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Abstract: Spatial cognitive ability, a fundamental domain within the human cognitive
system, involves the perception, interpretation, and manipulation of spatial environments.
This study introduces a new EEG feature extraction algorithm, Normalized Adjusted
Permutation Conditional Mutual Information (NAPCMI), to improve the accuracy of spatial
cognition assessments. By capturing the symmetry and temporal dependencies within EEG
signals during spatial cognition tasks, NAPCMI enhances the ability to extract relevant
features. The study validates NAPCMI using a BCI-VR spatial cognition assessment
system, incorporating gesture recognition. Results demonstrate that NAPCMI outperforms
traditional methods in feature extraction, highlighting its potential for advancing the
understanding and assessment of spatial cognitive abilities. The findings also emphasize
the significance of specific EEG frequency bands, such as Delta and Beta1, in spatial
cognition tasks, further validating NAPCMI’s effectiveness.

Keywords: feature extraction from EEG signals; normalized adjusted permutation
conditional mutual information; visuospatial cognition; brain-computer interface; virtual
reality

1. Introduction
Spatial cognitive ability represents a fundamental domain within the human cognitive

system, encompassing the perception, interpretation, and manipulation of spatial environ-
ments by individuals [1]. This ability often exhibits symmetrical patterns in brain activity,
where specific regions of the brain work in concert to process spatial information [2]. In the
fields of medicine, psychology, and human–computer interaction, assessing and training
an individual’s spatial cognitive abilities is crucial. Traditional methods of assessing spatial
cognition have limitations in capturing the complexity and dynamic nature of brain activity
during these tasks [3].

To address these limitations, this study introduces a new EEG feature extraction algo-
rithm, Normalized Adjusted Permutation Conditional Mutual Information (NAPCMI) [4].
By incorporating amplitude features, normalization, and permutation-based conditional
mutual information, NAPCMI is designed to capture the symmetrical and temporal de-
pendencies within EEG signals during spatial cognition tasks. This approach enhances the
algorithm’s ability to extract relevant features, providing a more accurate assessment of
spatial cognitive abilities.
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Training spatial skills are crucial for human cognitive development and functioning as
these skills are fundamental to various domains, including navigation, problem-solving,
and daily activities. Spatial cognition involves the ability to perceive, interpret, and ma-
nipulate spatial relationships, which are essential for tasks such as understanding maps,
navigating complex environments, and engaging in spatial reasoning. In individuals with
cognitive impairments, deficits in spatial cognition can significantly affect their quality of
life, leading to challenges in orientation, memory, and functional independence [5]. For
instance, spatial skills are closely linked to spatial memory and visuospatial reasoning,
enabling individuals to recognize objects and their relationships in three-dimensional space.
Recent advancements in EEG research have highlighted the role of specific brainwave
patterns, particularly in the theta and alpha bands, in spatial orientation and memory
processes. This underlines the importance of targeted training methods that can enhance
these neural pathways. Combining behavioral analyses with EEG signal processing offers
a more comprehensive understanding of spatial cognition mechanisms, supporting the
development of personalized training and assessment systems.

In recent years, Brain-Computer Interface (BCI) technology combined with virtual
reality (VR) environments has enabled richer and more interactive platforms for testing
spatial cognition [6]. In VR environments, complex spatial tasks can be simulated to
realistically mimic real-world activities, resulting in more precise and sensitive assessment
outcomes [7]. However, extracting spatial cognition-related features from complex EEG
signals and developing effective algorithms for analysis remain focus areas and challenges
in contemporary research [8].

Feature extraction of EEG signals is a pivotal step in spatial cognition assessment [9].
Traditional methods, such as Spectral Analysis [10,11] and Wavelet Transform [12,13],
demonstrate limited effectiveness, often overlooking the temporal and multidimensional
coupling features of EEG signals [14]. Information theory-based methods, such as Permuta-
tion Conditional Mutual Information (PCMI), have been introduced to analyze coupling
features, revealing patterns of information exchange between brain regions [15]. However,
PCMI approaches primarily emphasize the temporal structure of signals while neglecting
amplitude features, limiting the expressiveness of extracted features.

To address these limitations, researchers have proposed improved PCMI-based algo-
rithms, including Normalized Permutation Conditional Mutual Information (NPCMI) [16],
Multivariate Permutation Conditional Mutual Information (MPCMI) [17], and Adjusted
Permutation Conditional Mutual Information (APCMI) [18]. NPCMI improves feature
stability through normalization, MPCMI enhances spatial coupling resolution with multi-
dimensional connectivity metrics, and APCMI employs a weighting strategy to increase
feature sensitivity. Building on these advancements, this study introduces a new EEG
feature extraction method: Normalized Adjusted Permutation Conditional Mutual Infor-
mation (NAPCMI). By integrating amplitude features and normalization into the PCMI
framework, NAPCMI improves algorithm robustness and generalization.

To validate NAPCMI, this study designs and develops a spatial cognitive assessment
system based on BCI-VR. The system incorporates a desktop computer, HTC VIVE head-
mounted device, Leap Motion Controller gesture recognizer, and OpenBCI EEG signal
acquisition device. It enables participants to engage in spatial cognition tasks within a
VR environment while simultaneously collecting EEG data in real-time. The experimental
design includes the complete workflow from pattern memorization to reconstruction,
facilitating the analysis of alterations in EEG features pre- and post-task. The results
indicate that NAPCMI outperforms NPCMI, MPCMI, and APCMI in feature extraction
across different frequency band combinations, introducing a novel analytical approach for
spatial cognitive ability assessment.



Symmetry 2025, 17, 130 3 of 34

2. Methods
The proposed NAPCMI algorithm calculates the coupled features based on weighted

permutation conditional mutual information, considering the amplitude and normalization
of EEG signals. By permutation, the algorithm can capture the temporal dependencies and
symmetrical patterns within EEG signals during spatial cognition tasks. This approach
allows for a more comprehensive feature extraction, enhancing the accuracy of spatial
cognition assessments.

MPCMI incorporates the influence of adjacent brain regions into the PCMI frame-
work, thereby enhancing the precision of coupling feature extraction. Building upon these
approaches, this paper enhances the traditional EEG coupling feature extraction method
and proposes a feature extraction approach based on normalized adjusted permutation
conditional mutual information, where the amplitude features of the EEG signal are inte-
grated with sequential structural features using a weighted formulation. This improvement
achieves higher accuracy in EEG connectivity estimation.

Figure 1 illustrates the NAPCMI feature extraction workflow for EEG signals, as
outlined in this chapter.
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2.1. Detailed Description of the Algorithm

The computational process of the NAPCMI feature extraction method is divided into
three main steps:

Permuting EEG Signals: The experimentally acquired EEG signals are permuted
according to predefined patterns. For each permutation pattern, the standard deviations
of the corresponding signal series are computed. The standard deviations for the same
permutation patterns across different brain regions are multiplied to obtain weighted values
for the combinations of these regions.

Calculating Coupling Features: The coupling feature values between different brain
regions are derived using the permuted conditional mutual information approach. These
values incorporate the weighted standard deviations from the previous step to enhance the
representation of inter-regional interactions.

Normalization of Connectivity Metrics: The connectivity metrics obtained from the
weighted permutation conditional mutual information are normalized. This process in-
volves applying the standard deviations computed earlier to weight the conditional mutual
information under each permutation pattern, ensuring consistency and robustness.

The algorithm’s specific steps for extracting normalized weighted conditional mutual
information are detailed below.

2.1.1. Calculation of Weights Based on Standard Deviation

Two-time series X and Y, denoted as X =
(
x1, . . . , xn)T and Y =

(
y1, . . . , yn)T , respec-

tively, are arbitrarily selected, where n is the number of EEG signal observation points.
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Embedding them into the m-dimensional space and selecting one data point every τ time
interval, (n − (m − 1)τ) m-dimensional space vectors Xi and Yj can be obtained, where Xi

is denoted as Xi =
(

xi, xi+τ , . . . , xi+(m−1)τ)
T , i = 1, . . . , n − (m − 1)τ, and Yj is denoted as

Yj =
(

yi, yj+τ , . . . , yj+(m−1)τ)
T , j = 1, . . . , n − (m − 1)τ.

Then the elements in the m dimensional spatial vectors in the two brain region se-
quences Xi and Yj are permuted in ascending order, respectively, and when the values of
the elements in them are equal in magnitude, they are permuted according to the value of
the subscript of the element (i or j), and therefore, m! different permutation patterns can
be obtained according to the permutation pattern, which are denoted as πxi , i = 1, . . . , m!
and πyj , j = 1, . . . , m!, where πxi and πyj denote the i and j permutation under the X
and Y brain regions, respectively. Furthermore, the vectors with the same permutation
pattern are combined into the same sequence, which is denoted as Sxi , i = 1, . . . , m! and
Syj , j = 1, . . . , m!, where Sxi denotes Sxi = {sx1 , . . . , sxt}, Syj denotes Syj =

{
sy1 , . . . , syt

}
,

and t is the number of vectors, and the number of vectors in the sequences of Sxi and Syj

under m! different permutation patterns are different. Finally, the standard deviation of the
sequences of Sxi and Syj under m! different permutation modes is calculated, respectively,
which are denoted as Wxi , i = 1, . . . , m! and Wyj , j = 1, . . . , m!. The formulas for calculating
Wxi and Wyj are shown in Equations (1) and (2):

Wxi =

√√√√√ z=1
t

∑ (sxi − sxi )
2

t
, i = 1, . . . , m!, (1)

Wyj =

√√√√√ z=1
t

∑
(

syj − syj

)2

t
, j = 1, . . . , m!, (2)

2.1.2. Calculation of Coupled Features Based on Weighted Permutation Conditional
Mutual Information

After the standard deviation of EEG amplitude of different permutation modes of Xxi

and Yyj sequence obtained by the above calculation, this paper multiplies the standard
deviation of EEG amplitude under the same permutation modes to obtain and then uses
Wxi ×Wyj to weight the entropy of the permutation conditions under the corresponding per-
mutation modes to incorporate the amplitude features of EEG signals into the connectivity
metrics of the permutation conditions mutual information.

Based on the permutation results of the two spatial vectors Xi and Yj in the previ-
ous subsection, this paper calculates the number of times that each permutation pattern
appears under the X and Y brain regions, which are denoted as Cxi , i = 1, . . . m! and
Cyj , j = 1, . . . m!, respectively, and from this, the probability of the appearance of each
permutation pattern under the brain regions P(xi), i = 1, . . . , m! can be calculated, as
shown in Equation (3).

P(xi) = P(πxi ) =
Cxi

(n − (m − 1)τ)
, i = 1, . . . , m!, (3)

Similarly, the probability of occurrence of each permutation pattern under Y brain
regions can be calculated as P

(
yj
)
, j = 1, . . . , m!, which is shown in Equation (4):

P
(
yj
)
= P

(
πyj

)
=

Cyj

(n − (m − 1)τ)
, j = 1, . . . , m!, (4)
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According to the above analysis, it can be seen that there are a total of m! × m! kinds
of joint permutation patterns in X and Y two brain regions under the same moment, and
in this paper, the number of times each joint permutation pattern appeared is calculated
to record Cxiyj , i, j = 1, . . . m!. From this, the probability of the appearance of each joint
permutation pattern can be calculated to be P

(
xi, yj

)
, i, j = 1, . . . , m!, and its calculation

formula is shown in Equation (5):

P
(

xi, yj
)
= P

(
πxi , πyj

)
=

Cxiyj

(n − (m − 1)τ)
, i, j = 1, . . . , m!, (5)

Similarly, the probability of the appearance of the permutation pattern in brain region
X under the condition that the permutation pattern exists in brain region Y at the same
moment can be calculated as P

(
xi
∣∣yj

)
, i, j = 1, . . . , m!, which is shown in Equation (6):

P
(

xi
∣∣yj

)
= P

(
πxi

∣∣∣πyj

)
=

C xi
yj

(n − (m − 1)τ)
, i, j = 1, . . . , m!, (6)

For the convenience of calculation in this paper, the probability of occurrence of the
permutation pattern under X and Y brain regions and the joint probability and conditional
probability of the two is denoted as P(X), P(Y), P(X, Y), P(X|Y) and P(Y|X), respec-
tively, according to which the permutation entropy PE(X) and PE(Y), the permutation
joint entropy PE(X, Y), and the permutation conditional entropy PE(X|Y) and PE(Y|X) of
the permutation pattern under X and Y brain regions can be calculated, and the formulas
thereof are as shown in the formulae Equations (7)–(11):

PE(X) = −
i=1

m!

∑ P(xi)log(P(xi)), (7)

PE(Y) = −

j=1
m!

∑ P
(
yj
)
log

(
P
(
yj
))

, (8)

PE(X, Y) = −
i=1

m!

∑
j=1
m!

∑ P
(
xi, yj

)
log

(
P
(
xi, yj

))
, (9)

PE(X|Y) = −
i=1

m!

∑
j=1
m!

∑ P
(
xi, yj

)
log

(
P
(
xi
∣∣yj

))
, (10)

PE(Y|X) = −
i=1

m!

∑
j=1
m!

∑ P
(
xi, yj

)
log

(
P
(
yj
∣∣xi

))
, (11)

From the above formula, we can obtain the formula for the permutation conditional
mutual trust between the two brain regions X and Y as shown in Equation (12):

PMI(X; Y) = PE(X) + PE(Y)− PE(X, Y), (12)

The weights Wxi and Wyj of X and Y brain regions in different permutation modes are
obtained by using the calculations in the previous subsection, which are applied to the sev-
eral permutation entropies mentioned above in a multiplicative manner and are calculated
to obtain the weighted permutation entropies APE(X) and APE(Y), weighted permuta-
tion joint entropy APE(X, Y), weighted permutation conditional entropy APE(X|Y) and
APE(Y|X), whose calculations are shown in Equations (13)–(17):

APE(X) = −
i=1

m!

∑ Wxi P(xi)log(P(xi)), (13)
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APE(Y) = −

j=1
m!

∑ Wxi P
(
yj
)
log

(
P
(
yj
))

, (14)

APE(X, Y) = −
i=1

m!

∑
j=1
m!

∑ Wxi Wyj P
(
xi, yj

)
log

(
P
(
xi, yj

))
, (15)

APE(X|Y) = −
i=1

m!

∑
j=1
m!

∑ Wxi Wyj P
(
xi, yj

)
log

(
P
(
xi
∣∣yj

))
, (16)

APE(Y|X) = −
i=1

m!

∑
j=1
m!

∑ Wxi Wyj P
(
xi, yj

)
log

(
P
(
yj
∣∣xi

))
, (17)

From the above formula, the formula for the adjusted permutation conditional mutual
trust between the two brain regions X and Y can be obtained, as shown in Equation (18).

APMI(X; Y) = APE(X) + APE(Y)− APE(X, Y), (18)

In this paper, Xδ and Yδ are defined as the EEG signals after the delay time δ

of X and Y EEG signals, respectively (where the value of δ ranges from 3 to 15),
i.e., δ = 1, . . . , 15, and the m-dimensional space vectors of Xδ and Yδ are denoted as
Xk =

(
xk, xk+τ , . . . , xk+(m−1)τ)

T , k = i + δ and Yk =
(

yk, yk+τ , . . . , yk+(m−1)τ)
T , k = i + δ .

In order to analyze the effects of the EEG signals on the future X and Y moments in
the existence of X and Y two EEG signals, the joint probability and conditional proba-
bility Xδ and Yδ for X, Y, Xδ and X, Y, Yδ under different ordering modes (there
are m! × m! × m! × m! ordering modes) under the joint probability and conditional prob-
ability P(X, Y, Xδ), P(X, Y, Yδ), P(Y, Xδ|X) and P(X, Yδ|Y). From this, the weighted
sequencing joint entropy X, Y, Xδ as well as X, Y, Yδ and the weighted sequencing
conditional entropy APE(X, Y, Xδ) as well as APE(X, Y, Yδ) of the joint EEG sequences of
APE(Y, Xδ|X) and APE(X, Yδ|Y) can be computed, which are shown in the formulas of
Equations (19)–(22):

APE(X, Y, Xδ) = −
i=1

m!

∑
j=1
m!

∑
k=1

m!

∑ Wxi WyjWxδk P
(

xi, yj, xk
)
log

(
P
(
xi, yj, xk

))
, (19)

APE(X, Y, Yδ) = −
i=1

m!

∑
j=1
m!

∑
k=1

m!

∑ Wxi WyjWyδk P
(
xi, yj, yk

)
log

(
P
(
xi, yj, yk

))
, (20)

APE(Y, Xδ|X) = −
i=1

m!

∑
j=1
m!

∑
k=1

m!

∑ Wxi WyjWxδk P
(

xi, yj, xk
)
log

(
P
(
yj, xk

∣∣xi
))

, (21)

APE(X, Yδ|Y) = −
i=1

m!

∑
j=1
m!

∑
k=1

m!

∑ Wxi WyjWyδk P
(
xi, yj, yk

)
log

(
P
(
xi, yk

∣∣yj
))

, (22)

Based on the above results, it is possible to calculate the effect of the EEG sequence Y
on the amount of information in the Xδ sequence at δ delayed X moments, weighted per-
mutation conditional mutual information APCMIδ

Y→X , and the effect of the EEG sequence
Y on the amount of information in the Yδ sequence at δ delayed X moments, weighted
ordering conditional mutual information APCMIδ

X→Y, which is calculated as shown in
Equations (23) and (24):

APCMIδ
Y→X = APE(Y; Xδ|X) = APE(Y|X) + APE(Xδ|X)− APE(Y, Xδ|X), (23)

APCMIδ
X→Y = APE(X; Yδ|Y) = APE(X|Y) + APE(Yδ|Y)− APE(X, Yδ|Y) (24)
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2.1.3. Normalisation Based on Mutual Information

This paper calculates the normalized adjusted permutation conditional mutual infor-
mation of X and Y EEG signals by normalizing the adjusted permutation conditional mutual
information obtained above according to the method of normalized mutual information.

The formula for the normalized mutual information NMI(X; Y) is shown in
Equation (25):

NMI(X; Y) =
2I(X; Y)

H(X) + H(Y)
, (25)

Similarly, the normalized adjusted permutation conditional mutual information X and
Y of the EEG signals of NAPCMIδ

Y→X and NAPCMIδ
X→Y can be calculated according to

the above formulae, as shown in Equations (26) and (27):

NAPCMIδ
Y→X =

2APCMIδ
Y→X

APE(Y|X) + APE(Xδ|X)
, (26)

NAPCMIδ
X→Y =

2APCMIδ
X→Y

APE(X|Y) + APE(Yδ|Y)
, (27)

Finally, based on the above calculation method, the normalized weighted permuted
conditional mutual information of X and Y EEG signals at different delay moments δ is
sequentially calculated in this paper to derive the coupling strengths NAPCMIY→X and
NAPCMIX→Y between X and Y EEG signals, which are shown in Equations (28) and (29):

NAPCMIY→X =
1
N

δ=3
N

∑ NAPCMIδ
Y→X , (28)

NAPCMIX→Y =
1
N

δ=3
N

∑ NAPCMIδ
X→Y, (29)

where N is the maximum value of the time delay X that can be selected, and in this paper
the maximum value of X is set to 15.

2.2. Sequential Backward Selection of Optimal EEG Feature Band Combinations

Since the EEG feature signals analyzed in this study span seven frequency bands, we
investigate the relationship between spatial cognitive ability and EEG features across these
frequency bands and identify the optimal combination of frequency bands. To achieve
this, the Sequential Backward Selection (SBS) method, a heuristic search approach that
iteratively removes one feature dimension per round, is employed to determine the optimal
frequency band combination using the sklearn estimator.

Previously, Wu et al. [19] applied the SBS method to select optimal subsets of EEG
features, including band power and correlation coefficients, effectively distinguishing
between patients with severe depression and healthy individuals. The detailed workflow of
the SBS process employed in this study is depicted in Figure 2. Firstly, the feature extraction
algorithm is applied to derive connectivity metrics across C frequency bands of the EEG
signal. The resulting connectivity metrics, structured as feature data of size K × K × C,
are then input into the SBS model. Using a traversal method, one EEG feature dimension
is removed in each iteration. The sklearn estimator, based on a classical CNN algorithm,
evaluates the performance of different frequency band combinations, with test accuracy
used as the evaluation metric. Finally, the optimal combination of EEG frequency bands is
identified based on the evaluation scores.
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2.3. Classification of EEG Signals

The structural framework of convolutional neural networks (CNN) is utilized, and a
CNN is designed to accommodate the EEG coupling feature NAPCMI introduced in this
chapter, with its network architecture illustrated in Figure 3.
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Firstly, the NAPCMI EEG feature extraction method proposed in this chapter is used to
compute connectivity metrics across seven frequency bands: Delta (1–4 Hz), Theta (4–8 Hz),
Alpha1 (8–10.5 Hz), Alpha2 (10.5–13 Hz), Beta1 (13–20 Hz), Beta2 (20–30 Hz), and Gamma
(30–40 Hz). The selected connectivity metrics are fused into a three-dimensional feature
matrix, which is then input into a CNN for classification and identification.

The input layer accepts input data of size K × K × C, where K = 16, and C represents
the number of selected frequency bands. The first convolutional layer consists of 64 convo-
lutional kernels, each with a size of 3 × 3 and a stride of 1. This layer extracts important
features, and the Rectified Linear Unit (ReLU) activation function is applied to address the
gradient vanishing problem. The first pooling layer applies max pooling with a kernel size
of 2 × 2 and a stride of 2, reducing the dimensionality of the feature matrix.

The second convolutional layer uses 32 convolutional kernels, each with a size of 5 × 5
and a stride of 1, to extract further features. This is followed by the second pooling layer,
which again employs max pooling with a kernel size of 2 × 2 and a stride of 2 to further
reduce the dimensionality of the feature matrix. The flattened layer then flattens the feature
matrix into a one-dimensional vector.
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The fully connected layer contains 1024 nodes, re-fitting the features and minimizing
feature loss. Finally, the output layer performs binary classification using a fully connected
structure and applies the Softmax activation function to estimate probabilities.

All algorithms in this study were implemented in Python, utilizing TensorFlow and
Keras frameworks for model development and execution.

3. Experimental Design and Methodology
3.1. Development of the Experimental System

The BCI-VR spatial cognition assessment system incorporates gesture recognition
and is designed to evaluate symmetrical patterns in brain activity during spatial cognition
tasks. Participants perform spatial memory reconstruction tasks within a VR environment,
while their EEG signals are collected in real-time. The system enables the analysis of
symmetrical patterns in brain activity related to spatial cognition, facilitating the validation
of the proposed NAPCMI algorithm.

The desktop computer is equipped with an Intel i5-10400F processor, NVIDIA RTX
2060 graphics card, 16 GB DDR4 RAM, and 1 TB SSD storage, and runs on Windows 10. It
serves as the platform for loading and running the cognitive assessment system software.
The HTC VIVE headset is used to present VR scenes for spatial cognitive assessment tasks
and employs a spatial locator to track the positions of participants. The Leap Motion
Controller enables hand gesture control in the VR environment by using a binocular camera
to capture hand movements. The parameters of hand tracking are analyzed and integrated
into the VR scene, allowing users to manipulate virtual hands. The OpenBCI EEG signal
acquisition device collects EEG signals at a sampling rate of 1000 Hz with impedance
levels below 10 kΩ. The collected EEG signals are transmitted wirelessly to the computer
via Wi-Fi.

3.2. Experimental Design Methodology

The BCI-VR spatial cognition evaluation system with integrated gesture recognition,
designed in this study, operates in three main stages: preparation, task execution, and
data analysis.

Preparation Stage: The HTC VIVE headset and Leap Motion gesture recognizer are
connected to the computer. The spatial locator is calibrated through Steam VR, and the
connection between Leap Motion and the computer is verified using the Leap Motion
Control Panel to ensure proper functionality. The OpenBCI EEG signal acquisition device
is then powered on and connected to the computer’s LAN via Wi-Fi. EEG signal quality is
checked using OpenGUI to ensure reliable data transmission.

Task Execution Stage: Once all hardware devices are operational, the subject performs
the spatial cognitive assessment task as instructed. The subjects complete a total of 28 tasks
during the experimental period. This includes tasks from both the pre- and post-training
assessments as well as the 28-day spatial cognitive training, which are designed to compre-
hensively evaluate spatial cognition. The number of tasks is based on the need to assess
changes in cognitive ability before and after the training period, ensuring that the data
captured provides a reliable and valid measurement of improvement. The VR scene is
projected onto the computer screen for real-time monitoring and debugging by the experi-
menters, who also record behavioral data. Simultaneously, the subject’s EEG signals are
received and stored in synchronization with the task.

Data Analysis Stage: After completing the task, the behavioral and EEG data are
systematically analyzed. The spatial cognitive ability of the subject is evaluated based on
the analysis results.
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3.2.1. Design and Implementation of a Virtual Spatial Memory Reconstruction Task

This study employs the Unity 3D game development platform to design memory
patterns for the memory stage, as illustrated in Figure 4. The patterns are constructed using
three basic blue blocks: squares, rectangles, and polyhedra. The overall design consists of
four mini-patterns—rectangles, triangles, trapezoids, and I-zigzag shapes. Yellow segments
are added to distinguish the positions of the four mini-patterns, each comprising six blocks,
resulting in a total of 24 blocks in the complete pattern.
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Two memory patterns were used in the assessment task. Participants memorized
pattern (a) (Figure 4) before training and pattern (b) (Figure 4) after training. To ensure
consistent difficulty between pre-training and post-training memory patterns, the four
mini-patterns in pattern (b) were positionally transformed and rotated 90 degrees clockwise.
The memory patterns are depicted in Figure 4.

The scoring rules for the game are as follows:
General Shape Patterns: Correct placement of each of the four small patterns earns

0.5 points, with a maximum of 2 points.
Pattern Positions: Correct placement of each of the four small patterns in their desig-

nated positions earns 0.5 points, with a maximum of 2 points.
Block Locations: Correct placement of each of the 24 small blocks earns 0.5 points,

with a maximum of 12 points.
The total score for the game is 16 points.

3.2.2. Design of Assessment Tasks

In the Spatial Memory Pattern Reconstruction Game task, participants memorized a
specific pattern as per the experimental requirements. After a set memorization period,
they entered the VR spatial scene using the HTC VIVE headset to reconstruct the pattern
within a specified time limit. Scoring was based on the accuracy of the pattern’s shape
and location. The assessment task consisted of three stages: familiarization with the game,
pattern memorization, and pattern reconstruction.

Familiarization Stage: As participants were initially unfamiliar with the HTC VIVE
headset and Leap Motion gesture recognizer, this could affect the assessment of spatial cog-
nitive ability. To address this, participants first entered the VR space and performed guided
familiarization tasks until they were fully comfortable with the equipment and controls.

Pattern Memorization Stage: After familiarization, participants were given 3 min to
memorize a specific pattern. The pattern was constructed using 24 blocks, categorized into
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3 basic shapes: squares, rectangles, and polyhedra. Every 6 blocks formed a small pattern,
and 4 small patterns combined to create the overall pattern.

Pattern Reconstruction Stage: Following the 3-min memorization period, participants
donned the VR equipment and entered the game space to reproduce the memorized pattern
using the 3 basic blocks. The reconstruction task had an 8-min time limit, during which the
completion time and accuracy score were recorded.

3.3. Experimental Analysis Methods

In this study, the spatial cognitive ability of participants was assessed by combining
behavioral data and EEG signal analysis before and after training, as illustrated in Figure 5.
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For EEG signals, data from cognitive assessment tasks performed before and after
training were analyzed. Connectivity metrics were extracted using the permuted condi-
tional mutual information method and classified using CNN to evaluate changes in spatial
cognitive ability.

For behavioral data, task completion time and scores from cognitive assessment
tasks were analyzed using a paired-sample t-test to compare performance before and
after training.

Finally, the results from EEG signal analysis and behavioral data were integrated to
systematically evaluate the spatial cognitive ability of participants.

In this study, a paired-sample t-test was conducted to evaluate differences in perfor-
mance on the spatial cognition assessment task before and after training. This statistical
method is commonly used to compare the same individuals under different conditions or
time points by analyzing the mean and standard deviation of paired differences.

In this experiment, the paired-sample t-test was applied to compare task completion
times and scores. The calculations involved the following steps:

• Difference Calculation: Paired data for each subject before and after training were
used to compute the differences.

• Averaging Differences: The average of all differences was calculated to assess the
overall trend.

• Standard Error Calculation: The standard error was derived from the standard devia-
tion of the differences to quantify variability.

• T-value and p-value Calculation: The t-value and p-value were computed based on
the degrees of freedom (number of samples minus 1) to determine the significance
of the differences.
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The results of the paired-sample t-test included the t-value, degrees of freedom, and
p-value. A p-value less than 0.05 indicated a statistically significant difference. In this study,
the t-test results showed a significant reduction in task completion time after training,
suggesting that the training effectively improved spatial cognitive abilities.

3.4. EEG Signal Acquisition and Pre-Processing
3.4.1. EEG Signal Acquisition

In this study, EEG signals were acquired using a 16-channel OpenBCI EEG amplifier
with a sampling frequency of 1000 Hz during the spatial cognitive assessment tasks. Elec-
trode caps were applied according to the international 10–20 system for electrode placement,
and the EEG data were wirelessly transmitted to the computer’s buffer via Wi-Fi.

3.4.2. EEG Signal Pre-Processing

During the spatial cognition assessment task, frequent hand and turning movements,
along with artifacts such as ocular, electromyography (EMG), electrocardiography (ECG),
and surrounding equipment noise, significantly affected the acquisition of EEG signals. To
mitigate these effects, a series of preprocessing steps were applied to the raw EEG signals:

• Trap Filtering: The original EEG signals were band-pass filtered between 1–100 Hz
using a Type I Chebyshev filter, followed by a 50 Hz notch filter to remove
power-line interference.

• Fast Independent Component Analysis (ICA): ICA was applied to remove artifact
interference from ocular, EMG, and ECG signals.

• Downsampling: The data sampling rate was reduced from 1000 Hz to 125 Hz using
mean downsampling.

• Frequency Band Division: The EEG signals were band-pass filtered into seven fre-
quency bands—Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, and Gamma.

• Data Segmentation: EEG signals collected during the spatial localization and memory
tasks were segmented using a moving window method with a window length of 4 s, a
step size of 2 s, and a 50% overlap.

3.5. Experimental Sample Information

This experiment was approved by the Ethics Committee of the First Hospital of
Qinhuangdao City, Hebei Province, China (Approval No. 2018B006). A total of 25 students
from Yanshan University voluntarily participated in the study, including 19 males and
6 females, with an average age of 23.76 years (range: 21–28 years). Participants were
divided into two groups based on the spatial cognitive training tasks they performed: a
brain-controlled car group and a hand-controlled plane group.

The brain-controlled car group consisted of 13 participants (9 males and 4 females)
with a mean age of 24.08 years (range: 21–28 years). The brain-controlled plane group
included 12 participants (10 males and 2 females) with a mean age of 23.51 years (range:
21–25 years).

Inclusion criteria:

• Participants aged 18–30 years.
• Normal or corrected-to-normal vision and no significant hearing impairments.
• No history of neurological or psychiatric disorders, such as epilepsy or depression.
• No substance abuse or any condition that may affect cognitive function.
• Willing to participate in the experiment and provide informed consent.
• Exclusion criteria:
• Physical limitations that prevent prolonged use of VR equipment, such as neck pain.
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• Consumption of medication that could affect cognitive abilities within 48 h prior to
the experiment.

• Failure to comply with experimental protocols during training or testing phases.

Behavioral data and EEG signals were collected from all participants during the spatial
cognition assessment tasks performed before and after the spatial cognition training.

4. Results
The assessment system proposed in this study integrates BCI, VR, and gesture recog-

nition technologies to evaluate subjects’ spatial cognitive abilities through cognitive assess-
ment tasks. The experimental procedure consists of three stages: a baseline test conducted
before training, continuous spatial cognition training, and a post-training ability test. Dur-
ing the testing phases, EEG signals and behavioral data were recorded simultaneously for
subsequent feature extraction and cognitive ability evaluation.

4.1. Results of Behavioural Data
4.1.1. Evaluation of Task Completion Time

Figure 6 illustrates the task completion times of the brain-controlled car group during
the spatial cognitive assessment task before and after training. The post-training task
completion time was significantly reduced compared to the pre-training time. A paired-
sample t-test revealed a highly significant difference between the two conditions, with the
post-training time (191.23 ± 35.87 s) being significantly shorter than the pre-training time
(264.38 ± 58.62 s), t(12) = 5.59, p = 8.70 × 10−5 < 0.01.
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Figure 6. Bar chart of spatial cognitive assessment tasks time consumption for brain-controlled
car group.

Figure 7 illustrates the task completion times of the brain-controlled plane group
during the spatial cognitive assessment task before and after training. The post-training
task completion time was significantly reduced compared to the pre-training time. A paired-
sample t-test revealed a highly significant difference between the two conditions, with the
post-training time (162.42 ± 35.04 s) being significantly shorter than the pre-training time
(291.83 ± 92.07 s), t(11) = 6.02, p = 0.00012 < 0.01.
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4.1.2. Evaluation of Task Performance Scores

Figure 8 illustrates the scores of the brain-controlled car group in the spatial cognitive
assessment task before and after training. Post-training scores showed a substantial increase
compared to pre-training scores. A paired-sample t-test revealed a statistically significant
difference, with post-training scores (15 ± 1.31) being significantly higher than pre-training
scores (10 ± 2.93), t(12) = −7.41, p = 8.15 × 10−6 < 0.01.
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Figure 9 illustrates the ratings of the brain-controlled plane group on the spatial cogni-
tive assessment task before and after training. Post-training scores showed a substantial
increase compared to pre-training scores. A paired-sample t-test revealed a statistically
significant difference, with post-training scores (15.13 ± 0.86) being significantly higher
than pre-training scores (10.38 ± 2.71), t(11) = −6.45, p = 4.50 × 10−5 < 0.01.
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4.2. EEG Signal Classification Performance

According to the SBS method, the optimal combinations of different EEG feature bands
can be calculated as follows: Delta-Theta-Alpha1-Alpha2-Beta1-Beta2-Gamma, Delta-Alpha2-
Beta1-Beta2-Gamma, Delta-Alpha2-Beta1-Beta2-Gamma, Delta-Alpha2-Beta2-Gamma, Delta-
Alpha2-Gamma, and Delta-Gamma. Next, this paper will analyze the classification results
for these 6 band combinations, respectively.

4.2.1. Dataset for Brain-Controlled Car Experiments

1. Delta-Theta-Alpha1-Alpha2-Beta1-Beta2-Gamma

Figures 10 and 11 illustrate the average validation accuracy and loss curves of EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

In Figure 10, the average validation accuracy curves exhibit the following patterns:

• PCMI and NPCMI: Both stabilize after 180–200 iterations, with average validation
accuracy between 96.5% and 96.6%.

• MPCMI: Stabilizes earlier, at 150–170 iterations, with an average validation accuracy
of 97.2%.

• APCMI: Achieves a relatively high average validation accuracy of approximately
98.5%, stabilizing after 180–200 iterations.

• NAPCMI: Outperforms other methods, stabilizing at 100–120 iterations with an aver-
age validation accuracy of approximately 99.3%.

Figure 11 illustrates the average validation loss curves for PCMI, NPCMI, MPCMI,
APCMI, and NAPCMI-based EEG features in CNN models. The results show the
following patterns:

• PCMI and NPCMI: These models exhibit relatively high validation loss curves, with
minimum loss values around 0.1.

• MPCMI: The validation loss curves are comparatively lower, with minimum loss
values close to 0.07.

• APCMI: This model achieves a lower validation loss, with minimum loss values
around 0.045.

• NAPCMI: Outperforms other methods with the lowest validation loss, having a
minimum value close to 0.02.

Table 1 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. The results indicate
the following:
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• NAPCMI: Achieved the highest evaluation metrics, with a precision of 99.35%. Its
corresponding F1 score, recall, and AUC values were significantly better than those of
the other methods.

• APCMI and MPCMI: Showed relatively high performance, with precisions of 98.52%
and 97.85%, respectively.

• NPCMI and PCMI: Displayed lower evaluation results, with accuracies around 96.6%.
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Table 1. Average evaluation index of Delta-Theta-Alpha1-Alpha2-Beta1-Beta2-Gamma for brain-
controlled car group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 96.57% 96.57% 96.57% 0.990
NPCMI 96.68% 96.68% 96.68% 0.991
MPCMI 97.85% 97.85% 97.85% 0.993
APCMI 98.52% 98.52% 98.52% 0.994

NAPCMI 99.35% 99.35% 99.35% 0.995
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2. Delta-Theta-Alpha2-Beta1-Beta2-Gamma

Figures 12 and 13 illustrate the average validation accuracy and loss curves of EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model.

• PCMI and NPCMI: The validation accuracy curves are similar, stabilizing at
180–200 iterations, with average validation accuracies of approximately 95.8% and
96.5%, respectively.

• MPCMI and APCMI: These methods achieve higher validation accuracies, stabilizing
at 170–180 iterations, with average accuracies of 97.2% and 97.8%, respectively.

• NAPCMI: Exhibits the highest performance, stabilizing at 140–160 iterations, with an
average validation accuracy of approximately 98.5%.
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Figure 13. Average loss curve of Delta-Theta-Alpha2-Beta1-Beta2-Gamma band combination for
brain-controlled car group.

The average validation loss profiles for PCMI and NPCMI EEG features are relatively
high, with minimum values around 0.1. In contrast, MPCMI and APCMI EEG features
exhibit lower validation loss profiles, with minimum values of approximately 0.06 and 0.05,
respectively. NAPCMI EEG features achieve the lowest validation loss, with a minimum
value close to 0.035.

Table 2 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in CNN models. NAPCMI-based EEG features
achieved the highest accuracy (98.77%), significantly outperforming the other methods.
MPCMI- and APCMI-based EEG features also performed well, with accuracies of 97.15%
and 97.90%, respectively. In contrast, NPCMI- and PCMI-based EEG features showed lower
accuracies of 96.81% and 95.92%, respectively.
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Table 2. Average evaluation index of Delta-Theta-Alpha2-Beta1-Beta2-Gamma for brain-controlled
car group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 95.92% 95.92% 95.92% 0.989
NPCMI 96.81% 96.81% 96.81% 0.991
MPCMI 97.16% 97.16% 97.16% 0.991
APCMI 97.90% 97.90% 97.90% 0.994

NAPCMI 98.77% 98.77% 98.77% 0.995

3. Delta-Alpha2-Beta1-Beta2-Gamma

Figures 14 and 15 illustrate the average validation accuracy and loss curves of EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model.

• PCMI and NPCMI: The validation accuracy curves are similar, stabilizing at
180–200 iterations with average validation accuracies of approximately 95.3%.

• MPCMI and APCMI: These methods achieve higher validation accuracies, stabilizing
at 160–180 iterations, with average accuracies of 96.3% and 98.3%, respectively.

• NAPCMI: Exhibits the highest validation accuracy, stabilizing at 140–160 iterations
with an average accuracy of approximately 98.6%.
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Figure 15 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models. The validation loss curves
for PCMI, NPCMI, and MPCMI EEG features are relatively high, with minimum loss
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values around 0.12. In contrast, APCMI EEG features exhibit lower validation loss, with a
minimum value close to 0.05. NAPCMI EEG features achieve the lowest validation loss,
with a minimum value close to 0.04.

Table 3 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based EEG features
achieved the highest precision (98.21%) and demonstrated superior F1 scores, recall rates,
AUC values, and other metrics compared to the other methods. APCMI-based EEG features
also performed well, with a precision of 98.02%. In contrast, EEG features based on MPCMI,
NPCMI, and PCMI yielded relatively lower results, with accuracies around 95.5%.

Table 3. Average evaluation index of Delta-Alpha2-Beta1-Beta2-Gamma for brain-controlled
car group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 95.46% 95.46% 95.46% 0.985
NPCMI 95.45% 95.45% 95.45% 0.989
MPCMI 96.45% 96.45% 96.45% 0.990
APCMI 98.02% 98.02% 98.02% 0.994

NAPCMI 98.21% 98.21% 98.21% 0.994

4. Delta-Alpha2-Beta2-Gamma

Figures 16 and 17 illustrate the average validation accuracy and loss curves of EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI and NPCMI: The validation accuracy curves are similar, stabilizing at
200–220 iterations with average accuracies of approximately 93.3% and
92.8%, respectively.

• MPCMI and APCMI: These methods achieve higher accuracies, stabilizing at
180–200 iterations with average accuracies of 95.9% and 96.8%, respectively.

• NAPCMI: Exhibits the highest validation accuracy, stabilizing at 140–160 iterations
with an average accuracy of approximately 98.8%.
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Figure 17 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI and NPCMI: The validation loss curves are relatively high, with minimum loss
values around 0.17.

• MPCMI and APCMI: These methods exhibit lower validation loss curves, with mini-
mum values of approximately 0.011 and 0.065, respectively.

• NAPCMI: Achieves the lowest validation loss, with minimum values close to 0.035.

Table 4 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based EEG features
achieved the highest accuracy (98.93%), significantly outperforming the other methods.
MPCMI- and APCMI-based features showed relatively high accuracies of approximately
96% and 97.7%, respectively. In contrast, NPCMI- and PCMI-based features yielded lower
accuracies, both around 93%.

Table 4. Average evaluation index of Delta-Alpha2-Beta2-Gamma for brain-controlled car group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 93.47% 93.47% 93.47% 0.978
NPCMI 93.04% 93.04% 93.04% 0.978
MPCMI 96.00% 96.00% 96.00% 0.987
APCMI 97.78% 97.78% 97.78% 0.994

NAPCMI 98.93% 98.93% 98.93% 0.995

5. Delta-Alpha2-Gamma

Figures 18 and 19 illustrate the average validation accuracy and loss curves of EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model.

• PCMI and NPCMI: The validation accuracy curves are similar, stabilizing at
180–200 iterations with average accuracies of approximately 92.1%.

• MPCMI and APCMI: These methods achieve higher validation accuracies, stabilizing
at 160–180 iterations with average accuracies of 94.8% and 97.3%, respectively.

• NAPCMI: Outperforms the other methods, stabilizing at 140–160 iterations with the
highest average validation accuracy of approximately 98.4%.
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Figure 19 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI and NPCMI: These methods exhibit relatively high validation loss curves, with
minimum loss values around 0.186.

• MPCMI and APCMI: The validation loss curves are lower, with minimum values of
approximately 0.134 and 0.065, respectively.

• NAPCMI: Achieves the lowest validation loss, with minimum values close to 0.044.

Table 5 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based EEG features
achieved the highest accuracy (98.41%), significantly outperforming the other methods.
MPCMI- and APCMI-based features showed relatively high accuracies of 94.95% and
97.49%, respectively. In contrast, NPCMI- and PCMI-based features yielded lower accura-
cies, both around 92%.

Table 5. Average evaluation index of Delta-Alpha2-Gamma for brain-controlled car group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 92.23% 92.23% 92.23% 0.974
NPCMI 92.28% 92.28% 92.28% 0.976
MPCMI 94.95% 94.95% 94.95% 0.985
APCMI 97.49% 97.49% 97.49% 0.993

NAPCMI 98.41% 98.41% 98.41% 0.994
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6. Delta-Gamma

Figures 20 and 21 illustrate the average validation accuracy and loss curves of EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model.

• PCMI and NPCMI: The validation accuracy curves are similar, stabilizing at
200–220 iterations with average accuracies around 90%.

• MPCMI and APCMI: These methods achieve higher accuracies, stabilizing at
180–200 iterations with average accuracies of 94.3% and 97.0%, respectively.

• NAPCMI: Outperforms other methods, stabilizing at 140–160 iterations with the
highest average validation accuracy of approximately 98.6%.
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Figure 21 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI and NPCMI: The validation loss curves are relatively high, with minimum
values around 0.256.

• MPCMI and APCMI: These methods exhibit lower validation losses, with minimum
values of approximately 0.154 and 0.065, respectively.

• NAPCMI: Achieves the lowest validation loss, with a minimum value close to 0.034.

Table 6 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in CNN models. NAPCMI-based EEG features
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achieved the highest accuracy (98.91%), significantly outperforming the other methods.
MPCMI- and APCMI-based features demonstrated relatively high accuracies of 94.39%
and 97.62%, respectively. In contrast, NPCMI- and PCMI-based features yielded lower
accuracies, both around 90%.

Table 6. Average evaluation index of Delta-Gamma for brain-controlled car group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 89.77% 89.77% 89.77% 0.952
NPCMI 90.30% 90.30% 90.30% 0.952
MPCMI 94.39% 94.39% 94.39% 0.981
APCMI 97.62% 97.62% 97.62% 0.993

NAPCMI 98.91% 98.91% 98.91% 0.994

4.2.2. Dataset for Hand-Controlled Plane Experiments

1. Delta-Theta-Alpha1-Alpha2-Beta1-Beta2-Gamma

Figures 22 and 23 illustrate the average validation accuracy and loss curves of EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI and NPCMI: The validation accuracy curves are similar, stabilizing at
180–200 iterations with average accuracies of around 96.6%.

• MPCMI and APCMI: These methods achieve higher accuracies, stabilizing at
160–180 iterations with average accuracies of 97.7% and 98.0%, respectively.

• NAPCMI: Exhibits the highest accuracy, stabilizing at 140–160 iterations with an
average validation accuracy of approximately 99.5%.
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Figure 23 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI and NPCMI: The validation loss curves are relatively high, with minimum
values around 0.1.

• MPCMI and APCMI: These methods exhibit lower validation loss curves, with mini-
mum values of approximately 0.065 and 0.052, respectively.

• NAPCMI: Achieves the lowest validation loss, with a minimum value close to 0.013.
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Table 7 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based EEG
features achieved the highest accuracy (99.50%), significantly outperforming the other
methods. MPCMI- and APCMI-based features also demonstrated high accuracies, both
around 98%. In contrast, NPCMI- and PCMI-based features yielded lower accuracies,
approximately 96%.

Table 7. Average evaluation index of Delta-Theta-Alpha1-Alpha2-Beta1-Beta2-Gamma for brain-
controlled plane group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 89.77% 89.77% 89.77% 0.952
NPCMI 90.30% 90.30% 90.30% 0.952
MPCMI 94.39% 94.39% 94.39% 0.981
APCMI 97.62% 97.62% 97.62% 0.993

NAPCMI 98.91% 98.91% 98.91% 0.994

2. Delta-Theta-Alpha2-Beta1-Beta2-Gamma

Figures 24 and 25 illustrate the average validation accuracy and loss curves for EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI, NPCMI, and MPCMI: These methods exhibit similar validation accuracy curves,
stabilizing at 180–200 iterations with accuracies around 96%.

• APCMI: The validation accuracy curve is relatively higher, stabilizing at 180–200 iterations
with an accuracy of 97.5%.

• NAPCMI: Outperforms all other methods, stabilizing at 140–160 iterations with the
highest validation accuracy of approximately 98.1%.

Figure 25 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI, NPCMI, and MPCMI: These methods exhibit the highest validation loss curves,
with minimum values around 0.1.

• APCMI: The validation loss is relatively low, with a minimum value close to 0.07.
• NAPCMI: Achieves the lowest validation loss, with a minimum value close to 0.045.
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Figure 25. Average loss curve of Delta-Theta-Alpha2-Beta1-Beta2-Gamma band combination for
brain-controlled plane group.

Table 8 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based features
achieved the highest accuracy (98.17%), significantly outperforming the other methods.
APCMI-based features also demonstrated high performance, with an accuracy of 97.53%.
In contrast, features based on MPCMI, NPCMI, and PCMI yielded lower accuracies,
around 96%.

Table 8. Average evaluation index of Delta-Theta-Alpha2-Beta1-Beta2-Gamma for brain-controlled
plane group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 96.08% 96.08% 96.08% 0.990
NPCMI 96.58% 96.58% 96.58% 0.990
MPCMI 96.35% 96.35% 96.35% 0.990
APCMI 97.53% 97.53% 97.53% 0.994

NAPCMI 98.17% 98.17% 98.17% 0.994
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3. Delta-Alpha2-Beta1-Beta2-Gamma

Figures 26 and 27 illustrate the average validation accuracy and loss curves for EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI, NPCMI, MPCMI, and APCMI: These methods exhibit similar validation accu-
racy curves, stabilizing at 180–200 iterations with accuracies around 96%.

• NAPCMI: Achieves the highest validation accuracy, stabilizing at 140–160 iterations
with an accuracy of 98.7%.
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Figure 27 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI, NPCMI, and MPCMI: These methods exhibit high validation loss curves, with
minimum values around 0.1.

• APCMI: The validation loss is relatively lower, with a minimum value close to 0.08.
• NAPCMI: Achieves the lowest validation loss, with a minimum value close to 0.04.

Table 9 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based features
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achieved the highest accuracy (98.79%), significantly outperforming the other methods.
APCMI-based features also performed well, with an accuracy of 96.87%. In contrast,
features based on MPCMI, NPCMI, and PCMI yielded lower accuracies, around 96%.

Table 9. Average evaluation index of Delta-Alpha2-Beta1-Beta2-Gamma for brain-controlled
plane group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 95.99% 95.99% 95.99% 0.989
NPCMI 96.44% 96.44% 96.44% 0.991
MPCMI 96.42% 96.42% 96.42% 0.990
APCMI 96.87% 96.87% 96.87% 0.992

NAPCMI 98.79% 98.79% 98.79% 0.995

4. Delta-Alpha2-Beta2-Gamma

Figures 28 and 29 illustrate the average validation accuracy and loss curves for EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI: Exhibits the lowest validation accuracy, stabilizing at 200–220 iterations with
an accuracy of approximately 93.8%.

• NPCMI and MPCMI: These methods achieve relatively low validation accuracies,
stabilizing at 180–200 iterations with accuracies around 95%.

• APCMI: Demonstrates higher validation accuracy, stabilizing at 180–200 iterations
with an accuracy of approximately 96.8%.

• NAPCMI: Achieves the highest validation accuracy, stabilizing at 140–160 iterations
with an accuracy of approximately 97.8%.
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Figure 29 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI: Exhibits a relatively high validation loss, with a minimum value of around 0.15.
• NPCMI and MPCMI: Both demonstrate moderately high validation losses, with mini-

mum values around 0.126.
• APCMI and NAPCMI: Achieve relatively low validation losses, with minimum values

close to 0.08.
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Table 10 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based features
achieved the highest accuracy (97.82%), significantly outperforming the other methods.
APCMI-based features also performed well, with an accuracy of approximately 96.8%. In
contrast, MPCMI-, NPCMI-, and PCMI-based features yielded lower accuracies of 95% and
93%, respectively.

Table 10. Average evaluation index of Delta-Alpha2-Beta2-Gamma for brain-controlled plane group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 93.80% 93.80% 93.80% 0.983
NPCMI 94.97% 94.97% 94.97% 0.985
MPCMI 95.42% 96.42% 95.42% 0.987
APCMI 96.81% 96.81% 96.81% 0.993

NAPCMI 97.82% 97.82% 97.82% 0.994

5. Delta-Alpha2-Gamma

Figures 30 and 31 illustrate the average validation accuracy and loss curves for EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI, NPCMI, and MPCMI: These methods exhibit similar validation accuracy curves,
stabilizing at 200–220 iterations with average accuracies of around 93.2%.

• APCMI: Demonstrates higher validation accuracy, stabilizing at 180–200 iterations
with average accuracies of approximately 95.7%.

• NAPCMI: Achieves the highest validation accuracy, stabilizing at 160–180 iterations
with an accuracy of about 98.7%.

Figure 31 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI, NPCMI, and MPCMI: These methods exhibit relatively high validation loss
curves, with minimum values around 0.16.

• APCMI: Demonstrates lower validation losses, with a minimum value close to 0.08.
• NAPCMI: Achieves the lowest validation loss, with a minimum value close to 0.05.

Table 11 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based features
achieved the highest accuracy (98.72%), significantly outperforming the other meth-
ods. APCMI-based features also demonstrated strong performance, with an accuracy
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of 96.53%. In contrast, MPCMI-, NPCMI-, and PCMI-based features yielded lower accura-
cies, around 93%.
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Table 11. Average evaluation index of Delta-Alpha2-Gamma for brain-controlled plane group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 92.32% 92.32% 92.32% 0.974
NPCMI 93.49% 93.49% 93.49% 0.982
MPCMI 93.62% 93.62% 93.62% 0.982
APCMI 96.53% 96.53% 96.53% 0.992

NAPCMI 98.72% 98.72% 98.72% 0.995

6. Delta-Gamma

Figures 32 and 33 illustrate the average validation accuracy and loss curves for EEG
features based on PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI: Exhibits the lowest validation accuracy, stabilizing at 200–220 iterations with
an accuracy of approximately 91%.

• NPCMI and MPCMI: These methods demonstrate moderate validation accuracies,
stabilizing at 200–220 iterations with accuracies around 93%.
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• APCMI: Achieves relatively high validation accuracy, stabilizing at 180–200 iterations
with an accuracy of approximately 96%.

• NAPCMI: Outperforms all other methods, stabilizing at 160–180 iterations with the
highest accuracy of about 97%.
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Figure 33 illustrates the average validation loss curves for EEG features based on
PCMI, NPCMI, MPCMI, APCMI, and NAPCMI in CNN models.

• PCMI: Exhibits relatively high validation loss, with a minimum value of around 0.2.
• NPCMI, MPCMI, and APCMI: These methods demonstrate lower validation losses,

with minimum values around 0.18 and 0.1, respectively.
• NAPCMI: Achieves the lowest validation loss, with a minimum value close to 0.06.

Table 12 presents the average evaluation metrics of EEG features based on PCMI,
NPCMI, MPCMI, APCMI, and NAPCMI in the CNN model. NAPCMI-based features
achieved the highest accuracy (97.76%), significantly outperforming the other methods.
APCMI-based features also demonstrated strong performance, with an accuracy of 96.26%.
In contrast, NPCMI- and PCMI-based features yielded lower accuracies of 93% and
91%, respectively.
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Table 12. Average evaluation index of Delta-Gamma for brain-controlled plane group.

Feature Extraction Methods Precision Recall F1-Score AUC

PCMI 91.09% 91.09% 91.09% 0.969
NPCMI 92.75% 92.75% 92.75% 0.977
MPCMI 93.28% 93.28% 93.28% 0.978
APCMI 96.26% 96.26% 96.26% 0.990

NAPCMI 97.76% 97.76% 97.76% 0.993

4.3. Analysis of Experimental Data

Behavioral data and EEG signal data were comprehensively analyzed to evaluate the
effects of spatial cognition training:

• Behavioral Data: After training, task completion time was significantly reduced, and
scores were significantly improved, indicating that spatial cognition training effectively
enhanced the participants’ spatial cognitive abilities.

• EEG Signal Data: Using NAPCMI feature extraction and CNN classification, significant
changes in EEG features were observed after training. These changes aligned with
improvements in behavioral data, further confirming the enhancement of spatial
cognitive abilities.

5. Discussion and Conclusions
5.1. Feasibility and Effectiveness of NAPCMI

The NAPCMI algorithm proposed in this paper demonstrates significant advantages
in characterizing spatial cognitive EEG signal features. Compared with traditional methods
such as PCMI and NPCMI, NAPCMI enhances the capture of time series information
and effectively characterizes amplitude features, leading to improved connectivity met-
rics of brain regions. This enables NAPCMI to achieve superior classification accuracy,
underscoring the importance of amplitude features in EEG signal classification tasks.

In terms of frequency band optimization, NAPCMI shows flexibility and effectiveness.
Notably, the Delta and Beta1 bands perform well in spatial cognition tasks, with the Delta-
Theta-Alpha1-Beta1 combination achieving the best results in experiments involving the
hand-controlled plane and brain-controlled car. These findings further validate NAPCMI’s
adaptability to frequency band selection.

Compared with traditional CSP and MI-based methods, NAPCMI effectively de-
tects interaction delays in event sequences between brain regions, demonstrates strong
robustness to signal noise, and preserves intrinsic timing patterns [20–22]. Additionally,
multi-group experiments show that NAPCMI outperforms PCMI in validation accuracy,
recall, F1 score, and AUC. Its stability across learning rates and experimental conditions
highlights its generalization ability and efficient classification performance, making it
suitable for diverse datasets and experimental scenarios [15,23].

In summary, the NAPCMI algorithm provides robust and reliable technical support
for EEG signal analysis in spatial cognition, with strong potential for practical application.

5.2. NAPCMI Classification Performance

In this study, a feature extraction method for EEG signals based on NAPCMI was
proposed, and an efficient classification model using CNN was constructed to assess spatial
cognitive abilities. Experimental results demonstrate that NAPCMI achieves superior
classification performance, with a classification accuracy of 99.3% in CNN models, signifi-
cantly outperforming traditional methods such as PCMI. By combining amplitude features
and temporal information, NAPCMI enhances feature discriminability and accelerates
model convergence.



Symmetry 2025, 17, 130 32 of 34

• Frequency Band Selection:

The Delta-Theta-Alpha1-Beta1-Beta2 combination yielded the best classification results,
consistent with prior studies.

For example, Hernández-Pérez et al. highlighted the role of the Theta band in spatial
information encoding [24], while Li et al. demonstrated the Delta band’s importance in
spatial cognitive networks [25].

Changes in the Alpha1 band before and after training and the strong performance of
Beta1 and Beta2 bands further validate NAPCMI’s applicability to spatial cognition tasks.

• Classification Metrics:

NAPCMI outperformed PCMI, NPCMI, and MPCMI in recall, F1 score, and AUC.
NAPCMI achieved a recall rate of 99.35% and an AUC of 0.995, surpassing PCMI’s

0.990 and APCMI’s 0.994, demonstrating its superior ability to distinguish brain region
activity patterns.

• Robustness and Stability

NAPCMI showed better robustness under high-noise conditions, consistent with
findings by Siaw-Hong Liew et al. [26].

The algorithm achieved high accuracy and low loss values with fewer iterations,
highlighting advantages in learning efficiency and adaptability across datasets and
experimental conditions.

• Contributions and Future Work:

This study establishes NAPCMI as a robust tool for EEG signal classification and
spatial cognitive assessment. By leveraging CNNs, we effectively evaluated changes in
spatial cognitive abilities before and after training. Additionally, the proposed method holds
potential for applications in cognitive impairment diagnosis, rehabilitation monitoring, and
broader cognitive function assessments.

Future research will focus on validating NAPCMI on larger datasets and diverse
scenarios, including cross-scene and cross-subject applications. Exploring additional EEG
features and machine learning algorithms will further enhance classification accuracy and
robustness, expanding the practical applicability of this approach.
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