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Abstract: The purpose of this article is to investigate some tensorial norm inequalities
for continuous functions of self-adjoint operators in Hilbert spaces. Our first approach is
to develop a gradient descent inequality and some relational properties for continuous
functions involving Huber convex functions, as well as several new bounds for Simpson
type inequality that is twice differentiable using different types of generalized convex
mappings. It is believed that this study will provide a valuable contribution towards
developing a new perspective on functional inequalities by utilizing some other types of
generalized mappings.
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1. Introduction

In many areas of mathematics, including approximation theory, convex program-
ming, and mathematical statistics, convexity is an important concept. A variety of convex
functions have recently been extensively studied by scholars in applied sciences. Convex
functions are highly important in formulating different inequalities. The link between
convexity and inequality is a broad field of study with important applications in practical
arithmetic. For example, in numerical methods, inequalities derived from convex functions
are used to estimate errors and improve algorithms [1]; in information theory, specifically
in estimating entropies and divergences [2]; in statistics, they aid in understanding dis-
tributions and the behavior of systems under various constraints, leading to insights [3];
and in economics, convexity in preferences or utility functions can result in inequalities
that describe optimal allocations of resources [4]. For some further recent applications in
various disciplines, we refer to [5-9].

In recent years, fractional calculus has made significant advances in many areas of
mathematics and science. In recent years, new definitions of integrals and fractional deriva-
tives have emerged, expanding upon the traditional definitions in some way. Furthermore,
one prominent topic of mathematical analysis study has been the thorough examination
of those new definitions. Many materials and processes exhibit non-local behavior, where
the current state depends on the history of the system. Fractional derivatives capture
this memory effect naturally, as they involve integrals over time or space. Due to the
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usefulness of non-integer calculus, researchers have exploit it to develop convex integral
disparities that play a significant role in approximation theory. The following are a few
instances of inequalities that may be used to identify the error limits of quadrature formulas:
Jensen [10], Simpson’s [11], Ostrowski [12], Hermite-Hadamard [13], trapezoidal [14], and
several other. To build these convex integral inequalities, the researchers used a variety of
convex mappings, integral operators (classical, fractional, and stochastic), order relations
(cr-order, pseudo-order, left-right order, inclusion orders), and other techniques. For in-
stance, in [15], authors used convex symmetric coordinated functions to create Hermite and
Hadamard inequality; in [16], authors used a fractional Riemann-Liouville integral to create
Newton type inequalities for generalized convex functions; in [17], authors created Simpson
type inequalities by using various function classes; and in [18], authors created Bullen-type
result using generalized integral operators. The authors of [19] improve Young’s inequality
with a number of intriguing bounds and applications, and in [20], they develop Holder’s
inequality by solving delay differential equations using mean continuity and proving its
uniqueness. The authors in [21] developed an Ostrowski type inequality using differen-
tiable s-convex mapping, whereas the authors in [22] developed trapezoid type inequalities
using quantum integral operators.

Simpson’s inequality holds significance as it not only provides a theoretical foundation
for the accuracy of numerical integration techniques, but also aids researchers in selecting
the most effective methods based on the characteristics of the functions they are studying,
particularly in the context of quadrature error estimation and complex definite integrals.
Thomas Simpson, a mathematician, popularized Simpson’s rule in the 18th century, and
it is the basis for Simpson’s inequality. By approximating a function with a quadratic
polynomial, the rule offers a way to estimate the integral of that function. Specifically, it
states that for a function & that is continuous on the interval [, {>], the integral can be
approximated as:

*  Simpson’s $ rule, often known as the quadrature formula:

[ st0an~ 28 (e +as (812 ra).

e  Simpson’s 3 rule, often known as the Simpson’s 2nd formula:

/;2 S()an~ 28 {s(gl) +3%<2§13+52) +3%<51+32€2) " s(@)]

The most often used three-point Simpson-type inequality has the following definition.

Theorem 1 ([23]). Let Y : [¢1,E2] — R be a continuous mapping, and assume that H%w H =

SUPc (¢,,8,) 34 (K)’ < oo. The inequality listed below is therefore true:
1 o gl + 62 1 /@2

Numerous techniques have been employed by scholars to examine Simpson’s inequal-
ity. For instance, the authors of [24] demonstrated multiple new bounds using coordinated
convex type mappings and g-class integral operators; in [25], authors used several fractional
integral operators for differentiable mappings and discovered various improved bounds;
in [26], authors demonstrated refinement and reversal using preinvex mappings and quan-
tum calculus; in [27], authors used the idea of tempered fractional integral operators; and
in [28], authors employed multiplicative calculus to determine various bounds and rever-
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sals for such inequalities. For additional information on these kinds of related outcomes,
readers are directed to [29-32] and the references therein.

The use of self-adjoint operators, a basic class of operators in arithmetic and physics,
allows for expansions of well-known numerical inequalities to the domain of linear opera-
tors acting on Hilbert spaces. They extend the concept of Hermitian matrices, which are
square matrices that have the property of being identical to their own conjugate transpose,
which ensures orthogonal eigenvectors and true eigenvalues. Numerous disciplines, such
as functional analysis, matrix theory, quantum physics, and optimization, depend heavily
on these inequalities. Recently, a large number of authors have studied classical inequalities
in relation to operators on Hilbert spaces. For instance, in [33], authors used bounded
linear operators in Hilbert spaces to generate numerical radius-type inequalities, whereas
in [34], authors created multiple means type inequalities for linear operators in the setup
of Hilbert spaces; in [35], authors propose Holder-type inequalities that involve power
series, which have intriguing applications in Hilbert spaces; and in [36], authors study
variational problem associated with inequalities and graphs in Hilbert spaces. See the
references in [37-44] for further results on a similar kind connected to developed results.

Silvestru Sever Dragomir [45] presents several new novel modifications and refine-
ments of Young’s results in tensorial framework.

Theorem 2 ([45]). Let H represent a Hilbert space. If the self-adjoint operators A and B hold the
following conditions 0 < vy < B,A < vy, for some constants v1, vy together with associated
tensorial product of self-adjoint operators A ® B in H, then

B2®1+1®A?
Oglgﬂ1ﬂ<@§*_@9B®A>
vy 2
<(1-x)B®1+x1®A—B " ® A
B2®1+1® A%
SIEM1—M<@D*'@D—B®A>
U] 2

Vuk Stojiljkovic [46] developed the Simpson and Ostrowski type inequality by employ-
ing classical integral operators and twice differentiable mappings to continuous functions
on self-adjoint operators in Hilbert space.

Theorem 3 ([46]). Assume that S is continuously differentiable on A, A and B are selfadjoint
operators with associated sepctrums SP(B), SP(A) C A together with tensorial product of self-
adjoint operators A ® B in H, then

1 B A
/)%«1—@B®1+K1®AMK—%<®1+1@))
0

2
(1A-B®1

2 1
:T) {/ 23" (1—x)BR® 14 x1® A)dk
0

+A%K—U%V<(1;K)B®l+<1;K>1®A>M}

Theorem 4 ([47]). Assume that S is continuously differentiable on A with |3'| is convex on
A, A and B are selfadjoint operators with associated sepctrums SP(A), SP(B) C A together with
tensorial product of self-adjoint operators A ® B in H, then

1[%@)®1+43(B®1+1®W
2

H6 )+1®%(v)] _./0.1%((1—K)B®1+K1®v)dx

5 of of
< Slltea—sa1([[S'®)]+[S' @)
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Shuhei employed positive semidefinite operators on a Hilbert space to derive the
following Callebaut type inequality for tensorial product

Theorem 5 ([48]). Let A and B are positive as well as semidefinite operators with associated
sepctrums SP(B), SP(A) C A. Then
(B#A) ® (B#A) { (BorA) (BUJ‘A) + (BUJ‘A) ® (BUA)}

{BoA)+(A@B)},

I\JM—\I\J\P—‘

where # is the geometric mean, ® is a tensorial product of self-adjoint operators, o and o are
operator means and their dual.

Significance of the Study

The importance of tensorial functional inequalities lies in their versatility and ability
to bridge abstract mathematical concepts with practical applications across disciplines.
Tensorial functional inequalities extend classical scalar inequalities to multidimensional and
tensor-valued contexts. For instance, tensor versions of the spectral norm inequality [49],
triangle inequality [50], or determinant-related inequalities [51] expand the applicability
of classical results to higher dimensions. As a consequence of its importance, we extend
Budak et al. [52] result to tensor settings by using continuous self-adjoint operators in
Hilbert spaces. We use convex, quasi-convex, and also check the maximum bound over the
interval domian in comparison to their results. We present a novel and significant study in
which mathematical inequalities are developed using Hilbert spaces in tensor frameworks,
and this is the first time that a gradient inequality has been constructed using self-adjoint
operators in Hilbert spaces. In a recent study, authors examined Simpson type inequalities
using classical integral operators in Hilbert spaces, while in this study, we use fractional
integral operators to refine earlier results under different operator orders. We also use
a very interesting Huber convex function in order to show some relational properties of
tensorial arithmetic operations, which opens up an entirely new avenue for inequality
theory. Since we know that the theory of tensor Hilbert spaces is very well known in
literature but related to developed results it’s relatively new not rushed comparative to
classical results of such types. As a result, we hope that this article is somehow an initiative,
and we believe that researchers are working in this direction to develop more interesting
results in the future by taking motivation from this.

Our motivation to create a new and enhanced version of different inequalities in
tensorial Hilbert spaces comes mostly from the works of these authors [47,52-54]. The
use of fresh approaches and viewpoints, which have almost ever been covered in a few
papers, significantly broadens and enriches inequality theory. The work is organized into
four sections. In Section 2, we will go over some fundamental principles related to Hilbert
spaces, including basic definitions and various arithmetic operations on tensor Hilbert
spaces. In Section 3, we developed gradient inequality and various essential lemmas and
bounds for Simpson type inequalities using operator convex mappings. In Section 4, we
discuss a main findings and some future possible work related to these results.

2. Preliminaries

In this part, we review some primary ideas related to extended convex mappings and
arithmetic operations on tensor Hilbert spaces. For more crucial concepts and findings
pertaining to this part, we direct readers to the subsequent article [44].
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Definition 1 ([55]). A inner product on a complex linear space X is a map
() XKxKx—=C

such that, for all x1,%5, %3 € K and A € C, we have

(k1 + K2, %3) = (K1,K3) + (K2 + K3)
(Ak1,K2) = Afx, K2)
(11, %2) = (K2, %1)
(r1,61) >0, (Kk1,k1) =0<=x1 =0.

Definition 2 ([55]). A bilinear mapping S : B X A — XK and a tensor product of B with A provide
a Hilbert space X such that

®  The collection of all vectors 3(&1,82) (&1 € B, &2 € A) is a total subset of KX its closed linear
span is equal to X

© (S(81,62) | 3(83,84)) = (81| 82)(Ca | Ca) for §1,C2 € B, 3,84 € A If (K, ) is multipli-
cation of B and A, it is common to write {1 ® & in place of (&1, 82). A tensor product of
B ® A and a mapping (&1,82) — &1 ® & of B X Ainto B® A, holds

(C1+62)®HL=00®0+H®E50
(Ag1) ® G2 = A (81 ® E2)

G1®(83+381) =01®5+81®03
61 ® (AG2) = MG1® G2),

where A € K.

Let 3 : Aq x ... x Ap — Rbeabounded real-valued mapping defined on the Cartesian
product of the intervals. Let M = (My, ..., Mp) be an p-tuple of adjoint operators on Hilbert
spaces Eq, ..., Ep. Then

M; = /Ai KidEi(Ki)

is the spectrum of operators for i = 1,...,p; following [48], we define M; as follows:

S(My, ..., Mp) ::/A /A (..., Kp)dE; (K1) ® ... ® dEp(Kp).
1 P

If the Hilbert spaces are of finite dimension, then the above integrals become finite
sums, and we may consider the functional calculus for arbitrary real functions. The author
expands the construction [48] in [53] and defines it as:

M., Mp) =1 (M) ® ... @ Sp(Mp),

whenever  can be separated as a product S(ay, ..., ap) = Si(a1) ... Sp(ap) of p functions
each depending on only one variable.
It is known that, if  is super-multiplicative (sub-multiplicative) on [0, o), namely

$(8182) = (£)3(81)3(82) forall §16; € [0,0)

and if $ is continuous on [0, c0), then

J(A®B) > (<)J(A) ® I(B) forall A,B >0,
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this follows by observing that, if

A= /[Olm) ¢1dE(&y) and B = /[O,OO) &HdF(&),

are the spectral resolutions of A and B, for the continuous function & on [0, o), then
S(A®B) = /[o : /[0 : 3(8182)dE(G1) ® dF(G2)-

Recall the geometric operator mean for the positive operators B, A > 0, that is

p
B#pA := Bl/2 (B_1/2AB_1/2) B!/2,

where p € [0,1] and
B#A := B1/2 (B_l/zAB_1/2>l/2Bl/2.

By the definitions of # and ©, we have
B#A = A#B and (B#A) @ (A#B) = (B® A)#(A ®B).

Recall the following property of the tensorial product

(AC) ® (BD) = (A®B)(C®D), 1)

that holds for any A, B, C,D € B(H), the Banach algebra of all bounded linear operators on
Hilbert space H. If we take C = A and D = B, then we get

1’®B? = (A®B)?

By induction and using (1), we derive that

A" @ B" = (A®B)" for naturaln > 0.

In particular
B®1=B®1)"and 1® A% = (1®4)7,

forallo > 0.
We also observe that, by (1), the operators A ® 1 and 1 ® B are commutative and

B®1)(1®a)=(124)(B®1) =B®A.

Moreover, for two natural numbers m,n, we have
BD"(1®A)"=(1A)"(B®1)" =B"® A"
Definition 3 ([56]). A mapping S : A C R — R is said to be convex (concave) on A, if
(kg1 + (1 —x)62) < (=)xI(81) + (1 —x)S(82)

valid for all §,8, € Aand x € [0,1].
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Definition 4 ([56]). A mapping S : A — R s said to be quasi-convex, if

S((1—x)81 +x&2) <max{3(82),3(81)} = %(3(52) +S(81) +[S(62) —A(G)I)

forall §1,é, € Aand x € [0,1].

Lemma 1 ([52]). Let S : [&1,82] — R be a twice differentiable mapping on (&1, o) such that
Q" € L([¢1,E2]). Then, the following equality holds:

v—1
§|s@ (878 va)| - Z D g s+ s, 5@

_ 2 % DUV 1

v _ v+1
—l—/!((l—x)—W) [%//(gzK—l—(l—K)Cl)}dK]. @)

Proof. With the help of the integration by parts, it follows

2 3.2
= A WV B
= (1= 22 )9 (ke + (1 s

_ 3-2Y )\ S (ké+ (1 —x)1)
_K(K_vﬂK) B fr
1 1

R /f“ =3-2") S (kG2 + (1~ k)&1)dK

“aa - mrn) Y (70

- C:Z 1 Cl |:1 E23_.261K %(ng * (1 a K)gl):|

ngvgl o7 K" (kG2 + (1 = K)&1)dx

:ffzis’l B - 2(011)}%/(61 JZF@) e —251)2§<§1 72”:2)

b (@) - mj@gz)_%@l). )

1
2

0

+

1

0

(G2 —C1)

Similarly, we obtain

o= [l a-0(1- 220 07) 9+ (1= 0Eax

2

- 521'51 B_ 2(U3+1)]$/<§1;§2> " (52—251)2%(61;62)

1 o _M v o
M CERA N ey CEE LY @

Equations (3) and (4) yield the following equality:

G 8l 40 = [3(e0 +43(252) +9(0)

27T (v +1)
(G2 —¢G1)Y
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This is the end of the proof of Lemma 1. O

3. The Major Results

Theorem 6. Assume A and B are self-adjoint operators with SP(B) C A and SP(A) C A. Let &
be convex and differentiable mapping on A, then the inequality stated below holds true:

('B)®1)BR®1-1®A)>SB)®1 -1 I(A)

>
>BR1-124)(123(4)). (5)
Proof. Using the gradient inequality for the differentiable convex & on A, we obtain
S —¢) =3Mm) - 3(0) = 3" -0),
for allm, ¢ € A. Assume that the spectral resolutions of B and A

B:/AﬂdE(ﬂ) andAz/ACdF(C)

These imply that

//C" (n — ¢Q)dE,, ® dE; > /A/A(
>/ /s

— 3(Q))dE, ® dE¢

()
"(Q)(n — C)dEn ® dE. (6)

>
>

Observe that

/
R

IS

/ 3'( ndEn®dEc—// N)CdE;, ® dE¢
A
BB®1-3'B)®A®1,

(m)(n — Q)dEy @ dEg

I S
& s

'(n)¢)dEn @ dE¢

!>

this implies that

// (S ())dE, ®dE; = 3'(B)B®1—-S'(B)@A®1 (7)

and

———
— —

()N — OBy @ dE¢

AJA

], (n87(0) = ¥ (0)8)dEn @ dEg

= ./A/AHSI(C)dEn ®dEi_/A./A %/(C)CdEn ® dE¢
=B®Y'(A) —1® (3'(4)4)

and by (7) we derive the inequality of interest:

(S'(B)B) ®1—Q'(B) @ )®1—123(8)

3(B
B®S'(A) —1® (3'(4)4). (8)

AZ
>

Now, by applying the tensorial property

(mn) ® (pq) = m®p)(n®q),
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foranym,n,p,q € A, we have

('(B)B)®1=(S'(B)®1)(B®1)
S'B)@a=(Y'(B)@1)(1@4)
B () =Bx1)(103'(4))
and
12 (S'(A)a) =1 (AS'(A)) = (1®4)(12S/(4))
Therefore

(¥'B)B)®1-3B) A= (¥B)®1)BR1) - (S'(B)®1)(1®A4)

'B)®1)(B®1—1®A)

I
)

and

B S/(4)—1® (3'(A)4) = (B 1) (109 (8) - (124) (10 ()
=BR1-10A)(123'(a))

and by (8) we derive (5). O

Corollary 1. Let self-adjoint operators B and A with SP(B) C Aand SP(A) C A. If By € B(H)
with spectra SP(B;) C A,p; > 0for j € {1,...,n} with Y34 pj = 1, then by Theorem 6

we have
( 2N ) ! ( 2N ) B
J:1 J:1

i pJBJ> ®1-1 ®A> (1®S'(n)).

B

() o (Bem) ) (o (Ee))

We have the following representation results for continuous functions:

Lemma 2. Let A and B be self-adjoint operators whose spectra are contained in Ay and Ay respec-
tively. Suppose that 3, & are continuous on Ay, C,x are continuous on Ay, and @ is convex on A,
then sum of intervals (A1) + I(Az) has the following equality:

(3() @ 1+10L0)p(0(8) 9 1+1EX(1))
= [, [ (8) + c@)p(8() +x(e0))am, © e, ©)
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where B and A have the spectral resolutions

B= /A1 GodE(G2) and A = /Az 1dF(81)-

Proof. By Stone-Weierstrass theorem [57], any continuous function can be approximated
by a sequence of polynomials, therefore it suffices to prove the equality for continous
function. Consider the Huber convex function, which is defined as

o(Ium—4), Iul>o.

If m, n are natural numbers and || < &, then we have
3= [ (9 + @) 3 (006 +x(e0) e a8,
= [, (3 + @) L Caplo (e e, o ar
= 1, (3 + @) [0 Pl P e o e
mi ?| /A | / () [8(E)PPIx(E)™ 2" aBz, @ a,

[ )L a3l e a, o ary .

Observe that

/A1 /A2 @2 8(82)]™ [x(81)]*™ > dEe, ® dF,

R %‘(B)%W(B)F’” ® ()2 = (3(8) & 1) ([0B) © [x(W)]™ )

=(SB)®1)= ([G(B)]Zn ® 1) (1 ® [X(A)]Zn—zm)
= (%(B) & 1)%(19(B) ® 1)2m<1 ®X(A))2n72m

and

/A1 /A2 9(62)I"A(81) [x(61)]** 2 dEg, ® dF,
= %[ﬂ(B)]z‘“ © (AW k@) = (1¢ C(A))% ([6(B)12" @ [x(a)]2>)
— (1@ ca)s ([19(8)]2“ ® 1) (1 ® [X(A)pn—&n)

= (18 L) 5 (8(8) © 1) (1 ()=,

where 1 (8(B) ® 1) and (1 ®x(A)) are commute with each other. Therefore

I=(IB)@1+1@((A Zc B) ®1)*"(1 ®x(a))> >

(3(EB)®1+1e C(A))%(ﬁ(B) ©1+1@x(4))2.
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We now analyze a second case: if |pt| > J, then

3= [ [ (o) + s (0 +x@P - § Jas, o ar
= [, [ ot +a@n T ool 5 )a(Ioene - § e o ar
-yaf [ e a))&(w(a)) -5 ) (1xEnp= - 3 ) amg, @ o

‘ZC’“U J,, 3@ ( _)5<|(X(§1))|H_m—g)dE@@ngl
+// (¢1) < —>5(|(X 1))|nm—j)dE§2®dpgl],

Observe that
n—m 5
X(e1) P = 2 ) ag, @ ar,

[, [ stes(ie@nr-2)a(
—3@9(I6ENP - 5) @ o(Icanp=-3)
: 5

= @ en|s(IeE)F - 2) ® 5((X(A))nm - j)}

eE)Fe1-3)es(1eixwr-3)]

o
— (3(B) ®1) :5<(|(l9(13))| ®1)" — i) ®5((1 ® | (x(A)) " - g)}

/Alf (&) ( _>5((( ))n“‘—i)dE@@ng]
— (&3 (16N - ) s(1oxtmnr=-3)

— (@@ s(IemP -5 ) @ o(Iamp=-3)]
=(1®¢(¢1)) 5<| |m®1—)®§<1®(X(A))n—m_§>:|
(oo -3) sa(aslxumre-3)]

where (5(| (9(B))|®1) — 2) and 5(1 ® [(x(4))]) — %) are commute with each other. There-
fore, we have

and

=1®c1)) |9

3= (ma1+10w) ¥ (6@ e 17 - 3 ) == 3)

m

_ @) @1+1820 5O< |®1—>+5<(1®|(X(A))|)—i)]n.

O

Several Novel Bounds for Simpson Type Inequalities Using Operator Convex Mappings in
Hilbert Spaces

In developing upper bounds for Simpson type inequalities, we utilized the generalized
fractional integral operator and its associated identities, which we pre-owned in our
major conclusions.
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Definition 5 ([52]). Let &

[¢1,&2] — R be a real-valued mapping on [&1, &). For v > 0 the
associated Riemann-Liouville integrals are represented as

T4 30) = 57 [ (0= 13 (e)ae

for g1 < p < &pand

T 3(0) = 7 [ (e 0130

o}

for &1 < p < Co, where T is the gamma function.

Lemma 3. Let S : [§1,82] — R be a real-valued mapping on [&1,Ea]. For any p € (&1,82)
we have

ng;_t,_\y( )+j§2_ ( )

Foa (0~ 83 (E) + (@2~ ) S
+ r(vl_i_l) {/1@(@ —)'S'(e)de — /éz(s — )" (¢)de .

(10)
©

Proof. Since S : [§1,{2] — R be a continuous mapping, then the symmetry of integrals
become as:

/;(p — )% (¢)de and /;2 (e — 0)'S (e)de.

It follows that

(O~ frppy (0 = 8)"3(@)

= 43(0) — oy (0 — )79, a
for {1 < p <& and
1 1) et
m[p (e — )’ (e)de
1 ves 1 & vl
F(v T+ 1) (52 - p) \S(‘:Z) - m/@ (8 — @) 1\9(3)(15
r(vl+ 1) (62 = 9)"3(62) = T, -S(p), (12)

for {1 < p < &p. From (11), one has

jgl;-q-%(p) =

T~ S + gy L (0970,

for & < p < & and from (12), one has

Tt 3(0) = oy @ 918 — o (e 0

Iv+1
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Lemma 4. Let S : [¢1,82] — R be a real-valued mapping on [&q,&2]. Forany o € (&, &),

we have
\75,%(61) +\7g§}+%(§2)
- F(vl-l- 0 [(p —81)" + (62— 9)"]S(p)

+ F(vl—i— ) sz(éz — )" (e)de — /;(sfgl)vg’(g)dg .

9

Proof. Since we have
U Cx 1 & v—1cx
T88E) = oy [ (62— 19 (e)ae,
foré; < p < & and

T2 30 = gy [ e IS0

for §; < p < . Since I : [§1, {2] — R be an continuous function [¢1, §3], then the integrals

0 &
/;'j (e — &1)'S’(¢)de and /p (€2 — €)' (e)de,

holds and with integrating, we have

%
— o [ @0 e - s (- 0)°3(6)
= 2308 - gy @ - 993 (0)

for 1 < p < §p. From (13) we have

Ti-3(E1) = gy (0= 80"3(0) ~ oy [ 6= 80" (s

for 1 < p < & and from (14)

T83(E) = o @ = 990 + oty (@ =9 (e)ae

F(U+1) U+1) ©

(13)

(14)
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Corollary 2. Let & : [&q,&2] — R be an absolutely continuous function on (&1, &2]. We have the
following midpoint equalities

+ +
TS <€12§2>+‘7§2— (Cl §2>

_ S(61) +(62)
- 21T (v +1) 2

. 3 52<§HZ_§2 g>US/(£)dS_/§Z§2 <£_§1;§2)”%’(5)d¢€]

MCES)) /l

and

jgl%‘:zi%(gl) + jé]l+§2 3(62)

1 g1+¢
:Zu—lr(v+1)‘y< ! 2>(§ —(;‘)

1 &) Gt

Twor1) /@(S—Cz)vﬁl(s)ds—/{: ’ (s—gl)”%’(s)ds], (15)

1

+

for gy < glzi < &p. From (15) we have

G1+¢;
1 1162

"751‘;@2 S(61) = v 1sz+1)\‘<gl+§2>(é —&1)” —m /l i (S—Cl)uc\}/(‘g)dsl

- 9 (85 )@ - - S e (a-na + (252 )0)a], a9

for ¢y < %Léz < o and from (15) we have

T &) = ity (52 ) @~ 60"+ gy | fo (= 9" 0]

= T d(gl ergz) (G- - U _zﬁl(r%vfll))m Uol & ((1 —x) <‘§1 ;§2> + cz;c> dx]. (17)

Lemma 5. Assume that S is continuously differentiable on A, A and B are selfadjoint operators
with SP(B),SP(A) C A, then

E(%(B) 1) +§S<B®1;m) (13 ))}

1

6
(B@l—;—l@A) Cz—é‘l { ( B®1+<K1§A>)d4
(B®1;1®A>_(1—K) iéz—él) M g’((lg’c>3®1+(1;’()1®1&)dx}

A—B 2 1 .vv-‘rl
_(ds4-Bol) /02(,(_3511 )[%”(B®1K+1®A(1—K))d’<]

v _ A\u+l
+/ (1— —w)%”(B®1K+1®A(1—K))d;<]. (18)

\
&

&

+

Proof. Taking into account the following result [52], which refines Simpson type inequality
in the fractional framework via differentiable convex mappings.
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Let mapping S : [¢1,82] — R be defined over interval (¢;,¢) such that S” €
£([¢1,&2])- Then, we have

v—1
s[3@ a9 (B85 ) o) - Z D g s+ T8, 5@)

(62 —G1)Y
_ &2 1 Uy uFl
(@) M (1= 2220 ) 9"+ (1 00z
+/ < (1-x 321}1}4—1)U+1> [S”(CZKJr(lK)ijl)}dK]. (19)

By using substitution from Equations (16) and (17), we have

H @ )+4<\<cl ;Cz) W@)} - zv(g:r%j)vn Lv_lrzvﬂ)g(cl eréz)(gz &y

SR 0-on (5]sr(3
o a _zﬁl;(r%ff))vﬂ Uol <% ((1 — %) (glercz) + ézx) dKH
L SR

+/ (1_ _w> [%//(gzK—l—(l—K)g])]dK]. (20)

By making several simplifications, we may have

é{g(gl) +4%(€1;§2> —1—%(@’2)} _ [g(gl ‘;Cz> B KU(§24— 1) [/01 %,<( )& + <(:22> )dx]
o)A (2 (5]
_ (&2 —651)2 [/O% <K _ 3'30_’;17;1) [3”(521( +(1— K)cﬁ)}dx

+A1 ((1—;{)_ W)[%//(§2K+(1_K)gl)]dK]' (1)

2

The spectral resolutions of self-adjoint operators A and B are represented as follows:

A= ./A ¢1dE(¢1) and B = /AérzdF(Cﬁ

[ [ over dEg, ® dFg, in (21), then we get
1
/ / = {%(él) +4%<§1J2”:2) + %({,‘2)} dEg, ® dFg,

U/< (§1+¢§2) <¢24:§1> [/Olgfg(l_mm<%)K>dx]>dE§1®dF§2
+//< (mcz) (1-x) (cz—gn Uo g,<<1;n>§l+<1; )gz)dx}d%@d%)
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et [/( o= 220 [ G+ (1 ) Jax

v(1 _ \v+1
+/ ( (1—x)— 32(5+1<)> (S (S + (1 — K)g1)]d1<‘| dEg, ® dFg,. (22)

Considering Lemma 2 and Fubini’s theorem [58], we have
/ / S(&)dE;, ® dFz, = (3(B) ® 1),

[ (355 e, o, = 5 (P11,

/A/A%(Cl)dEg1 ®dFg, = (12 3(4)),
/'//1%’(<1K>51+ ) awary, o ar

_/ //N< +<22) )dEg@ngsz
_/C"<1—KB®1+ ®A)>

LLL (5 (5o
:/ //CJ\(( K)€1+(1+ )‘fZ)dEgl@ngsz
_/ //c»f(( )B®1+<1—£K>1®A>dx

S (gzx +&(1— K)) drdEs, @ dFg, = 3" (B® 1k +1®@ A(1 — k))dxk. (23)

A same technique has been taking into consideration we have

/A/A @ l/j (" - 312,+K1H> (S (Eax + (1 —x)¢1)]ax

1 32V(1 —x v+1
n ((1 ) (v+1)) [ (& + (1 — k)& drc | dEe, @ dFs,
2
_ 2 1 v, U+1
:w /02<K_3'l?;_t1)[%//(B®1K+1®A(1_K))d1(]
v _ v+1
+/ (1— —m)%//(B®1K+1®A(1—K))d7(‘|. (24)
We obtain the required result by accounting for (23) and (24) in (22).
O
Remark 1.

e Ifwechoose v =1in Lemma 5, then it refines Lemma 2.1 as presented by the authors using

classical integral operator in [54].
e Ifwechoose v =1in Lemma 5, then it refines Lemma 2.3 as presented by the authors using

classical integral operator in [47].
e Ifwechoose v = 1in Lemma 5, then it refines Lemma 3 as presented by the authors using

classical integral operator in [59].
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Theorem 7. Assume that S is continuously differentiable on A with |3”| is convex on A, A and B
are selfadjoint operators with SP(A), SP(B) C A, then

[2(%(3)@1)+§%<B®1;1®A>+1 )

[ (B®1+1®A) 0(524—’:1)[/()1g/<(1K)B®1+(K1®A)>dx]
< ®142rl®A)_(1—K)Ui§2—§1)[/01§/<(12 )B®1+<1+K>1®A>dx]

1
5 |[l57@1+ i) |

U2<<(U;1)2>U+v((vgl)2)3}+3
< [(1®A-B®1)?|
- 6 4(v+1)(v+2)

&l

+

Proof. By assumption that |3”| is convex on A, we have
‘(x// 2K+§1 171() ’ S K‘%”(gZ)‘ + ’cwl ‘
Similarly, we get
(\,// (\/l ol
|S"(G1e +&2(1 —x))| < x|S"(C1) [+ (1= x))|S"(2)]

forall for T € [0,1] and {1, € A.
Applying [, [, over dE¢ ® dFg,, then we get

1S"(1@Br+1®A(1—«)) \_//10” ok + &1 (1 — x))|dEs, ® dFg,

< [ [ M@ +1-x) rM 1) |akg, @ ar,
<xk1®|Y"(B)|+(1—-x)|I"(a)| @1 (25)

If we apply norm in (25), then we have

y|<‘”1®BK+1®A(1—K I
<[l e @)+ 1 -0 W] e1] < «[3"E)] + 1 - 0[S @]

Similarly, we get

IS (1@ Ax+1@B(1 - 1))
< @[S @)+ (1= x)[S"®)| @ 1| < «[|S" ()] + (1 =) [S"(B)]

Using the norm in (21) and considering triangle inequality, we have

e +33(FH ) s fae )|

_ l$<B®l—;—1®A) B x”(€z4—€1) [/01%’<(1—K)B®1+ (xl;@A))dK]
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U (E, — 1 _
Ly BR1+1®A _(1 ©)’ (&2 — &) / o 1—x — 1+« Loon ) dr
2 4 0 2
_lliea-B21? /% 32t [S"(B® 1x+19 A1 — x))dx]
- 6 0 v+1
1 3.29(1 —x)vt1\ ,
+/% <(1—K)—U+1>S B@1k+12A(1—x))
[(1®A-B®1)>2 3.20v+1
SR LS =220 ) e [376)| + (1 - 0)[9"(3)| @ 1]ax
1 3211( K) (x//
+/%<<1— - >K1®| )] + (1= x)[3"(8)| ©1
< ||(1®A_B®1)2” /% K2 3.2% vtz cw/ ‘-l—/ 2 32U (1_K)U+l C\// |
- 6 0 Tu+1 v+1
1
+1)2\ v 112\
_laea-senp|[R(H5E) +o(t5E) 43 1) + 157w (26)
- 6 4(v+1)(v+2) '
O
Remark 2.

o Ifwe choose v = 1 and tensorial arithmetic operations in Theorem 7 are degenerated, then
Theorem 7 simplifies to Theorem 2.2 provided by the authors in [60].

o Iftensorial arithmetic operations in Theorem 7 are degenerated, then Theorem 7 simplifies to
Theorem 2.3 provided by the authors in [61].

o Ifwe choose v =1 in Theorem 7, then it refines Theorem 2.3 as presented by the authors using
classical integral operator in Ref. [54].

o Ifwe choose v =1 in Theorem 7, then it refines Theorem 2.3 as presented by the authors using
classical integral operator in Ref. [47].

o Ifwe choose v =1 in Theorem 7, then it refines Theorem 9 as presented by the authors using
classical integral operator in Ref. [59].

Remark 3. If two self-adjoint operators A and B on a Hilbert space commute, meaning their com-
mutator satisfies [A,B| = AB — BA = 0, they exhibit several important properties. Commutativity
ensures that A and B can be simultaneously diagonalized, implying the existence of a common
eigenbasis where both operators act as scalar multipliers. This is a significant feature in quantum
mechanics and functional analysis, as it allows for the simultaneous measurement of the observables
associated with A and B without interference. Moreover, the commutativity extends to functions of
these operators, such as their exponentials, ensuring that eBe* = eheB. This property is particularly
useful in applications involving operator exponentiation, such as time evolution and transformations
in quantum mechanics. Thus, the commutativity of self-adjoint operators is a cornerstone in the
study of their spectral and functional behavior. It is known that if A and B are commuting, i.e.,
AB = BA, then the exponential function satisfies the property

B A AB _ ,(B+A)

Also, if B is invertible and 1,8y € Rwith 1 < &y, then

/62 gKBdK _ [g(;IZB _ eélB]
¢ B ’

1

Moreover, if A and B are commuting and A — B is invertible, then
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/1 p((1=0)B+vR) 41y /1 o(V(A=B)) By, — (/1 e(U(AB))dv) B
0 0 0
[ (A B)_I]eB [A B]

A—B ~ A-B
Since the operators A = U® 1 and B = 1 ® V are commutative and if 1 @ V—-U® 1 is

invertible, then
1
/ exp((1—o)U® 1+ ol ® V)da
0

=(12V-U1) exp(1®V) —exp(U®1)].

Corollary 3. Under the assumptions of Theorem 7 with () = exp(u) is continuously differen-
tiable on A. Let v = 411' then one has

[é@qu@n)+§@¢<B®1;1®A>+2u@qumﬂ
- [exp<8®1;1®A) - KU(CZ4_§1> [/Olexp'<(1—K)B®1+ (K12®A)>dx]
+eXp<B®142—1®A) 3 (1_K)Ui§2_€1) [/01exp,<(1_;<)B®1+ <1J2“K>1®A>dx]

g (503 125) -3 lewrors s
4

Theorem 8. Assume that S is continuously differentiable on A with ||I"|| o, := sup,c5|S" (v)| < o0
and A and B are selfadjoint operators with SP(A), SP(B) C A, then

[(1®A-B®1)?|
= 6

3 2

[ (B®1+1®A) 0(524—’:1)[/()1g/<(1K)B®1+(K1®A)>dx]
Lo ( ®1+1®A)_(1—K)Ui§2—§1)[/()1%’<(12 )B®1+<1+K>1®A>dx]

2
_laea-se1)

[2(%(3) ®1)+ 2%<W+1®A> + %(1 ® S(A))]

k2 6In " L(2)T(v+1,In(2)(1 —x))
- 6 7+ v+1
K2 n V! v+1,In —K ,
+2 4y SN0+ LI ”)H% Hwﬂ-

Proof. Considering Lemma 5 and applying the triangle inequality, we arrive at

[2(%(3) ®1)+ §%<B®12+1®A> - %(1 ® S(A))]

[ (B®1+1®A) (e &) [/01%’<(1K)B®1+ ("12®A)
1

s ( ®1J£1®A) B (1—K)Ui§2—§1) [/01%/<(1;K)B®1+<

)
el




Symmetry 2025,17, 146

20 of 25
_ 2 1 v, 0+1
! 321}( _K)v+1 "
_ 2 1 v, v+1
3.2°(1— 1)
+/ (1-x)—22— 2 )3"BRIk+10A(1—x))|]. 27)
v+1
Observe that, by Lemma 2
"(Bleox+1®A(1—x)) =//‘%”(czx+«§1(l—x)> dEg, © dFg,.
AJa
Since
|97 (@ax + &1 (1 =) < [|1¥]]4 1eor
forall T € [0,1] and 1,8 € A.
Taking [, [, over dEs, ® dFg,, then we get
|S"(1@Br+1®A(1—x)) |_//y<\” o+ &1(1 — x))|dEs, ® dFg,
< e [, [, B2 © P = 9]y o 8)
Similarly, we get
1S"(1® Ak +1®B(1—x)) |_//y<\” 1+ &2(1 — x))|dEs, ® dFg,
< e [, [, B2 © Py = 9]y 2o 29)

Considering right-hand side of Equation (27), it now follows that

[(1®A-B®1)?|
6

1 v, U+1
/02 (K — %) [S"(B®1k+1®A(1 —k))dx]

v+1

(22
/11<(1—")_W>

2

_llaea-s21? ( 2 6ln”1(2)F(v+1,1n(2)(1—1c))|

+/ (1— —W>%”(B®1K+1®A(1—K))H>

_la®a-Be1)? H(
= 6

§"(1®@Bk+1®B(1— x))H

)

3" (1®@Bxk+1®B(1— K))H

)

+ 3”(1®Bxk+1®@B(1 —«))dx

6 2 0+1

-5 TK—

2 v+1

3”"(1®Bxk+1®@B(1 —«))dx

2 6In"""'(2)T (v +1,In(2)(1 - x)) ‘

< II(1®A—B®1)2H< 2 6ln”1(2)F(v+1,1n(2)(1—1c))| ™
~ A,+o0

6 2 v+1
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K2 6In"""1(2)T(v+1,In(2)(1 —«x))
T Lagt ol ]l
< [(1®A-B®1)?| Kj . 6In"""1(2)T(v +1,In(2)(1 — x))
- 6 2 v+1
K2 6In """ 1(2)T(v+1,In(2)(1 —«x))
+ ot | )H%/HA,Jroo : (30)
Using equation (30) in (27), we get required result. O
Theorem 9. Assume that S is continuously differentiable on A with |3"| is quasi-convex on A, A
and B are selfadjoint operators with SP(A), SP(B) C A, then
1. 2. (B®1+1®A 1 N
‘[&J@y®n+3o< : >+6u®du»]
KU (Fy — 1
- [o(BEtE0R) B o (0 per (124))a
4 0 2
— )V — 1 —
( ®1+1®A) (-« igz &) [/ %,<( K)B®1+ (1+K>1®A>dK] ‘
0

[Q®A-Be1)? [ 1 v+1\e 3 1
: 6 <4<v+2><”( 3 ) +v+1>_8>
(}0// |®1+1®|<\// |+H<\//( )|®1_1®|@// ))H

1
X —

Proof. By assumption |3”| is quasi convex on A, then we have
— 9" (G + 8a(1 - 1))

(8" (o + &1~ x)
< [(S"(8arx +61(1—x)) + 3" (E1x + 521 — %)) |
< (19| + 37| +119" ()~ 19" (E))

VTe [0,1] and §1,8r € A.

Taking [, [, over dEs, ® dFg, yields
(S"(1@Bxk+1®A(1—x)) —S"(1®Ac+1®B(1—x)))|
= [ [ (8" ar+ &1 =) = 8" (Erx + E2(1 ) B, @ o,

< 2// 1S7(&2)| +[9"(G)| + 1S (G2)] = IS"(G1)|]) dBg, © dFg,

W) +18"(E) @1 -1 [S"(4)]])

H

T2

(|8"(B)|e1+1 (3"
Applying the norm in above inequality result it follow as

[(S"(1@Bxk+1@A(1-x)) —S"(1®Ak+1®B(1—x)))||
SH (9"(8)| 814103 (A }++P”(M®1—1®FW(MDH



Symmetry 2025, 17, 146 22 of 25

—_

< (8"E]e1+1e [ @] +[|$"E)|e1-1a[3"M)]])-

Using the norm in (21) and considering triangular inequality, we have

3 2

l<B®1+1®A> ”(62461)Uols’((l—x)B@@H(Kl@A))dx}
+§( ®1+1®A>_(1—K)”i§z—él){/ols’(<12 >B®1+<1 K)l@A)dK}

_lliea-B21)? <‘

E(%(B) 21)+ zg(w) +1ine %(A>)}

- 6

1
i v v+1
/02 <K— 31}—1;1) [S"(B®@1k+1®A(1 — «))dxk|

v —x)V 1
+/;((1—K)—3'2(3+1)+)%//(B®1K+1®A(1—K))H>

'3 20 1
[ (=2 Jar g (3" @] @1+ 1 7)) + 197 @) 91~ 19 3" (W)

v+1

- 2
- (1®a 6B®1) I <‘

v+1

[(l®A-Bx1)]| v\
2o (g () ) 3|

SIS"E)|e1+10 3" W) +(18"(E) @1 -1 3" )||)H

v _Kvl
v [ (-0 - 2L Jag (9@ 01+ 10 [97)] + @) 2 1- 10 18" MﬂD

X

2

lnea—se1?|( 1 o1y}
= 12 iw+2)\"\U3 +u+1
<[[(18"B)|e1+10|S"(W)|+]I8"(®)|@1+1a|3"(4)]]) H

1
1)2\v 1)2\ v
paea-sorpy [R5 () s
- 12 (4v+4)(4v +8) 8
< [[(I8"B)|@1+1 [3"M)| +]IS"(B)|@1+1 [S"(A)]])]. (31)
O

Remark 4. »  Ifwe choose v =1 in Theorem 9, then it refines Theorem 2.4 as presented by the
authors using classical integral operator in Ref. [54].

e Ifwe choose v =1 in Theorem 9, then it refines Theorem 2.4 as presented by the authors using
classical integral operator in Ref. [47].

e Ifwe choose v =1 in Theorem 9, then it refines Theorem 10 as presented by the authors using
classical integral operator in Ref. [59].

4. Conclusions and Future Remarks

The tensor Hilbert spaces and its inequalities are an important topic in mathematical
physics, functional analysis, and quantum mechanics. In this paper, we extend the gradient
descent inequality from the classical sense to the setup of function spaces by using tensor
arithmetic operations for continuous differentiable mappings. Furthermore, we refine and
generalize the following results [47,54] developed by using classical integral operators by
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using fractional operators. We also show some non-trivial consequences and remarks that
recapitulate earlier findings when our tensorial operations are degenerated.

This paper contributes to mathematical inequality theory by exploring inequalities
supporting tensor Hilbert spaces, which is a rare topic in the literature. Following these
results, we will advise readers to attempt to develop Simpson type inequalities involving
coordinate convex [62] mappings in tensor Hilbert spaces and other types of quantum,
fractional, and stochastic integral operators.
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