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Abstract: In this work, we are devoted to discussing a system of fractional stochastic
differential variational inequalities with Lévy jumps (SFSDVI with Lévy jumps), that
comprises both parts, that is, a system of stochastic variational inequalities (SSVI) and a
system of fractional stochastic differential equations(SFSDE) with Lévy jumps. Here it
is noteworthy that the SFSDVI with Lévy jumps consists of both sections that possess a
mutual symmetry structure. Invoking Picard’s successive iteration process and projection
technique, we obtain the existence of only a solution to the SFSDVI with Lévy jumps via
some appropriate restrictions. In addition, the major outcomes are invoked to deduce that
there is only a solution to the spatial-price equilibria system in stochastic circumstances.
The main contributions of the article are listed as follows: (a) putting forward the SFSDVI
with Lévy jumps that could be applied for handling different real matters arising from
varied domains; (b) deriving the unique existence of solutions to the SFSDVI with Lévy
jumps under a few mild assumptions; (c) providing an applicable instance for spatial-price
equilibria system in stochastic circumstances affected with Lévy jumps and memory.

Keywords: SFSDVI; SSVI; SFSDE; Lévy jumps

MSC: 60H20; 34A08; 49J40

1. Introduction
Let ∥ · ∥ and ⟨·, ·⟩ be the norm and inner product in Rn (or Rm), respectively. We also

use ∥ · ∥ and ⟨·, ·⟩ to denote the norm and inner product in the product space Rn1 × Rn2 ,
respectively, that is,

∥y∥ =
√
∥y1∥2 + ∥y2∥2 and ⟨y, x⟩ = ⟨y1, x1⟩+ ⟨y2, x2⟩, ∀y, x ∈ Rn1 × Rn2 ,

with y = (y1, y2) and x = (x1, x2). In the same way, the norm and inner product in
Rm1 × Rm2 could be formulated, respectively.
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Let DVI and SDE represent a differential variational inequality and a stochastic differ-
ential equation, respectively. Suppose {Bι} is standard Brownian motion of l-dimension.
Recently, stochastic differential VI was proposed and discussed in [1], outlined as follows:{

dy(s) = b(s, y(s), h(s))ds + σ(s, y(s), h(s))dBs, s ∈ [0, T], y(0) = y0,
⟨F(ω, s, y(ω, s), h(ω, s)), x − h(ω, s)⟩ ≥ 0, ∀x ∈ K, a.s. ω ∈ Ω, a.e. s ∈ [0, T],

(1)

where y0 is a fixed random vector, K ⊂ Rm is of both convexity and closedness, and
single-valued mappings F, σ, b are measurable.

It was shown in [1] that there is only a solution to the above stochastic DVI and the
solution is continue to parametric stochastic DVI. Their outcomes were also applied to
treat some practical problems such as the spatial-price equilibria problems in stochastic
circumstances. Meanwhile, Euler iterative approach is applied in [2] for settling stochastic
DVI and the major results are exploited to handle some practical problems such as the
circuits with electrical diodes in stochastic circumstances.

It is noteworthy that the above stochastic DVI is actually the classical DVI considered
in [3] with stochastic circumstance effects. In accordance with [3], it is known that DVI
furnishes an efficient modeling pattern to different applicable matters. So, stochastic
differential VI could be exploited to address varied practical matters arising in different
fields such as mechanics, finance and economy in stochastic circumstances. A range of
theoretic results, iteration processes and computational instances had been acquired broadly
for classical differential VI; refer to [4–17].

To the best of our awareness, in past decade, many scholars had found that there are
jump and memory features for certain systems to display. Moreover, these features could
not be enough explained by SDEs driven just by Brownian motions. As a result, on the
basis of fractional calculus and Lévy jumps, certain academics captured memorability and
instability of systems, independently; refer to [8,9,18–22]. With the help of the matters
related to the stochastic systems effected with memory and jumps, Zeng et al. [23] pre-
sented and discussed a fractional stochastic DVI with Lévy jump (FSDVI with Lévy jump),
formulated as follows:

dy(s) = b(s, y(s−), h(s−))ds + σ1(s, y(s−), h(s−))(ds)α + σ(s, y(s−), h(s−))dBs

+
∫
∥y∥<c G(s, y(s−), h(s−), y)Ñ(ds, dy), α ∈ ( 1

2 , 1),

y(0) = y0,
⟨F(ω, s, y(ω, s), h(ω, s)), x − h(ω, s)⟩ ≥ 0, ∀x ∈ K, a.s. ω ∈ Ω, a.e. s ∈ [0, T].

(2)

To estimate the above fractional differential part, we realize that it serves as a special term
for which it is not hard to reckon fractional differentiation expressed as (ds)α for α ∈ ( 1

2 , 1);
refer to [20].

Taking into account the matters relevant to these stochastic systems effected by mem-
ory and jumps with α ∈ ( 1

2 , 1) we now introduce and explore a system of fractional
stochastic DVIs with Lévy jumps (SFSDVI with Lévy jumps), specified as follows:

dx1(s) = b1(s, x(s−), u(s−))ds + σ1
1 (s, x(s−), u(s−))(ds)α + σ1

0 (s, x(s−), u(s−))dB1(s)
+
∫
∥x1∥<c1

G1(s, x(s−), u(s−), x1)Ñ1(ds, dx1),

dx2(s) = b2(s, x(s−), u(s−))ds + σ2
1 (s, x(s−), u(s−))(ds)α + σ2

0 (s, x(s−), u(s−))dB2(s)
+
∫
∥x2∥<c2

G2(s, x(s−), u(s−), x2)Ñ2(ds, dx2),

x(0) = x0,

(3)

and{
⟨F1(ω, s, x2(ω, s), u1(ω, s)), v1 − u1(ω, s)⟩ ≥ 0, ∀v1 ∈ K1, a.e. s ∈ [0, T], a.s. ω ∈ Ω,
⟨F2(ω, s, x1(ω, s), u2(ω, s)), v2 − u2(ω, s)⟩ ≥ 0, ∀v2 ∈ K2, a.e. s ∈ [0, T], a.s. ω ∈ Ω,

(4)
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in which x0, x ∈ Rn1 × Rn2 and u ∈ Rm1 × Rm2 , with x0 = (x1,0, x2,0), x = (x1, x2) and
u = (u1, u2). Here it is noteworthy that the SFSDVI with Lévy jumps consists of both
sections that possess a mutual symmetry structure. Under making no misleading, we could
employ xk(s) and uk(s) instead of xk(ω, s) and uk(ω, s) in the subsequent statement for
k = 1, 2. Refer to the further description for more notations and detailed information.

A few special cases of the issue (3) and (4) are released as follows.
(i) In case Gk = 0 for each k, the issue (3) and (4) reduces to

dx1(s) = b1(s, x(s−), u(s−))ds + σ1
1 (s, x(s−), u(s−))(ds)α + σ1

0 (s, x(s−), u(s−))dB1(s),
dx2(s) = b2(s, x(s−), u(s−))ds + σ2

1 (s, x(s−), u(s−))(ds)α + σ2
0 (s, x(s−), u(s−))dB2(s),

x(0) = x0,
(5)

and{
⟨F1(ω, s, x2(ω, s), u1(ω, s)), v1 − u1(ω, s)⟩ ≥ 0, ∀v1 ∈ K1, a.e. s ∈ [0, T], a.s. ω ∈ Ω,
⟨F2(ω, s, x1(ω, s), u2(ω, s)), v2 − u2(ω, s)⟩ ≥ 0, ∀v2 ∈ K2, a.e. s ∈ [0, T], a.s. ω ∈ Ω.

(6)

Issue (5) and (6) serves as a new matter.
(ii) In case σk

1 = 0 and Gk = 0 for each k, the issue (3) and (4) reduces to a generalization
of SDVI (1) studied in [1,2,23].

(iii) In case σk
0 = 0 and Gk = 0 for each k, the issue (3) and (4) reduces to a generaliza-

tion of a special situation of FDVI presented and considered by varied academics; refer
to [8,9,19,24–26].

Precisely speaking, through suitable selections of the measurability mappings
σk

0 , σk
1 , bk, Gk and the set Kk for k = 1, 2, one could derive a range of prominent (stochastic)

DVIs and their systems as special examples in terms of SFSDVI with Lévy jumps (3) and
(4). Resembling FSDVI with Lévy jump (2), employed for treating numerous matters
in stochastic circumstances, SFSDVI with Lévy jumps (3) and (4) could be exploited for
expressing different systems of realistic stochastic problems, with memory and jumps. We
shall in Section 4 provide an application of (3) and (4) to the spatial-price equilibria systems
in stochastic circumstances influenced with memory and Lévy jumps.

As well as we know, there is no research work for one to study the symmetrical SFSDVI
with Lévy jumps like (3) and (4). So, it will be interesting and valuable to investigate (3)
and (4).

The main contributions of the article over other ones (see e.g., [11,23]) are listed
as follows: (a) putting forward the SFSDVI with Lévy jumps (3) and (4) that could be
applied for handling different real matters arising from varied domains; (b) deriving the
unique existence of solutions to (3) and (4) under a few mild assumptions; (c) providing an
applicable instance for spatial-price equilibria system in stochastic circumstances affected
with Lévy jumps and memory.

2. Basic Concepts and Formulations
To deal with the symmetrical SFSDVI with Lévy jumps (3) and (4), one first releases

some preliminaries, including some notions and basic tools.

• (Ω,F , {Fs}s≥0, P) denotes a complete probability space with filtration {Fs}.
• B(s) denotes Brownian motion that is l-dimensional and Fs-adapted.
• N : R+ × (Rn \ {0}) and B(s) are independent of each other, with N being jump Fs-

adapted measure; and the associated compensation is martingale measure, specified
as follows:

Ñ(ds, dx) := N(ds, dx)− ν(dx)ds,



Symmetry 2025, 17, 138 4 of 18

whose intensity measure ν(·) meets

∫
Rn\{0}

x2

1 + x2 ν(dx) < ∞.

• L2(Ω, Rn) denotes the Hilbert space of Rn-valued squared-integrable random vari-
ables, equipped with norm ∥ · ∥L2 = (E∥ · ∥2)1/2.

• Hm[b, c] = L2
ad(Ω × [b, c], Rm) denotes the Hilbert space of Rm-valued Fs-adapted

stochastic processes, fulfilling
∫ c

b E∥ f (ω, τ)∥2dτ < ∞, ∀ f ∈ Hm[b, c], whose inner
product is endowed by

⟨h, v⟩Hm [b,c] =
∫ c

b
E(⟨h(ω, s), v(ω, s)⟩)ds, ∀h, v ∈ Hm[b, c],

with [b, c] ⊂ [0, T].
• Um[b, c] = {h(ω, τ) ∈ L2

ad(Ω × [b, c], Rm) : h(ω, τ) ∈ K, a.s. ω ∈ Ω, a.e. τ ∈ [b, c]},
with K ⊂ Rm being both convex and closed.
Let Kk ⊂ Rmk be convex and closed. We specify the spatial-products X = Rn1 × Rn2

and V = Rm1 × Rm2 . In what follows, we furnish the specific details for (3) and (4).
For i = 1, 2, assume the following conditions hold throughout.

•
∫ s

0

∫
∥xi∥<ci

Gi(ι, x(ι−), u(ι−), xi)Ñi(dι, dxi) is an Rni -valued martingale of square inte-
grability, satisfying

P(
∫
∥xi∥<ci

∥Gi(ι, x(ι−), u(ι−), xi)∥νi(dxi)dι < ∞) = 1

in which the constant ci > 0 denotes the jump size of allowable maximality.
• x0 is the starting datum fulfilling E∥x0∥2 < ∞.
• bi : [0, T]× X × V → Rni .
• σi

0 : [0, T]× X × V → Rni×li .
• Gi : [0, T]× X × V × Rni → Rni .
• F1 : Ω × [0, T]× Rn2 × K1 → Rm1 and F2 : Ω × [0, T]× Rn1 × K2 → Rm2 .
• σi

1 : [0, T]× X × V → Rni is of continuity with respect to s.

Next, we provide vital notion involving solutions of (3) and (4), and other concepts
that will be useful to demonstrate the major results.

Definition 1. Let 1
2 < α < 1. The pair (x(s), u(s)) is said to be a solution of (3) and (4) if

x(s) ∈ L2
ad(Ω × [0, T], X) satisfying

dx1(s) = b1(s, x(s−), u(s−))ds + σ1
1 (s, x(s−), u(s−))(ds)α + σ1

0 (s, x(s−), u(s−))dB1(s)
+
∫
∥x1∥<c1

G1(s, x(s−), u(s−), x1)Ñ1(ds, dx1),

dx2(s) = b2(s, x(s−), u(s−))ds + σ2
1 (s, x(s−), u(s−))(ds)α + σ2

0 (s, x(s−), u(s−))dB2(s)
+
∫
∥x2∥<c2

G2(s, x(s−), u(s−), x2)Ñ2(ds, dx2),

x(0) = x0,

(7)

and {
u1(s) ∈ SOL(Um1 [0, T], F1(ω, s, x2(ω, s), u1(ω, s))),
u2(s) ∈ SOL(Um2 [0, T], F2(ω, s, x1(ω, s), u2(ω, s))),

(8)

in which SOL(Umi [0, T], Fi(ω, s, xj(ω, s), ui(ω, s))) is the solution set of the SVI: seek ui ∈
Umi [0, T] s.t.

⟨Fi(ω, s, xj(ω, s), ui(ω, s)), vi − ui(ω, s)⟩ ≥ 0, ∀vi ∈ Ki, a.s. ω ∈ Ω, a.e. s ∈ [0, T].
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If the pair (x(s), u(s)) is unique in the almost everywhere sense, we say that there
holds the unique existence of solutions to (3) and (4).

Take a fixed f ∈ L1([b, c]; Rd) arbitrarily. In terms of [20], we recall the left Riemann-
Liouville α-order fractional integral, specified below

(Iα
a+ f )(t) =

1
Γ(α)

∫ t

b
(t − s)α−1 f (s)ds, t > b,

with Γ(α) =
∫ ∞

0 tα−1e−tdt. In addition, from [27] we known that if f is also absolutely
continuous, then left Riemann-Liouville α-order fractional derivative is specified below

(Dα
b+ f )(s) =

1
Γ(1 − α)

d
ds

∫ s

b
(s − t)−α f (t)dt, s > b.

Next, it is noteworthy to mention that we are concentrated on the situation of b = 0 in
the formulation above, that is,

(Dα
0+ f )(s) =

1
Γ(1 − α)

d
ds

∫ s

0
(s − t)−α f (t)dt.

According to [28], one has Dα
0+ = dα

(ds)α and (dα f )(s) = Γ(1 + α)(d f )(s) = (Dα
0+ f )(s)(ds)α.

Setting g(s) = (Dα
0+ f )(s), one obtains∫ t

0 g(s)(ds)α = Γ(1 + α) f (t) = Γ(1 + α)D−α
0+ g(t)

= Γ(1+α)
Γ(α)

∫ t
0 (t − s)α−1g(s)ds = α

∫ t
0 (t − s)α−1g(s)ds.

Therefore, the system of fractional stochastic differential equations (3) could be rephrased as
x1(t) = x1,0 +

∫ t
0 b1(s, x(s−), u(s−))ds + α

∫ t
0 (t − s)α−1σ1

1 (s, x(s−), u(s−))ds
+
∫ t

0 σ1
0 (s, x(s−), u(s−))dB1(s) +

∫ t
0

∫
∥x1∥<c1

G1(s, x(s−), u(s−), x1)Ñ1(ds, dx1),

x2(t) = x2,0 +
∫ t

0 b2(s, x(s−), u(s−))ds + α
∫ t

0 (t − s)α−1σ2
1 (s, x(s−), u(s−))ds

+
∫ t

0 σ2
0 (s, x(s−), u(s−))dB2(s) +

∫ t
0

∫
∥x2∥<c2

G2(s, x(s−), u(s−), x2)Ñ2(ds, dx2).

For detailed information, refer to [18,20,28].
In what follows one releases the following lemmas for the subsequent usage.

Lemma 1 ([1]). Let [b, c] ⊂ [0, T] and ∅ ̸= K ⊂ Rm where K is closed and convex. Then
∅ ̸= Um[b, c] ⊂ L2

ad(Ω × [b, c], Rm) where Um[b, c] is closed and convex.

Let K be a nonempty closed convex subset of a real Hilbert space H. We then know
from [23] that for each x in H, there exists the unique y in K, denoted by PK(x), that is
y = PK(x), s.t. dist(x, K) = minv∈K ∥x − v∥H = ∥x − y∥H . Moreover, for a point y ∈ K, it
holds that: y = PK(x) ⇔ ⟨x − y, v − y⟩H ≤ 0, ∀v ∈ K. In addition, let A : H → H be a
mapping. It then follows from [23] that there holds the equivalence of the relations below:

(a) v ∈ K is a solution to the VI: ⟨Av, y − v⟩H ≥ 0 for all y ∈ K;
(b) v = PK(v − µAv) with coefficient µ > 0.

Lemma 2 ([1]). Take an element x ∈ L2
ad(Ω × [b, c], Rn) arbitrarily. One then has that, for

v ∈ Um[b, c], the following relations are equivalent:
(i) v(ω, s) ∈ K solves the SVI:

⟨F(ω, s, x(ω, s), v(ω, s)), y − v(ω, s)⟩ ≥ 0, ∀y ∈ K, a.s. ω ∈ Ω, a.e. s ∈ [b, c];
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(ii) v ∈ Um[b, c] solves the VI:

⟨F̃(x, v), w − v⟩Hm [b,c] ≥ 0, ∀w ∈ Um[b, c],

in which F̃(x, v)(ω, s) := F(ω, s, x(ω, s), v(ω, s)) for all (x, v) ∈ L2
ad(Ω× [b, c], Rn)×Um[b, c]

and (ω, s) ∈ Ω × [b, c].

Lemma 3 ([29], Doob-type Inequality). Suppose that q ∈ [1, ∞) and the martingale ℓ(s) is
right-continuous s.t. E∥ℓ(s)∥q < ∞ for all s ≥ 0. Then

P( sup
s∈[0,T]

∥ℓ(s)∥ > ϵ) ≤ E∥ℓ(T)∥q

ϵq for all T > 0

and for q > 1,
E( sup

s∈[0,T]
∥ℓ(s)∥q) ≤ (

q
q − 1

)qE∥ℓ(T)∥q for all T > 0.

Lemma 4 ([30], Itô-type Isometry). Take a positive number T arbitrarily. Then

E[(
∫ T

0
h(ω, s)dBs)

2] = E[
∫ T

0
h2(ω, s)ds], for all h ∈ V(0, T),

in which V(0, T) denotes the family of functions h : Ω × [0, T] → R satisfying:

(a) h is B ×F measurable, in which B denotes Borel-σ-algebra on [0, T];
(b) h is Fs-adapted;

(c) E[
∫ T

0 h2(ω, s)ds] < ∞.

3. Solvability of Problem (3) and (4)
We are now ready to present and demonstrate that there holds the unique existence of

solutions of the symmetrical SFSDVI with Lévy jumps (3) and (4). For i = 1, 2, assume the
following conditions hold throughout.

Assumption 1. Take s, ι ∈ [0, T] arbitrarily, with constant T > 0, x2, x1, x ∈ X, u2, u1, u ∈ V,
x̃i,2, x̃i,1, x̃i ∈ L2

ad(Ω × [0, T], Rni ) and ũi,2, ũi,1 ∈ Umi [0, T]. Suppose throughout that there exist
positive constants Ci, Lbi

, Lσi
1
, Lσi

0
, LGi , Kbi

, Kσi
1
, Kσi

0
, KGi , and LFi with LFi > Ci s.t.

(i) ∥bi(s, x, u)∥2 ≤ Kbi
(1 + ∥x∥2 + ∥u∥2);

∥σi
0(s, x, u)∥2

Rni×li
≤ Kσi

0
(1 + ∥x∥2 + ∥u∥2);

∥σi
1(s, x, u)∥2 ≤ Kσi

1
(1 + ∥x∥2 + ∥u∥2);∫

∥x̃i∥<ci
∥Gi(s, x, u, x̃i)∥2νi(dx̃i) ≤ KGi (1 + ∥x∥2 + ∥u∥2);

(ii) ∥bi(ι, x2, u2)− bi(ι, x1, u1)∥2 ≤ Lbi
(∥u1 − u2∥2 + ∥x1 − x2∥2);

∥σi
0(ι, x2, u2)− σi

0(ι, x1, u1)∥2
Rni×li

≤ Lσi
0
(∥u1 − u2∥2 + ∥x1 − x2∥2);

∥σi
1(ι, x2, u2)− σi

1(ι, x1, u1)∥2 ≤ Lσi
1
(∥u1 − u2∥2 + ∥x1 − x2∥2);∫

∥x̃i∥<ci
∥Gi(ι, x2, u2, x̃i)− Gi(ι, x1, u1, x̃i)∥2νi(dx̃i) ≤ LGi (∥u1 − u2∥2 + ∥x1 − x2∥2);

(iii) for j = 1, 2 and j ̸= i
LFi (∥ũi,1 − ũi,2∥Hmi [0,T] + ∥x̃j,1 − x̃j,2∥Hnj [0,T]) ≥ ∥F̃i(x̃j,1, ũi,1)− F̃i(x̃j,2, ũi,2)∥Hmi [0,T];

Ci∥ũi,1 − ũi,2∥Hmi [0,T] ≤ ⟨F̃i(x̃j, ũi,1)− F̃i(x̃j, ũi,2), ũi,1 − ũi,2⟩Hmi [0,T].

Because of the associated inferences with [2], one hence obtains two consequences below.
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Lemma 5 ([2]). If condition (iii) of Assumption 1 holds, then, ∀xj ∈ L2
ad(Ω × [0, T], Rnj),

∃|ui ∈ Umi [0, T] s.t.

⟨Fi(ω, s, xj(ω, s), ui(ω, s)), vi − ui(ω, s)⟩ ≥ 0, ∀vi ∈ Ki, a.e. s ∈ [0, T], a.s. ω ∈ Ω.

Lemma 6 ([2]). If condition (iii) in Assumption 1 holds, then, ∀xj,1 ∈ L2
ad(Ω × [0, T], Rnj)

(resp., xj,2 ∈ L2
ad(Ω × [0, T], Rnj)), ∃|ui,1 ∈ Umi [0, T] (resp., ui,2 ∈ Umi [0, T]) s.t.{

⟨Fi(ω, s, xj,1(ω, s), ui,1(ω, s)), vi − ui,1(ω, s)⟩ ≥ 0, ∀vi ∈ Ki, a.e. s ∈ [0, T], a.s. ω ∈ Ω,
⟨Fi(ω, s, xj,2(ω, s), ui,2(ω, s)), vi − ui,2(ω, s)⟩ ≥ 0, ∀vi ∈ Ki, a.e. s ∈ [0, T], a.s. ω ∈ Ω.

In addition, one has that ∃Mi > 0 s.t.

E
∫ t

0
∥ui,1(ω, s)− ui,2(ω, s)∥2ds ≤ MiE

∫ t

0
∥xj,1(ω, s)− xj,2(ω, s)∥2ds, ∀t ∈ [0, T].

In order to achieve the main results, we now analyze the convergent behavior of
{(xk(s), uk(s)}, with xk(s) = (x1,k, x2,k) and uk(s) = (u1,k, u2,k), constructed below:

x1(τ) = x0,
ui,k(τ) = PUmi [0,T](ui,k(τ)− ρi F̃i(xj,k(τ), ui,k(τ))),

xi,k+1 = xi,0 +
∫ τ

0 bi(ι, xk(ι−), uk(ι−))dι + α
∫ τ

0 (τ − ι)α−1σi
1(ι, xk(ι−), uk(ι−))dι

+
∫ τ

0 σi
0(ι, xk(ι−), uk(ι−))dBi(ι) +

∫ τ
0

∫
∥xi∥<ci

Gi(ι, xk(ι−), uk(ι−), xi)Ñi(dι, dxi).

(9)

Meanwhile, we will establish a few natures of {xk}.

Lemma 7. For i = 1, 2, if (xi,k−1, ui,k−1) ∈ L2
ad(Ω × [0, T], Rni ) × Umi [0, T], then

E(sups∈[0,T] ∥xi,k(s)∥2) < ∞.

Proof. For convenience, one puts ℘k = (ι, xk(ι−), uk(ι−)) and Λk = ∥uk(ι−)∥2 +

∥xk(ι−)∥2 + 1. Using (9) and the relation below,

(∥
r

∑
j=1

ℓj∥)2 ≤ r
r

∑
j=1

∥ℓj∥2, (10)

one has
E(supτ∈[0,T] ∥xi,k(τ)∥2)

≤ 5E(∥xi,0∥2) + 5E(supτ∈[0,T] ∥
∫ τ

0 bi(℘k−1)dι∥2)

+ 5E(supτ∈[0,T] ∥
∫ τ

0 σi
0(℘k−1)dBi(ι)∥2)

+ 5E(supτ∈[0,T] ∥
∫ τ

0

∫
∥xi∥<ci

Gi(℘k−1, xi)Ñi(dι, dxi)∥2)

+ 5α2E(supτ∈[0,T] ∥
∫ τ

0 (τ − s)α−1σi
1(℘k−1)dι∥2)

= 5E(∥xi,0∥2) + 5Ii,1 + 5Ii,2 + 5Ii,3 + 5α2
i Ii,4.

(11)

Noticing Lemmas 3 and 4 and Hölder-type inequality, by condition (i) of Assumption 1,
one obtains

Ii,1 ≤ E(supτ∈[0,T] τ
∫ τ

0 ∥bi(℘k−1)∥2dι)

≤ TE
∫ T

0 Kbi
Λk−1dι < ∞,

(12)

Ii,2 ≤ ( 2
2−1 )

2E(
∫ T

0 ∥σi
0(℘k−1)∥2dι)

≤ 4E
∫ T

0 Kσi
0
Λk−1dι < ∞,

(13)

Ii,3 ≤ ( 2
2−1 )

2E(
∫ T

0

∫
∥xi∥<ci

∥Gi(℘k−1, xi)∥2νi(dxi)dι)

≤ 4E
∫ T

0 KGiΛk−1dι < ∞,
(14)
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Ii,4 ≤ E(supt∈[0,T][
∫ t

0 (t − ι)2α−2dι
∫ t

0 ∥σi
1(℘k−1)∥2dι])

≤ E( T2α−1

2α−1

∫ T
0 KGiΛk−1dι) < ∞.

(15)

So, we conclude from the above inequalities that

E( sup
τ∈[0,T]

∥xi,k(τ)∥2) ≤ 5E(∥xi,0∥2) + 5Ii,1 + 5Ii,2 + 5Ii,3 + 5α2 Ii,4 < ∞.

Obviously, the above lemma ensures that: if (xi,k−1, ui,k−1) ∈ L2
ad(Ω × [0, T], Rni )×

Umi [0, T], then E(sups∈[0,T] ∥xi,k(s)∥2) < ∞. This arrives at xi,k ∈ L2
ad(Ω × [0, T], Rni ).

We are now in a position to state and demonstrate that there holds the unique existence
of solutions of issue (3) and (4).

Theorem 1. There holds the unique existence of solutions of issue (3) and (4) provided that that
Assumption 1 is satisfied.

Proof. For i = 1, 2, one defines xi,1(τ) := xi,0 ∀τ ∈ [0, T]. Hence it is easily known from
Lemma 5 and Lemmas 1 and 2 that ∃|ui,1 ∈ Umi [0, T] such that

ui,1(τ) = PUmi [0,T](ui,1(τ)− ρi F̃i(xj,1(τ), ui,1(τ))).

Also, we set

xi,k+1 = xi,0 +
∫ τ

0 bi(ι, xk(ι−), uk(ι−))dι + α
∫ τ

0 (τ − ι)α−1σi
1(ι, xk(ι−), uk(ι−))dι

+
∫ τ

0 σi
0(ι, xk(ι−), uk(ι−))dBi(ι) +

∫ τ
0

∫
∥xi∥<ci

Gi(ι, xk(ι−), uk(ι−), xi)Ñi(dι, dxi).

Then for any given (xj,1, ui,1) ∈ L2
ad(Ω × [0, T], Rnj) × Umi [0, T], it follows that xj,2 ∈

L2
ad(Ω × [0, T], Rnj) (because of Lemma 7). By Lemma 5 and Lemmas 1 and 2, we deduce

that ∃|ui,2 ∈ Umi [0, T] such that

ui,2(τ) = PUmi [0,T](ui,2(τ)− ρi F̃i(xj,2(τ), ui,2(τ))).

Conducting such process persistently, we could fabricate {(xk(τ), uk(τ)}, in which
xk(τ) = (x1,k, x2,k) and uk(τ) = (u1,k, u2,k), satisfying the following:


ui,k(τ) = PUmi [0,T](ui,k(τ)− ρi F̃i(xj,k(τ), ui,k(τ))),

xi,k+1 = xi,0 +
∫ τ

0 bi(ι, xk(ι−), uk(ι−))dι + α
∫ τ

0 (τ − ι)α−1σi
1(ι, xk(ι−), uk(ι−))dι

+
∫ τ

0 σi
0(ι, xk(ι−), uk(ι−))dBi(ι) +

∫ τ
0

∫
∥xi∥<ci

Gi(ι, xk(ι−), uk(ι−), xi)Ñi(dι, dxi),

where 0 < ρi <
2Ci
L2

Fi

.

Now let us show the convergence of {(xk, uk)}k≥1 in L2
ad(Ω× [0, T], X)×Um1+m2 [0, T],

where

Um1+m2 [0, T] := {u(ω, s) ∈ L2
ad(Ω × [0, T], V) : u(ω, s) ∈ K1 × K2, a.s. ω ∈ Ω, a.e. s ∈ [0, T]}.

Indeed, for convenience, one puts ℘k = (ι, xk(ι−), uk(ι−)), ξk = ∥xk−1(ι−) −
xk(ι−)∥2, ζk = ∥uk−1(ι−) − uk(ι−)∥2, ξi,k = ∥xi,k−1(ι−) − xi,k(ι−)∥2 and ζi,k =
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∥ui,k−1(ι−) − ui,k(ι−)∥2. Noticing condition (ii) of Assumption 1, from Lemma 3 and
Hölder-type inequality we get

E sups∈[0,τ] ∥xi,k(s)− xi,k+1(s)∥2

≤ 4ET
∫ τ

0 ∥bi(℘k−1)− bi(℘k)∥2dι + 4E sups∈[0,τ](
∫ s

0 ∥σi
0(℘k−1)− σi

0(℘k)∥dBi(ι))
2

+ 4E sups∈[0,τ](
∫ s

0

∫
∥xi∥<ci

∥Gi(℘k−1, xi)− Gi(℘k, xi)∥Ñi(dι, dxi))
2

+ 4α2E supt∈[0,τ](
∫ t

0 (t − ι)α−1∥σi
1(℘k−1)− σi

1(℘k)∥dι)2

= Īi,1 + Īi,2 + Īi,3 + Īi,4.

(16)

According to Hölder-type inequality and Lemma 3, one gets

Īi,1 ≤ 4TLbi
E
∫ τ

0
ξk + ζkdι, (17)

Īi,2 ≤ 4 × 4E
∫ τ

0 ∥σi
0(℘k−1)− σi

0(℘k)∥2dι

≤ 16Lσi
0
E
∫ τ

0 ξk + ζkdι,
(18)

Īi,3 ≤ 4 × 4E
∫ τ

0

∫
∥xi∥<ci

∥Gi(℘k−1, xi)− Gi(℘k, xi)∥2νi(dxi)dι

≤ 16LGi E
∫ τ

0 ξk + ζkdι,
(19)

Īi,4 ≤ 4α2 T2α−1

2α−1 E
∫ τ

0 ∥σi
1(℘k−1)− σi

1(℘k)∥2dι

≤ 4α2 T2α−1

2α−1 Lσi
1
E
∫ τ

0 ξk + ζkdι.
(20)

Using the above inequalities, we obtain

E sups∈[0,τ] ∥xi,k(s)− xi,k+1(s)∥2

≤ (4TLbi
+ 16Lσi

0
+ 16LGi + 4α2 T2α−1

2α−1 Lσi
1
)E
∫ τ

0 ξk + ζkdι,

that along with Lemma 6, leads to

E sups∈[0,τ] ∥xi,k(s)− xi,k+1(s)∥2

≤ (4TLbi
+ 16Lσi

0
+ 16LGi + 4α2 T2α−1

2α−1 Lσi
1
)

× E
∫ τ

0 ξk + ζ1,k + ζ2,kdι

≤ (4TLbi
+ 16Lσi

0
+ 16LGi + 4α2 T2α−1

2α−1 Lσi
1
)

× E
∫ τ

0 ξk + M1ξ2,k + M2ξ1,kdι

≤ (4TLbi
+ 16Lσi

0
+ 16LGi + 4α2 T2α−1

2α−1 Lσi
1
)

× (1 + M1 + M2)E
∫ τ

0 ξkdι

= βiE
∫ τ

0 ξkdι,

where βi = (4TLbi
+ 16Lσi

0
+ 16LGi + 4α2 T2α−1

2α−1 Lσi
1
)(1 + M1 + M2). Therefore,

E supι∈[0,τ] ∥xk(ι)− xk+1(ι)∥2

≤ E supι∈[0,τ] ∥x1,k(ι)− x1,k+1(ι)∥2

+ E supι∈[0,τ] ∥x2,k(ι)− x2,k+1(ι)∥2

≤ β1E
∫ τ

0 ξkdι + β2E
∫ τ

0 ξkdι

= (β1 + β2)E
∫ τ

0 ξkdι

≤ βE
∫ τ

0 supι∈[0,s] ∥xk−1(ι)− xk(ι)∥2ds,

(21)

where β = β1 + β2.
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When k = 1, we obtain from x1(τ) = x0

E supt∈[0,τ] ∥xi,2(t)− xi,1(t)∥2 ≤ E supt∈[0,T] ∥xi,2(t)− xi,0(t)∥2

≤ 4TE
∫ T

0 Kbi
(1 + ∥x0∥2 + ∥u1(s−)∥2)ds

+ 4 × 4E
∫ T

0 Kσi
0
(1 + ∥x0∥2 + ∥u1(s−)∥2)ds

+ 4 × 4E
∫ T

0 KGi (1 + ∥x0∥2 + ∥u1(s−)∥2)ds
+ 4α2 T2α−1

2α−1 E
∫ T

0 Kσi
1
(1 + ∥x0∥2 + ∥u1(s−)∥2)ds

= ηi.

This hence arrives at

E supι∈[0,τ] ∥x2(ι)− x1(ι)∥2

≤ E supι∈[0,T] ∥x1,2(ι)− x1,0∥2 + E supι∈[0,T] ∥x2,2(ι)− x2,0∥2

≤ η1 + η2 = η,

where

η =
2

∑
i=1

4(TKbi
+ 4Kσi

0
+ 4KGi + α2 T2α−1

2α − 1
Kσi

1
)E
∫ T

0
(1 + ∥x0∥2 + ∥u1(s−)∥2)ds.

Thus, if k = 2, then by (21) one gets

E supι∈[0,τ] ∥x3(ι)− x2(ι)∥2 ≤ βE
∫ τ

0 supµ∈[0,s] ∥x2(µ)− x1(µ)∥2ds
≤ βητ.

Similarly, if k = 3, we get

E supt∈[0,τ] ∥x4(t)− x3(t)∥2 ≤ βE
∫ τ

0 supµ∈[0,s] ∥x3(µ)− x2(µ)∥2ds
≤ β

∫ τ
0 βηsds

= β2η τ2

2! .

Conducting such process persistently, we could infer that

E sup
t∈[0,τ]

∥xk+1(t)− xk(t)∥2 ≤ η
βk−1τk−1

(k − 1)!
→ 0 for each τ.

Utilizing the similar reasoning to that of the proof in [30], (Theorem 5.2.1), one has that for
1 ≤ k < m,

(
∫ T

0 E∥xm(s)− xk(s)∥2ds)1/2 ≤
m−1

∑
l=k

(
∫ T

0 E∥xl+1(s)− xl(s)∥2ds)1/2

≤
m−1

∑
l=k

(
∫ T

0 E supt∈[0,s] ∥xl+1(t)− xl(t)∥2ds)1/2

≤
m−1

∑
l=k

( η
β · βl Tl

l! )1/2 → 0 (k → ∞).

This ensures that {xk} is a Cauchy sequence in L2
ad(Ω × [0, T], X). So it follows that {xj,k} is

Cauchy sequence in L2
ad(Ω × [0, T], Rnj), and so is {ui,k} in Umi [0, T] (by Lemma 6). There-

fore, one infers that {(xj,k, ui,k)} is Cauchy sequence in L2
ad(Ω × [0, T], Rnj) × Umi [0, T].

As a result, ∃(x∗j , u∗
i ) ∈ L2

ad(Ω × [0, T], Rnj) × Umi [0, T] such that (xj,k, ui,k) → (x∗j , u∗
i )

as n → ∞. Whereby, we obtain that xk → x∗ and uk → u∗, with x∗ = (x∗1 , x∗2) and
u∗ = (u∗

1 , u∗
2). Because PUmi [0,T] is of continuity, it could be readily seen that
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u∗
i (ι) = PUmi [0,T](u

∗
i (ι)− ρi F̃i(x∗j (ι), u∗

i (ι))). (22)

We now define x̄ = (x̄1, x̄2) as follows

x̄i(τ) := xi,0 +
∫ τ

0 bi(ι, x∗(ι−), u∗(ι−))dι + α
∫ τ

0 (τ − ι)α−1σi
1(ι, x∗(ι−), u∗(ι−))dι

+
∫ τ

0 σi
0(ι, x∗(ι−), u∗(ι−))dBi(ι) +

∫ τ
0

∫
∥xi∥<ci

Gi(ι, x∗(ι−), u∗(ι−), xi)Ñi(dι, dxi),
(23)

that along with (21), arrives at

E supι∈[0,τ] ∥x̄(ι)− xk(ι)∥2

≤
2

∑
i=1

(4TLbi
+ 16Lσi

0
+ 16LGi + 4α2 T2α−1

2α−1 Lσi
1
)(1 + M1 + M2)

× E
∫ τ

0 ∥x∗(s−)− xk−1(s−)∥2ds
= βE

∫ τ
0 ∥x∗(s−)− xk−1(s−)∥2ds,

(24)

where

β =
2

∑
j=1

(4TLbj
+ 16L

σ
j
0
+ 16LGj + 4α2 T2α−1

2α − 1
L

σ
j
1
)(1 + M1 + M2).

Thanks to xk → x∗, it is easily known that xk → x̄. Thus, one deduces that x̄ is equal to x∗.
Consequently, from (22) and (23) we obtain


u∗

i (ι) = PUmi [0,T](u∗
i (ι)− ρi F̃i(x∗j (ι), u∗

i (ι))),

x∗i (ι) = xi,0 +
∫ ι

0 bi(τ, x∗(τ−), u∗(τ−))dτ + α
∫ ι

0(ι − τ)α−1σi
1(τ, x∗(τ−), u∗(τ−))dτ

+
∫ ι

0 σi
0(τ, x∗(τ−), u∗(τ−))dBi(τ) +

∫ ι
0

∫
∥xi∥<ci

Gi(τ, x∗(τ−), u∗(τ−), xi)Ñi(dτ, dxi).

Next, let us show the uniqueness of solutions to issue (3) and (4). Indeed, assume that
(x1(t), u1(t)) and (x2(t), u2(t)) are both solutions of issue (3) and (4), with xi = (x1,i, x2,i)

and ui = (u1,i, u2,i). Utilizing the similar reasoning to that of the above proof, one gets

E sup
s∈[0,T]

∥x1(s)− x2(s)∥2 ≤ βE
∫ T

0
sup

ι∈[0,s]
∥x1(ι)− x2(ι)∥2ds,

where

β =
2

∑
i=1

(4TLbi
+ 16Lσi

0
+ 16LGi + 4α2 T2α−1

2α − 1
Lσi

1
)(1 + M1 + M2).

Putting f (τ) = E sups∈[0,τ] ∥x1(s)− x2(s)∥2 ∀τ ∈ [0, T], one has

f (T) ≤
∫ T

0
β f (s)ds,

that along with Gronwall-type inequality, arrives at f (τ) = 0 ∀τ ∈ [0, T]. For j = 1, 2, it
then follows that

E sup
s∈[0,T]

∥xj,1(s)− xj,2(s)∥2 ≤ E sup
s∈[0,T]

∥x1(s)− x2(s)∥2 = f (T) = 0.

Thus, by Lemma 6 we get

E sups∈[0,T] ∥xj,1(s)− xj,2(s)∥2 = 0 ⇒
∥xj,1(s)− xj,2(s)∥2

Hnj [0,T] = 0 and ∥ui,1(s)− ui,2(s)∥2
Hmi [0,T] = 0.
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It is noteworthy that, setting Gi = 0 and σi
1 = 0 in the above theorem, we can derive

an extension of ([2], Theorem 3.1) since it incorporates the SSDE and SSVI. In what follows,
for achieving the valuable property of solutions, we now furnish a basic tool.

Lemma 8. For q ∈ (1, ∞), the following holds

tq − τq ≥ (t − τ)q, t ≥ τ ≥ 0.

For q ∈ (0, 1), the following holds

tq − τq ≤ (t − τ)q, t ≥ τ ≥ 0.

Whereby, we are ready to show the result below.

Theorem 2. For u∗ ∈ Um1+m2 [0, T], x∗ ∈ L2
ad(Ω × [0, T], X) and α ∈ ( 1

2 , 1), one has that ∃
(nonnegative constants) C1, C2 and C3, s.t.

C3 + C2(t − ι)2α−1 + C1(t − ι) ≥ E∥x∗(t)− x∗(ι)∥2, 0 ≤ ι ≤ t ≤ T. (25)

Proof. For s, t ∈ [0, T] with t ≥ s, one obtains from (9),

x∗i (t)− x∗i (s) =
∫ t

s bi(ι, x∗(ι−), u∗(ι−))dι +
∫ t

s σi
0(ι, x∗(ι−), u∗(ι−))dBi(ι)

+
∫ t

s

∫
∥xi∥<ci

Gi(ι, x∗(ι−), u∗(ι−), xi)Ñi(dι, dxi)

+ α
∫ s

0 [(t − ι)α−1σi
1(ι, x∗(ι−), u∗(ι−))− (s − ι)α−1σi

1(ι, x∗(ι−), u∗(ι−))]dι

+ α
∫ t

s (t − ι)α−1σi
1(ι, x∗(ι−), u∗(ι−))dι,

(26)

which together with (10), leads to

∥x∗i (t)− x∗i (s)∥2

≤ 4∥
∫ t

s bi(ι, x∗(ι−), u∗(ι−))dι∥2 + 4∥
∫ t

s σi
0(ι, x∗(ι−), u∗(ι−))dBi(ι)∥2

+ 4∥
∫ t

s

∫
∥xi∥<ci

Gi(ι, x∗(ι−), u∗(ι−), xi)Ñi(dι, dxi)∥2

+ 4α2∥
∫ s

0 [
σi

1(ι,x
∗(ι−),u∗(ι−))

(t−ι)1−α − σi
1(ι,x

∗(ι−),u∗(ι−))

(s−ι)1−α ]dι

+
∫ t

s
σi

1(ι,x
∗(ι−),u∗(ι−))

(t−ι)1−α dι∥2

= 4Ji,1 + 4Ji,2 + 4Ji,3 + 4α2 Ji,4.

(27)

Utilizing condition (i) in Assumption 1, from Hölder-type inequality and Lemmas 3 and 4
one gets

E4(Ji,1 + Ji,2 + Ji,3) ≤ 4(T − s)E
∫ t

s Kbi
(∥u∗(ι−)∥2 + ∥x∗(ι−)∥2 + 1)dι

+ 4E
∫ t

s Kσi
0
(∥u∗(ι−)∥2 + ∥x∗(ι−)∥2 + 1)dι

+ 4E
∫ t

s KGi (∥u∗(ι−)∥2 + ∥x∗(ι−)∥2 + 1)dι

≤ [4(T − s)Kbi
+ Kσi

0
+ KGi ][(t − s) + E

∫ t
s ∥x∗(τ−)∥2 + ∥u∗(τ−)∥2dτ]

≤ [4(T − s)Kbi
+ Kσi

0
+ KGi ][(t − s) + E

∫ t
s ∥x∗(τ−)∥2dτ

+ 2E
∫ t

s ∥u∗(τ−)− u1(τ−)∥2 + ∥u1(τ−)∥2dτ]

≤ [4(T − s)Kbi
+ Kσi

0
+ KGi ][(t − s) + E

∫ t
s ∥x∗(τ−)∥2dτ

+ 2(M1 + M2)E
∫ t

s ∥x∗(τ−)− x0∥2dτ + 2E
∫ t

s ∥u1(τ−)∥2dτ]

≤ [4(T − s)Kbi
+ Kσi

0
+ KGi ][(t − s) + E

∫ t
s ∥x∗(τ−)∥2dτ

+ 4(M1 + M2)E
∫ t

s ∥x0∥2 + ∥x∗(τ−)∥2dτ + 2E
∫ t

s ∥u1(τ−)∥2dτ]

≤ 4[(T − s)Kbi
+ Kσi

0
+ KGi ][(t − s)

+ (1 + 4(M1 + M2))E supι∈[0,T] ∥x∗(ι)∥2(t − s)
+ (M1 + M2)4E∥x0∥2(t − s) + 2E

∫ t
s ∥u1(ι−)∥2dι]

≤ Ci,1(t − s) + Ci,3,

(28)
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where

Ci,1 = 4[TKbi
+ Kσi

0
+ KGi ][1 + (1 + 4(M1 + M2))E sup

ι∈[0,T]
∥x∗(ι)∥2 + (M1 + M2)4E∥x0∥2],

and

Ci,3 = 8[TKbi
+ Kσi

0
+ KGi ]E

∫ T

0
∥u1(ι−)∥2dι.

Utilizing condition (i) in Assumption 1, from Hölder-type inequality and Lemma 8 one has

EJi,4 ≤ 2E∥
∫ s

0 [
σi

1(ι,x
∗(ι−),u∗(ι−))

(t−ι)1−α − σi
1(ι,x

∗(ι−),u∗(ι−))

(s−ι)1−α ]dι∥2

+ 2E∥
∫ t

s
σi

1(ι,x
∗(ι−),u∗(ι−))

(t−ι)1−α dι∥2

≤ 2E
∫ s

0 ∥σi
1(ι, x∗(ι−), u∗(ι−))∥2dι

∫ s
0 [(t − ι)α−1 − (s − ι)α−1]2dι

+ 2E
∫ t

s ∥σi
1(ι, x∗(ι−), u∗(ι−))∥2dι

∫ t
s (t − ι)2α−2dι

≤ 2E
∫ T

0 Kσi
1
(∥u∗(ι−)∥2 + ∥x∗(ι−)∥2 + 1)dι

× [
∫ s

0 (s − ι)2α−2 − (t − ι)2α−2dι +
∫ t

s (t − ι)2α−2dι]

≤ 2E
∫ T

0 Kσi
1
(∥u∗(ι−)∥2 + ∥x∗(ι−)∥2 + 1)dι

× [ 2
2α−1 (t − s)2α−1 + ∥s2α−1−t2α−1∥2

2α−1 ]

≤ 2E
∫ T

0 Kσi
1
(∥u∗(ι−)∥2 + ∥x∗(ι−)∥2 + 1)dι × 3

2α−1 (t − s)2α−1.

(29)

Let

Ci,2 =
24α2

2α − 1
E
∫ T

0
Kσi

1
(∥u∗(ι−)∥2 + ∥x∗(ι−)∥2 + 1)dι.

Then
4α2EJi,4 ≤ Ci,2(t − s)2α−1. (30)

From the inequalities above, it follows that for s, ι ∈ [0, T] with ι ≥ s,

Ci,3 + Ci,2(ι − s)2α−1 + Ci,1(ι − s) ≥ E∥x∗i (ι)− x∗i (s)∥2.

Therefore,

E∥x∗(t)− x∗(s)∥2 = E∥x∗1(t)− x∗1(s)∥2 + E∥x∗2(t)− x∗2(s)∥2

≤ (C1,1 + C2,1)(t − s) + (C1,2 + (C2,2)(t − s)2α−1 + (C1,3 + C2,3)

= C1(t − s) + C2(t − s)2α−1 + C3,

where C1 = C1,1 + C2,1, C2 = C1,2 + C2,2 and C3 = C1,3 + C2,3.

It is noteworthy that, if u1(t) is bounded, then for s, ι ∈ [0, T] with ι ≥ s, (3.22) can be
changed into

E∥x∗(ι)− x∗(s)∥2 ≤ C1(ι − s) + C2(ι − s)2α−1.

4. Applications to Stochastic SPE Systems
In the rest of this paper, we denote by the FSDE, SPE, APP, AP and BM the fractional

stochastic differential equation, spatial price equilibria, asset price process, asset price
and Brownian motion, respectively. Also, let the SC, DM, SM, PC and SS represent the
stochastic circumstance, demand market, supply market, price of commodity and stochastic
system, respectively.

It is well known that, the spatial-price equilibria models have played an important role
in solving some practical problems arising from energy markets, agriculture, economics,
and finance; see e.g., [1,5,23,31]. In 2024, Zeng et al. [23] exploited a FSDE driven by BM to
indicate APP and modeled SPE in SC using FSDVI (2). Note that, for FSDVI (2), they had
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explained that the APP reveals the jumps [21] and memory [32] features, and BM is not
strong enough to acquire the dynamics of AP changes. Accordingly, they had utilized the
FSDVI (2) possessing Lévy jump to express stochastic SPE possessing jumps and memory.

Inspired by the study [23], we introduce and discuss a system of stochastic spatial-
price equilibria, where each stochastic spatial-price equilibrium involves a commodity
possessing jumps and memory in the time term of [0, T]. In what follows, we release certain
symbols. Let n1 = n2 = n, m1 = m2 = n and l1 = l2 = n in the above section. Then for
each l = 1, 2,

• Sl,i: the ith-SM, ∀i.
• Dl,j: the jth-DM, ∀j.
• al

ij(ω, ι): the number of commodities transported from the SM Sl,i to the DM Dl,j at

ι-time, and al(ω, ι) = (al
ij(ω, ι)) ∈ Rn×n.

• S̄l,i(ω, ι) = ∑n
j=1 al

ij(ω, ι): the number of commodities supplied by SM Sl,i at ι-time,
and S̄l(ω, ι) = (S̄l,1(ω, ι), ..., S̄l,n(ω, ι)) ∈ Rn.

• D̄l,j(ω, ι) = ∑n
i=1 al

ij(ω, ι): the demand for commodities in DM Dl,j at ι-time, and
D̄l(ω, ι) = (D̄l,1(ω, ι), ..., D̄l,n(ω, ι)) ∈ Rn.

• pl,i(ω, ι): the supply PC related to SM Sl,i at ι-time, and pl(ω, ι) = (pl,1(ω, ι), ..., pl,n(ω, ι))

∈ L2
ad(Ω × [0, T], Rn).

• ql,j(ω, ι): the demand PC related to DM Dl,j at ι-time, and ql(ω, ι) = (ql,1(ω, ι), ..., ql,n(ω, ι))

∈ L2
ad(Ω × [0, T], Rn).

• cl
ij(ω, ι) = cl

ij(al
ij(ω, ι)): a unit transported cost from Sl,i to Dl,j at ι-time, and cl(ω, ι) =

(cl
ij(ω, ι)) ∈ Rn×n.

• L2
ad = L2

ad(Ω × [0, T], Rn)×L2
ad(Ω × [0, T], Rn)×L2

ad(Ω × [0, T], Rn×n) and

⟨a, b⟩L2
ad
= E

∫ T

0
⟨a(ω, ι), b(ω, ι)⟩dι, a, b ∈ L2

ad.

• ul(ω, ι) = (S̄l(ω, ι), D̄l(ω, ι), al(ω, ι)) ∈ Rn × Rn × Rn×n.
• Kl = {(Al , Bl , Cl) : Al = (Al,1, Al,2, ..., Al,n) ∈ Rn, Bl = (Bl,1, Bl,2, ..., Bl,n) ∈ Rn, Cl =

(Cl
ij) ∈ Rn×n, Cl

ij ≥ 0, Al,i = ∑n
j=1 Cl

ij, Bl,j = ∑n
i=1 Cl

ij}.

• UKl [0, T] = {ul ∈ L2
ad : ul(ω, ι) ∈ Kl , a.e. ι ∈ [0, T], a.s. ω ∈ Ω}.

Thanks to the impact of jump and memory statuses on the APP, we presume always
that for l = 1, 2, APPs pl(ω, t), ql(ω, t) solve the FSDES possessing jumps:



dpl(ι) = bl
1(ι, pl(ι−), S̄l(ι−))dι + σl

1(ι, pl(ι−), S̄l(ι−))(dι)α + f l
1(ι, pl(ι−), S̄l(ι−))dBl

1(ι)

+
∫
∥x∥<cl

Gl
1(ι, pl(ι−), S̄l(ι−), x)Ñl

1(dι, dx),
pl(0) = pl,0,
dql(ι) = bl

2(ι, ql(ι−), D̄l(ι−))dι + σl
2(ι, ql(ι−), D̄l(ι−))(dι)α + f l

2(ι, ql(ι−), D̄l(ι−))dBl
2(ι)

+
∫
∥x∥<cl

Gl
2(ι, ql(ι−), D̄l(ι−), x)Ñl

2(dι, dx),
ql(0) = ql,0,

(31)

where bl
i , σl

i , f l
i , Gl

i are of suitable measurability, σl
1(ι, pl(ω, ι), S̄l(ω, ι)) and σl

2(ι, ql(ω, ι),
D̄l(ω, ι)) are of continuity w.r.t. ι, Bl

1(ι) and Bl
2(ι) are two Fι-adapted BMs, Nl

1, Nl
2 are both

Fι-adapted Poisson measure, and their martingale measures of associated compensation
are formulated as Ñl

i (dι, dx) := Nl
i (dι, dx)− νl

i (dx)dι for i = 1, 2. Moreover, we assume
that Nl

1, Nl
2, Bl

1, Bl
2 are independent mutually.

Resembling the concept given in [23], we could put forward the following concept of
spatial-price equilibria system point in a stochastic circumstance affected with Lévy jumps
and memory.



Symmetry 2025, 17, 138 15 of 18

Definition 2. Given u∗ = (u∗
1 , u∗

2), where u∗
l (ω, ι) = (S̄∗

l (ω, ι), D̄∗
l (ω, ι), a∗l (ω, ι)), l = 1, 2,

s.t. u∗
l ∈ UKl [0, T]. u∗ is termed as a SPE system point in SC iff there hold the relations below: for

l, m = 1, 2 and l ̸= m

p∗l,i(ω, ι) + cm
ij (am∗

ij (ω, ι))

{
= q∗l,j(ω, ι) if am∗

ij ≥ 0

≥ q∗l,j(ω, ι) if am∗
ij = 0

a.e. ι ∈ [0, T], a.s. ω ∈ Ω, (32)

with p∗
l (ω, ι) and q∗

l (ω, ι) satisfying (31).

Lemma 9. Kl ̸= ∅ ̸= UKl [0, T], and they are of both convexity and closedness for l = 1, 2.

Proof. First, it is easy to check that Kl is nonempty convex closed and hence UKl [0, T]
is nonempty.

Let us show that UKl [0, T] ⊂ L2
ad is convex. Indeed, for each ul,1, ul,2 ∈ UKl [0, T] and

each µ ∈ [0, 1], we know that ul,1, ul,2 ∈ L2
ad and ul,1, ul,2 ∈ Kl . Because Kl ̸= ∅, which is of

both convexity and closedness, the following relation is valid:

µul,1(ω, ι) + (1 − µ)ul,2(ω, ι) ∈ Kl , a.e. ι ∈ [0, T], a.s. ω ∈ Ω,

and hence UKl [0, T] is of convexity.
In what follows, it is enough to only show the closedness of UKl [0, T] in L2

ad. Let the
sequence {ul,n} lie in UKl [0, T] s.t. ∥ul,n − u∗

l ∥L2
ad
→ 0. Whereby, we know that u∗

l ∈ L2
ad

and ∫ T

0
E∥ul,n(ω, ι)− u∗

l (ω, ι)∥2dι → 0,

that hence yields

∥ul,n(ω, ι)− u∗
l (ω, ι)∥ → 0, a.e. ι ∈ [0, T], a.s. ω ∈ Ω.

Because Kl is of closedness, one gets u∗
l ∈ UKl [0, T], that is, UKl [0, T] is of closedness.

For achieving the major outcome in this section, we release the symbols below. Let
l, m = 1, 2 and l ̸= m. For each (pl , ql) ∈ L2

ad(Ω × [0, T], Rn)× L2
ad(Ω × [0, T], Rn) and

each um = (S̄m, D̄m, am) ∈ UKm [0, T], let

F̃m(pl , ql , um)(ω, ι) = Fm(ω, ι, pl(ω, ι), ql(ω, ι), um(ω, ι)), ∀ω ∈ Ω, ∀ι ∈ [0, T]

and

⟨F̃m(pl , ql , um), um⟩L2
ad

= E
∫ T

0 ⟨pl(ω, ι), S̄m(ω, ι)⟩ − ⟨ql(ω, ι), D̄m(ω, ι)⟩+ ⟨cm(am(ω, ι)), am(ω, ι)⟩dι.

Theorem 3. Given u∗ = (u∗
1 , u∗

2), where for m = 1, 2, u∗
m(ω, ι) = (S̄∗

m(ω, ι), D̄∗
m(ω, ι), a∗m(ω, ι))

such that u∗
m ∈ UKm [0, T]. Then the following relations are equivalent:

(i) u∗ is a dynamic stochastic market equilibria system point;
(ii) u∗ solves the SVIS: for l, m = 1, 2 and l ̸= m,

⟨F̃m(p∗
l , q∗

l , u∗
m), um − u∗

m⟩L2
ad

= E
∫ T

0 {⟨p∗
l (ω, ι), S̄m(ω, ι)− S̄∗

m(ω, ι)⟩ − ⟨q∗
l (ω, ι), D̄m(ω, ι)− D̄∗

m(ω, ι)⟩
+ ⟨cm(a∗m(ω, ι)), am(ω, ι)− a∗m(ω, ι)⟩}dι ≥ 0, ∀um ∈ UKm [0, T].

Proof. Such demonstration is analogous to that of Theorem 4.1 of [23].
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Given α ∈ ( 1
2 , 1). From Theorem 3 and (31), it could be readily seen that the SPE

system in SC is equivalent to the SS below: for l, m = 1, 2 and l ̸= m,



dp∗
l (ι) = bl

1(ι, p∗
l (ι−), S̄∗

l (ι−))dι + σl
1(ι, p∗

l (ι−), S̄∗
l (ι−))(dι)α + f l

1(ι, p∗
l (ι−), S̄∗

l (ι−))dBl
1(ι)

+
∫
∥x∥<cl

Gl
1(ι, p∗

l (ι−), S̄∗
l (ι−), x)Ñl

1(dι, dx), p∗
l (0) = p∗

l,0,

dq∗
l (ι) = bl

2(ι, q∗
l (ι−), D̄∗

l (ι−))dι + σl
2(ι, q∗

l (ι−), D̄∗
l (ι−))(dι)α + f l

2(ι, q∗
l (ι−), D̄∗

l (ι−))dBl
2(ι)

+
∫
∥x∥<cl

Gl
2(ι, q∗

l (ι−), D̄∗
l (ι−), x)Ñl

2(dι, dx), q∗
l (0) = q∗

l,0,

⟨F̃m(p∗
l , q∗

l , u∗
m), um − u∗

m⟩L2
ad
≥ 0, ∀um ∈ UKm [0, T].

(33)

which could be rewritten as the SFDVIS possessing Lévy jumps (due to Lemma 4):

dy1(ι) = b1(ι, y1(ι−), u1(ι−))dι + σ1(ι, y1(ι−), u1(ι−))(dι)α + f1(ι, y1(ι−), u1(ι−))dB1(ι)

+
∫
∥x∥<c1

G1(ι, y1(ι−), u1(ι−), x)Ñ1(dι, dx),
dy2(ι) = b2(ι, y2(ι−), u2(ι−))dι + σ2(ι, y2(ι−), u2(ι−))(dι)α + f2(ι, y2(ι−), u2(ι−))dB2(ι)

+
∫
∥x∥<c2

G2(ι, y2(ι−), u2(ι−), x)Ñ2(dι, dx),
y1(0) = y1,0 and y2(0) = y2,0,

(34)

and {
⟨F̄1(ω, ι, y2(ω, ι), u1(ω, ι)), v1 − u1(ω, ι)⟩ ≥ 0, ∀v1 ∈ K1, a.e. ι ∈ [0, T], a.s. ω ∈ Ω,
⟨F̄2(ω, ι, y1(ω, ι), u2(ω, ι)), v2 − u2(ω, ι)⟩ ≥ 0, ∀v2 ∈ K2, a.e. ι ∈ [0, T], a.s. ω ∈ Ω,

(35)

where for l = 1, 2,

yl(ι) = (p∗
l (ι), q∗

l (ι))
T , yl(0) = (p∗

l,0, q∗
l,0)

T , ul(ω, ι) = u∗
l (ω, ι),

bl(ι, yl(ι), ul(ι)) = (bl
1(ι, p∗

l (ι), S̄∗
l (ι)), bl

2(ι, q∗
l (ι), D̄∗

l (ι)))
T ,

σl(ι, yl(ι), ul(ι)) = (σl
1(ι, p∗

l (ι), S̄∗
l (ι)), σl

2(ι, q∗
l (ι), D̄∗

l (ι)))
T ,

fl(ι, yl(ι), ul(ι)) =

(
f l
1(ι, p∗

l (ι), S̄∗
l (ι)) 0

0 f l
2(ι, q∗

l (ι), D̄∗
l (ι))

)
,

Gl(ι, yl(ι), ul(ι), x) =

(
Gl

1(ι, p∗
l (ι), S̄∗

l (ι), x) 0
0 Gl

2(ι, q∗
l (ι), D̄∗

l (ι), x)

)
,

Bl(ι) = (Bl
1(ι), Bl

2(ι))
T , Ñl(ι, x) = (Ñl

1(ι, x), Ñl
2(ι, x))T ,

F̄1(ω, ι, y2(ω, ι), u1(ω, ι)) = F1(ω, ι, p∗
2(ω, ι), q∗

2(ω, ι), u1(ω, ι)),
F̄2(ω, ι, y1(ω, ι), u2(ω, ι)) = F2(ω, ι, p∗

1(ω, ι), q∗
1(ω, ι), u2(ω, ι)).

(36)

Therefore, under the assumptions of Theorem 1, we deduce that there is only a SPE system
point in SC affected with Lévy jumps and memory, provided the APPs fulfill (31).

5. Conclusions
This paper have introduced and analyzed a new symmetrical SFSDVI with Lévy jumps

(3) and (4) which can be applied for acquiring the systems’ instability and memorability. By
aid of Picard’s successive iteration method and the equivalent relationship of solutions to
(3) and (4), along with Hölder-type inequality, Itô-type isometry and Doob-type inequality,
we have shown that there holds the unique existence of solutions to issue (3) and (4) via
a few mild assumptions. In addition, we have presented an illustrative instance of our
theoretical outcomes to the SPE system in the SCs affected with Lévy jumps and memory. It
is noteworthy that the fractional Brownian Motion (FBM) has captured extensive attention
in SSs [27,33,34]. As well as we know, there has been no research work for one to explore the
symmetrical SFSDVI driven by FBM. Whereby, it is naturally interesting and meaningful to
delve into the symmetrical SFSDVI driven by FBM. So, there is no doubt for us to aim at
studying such matters in the future.

Author Contributions: Conceptualization, Y.Z. (Yue Zhang), L.-C.C., J.-C.Y. and Y.Z. (Yue Zeng);
methodology, Y.Z. (Yue Zhang), L.-C.C., J.-C.Y. and Y.Z. (Yue Zeng); software, Y.Z. (Yue Zhang);
validation, Y.-Y.H. and S.-Y.L.; formal analysis, Y.Z. (Yue Zhang), L.-C.C., J.-C.Y. and Y.Z. (Yue Zeng);
investigation, Y.Z. (Yue Zhang), L.-C.C., J.-C.Y., Y.Z. (Yue Zeng), Y.-Y.H. and S.-Y.L.; resources,



Symmetry 2025, 17, 138 17 of 18

L.-C.C.; data curation, Y.Z. (Yue Zeng)., Y.-Y.H. and S.-Y.L.; writing-original draft preparation, Y.Z.
(Yue Zhang), L.-C.C., J.-C.Y., Y.Z. (Yue Zeng), Y.-Y.H. and S.-Y.L.; writing-review and editing, Y.Z.
(Yue Zhang), L.-C.C. and J.-C.Y.; visualization, Y.Z. (Yue Zeng), Y.-Y.H. and S.-Y.L.; supervision,
L.-C.C.; project administration, L.-C.C.; funding acquisition, L.-C.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by the 2020 Shanghai Leading Talents Program of the Shanghai
Municipal Human Resources and Social Security Bureau (20LJ2006100), the Innovation Program of
Shanghai Municipal Education Commission (15ZZ068) and the Program for Outstanding Academic
Leaders in Shanghai City (15XD1503100).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, Y.J.; Gou, Z.; Huang, N.J.; Li, X.S. A class of stochastic differential variational inequalities with some applications. J.

Nonlinear Convex. Anal. 2023, 24, 75–100.
2. Zhang, Y.J.; Chen, T.; Huang, N.J.; Li, X.S. Euler scheme for solving a class of stochastic differential variational inequalities with

some applications. Commun. Nonlinear Sci. Numer. Simul. 2023, 127, 107577. [CrossRef]
3. Pang, J.S.; Stewart, D.E. Differential variational inequalities. Math. Program. 2008, 113, 345–424. [CrossRef]
4. Chen, X.J.; Chao, Z.; Fukushima, M. Robust solution of monotone stochastic linear complementarity problems. Math. Program.

2009, 117, 51–80. [CrossRef]
5. Daniele, P. Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model.

J. Global. Optim. 2004, 28, 283–295. [CrossRef]
6. Ceng, L.C.; Huang, N.J.; Wen, C.F. On generalized global fractional-order composite dynamical systems with set-valued

perturbations. J. Nonlinear Var. Anal. 2022, 6, 149–163.
7. Ceng, L.C.; Chen, B.L.; Liao, S.L.; Nguyen, V.T.; Yao, J.C. Solvability and optimal control of a system of semilinear nonlocal

fractional evolution inclusions with partial Clarke subdifferential. Fractals 2024, 32, 2440009. [CrossRef]
8. Migórski, S.; Zeng, S.D. Mixed variational inequalities driven by fractional evolutionary equations. Acta Math. Sci. 2019, 39,

461–468. [CrossRef]
9. Weng, Y.H.; Chen, T.; Li, X.S.; Huang, N.J. Rothe method and numerical analysis for a new class of fractional differential

hemivariational inequality with an application. Comput. Math. Appl. 2021, 98, 118–138. [CrossRef]
10. Zeng, S.D.; Liu, Z.H.; Migórski, S. A class of fractional differential hemivariational inequalities with application to contact

problem. Z. Angew. Math. Phys. 2018, 69, 36. [CrossRef]
11. Liang, Y.S.; Ceng, L.C.; Yao, J.C.; Wu, W. On fuzzy fractional differential inclusion driven by variational-hemivariational inequality

in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 2024, 138, 108180. [CrossRef]
12. Liang, Y.S.; Ceng, L.C.; Yao, J.C.; Zeng, S.D. On second order differential inclusion driven by quasi-variational-hemivariational

inequalities. Nonlinear Anal. Real World Appl. 2024, 77, 104060. [CrossRef]
13. Ceng, L.C.; Huan, X.Z.; Liang, Y.; Yao, J.C. On stochastic fractional differential variational inequalities general system with Lévy

jumps. Commun. Nonlinear Sci. Numer. Simul. 2025, 140, 108373. [CrossRef]
14. Ceng, L.C.; Cho, S.Y. On approximate controllability for systems of fractional evolution hemivariational inequalities with

Riemann-Liouville fractional derivatives. J. Nonlinear Var. Anal. 2022, 6, 421–438.
15. Ceng, L.-C.; Fu, Y.-X.; Yin, J.; He, L.; He, L.; Hu, H.-Y. The solvability of generalized systems of time-dependent hemivariational

inequalities enjoying symmetric structure in reflexive Banach spaces. Symmetry 2021, 13, 1801. [CrossRef]
16. Ceng, L.C.; Liu, Z.H.; Yao, J.C.; Yao, Y. Optimal control of feedback control systems governed by systems of evolution hemivaria-

tional inequalities. Filomat 2018, 32, 5205–5220. [CrossRef]
17. Ceng, L.C.; Wen, C.F.; Liou, Y.C.; Yao, J.C. A general class of differential hemivariational inequalities systems in reflexive Banach

spaces. Mathematics 2021, 9, 3173. . [CrossRef]
18. Abouagwa, M.; Li, J. Stochastic fractional differential equations driven by Lévy noise under Carathéodory conditions. J. Math.

Phys. 2019, 60, 022701. [CrossRef]
19. Ke, T.D.; Loi, N.V.; Obukhovskii, V. Decay solutions for a class of fractional differential variational inequalities. Fract. Calc. Appl.

Anal. 2015, 18, 531–553. [CrossRef]
20. Pedjeu, J.C.; Laddle, G.S. Stochastic fractional differential equations: Modeling, method and analysis. Chaos Solitons Fractals 2012,

45, 279–293. [CrossRef]

http://doi.org/10.1016/j.cnsns.2023.107577
http://dx.doi.org/10.1007/s10107-006-0052-x
http://dx.doi.org/10.1007/s10107-007-0163-z
http://dx.doi.org/10.1023/B:JOGO.0000026449.29735.3c
http://dx.doi.org/10.1142/S0218348X24400097
http://dx.doi.org/10.1007/s10473-019-0211-9
http://dx.doi.org/10.1016/j.camwa.2021.07.003
http://dx.doi.org/10.1007/s00033-018-0929-6
http://dx.doi.org/10.1016/j.cnsns.2024.108180
http://dx.doi.org/10.1016/j.nonrwa.2023.104060
http://dx.doi.org/10.1016/j.cnsns.2024.108373
http://dx.doi.org/10.3390/sym13101801
http://dx.doi.org/10.2298/FIL1815205C
http://dx.doi.org/10.3390/math9243173
http://dx.doi.org/10.1063/1.5063514
http://dx.doi.org/10.1515/fca-2015-0033
http://dx.doi.org/10.1016/j.chaos.2011.12.009


Symmetry 2025, 17, 138 18 of 18

21. Palanisamy, M.; Chinnathambi, R. Approximate controllability of second-order neutral stochastic differential equations with
infinite delay and Poisson jumps. J. Syst. Sci. Complex. 2015, 28, 1033–1048. [CrossRef]

22. Yang, Z.W.; Zang, X.C.; Zhang, Z.Q.; Wang, H. Strong convergence of euler-maruyama scheme to a variable-order fractional
stochastic differential equation driven by a multiplicative white noise. Chaos Solitons Fractals 2021, 142, 110392. [CrossRef]

23. Zeng, Y.; Zhang, Y.J.; Huang, N.J. A stochastic fractional differential variational inequality with Lévy jump and its application.
Chaos Solitons Fractals 2024, 178, 114372. [CrossRef]

24. Weng, Y.H.; Chen, T.; Huang, N.J. A new fractional nonlinear system driven by a quasi-hemivariational inequality with an
application. J. Nonlinear Convex. Anal. 2021, 22, 559–586.

25. Xia, Y.S.; Wang, J. A general projection neural network for solving monotone variational inequalities and related optimization
problems. IEEE Trans. Neural Netw. 2004, 15, 318–328. [CrossRef]

26. Weng, Y.H.; Chen, T.; Huang, N.J.; O’Regan, D. A new class of fractional impulsive differential hemivariational inequalities with
an application. Nonlinear Anal. Model. Control. 2022, 27, 199–220. [CrossRef]

27. Biagini, F.; Hu, Y.Z.; Øksendal, B.; Zhang, T.S. Stochastic Calculus for Fractional Brownian Motion and Applications; Springer: London,
UK, 2008.

28. Jumarie, G. Fractional Brownian motions via random walk in the complex plane and via fractional derivative, comparison and
further results on their Fokker-Planck equations. Chaos Solitons Fractals 2004, 22, 907–925. [CrossRef]

29. Yong, J.M.; Zhou, X.Y. Hamiltonian systems and HJB equations. In Stochastic Controls; Springer: New York, NY, USA, 1999.
30. Øksendal, B. An introduction with applications. In Stochastic Differential Equations; Springer: Berlin, Germany, 2003.
31. Li, W.; Wang, X.; Huang, N.J. Differential inverse variational inequalities in finite dimensional spaces. Acta Math. Sci. 2015, 35,

407–422. [CrossRef]
32. Farhadi, A.; Salehi, M.; Erjaee, G.H. A new version of Black–Scholes equation presented by time-fractional derivative. Iran. J. Sci.

Technol. Trans. A Sci. 2018, 42, 2159–2166. [CrossRef]
33. Ahmadian, D.; Ballestra, L.V.; Shokrollahi, F. A Monte-Carlo approach for pricing arithmetic Asian rainbow options under the

mixed fractional Brownian motion. Chaos Solitons Fractals 2022, 158, 112023. [CrossRef]
34. Ballestra, L.V.; Pacelli, G.; Radi, D. A very efficient approach for pricing barrier options on an underlying described by the mixed

fractional Brownian motion. Chaos Solitons Fractals 2016, 87, 240–248. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11424-015-3075-7
http://dx.doi.org/10.1016/j.chaos.2020.110392
http://dx.doi.org/10.1016/j.chaos.2023.114372
http://dx.doi.org/10.1109/TNN.2004.824252
http://dx.doi.org/10.15388/namc.2022.27.24649
http://dx.doi.org/10.1016/j.chaos.2004.03.020
http://dx.doi.org/10.1016/S0252-9602(15)60012-1
http://dx.doi.org/10.1007/s40995-017-0244-7
http://dx.doi.org/10.1016/j.chaos.2022.112023
http://dx.doi.org/10.1016/j.chaos.2016.04.008

	Introduction
	Basic Concepts and Formulations
	Solvability of Problem (3) and (4)
	Applications to Stochastic SPE Systems
	Conclusions
	References

