oppositely, suppose that s is not a fixed point of A. As the bi-sequence (gn, jn) is

infinite, then there is n0 ∈ N such that gn ̸= As and As ̸= gn for every n ≥ n0. Assume that

gn ̸= As and Agn ̸= As for each n ∈ N.

Condition (4) of the theorem leads to

Ω(α(gn+1, As, p)) ≥ Π(α(Agn, As, p)) > Ω(α(gn, s, p)),

for each n ∈ N and each p > 0. Now, we investigate that α(gn+1, As, p) ≥ α(gn, s, p) by
discussing two cases, as follows:
• If α(gn, s, p) = 1, then

Ω(α(gn+1, As, p)) ≥ Π(α(Agn, As, p)) = Π(1).

By assumption, Property (p4) guarantees that α(gn+1, As, p) = α(gn, As, p) = 1.
In particular, α(gn+1, As, p) ≥ α(gn, As, p);

• If α(gn, s, p) < 1, then

Ω(α(gn+1, As, p)) ≥ Π(α(Agn, As, p)) > Ω(α(gn, s, p)),

as Ω is non-decreasing, we conclude that α(gn+1, As, p) > α(Agn, As, p).
In both cases, we checked that

α(gn, As, p) ≤ α(gn+1, As, p) for all n ∈ N and all p > 0,

which means that the bi-sequence (gn, jn) also converges to As. The uniqueness of the limit
of a bi-convergent sequence in an FBMS demonstrates that As = s.

Step 6. The mapping A has a unique fixed point in (E, F, α, ◦).
Finally, suppose that s1, s2 ∈ E ∩ F are two distinct fixed points of A. Since As1 ̸= As2,

then, for all p > 0,

Ω(α(s1, s2, p)) = Ω(α(As1, As2, p)) ≥ Π(α(s1, s2, p)).

If we suppose that α(s1, s2, p) < 1 for some p > 0, then

Ω(α(s1, s2, p)) ≥ Π(α(s1, s2, p)) > Ω(α(s1, s2, p)),

which is a contradiction. Hence, α(s1, s2, p) = 1 for all p > 0. Therefore, A has a unique
limit.
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Example 5. Let E = [0, 1] and F = [1, 2] be equipped with α(g, j, p) = e−
|g−j|

p for all g ∈ E and
j ∈ F. Then, (E, F, α, ◦) is a complete FBMS. Define A : E ∪ F → E ∪ F by

A(s) =
s + 4

5

for all s ∈ E ∪ F. Now, define the function Ω, Π : (0, ∞) → R by

Ω(r) =
1

2ln 2r Π(r) =
1

2ln r for all r ∈ (0, 1].

Now, we have to show that A satisfies (11). Therefore, we consider g = 0 and j = 1, p = 1 as
follows:

Ω(α(A(0), A(1), 1)) ≥ Π(α(0, 1, 1))

Ω
(

α

(
4
5

, 1
))

≥ Π(α(0, 1, 1))

Ω(0.8187) ≥ Π(0.3678)

2.0280 ≥ 2.0001.

Hence, all the other conditions of Theorem 5 hold. The fixed point of A is 0. This is similar to
other cases.

Now, we see that without (Ω, Π), g = 0 and j = 1 do not hold. Therefore, we take
λ = 0.1

(α(A(0), A(1), (0.1)(1))) ≥ α(0, 1, 1)

α

(
4
5

, 1, (0.1)
)

≥ α(0, 1, 1)

0.1353 ≥ 0.3678,

which is a contradiction. Hence, it does not hold without (Ω, Π).

Corollary 1. Suppose (E, F, α, ◦) is a complete FBMS, and suppose that A : E ∪ F → E ∪ F is a
mapping for which there exists (Ω, Π) ∈ L, such that

Ω(α(Ag.Aj, p)) ≥ Π(α(g, j, p)) for all g ∈ E and j ∈ F and p > 0.

Then, each iterative Picard bi-sequence (Ang, Ang)n∈N is bi-convergent to the unique fixed point of
A for every initial condition g0 ∈ E and j0 ∈ F.

Proof. The proof of Corollary 1 is taken as being the same as the proof of Theorem 5.

Corollary 2. Suppose that (E, F, α, ◦) is a complete FBMS and A : E ∪ F → E ∪ F is a mapping
for which there exists (Ω, Π) : (0, 1) → R, such that

Ω(α(Ag.Aj, p)) ≥ Π(α(g, j, p)) for all g ∈ E and j ∈ F with Ag ̸= Aj and p > 0.

Suppose that Ω and Π verify the following assumptions:
(p′1) Ω is non-decreasing;
(p′2) Π(g) > Ω(g) for any g ∈ (0, 1);
(p′3) lims→H− inf Π(g) > lims→H− Π(g) for any H ∈ (0, 1);
(p′4) Π(1) ≥ sup({Π(g) : g ∈ (0, 1)}).
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Then, each iterative Picard bi-sequence (Ang, Ang)n∈N is bi-convergent to the unique fixed
point of A for every initial condition g0 ∈ E and j0 ∈ F.

Proof. By applying Property (p2), Condition
(

p
′
4
)

implies Property (p4). Suppose that
g ∈ (0, 1] such that Ω(g) ≥ Π(1). To prove that g = 1, we suppose the opposite of g < 1,
i.e.,

Ω(g) ≥ Π(1) ≥ sup({Π(g) : g ∈ (0, 1)}) > Π(g).

However, Ω(g) ≥ Π(g) contradicts Property (p2). Therefore, g = 1. Hence, the remaining
proof is the same as the proof of Theorem 5.

Corollary 3. Suppose that (E, F, α, ◦) is a complete FBMS, and suppose that A : E ∪ F → E ∪ F
is a mapping, such that

α(Ag.Aj, p) ≥
√

α(g, j, p) for all g ∈ E and j ∈ F with Ag ̸= Aj and p > 0.

Then, each iterative Picard bi-sequence {Ang, Ang}n∈N is bi-convergent to the unique fixed point
of A for every initial condition g0 ∈ E and j0 ∈ F.

Proof. If we take Ω(g) = g and Π(g) =
√

g, (Ω, Π) also holds for all the conditions
of the L family. The remaining proof of the Corollary is taken as same as the proof of
Theorem 5.

4. Applications
In this part, we proved the applications of integral equations and chemical science.

4.1. An Application to Integral Equations

Let us consider the Banach space C([0, I],R) of all continuous functions defined on a
real interval [0, I] (where I > 0) endowed with the supremum norm

∥ g ∥= sup
c∈[0,1]

| g(c) | for all g ∈ C([0, I],R),

with the following complete bi-polar metric:

α(g, j) = sup
c∈[0,1]

| g(c)− j(c) | .

Consider the following integral equation:

g(c) = l(c) +
∫ c

0
D(c, k, g(k))dk, for all c ∈ [0, I]. (21)

Consider the FBMS with the product t-norm as follows:

α(g, j, p) =
p

p + α(g, j)
for all g, j ∈ E ∪ F, C, D ∈ ([0, I],R) and all p > 0. (22)

According to George and Veeramani, the standard fuzzy metric space and the correspond-
ing metric space are endowed by the same topology. Therefore, the fuzzy metric space
defined by (22) is complete.

Theorem 6. Suppose that the integral operator A on C([0, I],R) is

A(j(e)) = j(e) +
∫ e

0
D(e, m, j(e))de,
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where h : [0, I] × [0, I] → [0, ∞) is such that h ∈ L1([0, I],R), for each g, j ∈ C([0, I],R),
c, t ∈ [0, I], and A fulfills the following conditions:

| D(e, m, g(m))− D(e, m, j(m)) |≤ h(m, e) | g(e)− j(e) |,

for all g, j ∈ C([0, I],R), c, t ∈ [0, I], where

sup
c∈[0,I]

c∫
0

m(e, m)de ≤ λ < 1.

Then, the integral Equation (21) has a unique solution.

Proof. As g, j ∈ C ∪ D, c, t ∈ [0, I], we have that

| A(g(c)− A(j(c))) | ≤
∫ c

0
| D(c, p, g(p))− D(c, p, j(p)) | dp

≤ α(g, j)
∫ c

0
m(e, m)de

≤ λα(g, j).

Therefore, the following holds:

α(Ag, Aj) ≤ λα(g, j).

Using (22), we can write
α(Ag, Aj) ≤ λα(g, j) ≤ α(g, j),

which can be interpreted as follows:

p + α(Ag, Aj) ≤ p + α(g, j).

Hence, we have
p

p + α(Ag, Aj)
≥ p

p + α(g, j)
,

which means that the following holds:

α(Ag, Aj, p) ≥ α(g, j, p) ≥ α(g, j, p)2.

If we take Ω(p) = p and Π(p) =
√

p, then we can write the above inequality as

Ω(α(Ag, Aj, p)) ≥ Π(α(g, j, p)).

Since all the conditions of Theorem 5 hold, we conclude that (21) has a unique solution.

4.2. An Application to Chemical Science

Consider a diffusing substance placed in an absorbing medium between parallel walls
such that δ1 and δ2 are the stipulated concentrations at walls. Furthermore, suppose Φ(b)
to be the given source of density and A(b) to be the known absorption coefficient. Then,
the concentration g(b) of the substance under the aforementioned hypothesis governs the
following boundary value problem:

−g
′′
+ A(b)g = Φ(b); b ∈ [0, 1] = I g(0) = δ1, g(0) = δ2 (23)
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Theorem 5 is equivalent to the following integral equation:

g(b) = δ1 + (δ2 − δ1)b +
∫ 1

0
S(b, l)(Φ(l)− A(l)g(l))dl, b ∈ [0, 1], (24)

where S(b, l) : [0, 1]×R → R is Green’s function, which is continuous and given by

S(b, l) = b(1 − l) 0 ≤ b ≤ l ≤ 1,l(1 − b) 0 ≤ l ≤ b ≤ 1. (25)

Suppose that C(I,R) = E ∪ F is the space of all real-valued continuous functions defined
on I, and let E ∪ F be endowed with the FBMS α defined by

α(g, s) =∥ g − s ∥,

where ∥ g ∥= sup{| g(b) : b ∈ I}. Obviously, (E, F, α, ◦) is a complete FBMS with the
product t-norm that is defined as

α(g, j, p) =
p

p + α(g, j)
for all g, j ∈ C([0, I],R) and all p > 0. (26)

Let the mapping A : E ∪ F → E ∪ F be defined as

Ag(b) = δ1 + (δ2 − δ1)b +
∫ 1

0
S(b, l)(Φ(l)− A(l)g(l))dl,

where

sup
b∈[0,1]

1∫
0

S(b, l)dl ≤ λ < 1.

Then, s ∈ E ∩ F is the unique solution of (24) if and only if it is a fixed point of A. The fol-
lowing theorem is provided for proving the existence of a fixed point of A.

Theorem 7. Consider Theorem (5) and suppose that there exist κ > 0 and a continuous function
A(l) : I → R such that the following assertion holds:

0 ≤| A(l)g(l)− A(l)s(l) |≤ s(l)− g(l).

Then, consider the integral Equation (24). Consequently, the boundary value problem (23) governing
the concentration of diffusing subsequence has a unique solution in E ∪ F.

Proof. Clearly, considering g ∈ E ∪ F and b ∈ I, the mapping A : E ∪ F → E ∪ F is well
defined. Also, A is an FBMS:

| Ag(b)− As(b) |

=

∣∣∣∣∣∣
1∫

0

S(b, l)(Φ(l)− A(l)g(l))dl −
1∫

0

S(b, l)(Φ(l)− A(l)s(l))dl

∣∣∣∣∣∣
≤

1∫
0

S(b, l) | (Φ(l)− A(l)g(l))− (Φ(l)− A(l)s(l)) | dl

≤ ∥ g − s ∥ sup
b∈[0,1]

1∫
0

S(b, l)dl

≤ λ ∥ g − s ∥ .
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Therefore, the following holds:

α(Ag, Aj) ≤ λα(g, j).

Using (26), we can write
α(Ag, Aj) ≤ λα(g, j) < α(g, j),

which can be interpreted as the following:

p + α(Ag, Aj) < p + α(g, j).

Hence, we have
p

p + α(Ag, Aj)
>

p
p + α(g, j)

,

which means that the following holds:

α(Ag, Aj, p) > α(g, j, p) > α(g, j, p)2.

If we take Ω(p) = p and Π(p) =
√

p, then we can write the above inequality as

Ω(α(Ag, Aj, p)) > Π(α(g, j, p)).

Since all the conditions of Theorem 5 hold, we conclude that the integral Equation (24) has a
unique solution. Consequently, the boundary value problem (23) has a unique solution.

5. Conclusions
In this work, we proved some fixed point theorems for bi-polar metric spaces and

fuzzy bi-polar metric spaces. We provided some lemmas, corollaries, remarks and non-
trivial examples. We solved the integral equation by applying our main result. Furthermore,
we solved a boundary value problem that occurred in chemical science by applying the
main result. Thus, researchers can enhance the results in the setting of fuzzy bi-polar
multiplicative metric spaces, fuzzy bi-polar p-metric spaces, and many other structures.
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