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Abstract: This paper proposes mathematical optimization models for solving the network
planning problem using millimeter wave technology for 5G wireless communications
networks. To this end, it is assumed that a set of users, M = {1, . . . , m}, and a set of base
stations, N = {1, . . . , n}, are deployed randomly in a square area. In particular, the base
stations should be connected, forming a star backbone so that users can connect to their
nearest active base stations forming the backbone where the connections are symmetric. In
particular, the first two models maximize the number of users connected to the backbone
and minimize the distance costs of connecting users to the base stations, and distances
of connecting the base stations themselves. Similarly, the last two models maximize and
minimize the same objectives and the number of base stations to be activated to form the
star backbone. Each user is allowed to connect to a unique active base station. In general,
the millimeter wave technology presents a high path loss. Consequently, the transmission
distances should be no larger than 300 m at most for different radial transmissions. Thus,
a direct line of sight between users and base stations is assumed. Finally, we propose
local search-based algorithms that allow finding near-optimal solutions for all our tested
instances. Our numerical results indicate that we can solve network instances optimally
with up to k = 100, n = 200, and m = 5000 users.

Keywords: design network planning; user coverage; mathematical programming; millimeter
wave technology; star 5G wireless networks

1. Introduction
The evolution of wireless communications has gone through several generations.

In each novel generation, transformative advancements have been introduced. The first
generation, 1G, appeared in the late 1970s and early 1980s, providing analog voice commu-
nication with a large transmission radius of several kilometers. However, 1G suffered from
minimal security, interference, and pure voice utility. In the 1990s, 2G emerged as a digital
revolution marked by the introduction of the Global System for Mobile Communications
(GSMC), improving voice quality and encryption, and also enabling novel features like
the Short Message Service (SMS). Smaller cell sizes were able to enhance the capacities,
leading to the third generation (3G) in the early 2000s. Subsequently, with 3G, the mobile
internet and video calling became the mainstream, supported by the Universal Mobile
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Telecommunications System (UMTS). Despite its data-centric advances, managing higher
interference due to reduced cell sizes was still a challenge. Around 2010, 4G brought in the
broadband era, offering internet speeds of up to 1 Gbps, thanks to Long-Term Evolution
(LTE) technology. Later, 4G supported video streaming and cloud computing while using
smart systems to save energy and reduce interference. In the late 2010s and early 2020s,
5G was introduced, bringing faster internet, reliable low-latency connections for critical
tasks, and support for the Internet of Things (IoT) and smart cities. It uses smaller coverage
areas, like mmWave, needing many closely spaced towers. Looking to the future, 6G aims
to create smarter networks using Artificial intelligence (AI), super-fast terahertz communi-
cation, eco-friendly technologies, and immersive experiences like the holographic internet,
enabling a highly connected and intelligent world. In particular, the yet development of 5G
and 5G+ requires significant infrastructure to be complete [1].

It can be observed that 5G technology allows mobile users an enhanced service expe-
rience compared with earlier generations of cellular and coverage networks. In addition,
the number of devices connected to the Internet has been growing notoriously within the
last few decades, resulting in challenging scenarios to deal with the ever-increasing data traf-
fic. Additionally, there is a growing demand related to the bit rates supporting applications
that require higher bandwidths by the Internet of Things (IoT) too [2–4]. As such, mil-
limeter wave (mmWave) technology emerges as a good candidate to make it possible to
connect billions of devices and to create new and innovative applications [5,6]. Examples
of new applications include domains of mobile health, manufacturing and entertainment,
education, smart grids, autonomous-driving cars, smart cities and homes, aerospace, ocean
exploration, emergency response, and mobile platforms, to name a few [7]. This technology
offers high-speed data transfer and supports advanced applications, thanks to its wide
bandwidth and small antenna size. Unfortunately, the transmission radius of mmWaves
BSs is not very long in distance yet, and the technology has other challenges such as high
signal loss and difficulty generating signals at very high frequencies, like 96 GHz, using
electronic components. Consequently, the research community is still exploring optical
methods, such as combining light signals, to generate mmWave frequencies more efficiently.
For a deeper understanding of this technology, we refer the reader to the works by [8,9].

From the literature, transmission distances with up to a radius of approximately 200 m
or up to 300 m while using 5G mmWave technology have been reported [10]. Consequently,
the experimental evidence suggests that deploying base stations (BSs) with a radius of at
least 200 m can solve the coverage problem in outdoor scenarios utilizing direct line-of-sight
communication. However, opting for smaller radius values would certainly increase the
number of BSs to cover a complete user area [7,10]. We argue that the density of nodes
needed for 5G and 6G systems depends on the area and data needs. For 5G, in urban
areas, one might need about 10 to 100 small cells per square kilometer, whereas for 6G
one would need even more data and faster speeds. The latter could raise the number
from 1000 to 10,000 small cells per square kilometer in crowded areas. To support this
high density, technologies like UDWDM-PON can help by managing data transmission
efficiently between nodes, making it easier to handle a large amount of data traffic in these
networks [11,12].

In this paper, we are concerned with the network planning problem of 5G mmWave
networks mentioned above while achieving a minimum star backbone connectivity cost
and maximizing user coverage. For this purpose, let G = (N, E) denote a network graph
composed of a set of N = {1, . . . , n} possible locations for a subset of BSs to be activated,
and a set E = {{i, j}, i, j ∈ N, (i < j)} denoting the set of symmetric connection links be-
tween these BS nodes. Consequently, it is assumed that a wired or a wireless star backbone
network can be represented by graph G. We also aim that the coverage of a set of users
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M = {1, . . . , m} has to be maximally covered. Due to the above-mentioned problems of
radius transmission, our paper contribution is thus to propose four mathematical optimiza-
tion models that allow maximizing user coverage while simultaneously minimizing the
connectivity costs of users to the star topology, the connection of the star topology nodes
themselves, and the number of base stations in the last two models. The first two models
impose a constraint in which a predefined number of nodes, k, out of n must be chosen to
form the star topology. In particular, two of the proposed models are mixed-integer linear
programming (MILP) models, whereas the remaining ones are mixed-integer quadratic
programming (MIQP) models. Our paper assumes that the network nodes remain sta-
tionary, as in most sensor networks. For example, in catastrophic scenarios, installing
a wireless network as fast as possible is sometimes required. Naturally, if the network
cannot reach some users or a particular one, they or he will not be covered. This can
happen in rural areas for instance. Notice that creating star networks can be of relevant
importance for several reasons depending on the context in which they are used. Some
of the main advantages can be enumerated as the simplicity and ease of configuration,
simplicity during implementation or maintenance, ease of fault detection and isolation,
scalability, centralized control, performance and efficiency, and specific applications such
as cellular base stations or drones acting as base stations, to name a few.

Generally, we represent a wireless network employing a graph network. It is remarked
that all our graph instances are solved with near-optimal gaps using the Gurobi solver that
allows for solving MILP and MIQP models [13]. To this end, we limit the maximum CPU
time for the Gurobi solver to one hour for solving each instance. Finally, two efficient local
search-based algorithms are proposed that allow for finding tight solutions in significantly
low CPU time compared with the proposed models, for small- or large-sized instances of
the problem. To the best of our knowledge, the proposed models and solution approaches
are new to the literature and therefore complement positively the existing literature to deal
with the network design planning problem from a management point of view. Lastly, we
mention that our proposed models are able to cover all users for most tested instances. Total
coverage is achieved using several candidate site locations for the mmWaves BSs antennas
in the star topology network. Notice that a direct comparison with state-of-the-art models
is hard since our models use the star topology configuration, which has not been addressed
in the literature. Thus, a direct comparison with other methods is not easy as the modeling
and algorithmic approaches are new. From the literature, only a few articles were found to
be similar to the connectivity problem we are dealing with. Moreover, two of our proposed
models allow us to determine the optimal number of BSs to be active to form the backbone
network structure. The latter considers the characteristics of 5G mmWave technology. It
is worth noting that the literature has not also considered the aspect of wireless networks
within random deployments, as is the case of a sensor network. Note that the reason for
using the Gurobi solver is justified by its exceptional uniqueness and potent algorithmic
capabilities, as evidenced by its success in tackling challenging optimization problems in
the literature [13]. Finally, this work corresponds to a larger version of the article presented
at the IEEE conference [14].

The organization of the paper is as follows. In Section 2, some related literature work
is presented and discussed. Works similar to the optimal network planning problem con-
sidered in our article are reviewed. Then, in Section 3, the network planning optimization
problem is briefly explained, and each proposed mathematical formulation is presented
and explained in detail. Then, in Section 4, the two proposed algorithms are presented.
Next, in Section 5, we conduct extensive numerical experiments, presenting and discussing
the results obtained from the proposed models and algorithms. Finally, in Section 6, we
conclude the article and discuss insights for potential future research.
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2. Related Work
The network planning problem of locating base stations (BSs) using 5G mmWave

technology has not yet been addressed in depth in the literature, either for outdoor or
indoor scenarios. In this paper, we focus on the outdoor scenario. Some work similar to
our problem published so far can be described as follows. In [14], the authors propose two
mathematical optimization models to solve problems in the network planning problem of
5G wireless communications networks using the mmWave frequency spectrum. The first
model allows for maximizing the number of covered users, minimizing the distances
between each pair of BSs and the distances required to connect each user to a unique
BS. In this model, the number of BSs is assumed to be fixed. The second model allows
for optimizing the same objective function as in the first model with the additional term
used to minimize the total number of BSs. The authors also assume the existence of direct
line-of-sight (LOS) for the pair of links between users and base stations. Finally, they
consider 10 instances with a maximum of 50 candidate location sites for the BSs and a
maximum of 300 users for radial transmission distances of 150 and 200 m. Their numerical
results show that the proposed models could solve all the instances to optimality in a short
CPU time. Consequently, the models proposed in our article now change in structure
significantly to deal with the network planning problem from a management point of view,
as in reference [7].

The authors in reference [15] state that 5G is the wireless network technology to
achieve significantly higher speeds, and they expect that every new generation of wireless
networks should be even faster in terms of data throughput than previous technologies.
Then, they describe the millimeter wave technology as a new candidate that allows a very
high-frequency spectrum, upwards of 20 GHz to nearly 96 GHz. However, the higher the
frequency of any wave is, the shorter is the transmission range [15]. Thus, to take advantage
of 5G, they clarify that one needs a 5G device with an appropriate antenna and a dense
network of 5G BSs. Consequently, they deal with the process of planning and deployment
of 5G networks, emphasizing the planning process to optimize the locations and minimize
the number of BSs in a selected geographical area using a genetic algorithm [16,17]. Thus,
they consider a Multi-Objective Genetic Algorithm incorporating multiple factors like cost,
coverage, and interference in its fitness function to reach a near-global optimal solution for
the problem.

In reference [18], the authors present research focused on optimizing 5G base station
deployment and visualization, addressing the escalating demands for high data rates
and low latency. Their paper compares the effectiveness of different meta-heuristics such
as Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, and Grey
Wolf Optimizer for various deployment scenarios, which allow adopting non-standalone
architectures. Their optimization process approach eliminates redundant base stations to
enhance efficiency. Finally, their numerical results indicate that the Particle Swarm and
the Genetic Algorithm achieve better balances between coverage and capacities. Another
interesting work is the one published in reference [19]. Here, the authors deal with proper
planning procedures to provide cost-effective and quality telecommunication services. They
focus on planning 5G network deployment in two frequency ranges, 3.5 GHz and 28 GHz,
using a mixed cell structure. Meta-heuristic approaches such as Grey Wolf Optimization,
Sparrow Search Algorithm, Whale Optimization Algorithm, Marine Predator Algorithm,
Particle Swarm Optimization, and Ant Lion Optimization approaches for optimizing the
locations of remote radio units are considered. Their comparative numerical analysis shows
that the proposed network is efficient in providing an average data rate of 50 Mbps while
meeting the coverage requirements of at least 98%.
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Similarly, in reference [20], the authors reduce power consumption as a pivotal chal-
lenge in 5G millimeter wave networks due to the density of the base stations. The paper
focuses on the joint user and power allocation problem in 5G mmWave networks, aiming
to minimize power consumption while maintaining the user Quality of Service (QoS),
considering the BSs switching on/off strategy. The authors formulate the problem as an
integer linear program to obtain the optimal solution. They further propose a Genetic
Algorithm-based heuristic strategy. Finally, extensive simulations are conducted to evaluate
the performance of the Genetic Algorithm. The obtained results demonstrate the efficiency
of the proposed GA in providing close to optimal solutions. Finally, they conclude the
effectiveness in residential and office areas in terms of energy savings.

Ultimately, to close this section, we observe that the network planning problem in the
literature has not been covered from a management point of view with sufficient detail
yet. Moreover, we observed only a few works directly related to the network planning
problem using 5G mmWave technology. Thus, it is expected that this work contributes to a
new dimension of the problem, that is, taking into account optimal connectivity and star
topology configuration using 5G mmWave technology.

Lastly, for a more panoramic view related to wireless network studies, the reader is
referred to the recent papers by [21–23] and to references therein.

3. System Description and Mathematical Formulations
In this section, we provide a brief system description of the network planning problem

we are dealing with from a management point of view. For this purpose, Figures 1 and 2 are
discussed and explained. Subsequently, each proposed model is presented and described
in logical order.

Star Network with Users Connected to the Nearest Node

Figure 1. Star network topology configuration composed of ten nodes and 30 users. The black node is
the sink server base station, while the blue ones are the leaf base stations of the star. The green nodes
represent users. Blue edges connect the star solution and the green links connect users to the base
stations within the radial transmission area. The radial distance is 300 ms and all users are covered.
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Star Network with Users Connected to the Nearest Node

Figure 2. A larger star network topology configuration composed of 50 nodes (BSs) and 1000 users.
The black node is the sink server base station, while the blue ones are the leaf ones of the star.
The green nodes and edges represent users connected to leaf BSs. The radial distance is 300 ms and
all users are covered by the star.

3.1. System Description

It is considered a random deployment of possible location sites for a set of N =

{1, . . . , n} BSs, from which k out of n must form a star backbone. We also consider a set of
M = {1, . . . , m} users that should be covered, i.e., connected to their nearest BSs according
to a radial transmission radius of the BSs. To be more precise, in Figures 1 and 2 we present
two feasible solutions for the optimization problem we are dealing with. In particular,
in Figure 1, we assume that the network can be represented by the graph G = (N, E),
where E denotes the set of links for an output solution of the problem. This network graph
is composed of ten nodes and 30 users. Notice that the black node is the sink of the star
topology and the star is connected with blue edges. Next, we observe that each user is
connected to its nearest BS with a green-colored edge. Finally, we see that, in this case,
no element of the set of user nodes is isolated, meaning that all of them are fully covered.
Lastly, and for the sake of clarity, we mention that for this example we have intentionally
coincided the number of BSs, k, to be activated with the total candidate sites, n.

This is the aim of the first two proposed mathematical formulations. However, in the
last two models, we further consider the situation in which the proposed models also
determine the minimum number of base stations required to cover the maximum number
of users at minimum connectivity costs. The four proposed models are constructed for a
star network configuration.

Similarly, in Figure 2, we arbitrarily do the same to avoid confusion about a feasible
solution, although in this case the network is larger and composed of 50 BSs and 1000 users.
The rest of the explanations are the same as for Figure 1.

Next, we proceed with the proposed mathematical formulations for the network
planning problem. We present each of them and explain them in detail, together with
their correctness.
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3.2. Mathematical Formulations

The first mixed-integer linear programming formulation to tackle the network plan-
ning problem with star topology can be constructed as follows. First, notice that the
domain variables in constraints (9) are x ∈ {0, 1}m, y ∈ {0, 1}n, z ∈ {0, 1}nm, α ∈ {0, 1}n,
and ϕ ∈ {0, 1}n2−n. In turn, variable xj equals one if user j ∈ M is attended to, and equals
zero otherwise. Next, yi with i ∈ N equals one if BS i is active. Similarly, variable zij for all
i ∈ N, j ∈ M equals one if BS i connects to user j. Also, variable αi i ∈ N equals one if BS i
is the sink black node of the star. Finally, variable ϕij i, j ∈ N, (i ̸= j) equals one if BS i is
connected to BS j, forming the star. Thus, the model is as follows

M1 : max
{x,y,z,α,ϕ}

∑
j∈M

xj − ∑
i,j∈N
(i ̸=j)

Dijϕij − ∑
i∈N
j∈M

Wijzij (1)

st: ∑
i∈N

Cijyi ≥ xj, ∀j ∈ M (2)

∑
i∈N

Cijzij = xj, ∀j ∈ M (3)

∑
i∈N

yi = k (4)

αi ≤ yi, ∀i ∈ N (5)

∑
i∈N

αi = 1 (6)

αi + yj ≤ 1 + ϕij, ∀i, j ∈ N, (i ̸= j) (7)

ϕij + ϕji ≤ 1, ∀i, j ∈ N, (i ̸= j) (8)

x ∈ {0, 1}m, y ∈ {0, 1}n, z ∈ {0, 1}nm (9)

α ∈ {0, 1}n, ϕ ∈ {0, 1}n2−n (10)

Proposition 1. Model M1 allows for finding an optimal solution for the network planning problem
while forming a star backbone with k out n nodes with maximum objective value while maximizing
the number of users, and minimizing the connectivity of the star backbone and the connection of
users to their nearest k activated BSs.

Proof. To allow a correct star configuration and users connected as above mentioned,
constraints (2) ensure that user j for all j ∈ M can be reached by at least one of the BSs;
for this purpose, matrix C = (Cij) for all i ∈ N, j ∈ M is a zero–one matrix. If an entry
equals one, it means that BS i reaches user j; it equals zero otherwise. Next, constraints (3)
impose that each user should be connected to a unique BS. The next constraint (4) guarantees
that exactly k BSs are actively forming the star. Subsequently, constraints (5) indicate that,
for all i ∈ N, if a BS acts as a sink for the star, it should be one of the active BSs. The
next constraint (6) and the previous constraint ensure that only one sink is allowed for
the star configuration. To form the star, constraints (7) for all i, j ∈ N, (i ̸= j) ensure that
αi + yj ≤ 1 + ϕij. Observe that, in the case αi = 0 and yj = 0, the constraint is redundant.
Next, in the case αi = 1 and yj = 0, the constraint is also redundant. However, in the case
of both αi = 1 and yj = 1, then a connection must exist between BSs i and j, forcing variable
ϕij to be equal to one. Notice that variable ϕij is being minimized. The connection must
exist as it means BS i acts as the sink node, whilst node j is an active BS, being part of the
solution star. Finally, constraints (8) ensure that only one link must be considered in the
connection of constraints (7) for all i, j ∈ N, (i ̸= j). The latter is valid since the input matrix
D = (Dij) for all i, j ∈ N, (ij) is a symmetric distance matrix. Lastly, matrix W = (Wij) for
all i ∈ N, j ∈ M is also an Euclidean distance matrix between BS i and user j.
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Corollary 1. The following quadratic formulation, M2, allows for finding an optimal solution for
the network planning problem that provides the same optimal objective value of model M1, since
both models are equivalent. We prove the equivalence as follows:

M2 : max
{x,y,z,α,ϕ}

∑
j∈M

xj − ∑
i,j∈N
(i ̸=j)

Dijϕij − ∑
i∈N
j∈M

Wijzij

st: ∑
i∈N

Cijyi ≥ xj, ∀j ∈ M

∑
i∈N

Cijzij = xj, ∀j ∈ M

∑
i∈N

yi = k

αi ≤ yi, ∀i ∈ N

∑
i∈N

αi = 1

2αiyj ≤ 1 + ϕij, ∀i, j ∈ N, (i ̸= j) (11)

ϕij + ϕji ≤ 1, ∀i, j ∈ N, (i ̸= j)

x ∈ {0, 1}m, y ∈ {0, 1}n, z ∈ {0, 1}nm

α ∈ {0, 1}n, ϕ ∈ {0, 1}n2−n

Proof. The proof is immediate. Notice that the constraints (7) in M1 ensure that αi + yj ≤
1 + ϕij, for all i, j ∈ N, (i ̸= j). The statement is thus to prove that the latter constraints are
equivalent to constraints (11), i.e., 2αiyj ≤ 1 + ϕij, ∀i, j ∈ N, (i ̸= j). These latter constraints
are equivalent since the only case in which the product αiyj equals one is when both αi = 1
and yj = 1, thus forcing the variables ϕij, ∀i, j ∈ N, (i ̸= j) to be equal to one.

Notice that this small change in model M2 transforms the model into a mixed-integer
quadratic problem different from M1, which is a mixed-integer linear one. It turns out that
the solver will show a different performance in terms of CPU times, best objective values,
and number of branch and bound nodes when solving both M1 and M2 [13].

Another model that consists of a variant of model M1 is M3. In M3, notice that we do
not impose that k BSs must be active to form the star topology out of the n total number
of BSs. Instead, we remove the constraint (4) from M1 and add the left-hand side of this
constraint to the objective function in M3 with a minus sign. This is done to minimize the
number of BSs for the star. Thus, the new model can be written as

M3 : max
{x,y,z,α,ϕ}

∑
j∈M

xj − ∑
i,j∈N
(i ̸=j)

Dijϕij − ∑
i∈N
j∈M

Wijzij − ∑
i∈N

yi (12)

st: ∑
i∈N

Cijyi ≥ xj, ∀j ∈ M

∑
i∈N

Cijzij = xj, ∀j ∈ M

αi ≤ yi, ∀i ∈ N

∑
i∈N

αi = 1

αi + yj ≤ 1 + ϕij, ∀i, j ∈ N, (i ̸= j)

ϕij + ϕji ≤ 1, ∀i, j ∈ N, (i ̸= j)

x ∈ {0, 1}m, y ∈ {0, 1}n, z ∈ {0, 1}nm

α ∈ {0, 1}n, ϕ ∈ {0, 1}n2−n
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We do not explain each of the constraints of model M3 as they are equivalent to M1.
Similarly, we do the same for the quadratic model M2 to obtain model M4, stated as follows

M4 : max
{x,y,z,α,ϕ}

∑
j∈M

xj − ∑
i,j∈N
(i ̸=j)

Dijϕij − ∑
i∈N
j∈M

Wijzij − ∑
i∈N

yi

st: ∑
i∈N

Cijyi ≥ xj, ∀j ∈ M

∑
i∈N

Cijzij = xj, ∀j ∈ M

αi ≤ yi, ∀i ∈ N

∑
i∈N

αi = 1

2αiyj ≤ 1 + ϕij, ∀i, j ∈ N, (i ̸= j)

ϕij + ϕji ≤ 1, ∀i, j ∈ N, (i ̸= j)

x ∈ {0, 1}m, y ∈ {0, 1}n, z ∈ {0, 1}nm

α ∈ {0, 1}n, ϕ ∈ {0, 1}n2−n

Finally, we do not explain each of the constraints of model M4 either since they are
equivalent to model M2.

4. Algorithmic Approaches
This section presents Algorithm 1 and explains it line by line for solving the first two

optimization models, M1 and M2. Recall that these models impose that k out of the n BSs
should be active to form the star topology. Then, a second procedure in Algorithm 2, a vari-
ant of the first one, is presented for finding near-optimal solutions, explained, and discussed
in detail for models M3 and M4.

Algorithm 1: Proposed Local Search Heuristic Algorithm for models M1 and M2.
Data: An instance of the network planning problem.
Result: A feasible solution and objective function value for the network planning problem.
MaxTime = value, MaxGlobal = −∞
Randomly generate a permutation of the index set N and split it into two lists L1 and L2 of

dimensions k and n − k, respectively
StarTime = currentTime, EndTime = currentTime
while (EndTime − StarTime > MaxTime) do

Iter = Iter + 1
v = randint(a, b); L = range(1, v + 1)
foreach (i ∈ L) do

Find a random index number in L1 and another one in L2

Interchange the values contained in both lists according to those found indices
Evaluate the shortest star with the values in L1 while forcing each node to act as the sink

node
Connect each user to its nearest node in L1 if it is covered by the nearest node
Evaluate the solution obtained according to the objective function of M1 (or M2)
Denote the obtained value by Obj
if (Obj ≥ MaxGlobal) then

MaxGlobal = Obj, L1Opt = L1, L2Opt = L2

StarTime = currentTime, EndTime = currentTime

else
L1 = L1Opt, L2 = L2Opt

Return the best feasible solution obtained and its objective function value.
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Algorithm 2: Proposed Local Search Heuristic Algorithm for models M3 and M4.
Data: An instance of the network planning problem.
Result: A feasible solution and objective function value for the network planning problem.
MaxTime = value, MaxGlobal = −∞
Randomly generate a permutation of the index set N and split it into two lists L1 and L2 of

dimensions
⌊ n

2
⌋

and
⌈ n

2
⌉
, respectively

StarTime = currentTime, EndTime = currentTime
while (EndTime − StarTime > MaxTime) do

Iter = Iter + 1
v = randint(a, b); L = range(1, v + 1)
foreach (i ∈ L) do

Find randomly an index number in L1 or L2 taking care that both lists contain at
least two elements

if the index number is from L1, remove from L1 the element in position index and
add it to L2

On the opposite, if the index number is from L2, remove from L2 the element in
position index and add it to L1

Evaluate the shortest star with the values in L1 while forcing each node to act as the sink
node

Connect each user to its nearest node in L1 if it is covered by the nearest node
Evaluate the solution obtained according to the objective function of M3 (or M4)
Denote the obtained value by Obj
if (Obj ≥ MaxGlobal) then

MaxGlobal = Obj, L1Opt = L1, L2Opt = L2

StarTime = currentTime, EndTime = currentTime

else
L1 = L1Opt, L2 = L2Opt

Return the best feasible solution obtained and its objective function value.

4.1. A Local Search-Based Heuristic for Finding Feasible Solutions for M1 and M2

The procedure for solving M1 and M2 is depicted in Algorithm 1. It works as follows.
It requires as input an instance of model M1 (or M2) for the network planning problem and
returns a feasible solution to the problem and its objective function value. The algorithm
initializes arbitrarily the variables MaxTime = value and MaxGlobal = −∞. The first pa-
rameter, MaxTime, is set to an arbitrary amount of time, while the second one, MaxGlobal,
saves within each iteration of the procedure the best objective value found during the
algorithm’s execution time.

Then, it randomly generates a permutation of the index set of N and splits it into two
lists, L1 and L2, with dimensions k and n − k, respectively. Subsequently, it enters into a
while loop using the condition that the current time minus the starting time must be larger
than the MaxTime parameter is set to. The latter is controlled with the variables StarTime
and EndTime. Inside the loop, the number of iterations is incremented and generates a list,
L, with a random size, v, a number between the integer values a and b (a < b). List L is
composed of numbers ranging from one to v, i.e., [1, . . . , v]. Subsequently, for each value,
we find a random index in L1 and another in L2 and interchange the content values of these
positions between lists L1 and L2. Once this is performed, the shortest star with values
in L1 is evaluated, forcing each node to act as a potential sink node. Next, each covered
user is connected to its nearest BSs in L1. Finally, the solution obtained according to the
objective function of M1 (or M2) is evaluated and denoted by Obj. Afterward, we ask if the
new objective value, Obj, is greater than or equal to MaxGlobal. If so, we save the best new
solution obtained and restart the CPU time variables StarTime and EndTime. The latter
is performed to provide Algorithm 1 with a new amount of MaxTime units of time to be
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running to find even better solutions. Lastly, the algorithm returns the best feasible solution
obtained and its objective function value.

4.2. A Local Search-Based Heuristic for Finding Feasible Solutions for M3 and M4

The procedure for solving M3 and M4 is depicted in Algorithm 2. It works similarly
to Algorithm 1 as follows. It requires as input an instance of model M3 (or M4) for the
network planning problem and returns a feasible solution to the problem and its objective
function value. For the sake of space, we omit the same explanations and focus on the main
differences compared with Algorithm 1.

The main difference is that, when performing the inner for each (·) loop inside the
while loop, we randomly generate a value, v, to create a list containing elements from one
to v that will be used to perform a predefined number of interchanges between lists L1 and
L2. Subsequently, we find randomly an index number in L1 or L2, taking care that both lists
contain at least two elements. If the index number is from L1, we remove the element from
L1 in the position index and add it to L2. Otherwise, if the index number is from L2, we
remove from L2 the element in the position index and add it to L1. The rest is analogous to
Algorithm 1. Notice that this part of Algorithm 2 is because now the size of lists L1 and L2

is not fixed within each iteration of Algorithm 2.

5. Results and Discussion
In this section, substantial numerical results are obtained to compare the performances

of models M1, M2, M2, M4, and the proposed Algorithms 1 and 2. A Python code is
implemented using the Gurobi solver [13] with default options. Only the maximum CPU
time is fixed to one hour of CPU time. Thus, if a solution reports its objective function
value in less than 3600 s, it means the solver is reporting the optimal solution. Otherwise, it
corresponds to the best solution found in one hour. Notice that the optimization models
we are dealing with belong to the NP-hard complexity class due to their discrete nature.
The numerical experiments are performed on a 12th Gen Intel(R) Core(TM) i7-12700H,
64 bits x64, with 2.30 GHz and 16.0 GB of RAM. We also assume that all the active BSs
can be connected using cables or wirelessly. The dimensions of the tested instances are
k = {50, 70, 100}, n = {200}, and m = {1000, 2000, 3000, 4000, 5000}. Also, it is assumed
that each user can be connected to an active BS if and only if located inside a radial trans-
mission range of at most {150, 200, 300} meters. We further mention that each coordinate
for the nodes is generated within a square area of 1 km2 according to a uniform distribu-
tion function. Each entry of matrix D = (Dij) i, j ∈ N denotes the distance between BSs.
Similarly, each entry in matrix W = (Wij), i ∈ N, j ∈ M denotes the distance between BS i
and user j. Finally, matrix C = (Cij) is a zero–one matrix with value one if BS i reaches user
j within its radial transmission radius. Otherwise, it has a zero value.

In Tables 1–3 the legends are as follows. Column 1 presents the instance number.
Columns 2, 3, and 4 correspond to the parameter k in models M1 and M2, the number of
candidate sites for the nodes forming the star backbone network, and the number of users
to be attended. Next, in columns 5–9 and 10–14, we report the best or optimal objective
function value, the number of branch and bound nodes, the CPU time in seconds, the Mip-
gaps in percentages given by Gurobi, and the number of users attended, respectively, by the
two models M1 and M2. Table 1 reports numerical results for a radial transmission distance
of 150 m. In Tables 2 and 3, the numerical results are reported for radial transmissions of
200 and 300 m, respectively.
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Table 1. Numerical results obtained with models M1 and M2 using a radial transmission distance
of 150 m.

# k n m
M1 M2

Best Sol. B&B CPU (s) Gap (%) # of Users Best Sol. B&B CPU (s) Gap (%) # of Users

1 50 200 1000 951.4 569 311.26 0.0 1000 951.4 773 176.34 0.0 1000
2 50 200 2000 1900.29 9900 1274.76 0.0 1986 1900.29 7047 1066.56 0.0 1986
3 50 200 3000 2877.27 3110 529.79 0.0 3000 2877.27 2562 213.87 0.0 3000
4 50 200 4000 3839.63 2499 322.63 0.0 4000 3839.63 2045 348.58 0.0 4000
5 50 200 5000 4812.77 663 224.18 0.0 5000 4812.77 2609 359.9 0.0 5000
6 70 200 1000 945.82 685 281.64 0.0 1000 945.82 440 124.55 0.0 1000
7 70 200 2000 1905.98 3515 313.95 0.0 1999 1905.98 1804 222.37 0.0 1999
8 70 200 3000 2877.38 514 192.26 0.0 3000 2877.38 558 169.77 0.0 3000
9 70 200 4000 3833.49 1245 275.75 0.0 4000 3833.49 2824 500.58 0.0 4000

10 70 200 5000 4796.03 932 231.38 0.0 5000 4796.03 678 209.82 0.0 5000
11 100 200 1000 935.18 1 38.55 0.0 1000 935.19 403 74.4 0.0 1000
12 100 200 2000 1898.22 283 79.47 0.0 2000 1898.22 468 89.96 0.0 2000
13 100 200 3000 2863.93 718 97.86 0.0 3000 2863.93 8519 2114.73 0.0 3000
14 100 200 4000 3827.04 898 202.15 0.0 4000 3827.04 555 99.99 0.0 4000
15 100 200 5000 4790.66 385 112.47 0.0 5000 4790.66 355 113.8 0.0 5000

Table 2. Numerical results obtained with models M1 and M2 using a radial transmission distance
of 200 m.

# k n m
M1 M2

Best Sol. B&B CPU (s) Mipgap (%) # of Users Best Sol. B&B CPU (s) Mipgap (%) # of Users

1 50 200 1000 953.65 1247 194.58 0.0 1000 953.65 507 97.42 0.0 1000
2 50 200 2000 1911.54 963 113.2 0.0 1997 1911.54 1833 123.1 0.0 1997
3 50 200 3000 2879.55 958 131.12 0.0 3000 2879.55 487 94.66 0.0 3000
4 50 200 4000 3842.21 410 96.0 0.0 4000 3842.21 649 120.04 0.0 4000
5 50 200 5000 4814.53 453 102.93 0.0 5000 4814.53 391 78.25 0.0 5000
6 70 200 1000 947.4 1 29.54 0.0 1000 947.42 377 170.17 0.0 1000
7 70 200 2000 1908.57 344 72.44 0.0 2000 1908.57 1900 130.24 0.0 2000
8 70 200 3000 2878.9 336 77.1 0.0 3000 2878.9 1769 123.69 0.0 3000
9 70 200 4000 3835.21 825 136.29 0.0 4000 3835.21 852 99.58 0.0 4000
10 70 200 5000 4797.58 348 86.27 0.0 5000 4797.58 781 107.43 0.0 5000
11 100 200 1000 936.21 1 39.34 0.0 1000 936.21 316 60.89 0.0 1000
12 100 200 2000 1899.01 356 57.46 0.0 2000 1899.01 388 60.13 0.0 2000
13 100 200 3000 2865.16 321 66.09 0.0 3000 2865.16 565 79.02 0.0 3000
14 100 200 4000 3828.28 437 84.81 0.0 4000 3828.28 363 74.6 0.0 4000
15 100 200 5000 4791.75 381 71.87 0.0 5000 4791.75 392 76.09 0.0 5000

From these tables, we observe that all the solutions are the optimal ones. This is en-
sured by the Mipgaps when these are equal to zero. This parameter reported by the Gurobi
solver is the difference between the relaxed solution and the integer one. Consequently, if it
equals zero, the solution obtained is indeed the optimal one [13]. Next, we observe that
these objective values are larger when using 300 m than 200 m, and even larger when using
150 m. Concerning the number of branch and bound nodes obtained, we appreciate that
these values in the three tables are in the same order of magnitude. Regarding the CPU
time in seconds in Tables 1–3, we observe that linear model M1 exhibits a slightly better
performance than quadratic model M2. Finally, we see that almost all users are covered, as
shown by the solutions obtained, in particular when using a radial transmission distance
of 300 m in Table 3, although in Tables 1 and 2 more than 99% of users are covered.
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Table 3. Numerical results obtained with models M1 and M2 using a radial transmission distance
of 300 m.

# k n m
M1 M2

Best Sol. B&B CPU (s) Mipgap (%) # of Users Best Sol. B&B CPU (s) Mipgap (%) # of Users

1 50 200 1000 954.83 1 59.12 0.0 1000 954.83 3043 157.07 0.0 1000
2 50 200 2000 1915.17 2322 126.56 0.0 2000 1915.17 813 82.13 0.0 2000
3 50 200 3000 2880.92 2594 160.62 0.0 3000 2880.92 1301 118.05 0.0 3000
4 50 200 4000 3843.63 1389 106.06 0.0 4000 3843.63 5901 207.83 0.0 4000
5 50 200 5000 4815.78 1647 124.92 0.0 5000 4815.78 678 100.77 0.0 5000
6 70 200 1000 948.55 1 69.71 0.0 1000 948.55 869 167.56 0.0 1000
7 70 200 2000 1909.89 790 86.43 0.0 2000 1909.89 903 67.44 0.0 2000
8 70 200 3000 2880.05 1261 139.72 0.0 3000 2880.05 1155 95.08 0.0 3000
9 70 200 4000 3836.09 351 89.91 0.0 4000 3836.09 1192 96.04 0.0 4000
10 70 200 5000 4798.7 1224 147.49 0.0 5000 4798.7 465 69.97 0.0 5000
11 100 200 1000 936.92 1 49.53 0.0 1000 936.92 277 54.82 0.0 1000
12 100 200 2000 1899.73 332 55.11 0.0 2000 1899.73 1636 112.5 0.0 2000
13 100 200 3000 2865.93 341 69.19 0.0 3000 2865.93 452 82.02 0.0 3000
14 100 200 4000 3828.97 339 78.65 0.0 4000 3828.97 426 84.95 0.0 4000
15 100 200 5000 4792.57 301 73.1 0.0 5000 4792.57 375 77.46 0.0 5000

In Tables 4–6, we report numerical results obtained with models M3 and M4 for radial
transmission distances of 150, 200, and 300 ms. The legends of these three tables are again
the same.

Notice that only the value of k is not present now because models M3 and M4 minimize
the total number of BSs to be activated. Consequently, in columns 9 and 15, we report
the number of BSs related to the solutions obtained for each row instance of the network
planning problem for models M3 and M4, respectively.

Table 4. Numerical results obtained with models M3 and M4 using a radial transmission distance
of 150 m.

# n m
M3 M4

Best
Sol. B&B CPU

(s)
Gap
(%)

# of
Users

# of
BSs

Best
Sol. B&B CPU

(s)
Gap
(%)

# of
Users # of BSs

1 200 1000 931.37 755 3600.3 0.42 1000 23 931.33 2566 3600.32 0.38 1000 23
2 200 2000 1880.93 2237 3600.29 0.06 1984 22 1880.93 2526 3600.38 0.06 1984 22
3 200 3000 2856.02 39,789 3600.92 0.22 2998 23 2856.02 39,983 3600.8 0.14 2998 23
4 200 4000 3818.93 3146 2379.22 0.0 4000 24 3818.93 2216 3218.11 0.0 4000 24
5 200 5000 4792.22 39,890 3601.6 0.1 5000 24 4792.22 39,257 3602.63 0.15 5000 24

Table 5. Numerical results obtained with models M3 and M4 using a radial transmission distance
of 200 m.

# n m
M3 M4

Best
Sol. B&B CPU

(s)
Gap
(%)

# of
Users

# of
BSs

Best
Sol. B&B CPU

(s)
Gap
(%)

# of
Users # of BSs

1 200 1000 945.75 39,268 3601.29 0.06 999 12 945.64 39,657 3607.87 0.27 1000 13
2 200 2000 1903.75 40,372 3608.11 0.12 1996 13 1903.75 38,996 3631.13 0.11 1996 13
3 200 3000 2871.13 40,872 3600.73 0.01 2999 13 2871.1 40,686 3600.71 0.01 2999 13
4 200 4000 3833.39 42,449 3601.18 0.05 4000 14 3833.39 40,446 3602.66 0.04 4000 14
5 200 5000 4806.72 38,596 3605.6 0.07 5000 14 4806.72 39,540 3601.37 0.07 5000 14



Symmetry 2025, 17, 141 14 of 19

Table 6. Numerical results obtained with models M3 and M4 using a radial transmission distance
of 300 m.

# n m
M3 M4

Best
Sol. B&B CPU

(s)
Gap
(%)

# of
Users

# of
BSs

Best
Sol. B&B CPU

(s)
Gap
(%)

# of
Users # of BSs

1 200 1000 954.01 52,344 762.63 0.0 999 6 954.01 4086 652.62 0.0 999 6
2 200 2000 1915.35 34,452 791.63 0.0 2000 7 1915.35 39,196 757.76 0.0 2000 7
3 200 3000 2880.8 47,665 997.48 0.0 3000 7 2880.8 37,643 1056.65 0.0 3000 7
4 200 4000 3843.29 30,368 1245.66 0.0 4000 7 3843.29 34,779 1229.89 0.0 4000 7
5 200 5000 4816.49 17,977 1025.92 0.0 5000 7 4816.49 17,777 785.91 0.0 5000 7

From Tables 4–6, we first observe that the Mipgap values that are near to zero ensure
that the solutions obtained are near-optimal. When the Mipgaps are zero, we ensure that
the optimal solution for each row instance has been reached. Also, notice that in many
cases, particularly in Tables 4 and 5, we cannot solve optimally in one hour of CPU time the
instances. This clearly shows that it is harder to solve M3 and M4 optimally than M1 and
M2, i.e., these instances require a higher computational effort to certify optimality. Another
interesting observation is that, independently of the transmission distance, most of the
users are attended to by the BSs of the network output solutions. Finally, we see that the
larger the transmission distances are, the lower is the number of BSs required to form the
star backbone network.

To provide more insights regarding Algorithm 1 and model M1, in Figures 3–5 we
report objective values, CPU time in seconds, number of attended users, and gaps obtained
for each instance of Tables 1, 2, and 3, where the radial transmission distance are 150, 200,
and 300 m, respectively.
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Figure 3. Objective values, CPU time in seconds, attended users, and gaps obtained for each instance
in Table 1 where the radial transmission distance is 150 ms.
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Figure 4. Objective values, CPU time in seconds, attended users, and gaps obtained for each instance
in Table 2 where the radial transmission distance is 200 ms.

2 4 6 8 10 12 14

1000

1500

2000

2500

3000

3500

4000

4500

5000
Objective values

Best Sol. M1
Algorithm 1

2 4 6 8 10 12 14
40

60

80

100

120

140

160

CPU times
CPU(s) M1
CPU(s) Algorithm 1

2 4 6 8 10 12 14

1000

1500

2000

2500

3000

3500

4000

4500

5000
Number of Covered users

Covered users M1
Covered users Algorithm 1

2 4 6 8 10 12 14

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25
Gaps between Algorithm 1 and M1

Gaps in %

Figure 5. Objective values, CPU time in seconds, attended users, and gaps obtained for each instance
in Table 3 where the radial transmission distance is 300 ms.

From Figures 3–5, we see that independently of the radial transmission distance
Algorithm 1 obtains tight near-optimal solutions for all the tested instances. Next, we
observe that the users are always covered in about 99% to 100% of the time. Subsequently,
we notice that the smaller the radial transmission distance is, the tighter are the CPU times
obtained with Algorithm 1, and, in general, the CPU times of Algorithm 1 are not larger
than 140 s for all the tested instances. Regarding the gaps obtained in percentages, which
are measured by subtracting to the optimal objective function value, the value obtained
with Algorithm 1, and dividing by the optimal function value times 100, we observe a
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decreasing trend, which is an interesting result. The latter verifies the effectiveness of
Algorithm 1 as it approaches the optimal values, and these gaps are even smaller for
larger-size instances of the problem. Finally, we mention that model M1 obtains the optimal
solutions of the network planning problem for all the instances too, although, at a slightly
higher computational cost.

Similarly, to provide more insights regarding Algorithm 2 and model M3, in Figures 6–8
we report objective function values, CPU time in seconds, number of attended users,
number of active BSs, and gaps obtained for each instance of Tables 4, 5 and 6, respectively,
where the radial transmission distance are 150, 200, and 300 m.
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Figure 6. Objective values, CPU time in seconds, attended users, number of base stations, and gaps
obtained for each instance in Table 4 where the radial transmission distance is 150 ms.
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Figure 7. Objective values, CPU time in seconds, attended users, number of base stations, and gaps
obtained for each instance in Table 5 where the radial transmission distance is 200 ms.
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Figure 8. Objective values, CPU time in seconds, attended users, number of base stations, and gaps
obtained for each instance in Table 6 where the radial transmission distance is 300 ms.

From Figures 6–8, we observe that the objective function values are very tight again.
Next, it is observed that the CPU time is significantly smaller for Algorithm 2 when
compared with those obtained with model M3 for all tested instances. The percentage of
attended users is 100% with model M3 and Algorithm 2. The number of active BSs for
the solutions obtained with Algorithm 2 presents an increasing behavior. This is also an
interesting observation as it shows the existence of solutions with a larger number of BSs
that are also near-optimal. Finally, we see a decreasing behavior from the gaps obtained in
the percentages. The latter verifies the effectiveness of Algorithm 2 also when approaching
optimal solutions. Lastly, it is also worth mentioning that these gap values decrease for
the larger size instances of the problem. Notice that model M3 cannot obtain the optimal
solution of the network planning problem for most of the tested instances using one hour of
CPU time. The latter empirically shows that solving the network planning problem when
simultaneously minimizing the number of BSs makes the optimization models significantly
harder to solve optimally.

6. Conclusions
This paper proposes mathematical formulations for solving the network planning

problem while using millimeter wave technology for 5G wireless communications. To this
end, we assume that a set of users, M, and a set of base stations, N, are deployed randomly
in a square area of 1 km2. The main goal of the proposed models is to connect the base
stations forming a star backbone so that users can connect to their nearest active base
stations. We propose four optimization models to maximize the number of users connected
to the backbone and minimize the distance costs of connecting users to the base stations,
and distances of connecting the base stations themselves. Since millimeter wave technology
presents a high path loss, the transmission distances cannot be larger than 300 m. Thus,
a direct line of sight between users and base stations is also assumed. Finally, two local
search-based algorithms are proposed to find near-optimal solutions for all our tested
instances. Our numerical results indicate that we can solve network instances optimally
with up to n = 200, and m = 5000 users. In general, we conclude that all the proposed
models allow us to obtain optimal or near-optimal solutions for all test cases. Similarly,
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the proposed algorithms obtain optimal and near-optimal solutions with less CPU time
and effort.

In future research, we plan to consider new layout implementations related to 5G
networks in rural, urban, and semi-urban configurations. We also plan to propose novel
mathematical models and algorithms to solve instances considering a higher density of
base stations and users. Finally, it is also important to consider in the future metrics of the
objective function factors such as the noise depending on weather conditions.
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