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Abstract: The accurate prediction of marine shaft centerline trajectories is essential for
ensuring the operational performance and safety of ships. In this study, we propose a novel
Transformer-based model to forecast the lateral and longitudinal displacements of ship
main shafts. A key challenge in this prediction task is capturing both short-term fluctua-
tions and long-term dependencies in shaft displacement data, which traditional models
struggle to address. Our Transformer-based model integrates Bidirectional Splitting–Agg
Attention and Sequence Progressive Split–Aggregation mechanisms to efficiently process
bidirectional temporal dependencies, decompose seasonal and trend components, and han-
dle the inherent symmetry of the shafting system. The symmetrical nature of the shafting
system, with left and right shafts experiencing similar dynamic conditions, aligns with the
bidirectional attention mechanism, enabling the model to better capture the symmetric
relationships in displacement data. Experimental results demonstrate that the proposed
model significantly outperforms traditional methods, such as Autoformer and Informer, in
terms of prediction accuracy. Specifically, for 96 steps ahead, the mean absolute error (MAE)
of our model is 0.232, compared to 0.235 for Autoformer and 0.264 for Informer, while the
mean squared error (MSE) of our model is 0.209, compared to 0.242 for Autoformer and
0.286 for Informer. These results underscore the effectiveness of Transformer-based models
in accurately predicting long-term marine shaft centerline trajectories, leveraging both
temporal dependencies and structural symmetry, thus contributing to maritime monitoring
and performance optimization.

Keywords: trajectory prediction; transformer; attention mechanism; symmetry; frequency
domain features

1. Introduction
The prediction of ship main shaft centerline trajectories is a critical task in the maritime

industry, as the alignment of the main shaft directly affects ship performance and safety [1,2].
Any misalignment in the main shaft can lead to significant mechanical problems, including
increased wear, higher fuel consumption, and even potential failures in the propulsion
system [3–5]. This, in turn, impacts the operational efficiency and reliability of the vessel,
leading to higher maintenance costs and safety risks. The accurate prediction of the main
shaft’s displacement and trajectory is essential for the early diagnosis of misalignments,
which can prevent costly repairs and improve overall vessel performance [6,7].
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Predicting the trajectory of the ship’s main shaft centerline is a complex challenge
due to the dynamic nature of maritime environments. The main shaft is affected by a
combination of internal mechanical factors and external forces such as sea states, currents,
and vessel maneuvers [8]. These factors introduce long-term dependencies and non-linear
behaviors in the displacement data, which are difficult to model accurately using tradi-
tional methods. Approaches such as autoregressive models and basic neural networks
often struggle to capture both the short-term variations and the long-term trends in the data,
resulting in decreased accuracy for extended predictions [9]. Transformer models have
gained significant attention in recent years for their ability to handle sequential data, mak-
ing them ideal candidates for predicting time series like the trajectory of a ship’s main shaft
centerline [10–17]. Transformer architectures, particularly their self-attention mechanism,
have been successfully applied in various time-series forecasting tasks, including energy
consumption prediction, traffic flow forecasting, and mechanical system monitoring. These
models excel at capturing long-range dependencies and dynamic patterns in sequential
data, which are challenging for traditional methods like ARIMA and LSTM. However, stan-
dard Transformer models face significant challenges when applied to systems with inherent
periodicity or symmetry, such as a ship’s shafting system. For instance, the self-attention
mechanism struggles to efficiently capture cyclical patterns over long horizons, and the
quadratic computational complexity of the attention mechanism can become prohibitive for
large-scale time-series data. Furthermore, existing Transformer models are not inherently
designed to leverage structural symmetries in data, such as the mirrored displacement
patterns of left and right shafts in a marine propulsion system. These limitations highlight
the need for architectural innovations to address these specific challenges in symmetry-
aware time-series forecasting. One of the key strengths of Transformer architectures is their
attention mechanism, which allows the model to focus on the most relevant parts of the
input data sequence. This is especially useful for tasks that involve long-term dependencies,
such as predicting shaft displacement over time. Unlike traditional models that struggle
with sequential data or require large computational resources, Transformer models provide
a more efficient and scalable solution for handling complex time series forecasting tasks.

While these advanced models have proven effective in capturing dynamic dependen-
cies, another inherent feature of ships’ shafting systems is the structural symmetry between
the left and right shafts. In most maritime vessels, the shafts operate under similar dynamic
conditions and exhibit bilateral symmetry in their movements. This symmetry plays a
significant role in the behavior of the shafting system, as both shafts typically experience
similar forces and vibrations, which leads to synchronized displacements. From a modeling
perspective, leveraging the symmetry of the shafting system presents an opportunity to en-
hance the predictive accuracy of Transformer-based models. The bilateral symmetry means
that the displacement patterns of the left and right shafts are not only dynamically similar
but also mirror each other. This mirror-like behavior implies that the displacement data
for each side of the shaft are not entirely independent but exhibit certain spatial–temporal
correlations. Recognizing and utilizing this symmetry can improve model efficiency by
reducing the complexity of the input space and allowing the model to predict both forward
and backward temporal dependencies more effectively. However, existing Transformer-
based models lack the ability to explicitly encode such symmetry-aware relationships.
Current approaches, such as Autoformer and Informer, focus primarily on improving
efficiency through sparsity or auto-correlation mechanisms, but they do not address the
unique challenges posed by systems with structural symmetries. Furthermore, these mod-
els often struggle to maintain accuracy over extended forecasting horizons, particularly
in scenarios with significant periodic or mirrored displacement patterns. To bridge these
gaps, our proposed BSAA and SPSA mechanisms extend the Transformer architecture to
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incorporate symmetry-aware learning and temporal decomposition. By explicitly modeling
the spatial–temporal correlations and leveraging the bilateral symmetry of the shafting
system, our approach offers a novel solution to long-term forecasting challenges in marine
engineering systems.

Transformer models, with their ability to capture bidirectional dependencies, are par-
ticularly suited to account for mirrored displacement patterns. To address the limitations
of standard Transformers in symmetry-aware systems, we propose two novel mecha-
nisms: the Bidirectional Splitting–Agg Attention (BSAA) and the Sequence Progressive
Split–Aggregation (SPSA). The BSAA mechanism extends the self-attention framework
by splitting the input sequence into forward and backward temporal segments, enabling
the model to learn bidirectional dependencies more effectively. This design is particularly
suited for systems like ships’ shafting systems, where the bilateral symmetry of the left and
right shafts results in mirrored displacement patterns. Mathematically, BSAA calculates
separate attention weights for forward and backward sequences, which are then aggregated
to enhance the model’s ability to capture spatial–temporal correlations. By doing so, BSAA
directly leverages the structural symmetry inherent in the system, improving both predic-
tion accuracy and computational efficiency. By incorporating Bidirectional Splitting–Agg
Attention (BSAA) and Sequence Progressive Split–Aggregation (SPSA) mechanisms, we can
enhance the model’s ability to capture both forward and backward temporal dependencies.
The bidirectional attention mechanism mirrors the bilateral symmetry of the shaft system,
thus enabling the model to consider both the past and future displacements of the shaft in
a more balanced and synchronized manner. Furthermore, the symmetry of the shafting
system can be encoded into the model by emphasizing spatial symmetry through the BSAA
mechanism. This allows the model to better capture correlations between the displacement
data of the left and right shafts, providing a more accurate and efficient prediction of
their trajectories.

The primary objective of this research is to apply and modify Transformer-based
models to accurately predict the lateral and longitudinal displacements of a ship’s main
shaft, which define the shaft centerline trajectory. By introducing specific adjustments to
the Transformer architecture—such as the Bidirectional Splitting–Agg Attention (BSAA)
mechanism and the Sequence Progressive Split–Aggregation (SPSA) module—we aim to
improve the model’s ability to capture the complex dependencies inherent in the displace-
ment data. These modifications are designed not only to improve the model’s performance
in handling long-term time-series data but also to exploit the inherent symmetry in the
ship’s shaft system.

This research will demonstrate how these models can be effectively applied to predict
long-term shaft centerline trajectories, offering a robust solution to a critical problem in the
maritime industry.

2. Related Work
In this section, we present an overview of related work on ship main shaft trajectory

prediction and time-series forecasting. First, we review traditional approaches, including
Kalman filters, ARIMA, and classical neural network-based methods, highlighting their
strengths and limitations. Next, we discuss the evolution of Transformer-based models
and their applications in long-term forecasting tasks, particularly in handling complex
temporal dependencies and long-range patterns. Finally, we introduce the key innovations
of our proposed Transformer-based model and its ability to address the limitations of prior
methods. This section sets the foundation for understanding the challenges in this domain
and how our work builds upon and extends the current state of the art.
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2.1. Traditional Approaches

Traditional methods for predicting ship main shaft centerline trajectories include
Kalman filters [18], ARIMA models [19,20], and neural network-based approaches. Kalman
filters are widely used for real-time state estimation in dynamic systems due to their effi-
ciency in handling linear systems and measurement noise. However, their performance
deteriorates in the face of non-linear dynamics typical of marine environments. Exten-
sions like the Extended Kalman Filter (EKF) [21] and Unscented Kalman Filter (UKF) [22]
attempt to mitigate these limitations by linearizing non-linear systems or applying statisti-
cal transformations, but they introduce computational complexity and still struggle with
highly dynamic data. Similarly, ARIMA and its seasonal variant SARIMA [23] have been
applied to time-series forecasting, effectively capturing short-term trends and periodic
patterns. Despite this, ARIMA models are less effective in handling non-stationary data
and long-term dependencies, which are critical in modeling shaft displacements influenced
by changing sea conditions and mechanical vibrations.

It is essential to understand the structure and function of ships’ shafting systems, as
illustrated in Figure 1. The shafting system is a critical component of a ship’s propulsion
mechanism, linking the main propulsion motor to the propeller and ensuring efficient
transmission of mechanical power [24]. This system comprises several interconnected
elements, including the propeller, shaft bearings, thrust bearings, flexible coupling, interme-
diate bearings, and main shaft. The main shaft, in particular, plays a vital role in ensuring
smooth power transmission and thrust generation. Any misalignment or deviation in the
trajectory of the main shaft centerline, however minor, can cause excessive stress on the
bearings, thrust bearing, and stern tube, leading to uneven wear, increased friction, and po-
tential operational failures. The shafting system must continuously adapt to variable loads,
changes in sea conditions, hull deformations, and vibrations caused by wave impacts and
machinery operations. These factors introduce non-linear dynamics to the shaft movement,
complicating the use of traditional linear models to capture the true behavior of the system.
Deviations in the centerline of the shaft can also cause cavitation at the propeller, adversely
affecting fuel efficiency and increasing the risk of mechanical failure.
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Figure 1. Shafting system of a ship, illustrating key components involved in the power transmission
from the main propulsion motor to the propeller.

In recent years, Convolutional Neural Networks (CNNs) [25] have emerged as power-
ful tools for time-series forecasting, particularly due to their ability to capture local patterns
through convolutional operations. CNNs have been applied to mechanical systems and
predictive maintenance tasks, such as predicting shaft trajectory and monitoring engine
performance. With appropriate hyperparameter tuning, CNNs can achieve competitive
accuracy. However, the primary limitation of CNNs lies in their inability to effectively
capture long-term dependencies and sequential patterns, which are essential for tasks like
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ship main shaft trajectory prediction. While CNN-based models excel in detecting short-
term patterns and anomalies, they struggle with tasks that require integrating both past
and future dependencies over long periods. Recurrent Neural Networks (RNNs) [26–31],
Long Short-Term Memory (LSTM) [32–34] networks, and LogTrans [35] networks have
been employed to model sequence data for shaft trajectory prediction, offering the ability
to capture both short-term fluctuations and long-term dependencies.

While LSTMs improve upon traditional RNNs by addressing the vanishing gradient
problem, they require extensive computational resources and careful tuning to achieve
optimal results in long-term prediction tasks. Other approaches, such as Support Vector
Regression (SVR) [36], leverage kernel functions to handle non-linear relationships in dis-
placement data, but their scalability and performance depend heavily on the selection
of appropriate kernels. Frequency-based methods, such as Fourier analysis and wavelet
transforms, are also used to identify periodic patterns in shaft movements but are less
effective in modeling non-linear and stochastic behaviors. These limitations highlight
the need for advanced models that can handle both the short-term and long-term com-
plexities inherent in ship main shaft trajectory prediction, a gap that can be addressed by
Transformer-based models.

2.2. Prediction Accuracy and Comparative Experiments

In recent years, Transformer-based models have gained significant attention for their
ability to process time-series data, as seen in Figure 2, especially for long-term forecasting
tasks. However, standard Transformer architectures face limitations when dealing with
complex temporal dependencies and long-range patterns, primarily due to their quadratic
computational complexity and inefficiency in handling extended sequences. Our work
builds upon the strengths of the Transformer architecture and introduces several key modi-
fications specifically designed to enhance its performance for predicting the trajectory of a
ship’s main shaft centerline. We developed a novel model, which incorporates two signifi-
cant innovations: the Bidirectional Splitting–Agg Attention (BSAA) mechanism and the
Sequence Progressive Split–Aggregation (SPSA) module. These mechanisms were designed
to address the challenges of capturing both forward and backward temporal dependencies
and to improve the model’s ability to handle long-term time series data efficiently.
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The BSAA mechanism enables the model to capture both forward and backward
temporal dependencies simultaneously. By splitting the sequence into subcomponents
and applying an attention mechanism bidirectionally, the model can more effectively
learn from both past and future data points. This is crucial in accurately predicting the
dynamic behavior of a ship’s main shaft, where both historical trends and future conditions
influence trajectory. The BSAA also leverages Fourier transformation [37] to capture cyclical
patterns within the data, enhancing the model’s ability to detect periodicities and long-
range dependencies. The SPSA module was introduced to further improve the model’s
ability to decompose time series data into trend and seasonal components. It progressively
splits the input data into finer granularity and aggregates the information across different
time scales. This not only reduces noise but also enhances the model’s ability to distinguish
between short-term fluctuations and long-term trends, which is critical for accurately
predicting the shaft centerline trajectory over extended periods. Empirical results from
our experiments show that the SPSA module significantly boosts the model’s accuracy,
particularly in scenarios involving long-term forecasting. The shafting system of a ship
exhibits inherent bilateral symmetry, with left and right shafts operating under similar
dynamic conditions. This structural symmetry provides a natural alignment with the
bidirectional attention mechanism of the proposed Transformer-based model, allowing the
model to leverage symmetric dependencies both in forward and backward directions. Such
symmetry ensures a more accurate prediction of the axial displacements and enhances
operational safety through precise long-term forecasting. In our comparative experiments,
we demonstrated that our modified Transformer-based model, equipped with BSAA and
SPSA, outperformed other state-of-the-art models such as Autoformer and Informer in
terms of prediction accuracy and computational efficiency. The incorporation of these
mechanisms led to a substantial reduction in Mean Squared Error (MSE) across multiple
benchmark datasets, particularly for long-term predictions. Additionally, our visualization
experiments, which mapped the predicted lateral and longitudinal displacements into a
visual trajectory of the ship’s main shaft, showcased the practical applicability of our model
in maritime operations. The model’s ability to handle complex temporal dependencies
and efficiently predict the shaft centerline trajectory was clearly demonstrated through
these visualizations.

2.3. Visualization of Shaft Centerline Trajectories

A critical component of our research involved not only improving the accuracy of
ship main shaft centerline trajectory predictions but also providing comprehensive vi-
sualizations of these trajectories [38]. By plotting the predicted lateral and longitudinal
displacement data, we generated detailed visual representations of the ship’s shaft move-
ments, facilitating a direct comparison between predicted and actual trajectories.

These visualizations were instrumental in validating the Transformer-based model’s
effectiveness. By transforming the displacement data into trajectory plots, we demonstrated
how closely the model’s forecasts aligned with real-world shaft behavior. The visual com-
parisons highlighted both short-term fluctuations and long-term trends, showcasing the
model’s ability to capture complex temporal dependencies and providing insights into
its performance over extended periods. In our comparative studies, the accuracy of the
Transformer-based model was benchmarked against traditional methods like ARIMA and
LSTM, as well as more recent Transformer variants such as Informer and Autoformer. The
visualized trajectories clearly indicated that our modified Transformer model consistently
outperformed these alternatives, particularly in long-term forecasting, where other models
struggled to maintain precision due to their limited capacity to capture long-range de-
pendencies and non-linear dynamics. These visualizations also underscored the practical
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benefits of our model. By mapping predicted trajectories, we could easily identify periods
of potential misalignment or mechanical stress on the shaft, offering valuable insights
for real-time monitoring and predictive maintenance in maritime operations. This visu-
alization approach improved both the interpretability and applicability of the model’s
predictions, demonstrating its capacity to support advanced operational decision-making.
In summary, the visualization of shaft centerline trajectories played a pivotal role in veri-
fying the prediction accuracy of our model. It provided a clear and impactful method for
comparing model outputs with actual data and highlighted the superior performance of
our Transformer-based approach in capturing both short-term dynamics and long-term
patterns in ship shaft trajectories.

In Table 1, To facilitate a clearer understanding of the symbols, abbreviations, and
terminologies used throughout this study, a comprehensive Nomenclature and Symbols sec-
tion is provided. This section aims to define all key mathematical symbols, technical terms,
and abbreviations that appear in the subsequent chapters, particularly in the methodology
and experimental analysis. By referring to this table, readers can efficiently interpret the
equations, models, and concepts discussed in the paper. The Nomenclature and Symbols
section is presented below before the detailed explanation of the proposed methodology.

Table 1. Nomenclature and symbols used in this study.

Symbol Description Unit

xd Lateral displacement of the shaft centerline mm

yd Longitudinal displacement of the shaft centerline mm

rd Radial displacement mm

ω Rotational velocity of the shaft RPM

T Torque applied to the shaft Nm

f Frequency of the shaft’s oscillations Hz

P Power transmitted through the shaft kW

δ Angular displacement or misalignment Degrees

Q Query matrix used in the attention mechanism -

K Key matrix used in the attention mechanism -

V Value matrix used in the attention mechanism -

ht Hidden state vector at time t -

xt Input feature vector at time t -

yt Output prediction vector at time t -

BSAA Bidirectional Splitting–Agg Attention, a novel attention mechanism proposed in this study -

SPSA Sequence Progressive Split–Aggregation, a module designed to improve model efficiency
and accuracy -

MAE Mean Absolute Error, a commonly used evaluation metric for time-series predictions -

MSE Mean Squared Error, another commonly used evaluation metric for time-series predictions -

FFT Fast Fourier Transform, used for frequency-domain analysis -

ARIMA Auto-Regressive Integrated Moving Average, a traditional time-series forecasting method -

LSTM Long Short-Term Memory, a type of recurrent neural network (RNN) -

RNN Recurrent Neural Network, commonly used for sequential data modeling -

R2 Coefficient of Determination, a measure of the proportion of variance explained by
the model -
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3. Methods
This study tackles the inherent complexities in predicting the trajectory of a ship’s

main shaft centerline, specifically the challenge of accurately capturing both short-term
fluctuations and long-term dependencies in displacement data. Traditional models often fall
short in their ability to integrate both past and future dependencies in time series forecasting.
To address these challenges, we propose an innovative approach that enhances model
performance by employing sequence dimension splitting and aggregation mechanisms
tailored to the dynamics of ship shaft trajectories. The development of the BSAA and
SPSA mechanisms was inspired by advancements in attention mechanisms and time-series
decomposition techniques. BSAA builds upon the foundation of the Transformer model’s
self-attention mechanism introduced by Vaswani et al. [10], emphasizing bidirectional
temporal processing to capture both past and future dependencies. This design was
influenced by approaches such as Informer [11] and Autoformer [12], which highlighted
the importance of efficient attention mechanisms for long-range time-series forecasting.

Additionally, the Fourier-based enhancements in BSAA are inspired by frequency-
domain decomposition methods discussed in prior studies like Fedformer [16], which
demonstrated the effectiveness of integrating spectral analysis to model cyclical patterns
in data. On the other hand, the SPSA mechanism leverages concepts from multi-scale
decomposition and aggregation as outlined in classical time-series techniques, including
wavelet analysis [35], and recent innovations such as the auto-correlation approach in
Autoformer [12]. These references collectively underscore the importance of combining
temporal and frequency-domain insights to address the challenges of predicting complex
marine shaft trajectories. By synergizing these methodologies, BSAA and SPSA ensure
robust handling of both short-term fluctuations and long-term dependencies, thereby
advancing the state of the art in Transformer-based time-series forecasting.

3.1. Model Architecture

Accurately predicting ship main shaft centerline trajectories requires an effective
approach to multivariate time-series forecasting, particularly in deciphering and leveraging
critical signals to anticipate future trends. Each variable involved in the prediction process,
such as lateral and longitudinal displacement, environmental conditions, and operational
factors, plays a distinct role in shaping the trajectory forecast. A heatmap, shown in
Figure 2, highlights the correlation patterns between each variable and the target forecast.
These correlations are dynamic, shifting over time due to the complex interactions between
mechanical and environmental factors. Capturing these temporal shifts is essential for
enhancing the model’s predictive performance. Moreover, identifying and analyzing the
interdependencies between these variables is crucial for improving prediction accuracy.
The dynamic interplay between multiple variables adds depth to the analysis, enabling the
model to better account for both short-term variations and long-term trends in the data. By
incorporating these interdependencies into the proposed model, we significantly enhance
its ability to produce more accurate and reliable forecasts. As detailed in the architectural
diagram of the model (Figure 3), this study focuses on improving the model’s handling
of complex temporal patterns, particularly those involving seasonal variations and trend-
cyclical behaviors, to ensure robust long-term forecasting of the ship’s main shaft centerline
trajectory. The key structural enhancements in this model are specifically designed to
optimize its capacity for interpreting intricate temporal data in maritime applications.
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Figure 3. Overall architecture diagram of BSAA algorithm model.

Figure 3 illustrates the architecture of the proposed BSAA algorithm model, high-
lighting the critical components and their roles in data processing. The workflow can be
described in the following steps:

(1) Input Embedding: The raw input time-series data (e.g., ship displacement signals)
are first transformed into a high-dimensional feature space using an embedding
layer. This step ensures the raw data are represented in a format suitable for down-
stream processing.

(2) Encoder Processing:

(1) Bidirectional Splitting–Agg Attention (BSAA): The encoder applies the BSAA
mechanism to capture both past (backward attention) and future (forward
attention) dependencies using a frequency-domain analysis.

(2) Split Sequence and Convolution: The time-series data are then split into smaller
temporal units and processed using sequential convolution operations. This
step enhances feature extraction by isolating finer temporal components.

(3) Feed-Forward Layer: Aggregates and refines the extracted features from the
previous stages. These steps are repeated across multiple encoder blocks (N) to
progressively improve the model’s ability to capture complex temporal patterns.

(3) Decoder Initialization: The output of the encoder is split into two distinct components:

(1) Seasonal Component: Captures periodic or cyclical patterns, such as vibrations
or oscillations, in the ship’s shaft movement.

(2) Trend Component: Represents long-term variations, such as changes in shaft
displacement due to mechanical wear or external factors.

From a practical perspective, we consider the following:
Seasonal Component: Represents recurring mechanical patterns in the ship’s shaft

system, such as vibrations induced by propulsion systems or regular operational maneuvers.
For instance, during steady cruising, the propulsion shaft experiences consistent periodic
oscillations, which are captured as seasonal variations.
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Trend Component: Reflects long-term structural changes or operational shifts, such as
gradual displacement caused by wear and tear in the mechanical system, or environmental
factors like sea state and weather conditions.

(4) Decoder Processing: The seasonal and trend components pass through separate BSAA
mechanisms to further enhance their representations. Split Sequence and ADD Blocks
are refined iteratively through multiple decoder layers (M), ensuring the precise
modeling of both cyclical and long-term trends.

In the decoder, the seasonal component is passed through the BSAA mechanism to
focus on high-frequency periodic patterns, effectively capturing the short-term cyclical
variations critical for understanding mechanical vibrations. The trend component under-
goes a smoothing and aggregation process through the BSAA mechanism to highlight
long-term patterns and remove noise, ensuring the model captures gradual shifts caused by
operational changes or environmental factors. By refining these two components separately
and iteratively, the decoder achieves a precise balance between short-term responsiveness
and long-term stability in its predictions.

(5) Prediction Output: The refined seasonal and trend components are combined to
generate the final prediction, which accurately captures both short-term fluctuations
and long-term dependencies in the time-series data.

This modular architecture ensures the model is highly effective in modeling complex
temporal patterns, enabling robust predictions of the ship’s main shaft trajectory. Each
step in the workflow is carefully designed to optimize both computational efficiency and
predictive accuracy, making the model suitable for real-world applications.

In the model architecture, the input to the encoder consists of the sequence Xenc ∈ RI×d,
where I denotes the time steps and d represents the feature dimension. This sequence
includes past time steps that encode historical data related to the ship’s displacement and
other influencing factors. The input to the decoder, however, is split into two distinct
components: the seasonal component Xdes and the trend-cyclical component Xdet. These
two components are extracted from the latter half of the encoder input and initialized using
placeholders that account for both recent data and future trends. This process ensures that
the model maintains sensitivity to recent information while providing a stable baseline for
long-term forecasting. The mathematical representation of this process is as follows: Let
the encoder input be Xenc. Then, the initialization process for the seasonal part Xdes and the
trend-cyclical part Xdet of the decoder can be represented as

Xenc−s, Xenc−t = Split(Xenc

[
I
2 : I

]
)

Xdes = Merge(Xenc−s, Z0)

Xdet = Merge(Xenc−t, MXen, )

(1)

where Xenc−s, Xenc−t ∈ R
I
2×d represent the seasonal and trend-cyclical parts of Xenc, respec-

tively; Z0, MXen,∈ RO×d represent placeholders filled with zeros and the mean of Xenc,
respectively; and O is the length of the placeholder. This design allows the model to be
more responsive to recent data while also providing a more stable foundation for predicting
future trends. By separating and processing the seasonal and trend-cyclical components in
this manner, the architecture ensures that the model can efficiently handle the temporal
variability inherent in ship main shaft trajectories.

Within the architecture, the encoder is tasked with modeling seasonal patterns in
the data. The output of the encoder encapsulates past seasonal information, which is
then utilized as cross-information to assist the decoder in refining prediction outcomes.



Symmetry 2025, 17, 137 11 of 33

This design is especially beneficial for capturing seasonal variations that frequently occur
in time-series data related to ship movements, such as periodic fluctuations caused by
mechanical vibrations or regular operational patterns. Summarizing the overall expression
for the l-th layer of the encoder, let X(l)

enc be the output of the l-th layer, and X(l−1)
enc be the

output of the (l-1)-th layer, as seen in the following formula:

X(l)
enc = EncLayer(X(l−1)

enc ) (2)

This multi-layer design allows the model to progressively extract more complex
temporal features as data move through each layer, improving the model’s ability to capture
both short-term fluctuations and long-term trends in the ship main shaft’s trajectory. In
the formula, EncLayer represents the operation of the encoder layer. For each layer of the
encoder, its internal processing can be detailed as follows:

S(l,1)
enc , _ = SequenceSplitting(Bidirectional − Splitting − Agg(X(l−1)

enc ) + X(l−1)
enc )

S(l,2)
enc , _ = SequenceSplitting(FFN(S(l,1)

enc ) + S(l,1)
enc )

(3)

where Bidirectional-Splitting-Agg represents the BSAA mechanism, FFN refers to the Feed-
Forward Neural Network, and Sequence Splitting corresponds to the Sequence Progressive
Split–Agg operation. Specifically, S(l,i)

enc denotes the seasonal component of the l-th layer
encoder after the i-th splitting block. The detailed implementation of the Bidirectional
Splitting–Agg mechanism, which serves as a replacement for the traditional self-attention
mechanism, will be described in the following section. This enhanced encoder architecture,
which incorporates both frequency-domain Sequence Progressive Split–Agg operations
and an advanced attention mechanism, empowers the model to more effectively capture
and process seasonal variations in time-series data, specifically tailored to the dynamic
behavior of ship shaft centerline displacement.

The decoder plays a critical role, comprising two key components: the accumulative
structure for the trend-cyclical component and the enhanced BSAA mechanism designed for
the seasonal component. Each decoder layer is constructed with both an improved internal
BSA attention mechanism and the BSAA, facilitating communication between the encoder
and decoder. This dual attention structure effectively refines predictions by leveraging
historical seasonal data and extracting emerging trends and patterns from intermediate
hidden variables. By focusing on cyclical dependencies, the decoder minimizes noise
interference and hones in on crucial periodic trends. Structured in ’M’ layers, the decoder
processes input from the encoder. For instance, considering a latent variable X1 received
from the encoder, the operational dynamics of the l-th layer in the decoder can be articulated,
focusing on the progressive refinement of trend predictions and the nuanced extraction of
seasonal features. This layer-wise bidirectional approach allows the model to efficiently
decompose and utilize complex time-series data, improving both prediction accuracy and
the interpretability of forecasts. The process is mathematically expressed as

X(l)
dec = DecLayer(X(l−1)

dec , X(N)
enc ) (4)
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where DecLayer represents the operation of the decoder layer. The internal processing of
each decoder layer can be described as

S(l,1)
dec , T(l,1)

dec = SequenceSplitting(Bidirectional − Splitting − Agg(X(l−1)
dec ) + X(l−1)

dec )

S(l,2)
dec , T(l,2)

dec = SequenceSplitting(Bidirectional − Splitting − Agg(S(l,1)
dec , X(N)

enc ) + S(l,1)
dec )

S(l,3)
dec , T(l,3)

dec = SequenceSplitting(FFN(S(l,2)
dec ) + S(l,2)

dec )

(5)

T(l)
dec = T(l−1)

dec +
3

∑
i=1

W(l,i) · T(l,i)
dec (6)

where T(l)
dec is the trend-cyclical component accumulated by the l-th layer decoder; S(l,i)

dec , T(l,i)
dec ,

respectively, represent the seasonal component and trend-cyclical component after the i-th
splitting block of the l-th layer decoder; and W(l,i) is the projector of the i-th extracted trend
T(l,i)

dec . The final prediction result is the sum of these two split components, which can be
represented as

FinalPrediction = WS · X(M)
dec + T(M)

dec (7)

where WS is the weight matrix used to project the deeply transformed seasonal component
X(M)

dec onto the target dimension. These enhancements allow the decoder to more effectively
process both trend-cyclical and seasonal information, significantly improving the model’s
accuracy in long-term time-series forecasting, particularly for predicting ship main shaft
centerline trajectories.

To handle the complexities inherent in long-term forecasting, especially in maritime
applications, the model adopts a Sequence Progressive Split–Agg strategy. This block
progressively distills stable long-term trends from intermediate hidden variables, allowing
for a more precise analysis of the time series. By mitigating cyclical noise through a moving
average approach, the model highlights persistent trends, leading to improved projection
accuracy and reliability in forecasting future sequences. For any given input sequence with
length L, this splitting and smoothing operation can be mathematically delineated as

X̃t = Smooth(X̃) = X̃ − X̃s (8)

where X̃t and X̃s represent the trend-cyclical and seasonal parts, respectively, separated
from the original sequence X̃. This methodology enhances the predictive accuracy by
isolating these components, thereby improving the model’s ability to capture and predict
distinct patterns in the time series. A correlational pooling method is employed during the
moving average process, and padding operations ensure that the sequence length remains
unchanged. The bidirectional nature of the Splitting–Agg Attention mechanism introduces
symmetry in the temporal processing of sequence data. By analyzing both past and future
states, the model captures symmetrical patterns in the temporal structure, leading to more
accurate and stable predictions, particularly for complex systems such as marine shafts that
exhibit cyclic behavior over time.

3.2. Bidirectional Splitting–Agg Attention Layer

This study advances time-series data analysis by introducing a BSAA layer, as shown
in Figure 4. The BSAA layer enhances the model’s interpretative capability by processing
both forward and backward temporal dependencies. This bidirectional mechanism is
crucial for accurately predicting the trajectory of the ship’s main shaft, as it allows the
model to capture complex cyclical and long-term dependencies inherent in the time-series
data. By simultaneously calculating and aggregating attention across sub-sequences in
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both temporal directions, the model significantly improves its ability to understand and
forecast the trajectory’s future behavior.
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At the core of the BSAA layer are three distinct computational stages. The first stage
involves calculating forward attention, achieved by applying a FFT to the query (Q) and
value (V) components of the input time-series data. The FFT effectively transforms the data
from the time domain into the frequency domain, enabling the model to detect periodic
behaviors and cyclical patterns more efficiently. This frequency-domain processing is
particularly suited for identifying long-term trends and seasonal variations within the
ship’s shaft movement data. The computation for forward attention can be expressed as

Q f orward
f f t = FFT(Qpermute)

V f orward
f f t = FFT(Vpermute)

Corr f orward = IFFT(Q f orward
f f t × V f orward

f f t )

(9)

Here, Qpermute and Vpermute are specifically arranged query and value matrices, adapted
for FFT operations. Corr f orward represents forward correlation. In the proposed model, the
initial step transitions time-series data from the time domain into the frequency domain
using FFT. Following this transformation, the FFT results of both components are combined
and subsequently reverted using an inverse FFT to delineate forward correlations, thereby
unveiling the cyclical dependencies characteristic of the time series.

Following the forward attention computation, the model proceeds to calculate back-
ward attention. This is achieved by reversing the sequence of the query and value compo-
nents before applying FFT. This stage is essential for capturing temporal dependencies that
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flow from future states back to the past, a critical factor in modeling complex interactions in
ship shaft trajectory data. The backward attention calculations are represented as follows:

Qbackward
f f t = FFT( f lip(Q)permute)

Vbackward
f f t = FFT( f lip(V)permute)

Corrbackward = IFFT(Qbackward
f f t × Vbackward

f f t )

(10)

where f lip(Q) and f lip(V) represent the results of reversing the query and key matrices
along the time axis, aiming to capture temporal dependencies from the future to the past,
and Corrbackward is the forward–backward correlation. This process allows the model to
discern backward temporal dependencies, effectively identifying future states that influence
previous time steps, which is particularly important for long-term predictive accuracy in
time-series forecasting.

Post these computations, the results derived from both forward and backward atten-
tion processes are synthesized. The fusion of these directional attentions is executed using
a specific formula designed to amalgamate insights from both the past and the future of
the series. The resultant aggregated output, denoted as R, is formulated as

R = w f · R f orward + wb · R f orward (11)

where w f and wb are the weight coefficients for forward and backward attention, used to
adjust the impact of attention in both directions on the final output. Through this BSAA
mechanism, the model can more comprehensively capture the forward and backward
dependencies in time series, thus providing a more accurate perspective for long-term time
series prediction. By leveraging the BSAA mechanism, the model effectively captures the
complex interactions between cyclical dependencies and long-term trends in ship shaft
trajectory data. This approach enhances the model’s capacity for long-term forecasting
by providing a more comprehensive understanding of the temporal structure, which is
essential for accurate predictions of the ship’s main shaft centerline trajectory.

3.3. Exploration of Periodic Dependence and Aggregation Mechanism

Identifying these periodic dependencies is crucial for enhancing prediction accuracy,
as ship operations often exhibit recurring patterns influenced by mechanical vibrations,
operational conditions, and environmental factors. In Figure 5, building on the foundations
of models such as Autoformer, this research refines the process of identifying and utilizing
these cyclical variations through an advanced delayed split–aggregate analysis.

At the core of this approach is the calculation of the BSAA function, denoted as B∗
XX(δ),

which provides a robust mechanism for recognizing and leveraging cyclical dependencies.
This function captures the similarity between a sequence {Xt} and itself over a lag δ,
identifying repeating patterns within the data that play a critical role in the trajectory
prediction task. The correlation function is mathematically defined as

B∗
XX(δ) = lim

N→∞

1
N ∑N

t=1 ((Xt · Xt−δ) + ϵ) (12)

where B∗
XX(δ) captures the similarity of the sequence {Xt} with its time series in an δ-step

delay. This BSAA function B∗(δ) is used as the basis for assessing the period length N. From
a set of candidate period lengths, the k most likely period lengths δ1 . . . δk are selected.
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Using the insights gained from the periodic correlation function, this study further
develops a method to balance forward and backward temporal dependencies through
BSAA values across the selected period lengths. This mechanism allows the model to
better discern and capture long-term cyclical dependencies that are often observed in ship
shaft trajectory data, thus improving the accuracy of long-term forecasts. We enhanced
the Time-Delayed Aggregation (TDA) mechanism, as illustrated in Figure 5. The Sequence
Progressive Split–Agg Mechanism capitalizes on the temporal dependencies of the series,
aligning and connecting subsequences within each cycle more effectively than traditional
pointwise aggregations found in self-attention mechanisms. It determines the alignment
of similar subsequences by leveraging selected parameters δ1 . . . δk, ensuring coherence
within the estimated periods. Prior to aggregation, the importance of each subsequence
is ascertained via an optimized SoftMax function, which takes into account not only the
BSAA function values but also additional cyclical influences.

For the case of a single attention head, in the original time series, with the query Q,
key K, and value V as preconditions, the time-delayed aggregation operation is defined
as follows:

δ1, · · · , δk = argTop
(

BQ,K(δ)
)
, δ ∈ {1, . . . . . . , k}, k = [c × log L]

.
BQ,K(δ1), · · · ,

.
BQ,K(δk) = SoftMax(BQ,K(δ1), · · · , BQ,K(δk))

Bidirectional-Splitting-Agg(Q, K, V) =
k
∑

i=1
For-Back-Agg(V, δi)

.
BQ,K(δi),

(13)

Here, BQ,K(δ) represents the BSAA function for query Q and key K. As indicated by
the mathematical expression, the function argTop(k) selects the top k values of the aggregate
function, where c is a hyperparameter. The time-delayed aggregation mechanism includes
aggregating the time series X forward and backward based on these parameters with the
For-Back-Agg operation. In this operation, elements moved beyond the first position are
reintroduced at the end of the series, where K and V are from the encoder X(N)

enc , adjusted
to length O, and Q is from the previous block of the decoder.
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To fully utilize the multi-head attention mechanism, a multi-head version is introduced
to process hidden variables, which have dmodel channels and are distributed across h

different heads. For the Qi, Ki, Vi in the i-th head, the range is Qi, Ki, Vi ∈ RL× dmodel
h , i ∈

{1, · · · , h}. This multi-head processing can be described as follows:

MultiHead(Q, K, V) = Woutput × Concat(head1, . . . , headh)

headi = Bidirectional-Splitting-Agg(Qi, Ki, Vi)
(14)

The above formulas use the FFT method for calculation. For the calculation of BSAA
function values, given the time series {Xt}, B∗

XX(δ) is calculated using FFT. Let AXX( f ) be
the signal in the frequency domain; then, the calculation can be represented as

AXX( f ) = F(Xt) · F∗(Xt) =
∫ ∞

−∞
Xte−i2πt f dt

∫ ∞

−∞
Xte−i2πt f dt (15)

where F represents FFT, and F∗ is its conjugate operation. BXX( f ) is in the frequency
domain. Then, B∗

XX(δ) can be calculated through an inverse FFT operation:

B∗
XX(δ) = F−1(AXX( f )) =

∫ ∞

−∞
AXX( f )ei2π f δd f (16)

where δ ∈ {1, · · · · · · , L} represents different time delays, and L is the length of the se-
quence. The model can quickly and accurately process long-term time-series data, especially
when dealing with data characterized by significant cyclicity and seasonality. Through this
method, the model’s performance is not only enhanced, but also the demand for compu-
tational resources is reduced, making the model more suitable for large-scale time-series
forecasting tasks.

Our approach allows the model to efficiently process long-term time-series data, even
in cases where significant periodicity and seasonality are present. By leveraging FFT
and inverse FFT, the model can quickly detect and utilize periodic structures in the data,
enhancing both its accuracy and computational efficiency. The ability to capture and process
these long-term cyclical patterns makes the model particularly well suited for large-scale
forecasting tasks such as predicting ship main shaft centerline trajectories.

3.4. Model Analysis

Within the proposed model framework, this study introduces a novel BSAA mecha-
nism specifically designed to enhance the model’s capacity to capture both forward and
backward temporal dependencies. Unlike traditional self-attention models, which pri-
marily focus on current and past data, the BSAA mechanism offers a comprehensive,
bidirectional analysis of time-series data. This approach is critical in accurately predicting
the trajectory of the ship’s main shaft centerline, as it captures dynamic shifts and recurring
cyclical patterns that may occur in both past and future time steps.

The BSAA mechanism operates by utilizing FFT in a bidirectional manner, trans-
forming the input data into the frequency domain. By doing so, the model can detect
and capitalize on key cyclical patterns and reverse temporal dependencies that are of-
ten difficult to discern using standard time-domain techniques. FFT allows the BSAA
mechanism to efficiently handle complex frequency components within the displacement
data, revealing long-term trends, periodic behaviors, and latent cyclical patterns that are
critical for predicting ship shaft trajectories over extended periods. For instance, consider
a univariate time-series input sequence X = {x1, x2, . . . , xT}, representing the lateral
displacement of a ship’s main shaft. The BSAA mechanism first splits the sequence into
two sub-sequences: a forward sequence X f = {x1, x2, . . . , xT} and a backward sequence
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Xb = {x1, x2, . . . , xT}. The FFT is applied separately to each sequence, transforming them
into the frequency domain as {FFT}

(
X f

)
. This transformation captures periodic compo-

nents and frequency-domain dependencies. The next step involves computing forward and
backward attention weights using these transformed sequences. For example, forward at-
tention identifies dependencies in X f , such as the relationship between shaft displacements
at t1 and tk+1, where k denotes a periodic delay. Similarly, backward attention weights
capture dependencies in Xb, such as the influence of future displacements on previous
states. After computing forward and backward correlations, the results are combined using
a weighted aggregation function:

R = α · FFT−1(FFT(X f )) + β · FFT−1(FFT(Xb)) (17)

where α and β are learned parameters that balance the contributions of forward and back-
ward attention. This aggregated result R represents the refined temporal dependencies that
the model uses for downstream predictions. Through this process, the BSAA mechanism
effectively identifies and integrates cyclical patterns, making it well suited for time-series
data with pronounced periodicity, such as ship shaft trajectories.

The key strength of the BSAA mechanism lies in its ability to integrate insights from
both forward and backward attention analyses. This bidirectional approach enables the
model to develop a more complete understanding of the temporal structure within the
data, leading to improved predictive precision. By leveraging forward attention, the
model captures the historical influences on current shaft movements, while backward
attention identifies potential future impacts on past behaviors, enabling more accurate and
robust predictions.

Through the segmentation and aggregation of these temporal insights, the BSAA
mechanism systematically identifies and capitalizes on periodic dependencies between
subsequences. This segmentation process isolates important periodic features, allowing
the model to focus on the most relevant temporal patterns. The segmentation of the input
data into seasonal and trend-cyclical components has significant practical implications.
The seasonal component helps identify consistent periodic behaviors, which are critical for
monitoring routine mechanical vibrations and propulsion system operations. The trend-
cyclical component, on the other hand, provides insights into long-term structural changes
in the shaft system, such as those caused by wear and tear or environmental conditions.
Together, these components provide a comprehensive understanding of the temporal
dynamics, enabling the precise predictions of both recurring patterns and long-term shifts
in the data. By incorporating these practical examples, we demonstrate how the BSAA and
SPSA mechanisms operate in real-world scenarios, effectively capturing both short-term
and long-term dependencies. This ensures that the proposed model is well equipped to
address the challenges inherent in complex time-series forecasting tasks, such as predicting
ship main shaft trajectories. The aggregation phase then combines these insights across
different time periods, effectively aligning similar subsequences and improving the overall
representation of the data. This method of segmenting and aggregating time-series data
enables the model to handle long-term dependencies more effectively, providing a clearer
view of how cyclic patterns influence future trajectories.

BSAA equips the model with a holistic understanding of sequence data by considering
both preceding (forward attention) and subsequent (backward attention) elements. As
depicted in Figure 4, this approach significantly augments the model’s contextual com-
prehension, thereby improving both the accuracy and efficiency of predictions. In the
realm of time series analysis, it translates to an enhanced capability to discern and forecast
patterns, including trends and seasonal variations. By assimilating forward and backward
temporal relations, bidirectional attention substantially improves the model’s proficiency in
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recognizing cyclicality and trends, proving particularly beneficial in long-term forecasting
and intricate seasonal pattern analysis.

The BSAA and the SPSA module in this study notably reduce memory demands
and enhance computational efficiency throughout the experimental process. Without
compromising computational speed, they simultaneously refine the model’s ability to
predict and delineate prominent growth trends and seasonal peaks.

Figure 6 presents a comparative analysis of memory usage and processing time across
different models, including Autoformer, Informer, Transformer, and our proposed model,
during the training phase. The results clearly highlight the computational efficiency of
our approach:

(1) Memory Usage: For prediction lengths up to 720 steps, our model consumes 2.8 GB of
memory, significantly lower than Transformer (4.2 GB) and comparable to Autoformer
(2.7 GB) and Informer (2.9 GB). For longer prediction lengths (up to 3000 steps), our
model maintains memory usage under 6 GB, while Transformer rises dramatically to
15 GB.

(2) Processing Time: In terms of training time, our model demonstrates consistent im-
provements. For shorter prediction horizons (96 and 192 steps), the training time per
epoch is 0.5 h, similar to Autoformer and Informer, and faster than Transformer. For
longer prediction lengths (720 to 3000 steps), our model completes training within 5 h,
compared to Transformer, which exceeds 7.5 h.
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Figure 6. Efficiency Analysis: For a fair comparison, we compared Informer, Autoformer, and
Transformer models with the proposed Transformer-based model to verify its efficiency. On the ECL
dataset, the output length exponentially increases with the input length of 96.

The identified time delay sizes indicate probable period lengths, aiding the model in
employing the BSAA function for subsequences from corresponding or proximal stages.
For the final time step, the BSAA adeptly employs analogous sequences, mitigating the
shortcomings observed in self-attention models. This indicates that the model is capable of
more completely and accurately capturing relevant information. Comparative assessments
of operational memory and time during the training phase reveal that the BSAA-equipped
Transformer-based model outshines its counterparts in both memory efficiency and long-
term sequence handling, affirming its superior performance.

Table 2 presents a comparison of the time and space complexities of the models ex-
plored in this study, including the proposed Transformer-based model. Unlike the standard
Transformer with O(L2 · d) time and O(L2) space complexity, our model achieves O(L log L)
time complexity and O(L · d) space complexity. This improvement is due to the BSAA
mechanism, which reduces computational load by processing sequences bidirectionally and
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leveraging Fourier transforms to capture periodic dependencies efficiently. While models
such as Autoformer and Informer also achieve O(L log L) time complexity, they face specific
limitations in handling complex and dynamic time-series data. Autoformer, for instance,
relies on auto-correlation mechanisms that work well for stationary or quasi-stationary
data but struggle with non-stationary patterns often observed in real-world datasets like
ship shaft displacement. Similarly, Informer employs sparse attention to reduce computa-
tional overhead but sacrifices accuracy when dealing with sequences that exhibit intricate
temporal dependencies or strong periodic components. In contrast, traditional models like
LSTM and ARIMA, though effective for short-term or stationary datasets, are inherently
constrained by scalability and their inability to model long-term, non-linear dynamics. For
example, LSTM’s O(L · d2) time complexity makes it computationally prohibitive for large-
scale datasets, while ARIMA’s reliance on stationary assumptions limits its applicability to
real-world scenarios with varying operational conditions. The proposed Transformer-based
model overcomes these limitations by combining the BSAA and SPSA mechanisms, which
are specifically designed to capture both bidirectional dependencies and complex periodic
behaviors. This unique architecture ensures robustness and efficiency, making it better
suited for real-world applications where long-term forecasting accuracy and computational
scalability are critical.

Table 2. Comparison of time and space complexities across models.

Model Time Complexity (T) Space Complexity (S) Explanation

Our Model O(L logL) O(L · d)
Incorporates the bidirectional splitting attention
and frequency-domain aggregation for efficient

long-term forecasting.

Autoformer O(L logL) O(L · d)
Reduces quadratic complexity via

auto-correlation mechanism, but struggles with
some sequence dependencies.

Informer O(L logL) O(L · d) Introduces sparse attention to improve efficiency,
yet limited for non-stationary data.

Transformer O
(

L2 · d
)

O
(

L2) Suffers from quadratic complexity in
long sequences.

LSTM O
(

L · d2) O
(

L · d + d2) Effective in modeling dependencies but faces
scalability issues in long-term predictions.

ARIMA O
(

L2) O(L) Limited to short-term stationary data, not
effective for non-linear dynamics.

Compared to other Transformer variants like Autoformer and Informer, which offer
O(LlogL) time complexity, the proposed model provides superior performance in scenarios
with non-stationary and long-range dependencies. Traditional models like LSTM and
ARIMA face challenges in handling such data effectively, either due to scalability issues or
limitations with non-linear dynamics. The SPSA module in our model further optimizes
memory usage by splitting and aggregating sequences progressively, ensuring the model
remains both computationally efficient and accurate, particularly for long-term trajectory
prediction in maritime applications.

The BSAA mechanism’s ability to sparsely represent and aggregate temporal data is a
key contributor to the model’s superior accuracy and operational efficiency in long-term
sequence forecasting. By integrating forward and backward temporal dependencies, and
efficiently processing cyclical patterns, the BSAA mechanism empowers the model to
provide highly accurate predictions of the ship’s main shaft centerline trajectory, even in
challenging maritime environments characterized by complex temporal dynamics.
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3.5. Implementation Framework for Model Construction and Training

To ensure the reproducibility of our model, we provide a comprehensive explanation
of the primary components and configurations. The proposed Transformer-based model
is designed to predict time-series data by leveraging our custom BSAA mechanism and
SPSA module. These modules enable the model to capture both short-term fluctuations and
long-term dependencies within the data, providing accurate predictions across multiple
forecasting horizons.

The model begins with an embedding layer that converts the input time series into a
high-dimensional space, capturing temporal features without relying on positional encod-
ing. This design choice enables the model to process time-series data flexibly, focusing on
content rather than position. The embedded data is then processed by the SPSA module,
which performs seasonal and trend decomposition. This module decomposes the input
sequence into seasonal and trend components through a custom moving average approach,
helping the model isolate regular cyclic patterns from underlying trends. Implementing
the SPSA module requires specifying parameters like the moving average window, which
can be adjusted based on the dataset’s periodicity and trend characteristics. Within the
encoder, the model uses the BSAA mechanism instead of the traditional self-attention
mechanism. BSAA is designed specifically for time-series data, as it applies attention in
both forward and backward directions, capturing temporal dependencies across multiple
time scales. This bidirectional structure allows the model to understand dependencies
from both past and future states, making it especially effective for complex time series with
cyclical patterns. In the code, the BSAA module replaces conventional self-attention layers,
with parameters tuned to optimize performance.

In the decoder, the model reconstructs the forecasted time series by combining outputs
from the BSAA-encoded seasonal and trend components. The decoder utilizes cross-
attention to align the seasonal and trend components, ensuring that short-term variations
and long-term patterns are accurately represented in the final forecast. Additionally,
the decoder incorporates the SPSA results, effectively merging short-term fluctuations
with long-term trends to improve accuracy across different forecast horizons. During
training, we employ the Adam optimizer with a learning rate scheduler, aiming for optimal
convergence without overfitting.

4. Experiments
In this section, we evaluate the performance of our proposed model in predicting the

trajectory of a ship’s main shaft centerline based on real-world displacement data. The
real-world data include two key sources: publicly available datasets and confidential main
shaft vibration datasets provided by our institutional collaborators. The publicly available
datasets, such as ECL and Traffic, are widely used benchmarks for time-series forecasting
tasks and are utilized in this study to validate the stability and generalizability of our model
across various domains. For the main shaft vibration data, measurements were collected
from real-world maritime environments through high-precision onboard sensors. These
data capture the lateral and longitudinal displacements of the ship’s main shaft under actual
operational conditions, reflecting both mechanical vibrations and external influences such
as sea states and vessel maneuvers. We conducted comprehensive experiments to assess the
model’s ability to capture both short-term and long-term dependencies in these complex
time-series datasets. The effectiveness of the BSAA mechanism and the SPSA architecture is
examined through comparisons with traditional and modern baseline models. The results
highlight the robustness of our model in handling long-term forecasting challenges. The
experimental setup, results, and visualizations are discussed in detail below.
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4.1. Experimental Setup

All experiments in this study were computationally conducted using existing datasets.
There is no physical experimental setup or laboratory apparatus involved. The compu-
tational experiments were designed to evaluate the performance of the proposed model
using real-world data collected from ship operations and publicly available datasets.

4.1.1. Dataset

Our study began by evaluating the model on a variety of publicly available benchmark
datasets across multiple sectors, including economics, energy, transportation, weather, and
public health. This initial evaluation is crucial in demonstrating the model’s robustness
and versatility across different real-world forecasting scenarios. The datasets used include
the following:

(1) ECL: Captures the hourly electricity consumption data of 321 customers over a span
of two years, from 2012 to 2014. The dataset is accessible via https://archive.ics.uci.
edu/dataset/321/electricityloaddiagrams20112014. Accessed on 23 March 2023.

(2) ETT [11]: Consists of six characteristics of power load and oil temperature data in
electricity transformers.

(3) Traffic: Chronicles hourly changes in road occupancy rates via sensors on the San
Francisco Bay Area highways. The dataset can be accessed at http://pems.dot.ca.gov.
Accessed on 29 March 2023.

(4) Weather: Features 21 meteorological indicators across nearly 1600 U.S. locations in
2022. Exchange: Tracks exchange rate data among eight countries from 1990 to 2016.
The data are available through the Max Planck Institute for Biogeochemistry’s Weather
portal at https://www.bgc-jena.mpg.de/wetter/. Accessed on 12 May 2023.

(5) ILI: Compiles weekly influenza-like illness data from the U.S. CDC from 2002 to
2023. It is available at https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html.
Accessed on 24 May 2023.

All datasets were partitioned into training, validation, and test sets following standard
protocols, with the ETT dataset using a 6:2:2 split and others a 7:1:2 ratio.

After validating the model on these publicly available datasets, we applied it to real-
world ship main shaft displacement data to further test its effectiveness in a domain-specific
context. The dataset used for this experiment comprises real-world measurements of ship
main shaft displacements.

The data were collected using onboard sensors and include critical features such as
rotational speed, power, axial x-displacement, axial y-displacement, and radial displace-
ment. The main goal was to predict the future trajectory of the ship’s main shaft based
on these measurements. The dataset has a sampling frequency of 51,200 Hz, ensuring
high-resolution temporal data capture.

The data consist of 10 measurement tracks, each corresponding to different aspects
of the shaft’s behavior, and a total of 900,608 data points, providing a robust basis for
time-series forecasting. The dataset was divided into training, validation, and test sets
following a 70:10:20 ratio to ensure fair model evaluation and validation. The key features
of the dataset are as follows (Table 3).

https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
http://pems.dot.ca.gov
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 3. Key features of the ship main shaft displacement dataset, including displacement, velocity,
and electrical parameters.

Track Name Unit Description

Input 1 Axial x-displacement mm Axial displacement along the x-axis
Input 2 Axial y-displacement mm Axial displacement along the y-axis
Input 3 Radial displacement mm Radial displacement of the shaft

Input 4–6 Torsional velocity RPM Rotational speed in revolutions per minute
Ext. sync. 1 Voltage 1 V Voltage potential difference
Ext. sync. 2 Voltage 2 V Voltage potential difference

4.1.2. Baseline Methods

To evaluate the performance of our proposed model, we compared it against a com-
prehensive set of baseline models, including both traditional and advanced time-series
forecasting approaches. The baseline models used in this study are as follows:

Informer [11]: A Transformer-based model optimized for long-term forecasting
through sparse attention mechanisms, designed to reduce memory and computational costs.

Autoformer [12]: A Transformer-based model that enhances long-term time-series
forecasting by leveraging auto-correlation mechanisms.

Pyraformer [13]: Another Transformer variant designed for improved efficiency and
accuracy in handling long-sequence forecasting tasks.

Reformer [14]: A model that reduces the quadratic complexity of the original Trans-
former architecture, making it more suitable for large-scale time-series data.

LogTrans [35]: A logarithmic self-attention mechanism-based model, which improves
the scalability and performance of Transformer models in time-series forecasting.

N-BEATS [39]: A deep learning model for time-series forecasting that focuses on trend
and seasonal decomposition.

ARIMA [19]: A classical statistical model widely used for time-series prediction,
particularly effective for short-term trends but limited in handling complex long-term
dependencies.

LSTNet [34]: A neural network-based model that incorporates convolutional and
recurrent layers to capture both short-term patterns and long-term dependencies in time-
series data.

These models were trained and evaluated under the same conditions and with the
same dataset splits, ensuring a fair comparison. The performance of each model was
assessed using the same evaluation metrics to highlight the strengths of the proposed
model in handling both short-term fluctuations and long-term dependencies in ship main
shaft trajectory prediction.

4.1.3. Implementation Details

The proposed Transformer-based model was meticulously trained using a series of
carefully designed strategies to ensure optimal performance. The model training utilized
the L2 loss function with the Adam [40] optimizer, which is well suited for time-series
forecasting tasks. The learning rate was initially set to 0.0001, and the batch size was chosen
to be 32 to balance computational efficiency and memory usage during training.

To prevent overfitting, an early stopping strategy was applied, with training typically
concluding after 10 epochs or earlier if no reduction in validation loss was observed for
three consecutive epochs. All experiments were conducted on an NVIDIA RTX 3060
GPU, ensuring consistent and reliable computational performance across all models. The
hyperparameter c, associated with the BSAA mechanism, was fine-tuned within the range
of 1 to 2 to balance performance and computational efficiency. The model architecture
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comprises two encoder layers and one decoder layer, specifically designed to efficiently
handle complex temporal dependencies in the input data.

Performance was evaluated using MSE (Mean Squared Error) and MAE (Mean Abso-
lute Error) as the primary metrics, ensuring a comprehensive assessment of the model’s
predictive accuracy. These metrics are defined as follows:

Mean Squared Error (MSE): Measures the average squared difference between the
predicted and actual values. It is mathematically defined as

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (18)

where ŷi represents the predicted value, yi represents the actual value, and n is the number
of data points.

Mean Absolute Error (MAE): Measures the average absolute difference between the
predicted and actual values. It is mathematically defined as

MAE =
1
n

n

∑
i=1

|ŷi − yi| (19)

Both metrics provide insights into the model’s predictive accuracy, with MSE assigning
more weight to larger errors and MAE providing a more balanced view of overall error.
All experiments were repeated five times to ensure the robustness of the results, with the
average values across these repetitions forming the basis of the final analysis. The imple-
mentation of the model and the baseline models was carried out using the PyTorch [41]
framework, known for its computational efficiency and flexible programming interface,
making it ideal for handling large-scale time-series datasets and deep learning models.

4.2. Main Results

To ensure an equitable assessment across all models, we adopted uniform evaluation
criteria for both the public datasets and the ship displacement data. The public datasets
allowed us to validate the performance and versatility of the model across a wide range
of real-world forecasting scenarios before applying it to the specific task of predicting the
ship’s main shaft centerline trajectory.

The model was first evaluated on publicly available multivariate and univariate
benchmark datasets. These experiments were crucial in verifying the model’s ability to
generalize across different real-world domains such as energy, transportation, weather,
economics, and public health.

Table 4 presents the results of the multivariate time-series forecasting for datasets
such as ECL, Traffic, and ETT. Table 5 provides the results for univariate forecasting using
datasets such as ETTm2 and Exchange. The performance is evaluated based on MSE across
different forecast lengths. The table presents the experimental results for multivariate and
univariate public datasets, respectively, comparing the performance of multiple state-of-the-
art models, including our model, Autoformer, Informer, Pyraformer, Reformer, N-BEATS,
ARIMA, and LogTrans. The metrics forecast horizons set at 96, 192, 336, and 720 steps. The
bold font is used to represent the optimal experimental results.
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Table 4. Multivariate public dataset results comparing MSE and MAE across various models.

Model Our Model Autoformer Informer Pyraformer Reformer LogTrans LSTNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

EC
L

96 0.192 0.300 0.201 0.317 0.274 0.368 0.386 0.449 0.986 0.779 0.840 0.677 1.100 0.806
192 0.209 0.326 0.222 0.334 0.296 0.386 0.378 0.443 1.011 0.783 0.916 0.689 1.096 0.804
336 0.223 0.335 0.231 0.338 0.300 0.394 0.376 0.443 1.088 0.786 0.981 0.772 1.103 0.805
720 0.254 0.347 0.254 0.361 0.373 0.439 0.376 0.445 1.062 0.791 1.032 0.804 1.113 0.808

Tr
af

fic

96 0.579 0.362 0.613 0.388 0.719 0.391 0.684 0.393 0.732 0.423 0.684 0.384 1.107 0.685
192 0.582 0.357 0.616 0.382 0.696 0.379 0.692 0.394 0.733 0.420 0.685 0.390 1.157 0.706
336 0.588 0.361 0.622 0.337 0.777 0.420 0.699 0.396 0.742 0.420 0.733 0.408 1.216 0.730
720 0.621 0.385 0.660 0.408 0.864 0.472 0.712 0.404 0.755 0.423 0.717 0.396 1.481 0.805

ET
Tm

1

96 0.442 0.432 0.523 0.488 0.615 0.556 0.536 0.506 0.778 0.623 0.588 0.593 2.003 1.218
192 0.487 0.461 0.543 0.498 0.723 0.620 0.539 0.520 0.929 0.707 0.769 0.793 2.764 1.544
336 0.513 0.502 0.675 0.551 1.300 0.908 0.720 0.635 1.016 0.733 1.462 1.320 1.257 2.076
720 0.521 0.518 0.683 0.573 0.972 0.744 0.940 0.740 1.122 0.793 1.669 1.461 1.917 2.941

ET
Th

1

96 0.502 0.518 0.536 0.548 0.984 0.786 0.783 0.657 0.773 0.640 0.767 0.758 1.457 0.961
192 0.537 0.524 0.543 0.551 1.027 0.791 0.863 0.709 0.910 0.704 1.003 0.849 1.998 1.215
336 0.543 0.537 0.615 0.592 1.032 0.774 0.941 0.753 1.000 0.760 1.362 0.952 2.655 1.369
720 0.538 0.549 0.599 0.600 1.169 0.858 1.042 0.819 1.242 0.860 1.397 1.291 2.143 1.380

Table 5. Univariate public dataset results comparing MSE and MAE across various models.

Model Our Model Autoformer Informer Pyraformer Reformer N-BEATS ARIMA LogTrans

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ex
ch

an
ge 96 0.226 0.348 0.241 0.387 0.591 0.615 0.290 0.439 1.327 0.944 0.247 0.312 0.112 0.245 0.237 0.377

192 0.248 0.371 0.273 0.403 1.183 0.912 0.594 0.644 1.258 0.924 0.652 0.613 0.304 0.404 0.738 0.619
336 0.473 0.519 0.508 0.539 1.367 0.984 0.962 0.824 2.179 1.296 0.611 0.605 0.736 0.598 2.018 1.070
720 0.853 0.724 0.991 0.768 1.872 1.072 1.285 0.958 1.280 0.953 1.111 0.860 1.871 0.935 2.405 1.175

ET
Tm

2 96 0.068 0.192 0.065 0.189 0.088 0.225 0.074 0.208 0.131 0.288 0.082 0.219 0.211 0.362 0.125 0.238
192 0.103 0.228 0.118 0.256 0.132 0.283 0.116 0.252 0.186 0.354 0.120 0.268 0.261 0.406 0.179 0.295
336 0.145 0.289 0.154 0.305 0.180 0.336 0.143 0.295 0.220 0.381 0.226 0.370 0.317 0.448 0.201 0.332
720 0.186 0.331 0.182 0.335 0.300 0.435 0.197 0.338 0.267 0.430 0.188 0.338 0.366 0.487 0.248 0.389

All these results demonstrate that the proposed model consistently outperforms other
models, particularly in long-term prediction tasks, where capturing forward and backward
temporal dependencies is critical. This performance validates the robustness of the BSAA
mechanism. Figures 7a and 8a show our model, Figures 7b and 8b show Informer, and
Figures 7c and 8c show Autoformer. The blue line represents the ground truth and the
orange line represents the prediction. The proposed model consistently outperforms other
models, particularly in long-term prediction tasks, where capturing forward and backward
temporal dependencies is critical. This performance validates the robustness of the BSAA
mechanism. The blue line in Figures 7 and 8 represents the ground truth, which corresponds
to the actual observed values of the target variable in the respective datasets. Specifically,
for Figure 7, the ground truth is derived from the ETTm2 dataset, which includes real-world
electricity and oil temperature data over a prediction horizon of 196 time steps. In Figure 8,
the ground truth comes from the ETTm1 dataset, representing observed values over a
longer prediction horizon of 720 time steps. These ground-truth values are sourced from
widely recognized and publicly available datasets, which were preprocessed and validated
by their authors to ensure accuracy and reliability. These datasets are commonly used in
time-series forecasting research for benchmarking purposes and provide a trusted reference
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for evaluating model predictions. The orange line in the figures denotes the predictions
generated by the respective models. The close alignment between the blue and orange lines
in Figures 7a and 8a highlights the superior ability of our proposed model to accurately
capture both short-term variations and long-term trends. In contrast, the predictions
generated by the baseline models, such as Informer (Figures 7b and 8b) and Autoformer
(Figures 7c and 8c), demonstrate larger deviations from the ground truth, particularly in
scenarios requiring long-term forecasting. By comparing the predicted values (orange line)
with the ground truth (blue line), we validate the effectiveness of the BSAA mechanism and
the overall architecture of our proposed model. This comparison further emphasizes the
robustness and accuracy of our approach in handling complex time-series forecasting tasks.
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predicted value of the target variable., where image (a) represents the complete our model, image 
(b) represents our model without the SPSA mechanism, and image (c) represents the Autoformer 
[12] model. 

   

(a) (b) (c) 

Figure 8. Visualizations of univariate predictions on the ETTm1 dataset across different models over 
720 time steps, where image (a) represents the complete model, image (b) represents the model 
without the SPSA mechanism, and image (c) represents the Autoformer [12] model. 
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datasets and prediction horizons, our model consistently achieves higher 2R  values than 
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fluctuations and long-term dependencies. This enhancement allows for a more intuitive 
understanding of the model’s predictive capabilities and its superiority in time-series fore-
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Figure 7. Visualizes the predictions for the ETTm2 dataset across different models over 196 time steps.
The horizontal axis represents the prediction time steps, while the vertical axis denotes the predicted
value of the target variable., where image (a) represents the complete our model, image (b) represents
our model without the SPSA mechanism, and image (c) represents the Autoformer [12] model.
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After validating the proposed model on the public datasets, we adopted uniform
evaluation criteria for each baseline and the proposed model. Specifically, the historical se-
quence length for the dataset was standardized at 96 steps for both the axial x-displacement
and axial y-displacement data. The forecast lengths used for comparison were {96, 192, 336,
720} steps, which provided a comprehensive evaluation of the models’ ability to capture
both short-term and long-term dependencies in the time-series data.

The results, presented in Tables 6 and 7, highlight the robustness and superior per-
formance of the proposed model across both displacement dimensions. Table 6 focuses
on the axial x-displacement prediction results, while Table 7 provides the same for the
axial y-displacement predictions. The proposed Transformer-based model demonstrates
significant improvements over other models in terms of both MSE and MAE, particularly in
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long-term forecasting tasks (336 and 720 steps). In addition to MSE and MAE, we included
the R2 metric in both tables to provide a more comprehensive evaluation of model perfor-
mance. The R2 metric quantifies the proportion of variance in the ground truth explained
by the predictions, with values closer to 1 indicating better alignment. Across all datasets
and prediction horizons, our model consistently achieves higher R2 values than baseline
models, further underscoring its ability to accurately capture both short-term fluctuations
and long-term dependencies. This enhancement allows for a more intuitive understanding
of the model’s predictive capabilities and its superiority in time-series forecasting tasks.
The bold font is used to represent the optimal experimental results.

Table 6. Axial x-displacement prediction results.

Model\Steps 96
Steps

96
Steps

96
Steps

192
Steps

192
Steps

192
Steps

336
Steps

336
Steps

336
Steps

720
Steps

720
Steps

720
Steps

MAE/MSE/R2 MAE MSE R2 MAE MSE R2 MAE MSE R2 MAE MSE R2

Our Model 0.232 0.209 0.954 0.263 0.284 0.948 0.212 0.249 0.96 0.239 0.335 0.935
Autoformer 0.235 0.242 0.951 0.231 0.298 0.944 0.221 0.234 0.959 0.245 0.339 0.93

Informer 0.264 0.286 0.935 0.376 0.385 0.92 0.275 0.297 0.94 0.326 0.397 0.91
Pyraformer 0.376 0.368 0.89 0.376 0.376 0.89 0.387 0.379 0.91 0.371 0.448 0.89
Reformer 0.489 0.433 0.85 1.188 1.262 0.74 0.439 0.463 0.83 1.082 1.138 0.72
LogTrans 0.890 0.926 0.78 0.991 1.132 0.72 0.893 0.926 0.78 0.941 0.985 0.74
LSTNet 1.133 1.291 0.71 1.123 1.243 0.69 1.174 1.086 0.7 1.008 1.176 0.7

Table 7. Axial y-displacement prediction results.

Model\Steps 96
Steps

96
Steps

96
Steps

192
Steps

192
Steps

192
Steps

336
Steps

336
Steps

336
Steps

720
Steps

720
Steps

720
Steps

MAE/MSE/R2 MAE MSE R2 MAE MSE R2 MAE MSE R2 MAE MSE R2

Our Model 0.238 0.220 0.956 0.255 0.297 0.948 0.235 0.348 0.94 0.262 0.355 0.935
Autoformer 0.248 0.320 0.95 0.258 0.319 0.945 0.237 0.352 0.938 0.263 0.364 0.93

Informer 0.261 0.362 0.94 0.355 0.397 0.92 0.314 0.441 0.91 0.384 0.442 0.9
Pyraformer 0.331 0.435 0.91 0.383 0.454 0.89 0.389 0.455 0.89 0.387 0.459 0.88
Reformer 0.485 1.692 0.73 0.440 1.058 0.75 1.123 1.146 0.71 1.076 1.079 0.74
LogTrans 0.869 0.911 0.78 0.810 0.937 0.74 0.826 0.919 0.75 1.243 1.369 0.72
LSTNet 1.183 1.207 0.72 1.029 1.194 0.69 1.123 1.298 0.7 1.045 1.291 0.69

The following figures, Figures 9 and 10, illustrate the prediction performance of our
model for axial x-displacement and y-displacement over 720 time steps. As shown, the
predicted vibration trends align closely with the actual displacement values, demonstrat-
ing the model’s capability to capture both short-term fluctuations and long-term trends
with high precision. The predicted curves follow the actual trajectories, confirming the
effectiveness of our approach in handling complex dynamic behavior in the ship’s main
shaft system.

Our model demonstrates an impressive reduction in MSE and MAE compared to
the baseline models, particularly in long-term forecasts, where it captures both forward
and backward temporal dependencies effectively. This is especially evident in the 336-
and 720-step prediction horizons, where the proposed model consistently outperforms the
other models. Across both axial x-displacement and y-displacement datasets, our approach
showcases its strength in handling long-term forecasting tasks, thus demonstrating its
adaptability to complex, multivariate time-series data in real-world maritime environments.
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Figure 9. Prediction of axial 𝑥-displacement over 720 time steps. 
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Figure 10. Prediction of axial 𝑦-displacement over 720 time steps. 

4.3. Visualization 
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trajectory is visualized as circular motion, where both the real and predicted paths are 
compared. Each figure contains a horizontal and vertical reference line to mark the shaft 
centerline’s position, with the blue line representing the actual measured trajectory, and 
the red and orange lines representing the predicted trajectories. 

These visualizations illustrate the axial 𝑥-displacement (horizontal axis) and 𝑦-dis-
placement (vertical axis) of the shaft centerline. The predicted trajectories were generated 
using the proposed Transformer-based model over 720 time steps. The real shaft center-
line movement, captured by onboard sensors, is shown in blue, while the predicted tra-
jectories are represented by red and orange lines. 

The four visualizations provide a comprehensive overview of the model’s predictive 
capability across different operational conditions. In both the 200 RPM and 250 RPM sce-
narios, the predictions closely follow the real centerline trajectories, demonstrating the 
model’s effectiveness in capturing complex shaft motions. In Figure 11a,b, which depict 
the left and right shaft movements at 200 RPM, the predicted trajectories (red or orange) 
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Figure 10. Prediction of axial y-displacement over 720 time steps.

4.3. Visualization

In this section, we present the visualization of the predicted ship shaft centerline
trajectory over 720 time steps. These visualizations are crucial for understanding the
model’s ability to capture the intricate patterns of the shaft’s axial motion. The shaft
centerline trajectory is visualized as circular motion, where both the real and predicted
paths are compared. Each figure contains a horizontal and vertical reference line to mark
the shaft centerline’s position, with the blue line representing the actual measured trajectory,
and the red and orange lines representing the predicted trajectories.

These visualizations illustrate the axial x-displacement (horizontal axis) and y-
displacement (vertical axis) of the shaft centerline. The predicted trajectories were generated
using the proposed Transformer-based model over 720 time steps. The real shaft centerline
movement, captured by onboard sensors, is shown in blue, while the predicted trajectories
are represented by red and orange lines.

The four visualizations provide a comprehensive overview of the model’s predictive
capability across different operational conditions. In both the 200 RPM and 250 RPM
scenarios, the predictions closely follow the real centerline trajectories, demonstrating the
model’s effectiveness in capturing complex shaft motions. In Figure 11a,b, which depict the
left and right shaft movements at 200 RPM, the predicted trajectories (red or orange) align
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well with the actual trajectory (blue). The model successfully tracks the cyclic movement of
the shaft’s centerline, accurately capturing both the short-term variations and long-term
patterns in the motion.
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Figure 11. Shaft centerline trajectory prediction over 720 time steps under different rotational 
speeds. (a): Predicted and actual trajectory of the left shaft at 200 RPM. (b): Predicted and actual 
trajectory of the right shaft at 200 RPM. (c): Predicted and actual trajectory of the left shaft at 250 
RPM. (d): Predicted and actual trajectory of the right shaft at 250 RPM. 

Similarly, Figure 11c,d show the model’s predictions at 250 RPM for the left and right 
shafts, respectively. Despite the increase in rotational speed, the predicted trajectories 
maintain high fidelity to the real shaft movement. The close correspondence between the 
predicted and actual trajectories under both operational conditions highlights the robust-
ness of the model in handling different rotational speeds while predicting the shaft’s cen-
terline motion over extended time steps. These results demonstrate the model’s capacity 
for high-precision forecasting in dynamic mechanical systems, providing essential in-
sights for predictive maintenance and failure prevention in maritime applications. 
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steps and configurations used in the experimental pipeline. Our workflow was meticu-
lously designed to ensure consistency and rigor in the evaluation of the proposed Trans-
former-based model. The model optimizes both time and space complexity while 

Figure 11. Shaft centerline trajectory prediction over 720 time steps under different rotational speeds.
(a): Predicted and actual trajectory of the left shaft at 200 RPM. (b): Predicted and actual trajectory
of the right shaft at 200 RPM. (c): Predicted and actual trajectory of the left shaft at 250 RPM.
(d): Predicted and actual trajectory of the right shaft at 250 RPM.

Similarly, Figure 11c,d show the model’s predictions at 250 RPM for the left and right
shafts, respectively. Despite the increase in rotational speed, the predicted trajectories
maintain high fidelity to the real shaft movement. The close correspondence between
the predicted and actual trajectories under both operational conditions highlights the
robustness of the model in handling different rotational speeds while predicting the shaft’s
centerline motion over extended time steps. These results demonstrate the model’s capacity
for high-precision forecasting in dynamic mechanical systems, providing essential insights
for predictive maintenance and failure prevention in maritime applications.

4.4. Reproducibility and Implementation Summary for Experimental Results

To facilitate reproducibility, we provide a comprehensive summary of the essential
steps and configurations used in the experimental pipeline. Our workflow was meticulously



Symmetry 2025, 17, 137 29 of 33

designed to ensure consistency and rigor in the evaluation of the proposed Transformer-
based model. The model optimizes both time and space complexity while maintaining
high predictive accuracy. Specifically, the BSAA and SPSA modules are implemented using
parallelized operations within the PyTorch framework, leveraging GPU tensor computation
to achieve an overall time complexity of O(L log L) and space complexity of O(L · d), where
L denotes sequence length and d denotes embedding dimension.

The complete codebase, including preprocessing scripts, training routines, and eval-
uation metrics, is available upon request for interested researchers. This codebase was
thoroughly documented to facilitate understanding and adaptation in similar research
settings. To replicate our results, ensure the environment is configured with Python 3.8 or
higher and that required libraries, including PyTorch 1.8.1 and FFT libraries, are installed.
The steps to replicate the experiments are as follows:

1. Data Preparation: Run the data preparation script to format the datasets. This script
normalizes and segments the data according to the configurations described above.

2. Model Training: Execute the training script with the provided default configurations.
Hyperparameters can be adjusted through a configuration file for further experimentation.

3. Evaluation and Visualization: Use the evaluation script to compute MSE and MAE on
the test set and visualize predicted vs. true trajectories for qualitative analysis.

These resources provide a clear roadmap for reproducing our model’s performance
and contribute to the transparency and rigor of our experimental process.

5. Discussion
The results of this study highlight the efficacy of the proposed Transformer-based

model in predicting the trajectory of a ship’s main shaft centerline, particularly in handling
complex time-series data that exhibit both long-term trends and short-term fluctuations.
Compared to existing time-series forecasting models, such as LSTM and ARIMA, which
are widely used in maritime applications, our model achieves superior performance in
both accuracy and computational efficiency. For example, traditional ARIMA models are
effective at capturing short-term trends but struggle with long-term dependencies and
non-linear dynamics, as noted in previous studies. Similarly, LSTM networks have been
demonstrated to handle sequential data effectively; however, their high computational cost
and sensitivity to hyperparameter tuning limit their scalability in long-term prediction
tasks, as highlighted by some researchers [32,33]. In contrast, our model leverages the
BSAA mechanism and SPSA module to overcome these challenges, resulting in significantly
reduced prediction errors, particularly for long forecast horizons. Empirical results on
benchmark datasets, such as ETTm1 and ETTm2, clearly demonstrate our model’s robust-
ness, achieving lower Mean Squared Error (MSE) values compared to Autoformer and
Informer, two of the most advanced Transformer-based models. These findings validate
the robustness of the BSAA mechanism in capturing forward and backward temporal
dependencies while maintaining computational efficiency.

Furthermore, the structural symmetry inherent in the ship’s shafting system, where
both the left and right shafts typically exhibit similar displacement patterns due to common
external and internal forces, provides a natural alignment with our proposed model. This
bilateral symmetry has been underexplored in existing time-series forecasting research. Our
work builds on recent advancements in Transformer architectures (e.g., Informer [11] and
Autoformer [12]) by explicitly incorporating this symmetry into the BSAA mechanism. This
approach allows our model to learn symmetric dependencies and achieve better alignment
between the predicted axial displacements of the left and right shafts. Compared to existing
methods, such as CNNs or wavelet-based approaches, which primarily focus on capturing
local patterns or frequency-domain features, our model ensures more accurate predictions
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for long-term forecasting tasks. This is particularly important for predicting the operational
safety of ship shaft systems over extended periods. By leveraging both the spatial symmetry
of the shaft system and the temporal dependencies in the data, our model offers a novel
and effective solution for time-series forecasting in maritime applications.

While the proposed model has demonstrated significant improvements in both ac-
curacy and efficiency for time-series forecasting, its application to the prediction of the
ship’s main shaft trajectory opens up new possibilities for future work, particularly in the
area of ship failure analysis and predictive maintenance. One limitation of the current
study is the reliance on carefully tuned hyperparameters, such as the split factor c in the
BSAA mechanism, which may require further optimization for different types of vessels or
operational conditions. Additionally, while the model excels in predicting shaft centerline
displacement, further enhancements may be required to extend its capabilities to more
complex failure modes that involve a combination of vibration, pressure, temperature,
and other mechanical signals. Another potential limitation is the reliance on high-quality,
domain-specific datasets, which may not always be readily available for all maritime
applications, highlighting the need for adaptable models that can perform well even in
data-scarce scenarios.

Future work will focus on several key areas to address these limitations and expand
the model’s practical applications:

(1) Ship Failure Analysis and Predictive Maintenance:

Leveraging the accurate predictions of shaft trajectories, we plan to extend the model’s
capabilities to conduct detailed ship failure analysis. This involves identifying patterns and
anomalies that precede mechanical faults, enabling the earlier detection of potential failures.
By integrating the predicted shaft trajectories with failure thresholds and mechanical
diagnostics, we aim to create a comprehensive system for condition-based maintenance.
This system will allow for preventive interventions based on the predicted health of critical
components, reducing downtime and preventing catastrophic failures.

(2) Integration of Additional Mechanical and Environmental Factors:

Expanding the model to incorporate additional factors such as hull condition, engine
performance, environmental influences (e.g., sea state, weather conditions), and load
variations will enable a more holistic approach to ship performance monitoring. These
enhancements would allow the model to predict complex failure modes and provide
more accurate assessments of ships’ overall health, leading to more targeted and effective
maintenance strategies.

(3) Adaptation to Real-Time Applications:

A key area of future development involves adapting the model for real-time applica-
tions, enabling continuous monitoring of ship conditions. Real-time trajectory predictions
will support early warning systems and facilitate the maritime industry’s shift towards data-
driven, proactive maintenance protocols. This will require further optimization of the model’s
computational efficiency to ensure scalability and responsiveness in real-world scenarios.

(4) Development of Transferable and Data-Sparse Solutions:

To address the reliance on domain-specific datasets, future work will explore transfer
learning techniques and unsupervised approaches to improve the model’s adaptability to
new datasets and data-scarce environments. Developing a generalized framework that can
handle diverse maritime conditions without extensive retraining will enhance the model’s
usability across the industry.
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(5) Addressing Hyperparameter Optimization:

To mitigate the reliance on the manual tuning of hyperparameters like the split factor
c, future research will explore automated hyperparameter optimization methods, such as
Bayesian optimization or evolutionary algorithms, to adapt the model more effectively to
different vessel types and operational conditions.

The long-term goal of this research is to develop a real-time predictive maintenance
framework that utilizes the model’s trajectory predictions for continuous monitoring and
early warning systems. By integrating these advancements, this framework will support
safer and more efficient maritime operations, aligning with the industry’s transition towards
intelligent, data-driven maintenance strategies.

6. Conclusions
This study proposed a Transformer-based model designed to predict the trajectory

of a ship’s main shaft centerline. When integrating the Bidirectional Splitting–Agg Atten-
tion (BSAA) mechanism and the Sequence Progressive Split–Aggregation (SPSA) module,
the model demonstrated superior performance in accuracy and computational efficiency
across various time-series forecasting tasks. Validation on publicly available datasets across
domains such as energy, transportation, and weather confirmed the model’s robustness,
particularly in long-term forecasting, where it outperformed state-of-the-art models like
Informer, Autoformer, and LSTNet. In maritime applications, the model effectively lever-
aged the symmetry of the ship’s main shaft system, achieving high accuracy in predicting
both x-displacement and y-displacement. The predicted values closely aligned with actual
measurements, demonstrating the model’s potential for real-time predictive maintenance
and ship failure analysis. The BSAA mechanism reduced computational demands while
maintaining high accuracy, making it suitable for resource-constrained environments like
ship monitoring systems. The model’s ability to predict shaft trajectory deviations supports
condition-based maintenance strategies, enabling the early detection of mechanical faults
and improving operational safety. Future work will extend the model’s capabilities for
more advanced failure analysis, integrating additional sensor data to enhance real-time
monitoring. The model’s unique architecture and computational efficiency make it a pow-
erful tool for long-term time-series forecasting, with potential applications across industries
such as the maritime, energy, and transportation sectors.
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