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Abstract: By assimilating any complex system into a multifractal, a new approach for
describing the dynamics of such systems is proposed by means of the Multifractal Theory
of Motion. In such context, the description of these dynamics is accomplished through
continuous and non-differentiable curves (multifractal curves), giving rise to two scenarios.
The first scenario is a Schrödinger-type multifractal scenario, a situation in which the
motion laws can be related to the SL(2R) algebra invariant functions. The second scenario
is a Madelung-type multifractal scenario, a situation in which if the differentiable and
non-differentiable components of the velocity field satisfy a particular restriction, an SL(2R)
symmetry can also be highlighted. Moreover, correlative dynamics in either of the two
scenarios, based on the same SL(2R) symmetry, can be obtained by Riccati-type gauges,
which imply Stoler coherent states. Several cases induced by the SL(2R) symmetry are also
analyzed.

Keywords: complex systems; SL(2R) symmetry function; Multifractal Theory of Motion;
Riccati-type gauge

1. Introduction
The manifestation of a complex system cannot be anticipated just by the behavior of

its constituent components or by aggregating their behaviors. Rather, it is dictated by the
manner in which the structural units interact to affect global behavior. Key characteristics
of these systems include emergence, self-organization, and adaptability, among others [1–3].
Complex systems are exemplified in human societies, the brain, the internet, ecosystems,
biological evolution, financial markets, and economics, among others [4,5].

Consequently, the theoretical models describing the dynamics of complex systems
have grown more sophisticated [6–8]. Nonetheless, the situation may be standardized
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by acknowledging that the intricacy of the interaction process demands varied temporal
resolution scales, and the development of patterns imposes different degrees of freedom [2].

To formulate new theoretical models, we must acknowledge that complex systems
exhibiting chaotic behavior are known to acquire self-similarity, with space-time patterns
emerging alongside significant fluctuations at all conceivable space-time scales [1–3]. For
extensive temporal scales relative to the inverse of the largest Lyapunov exponent, de-
terministic trajectories are substituted by a set of possible trajectories, and the notion of
definite positions is replaced by that of probability density. One of the most intriguing
instances is the collision processes in complex systems, where the dynamics of the particles
may be characterized by non-differentiable curves [9,10].

Given that non-differentiability is a universal characteristic of complex systems, it
is essential to develop a non-differentiable physics. In this hypothesis, by assuming that
the complexity of interaction processes is replaced by non-differentiability, it becomes
unnecessary to use the whole classical repertoire of quantities from conventional physics
(differentiable physics).

This subject was formulated under the Scale Relativity Theory (SRT) [11] and the
Multifractal Theory of Motion (MTM), i.e., the Scale Relativity Theory including an arbitrary
constant fractal dimension [12]. Within the context of SRT or MTM, we consider that the
movements of complex system entities occur along continuous but non-differentiable curves
(multifractal curves), such that all physical phenomena associated with the dynamics are
contingent not only on the space-time coordinates but also on the resolution of space-time
scales. From this viewpoint, the physical characteristics describing the behavior of complex
systems may be seen as multifractal functions [11,13]. Furthermore, the components of
the complex system may be reduced to and identified with their respective trajectories,
allowing the system to function as a unique interaction-less “fluid” via its geodesics in a
non-differentiable (multifractal) space (Schrödinger or hydrodynamic representations).

This study presents a novel methodology for characterizing the dynamics of complex
systems within the context of the Multifractal Theory of Motion. We start by assimilating
any complex system to a mathematical object of multifractal type. In this way, the charac-
terization of complex systems dynamics is achieved by continuous and non-differentiable
curves (multifractal curves), resulting in two scenarios. The first scenario is a Schrödinger-
type multifractal scenario, in which the motion laws can be related to the SL(2R) algebra
invariant functions. The second scenario is a Madelung-type multifractal scenario, in
which the non-differentiable components of the velocity field manifest as a gradient of
a scalar function. These two scenarios are correlative, highlighting SL(2R) invariances
(i.e., symmetry induced by the SL(2R) groups) and Riccati-type gauges in such dynamics.
Several cases are presented.

2. Multifractal Covariant Derivative and Conservation Laws
Let us admit that complex systems can be assimilated into a multifractal type of

mathematical object. If, in such context, we agree to describe any complex system dynamics
through continuous and non-differentiable curves (multifractal curves), then, according to
the Multifractal Theory of Motion [12], the standard operator d/dt must be substituted with
the operator d̂/dt (with the role of covariant derivative), in the following form:

d̂
dt

= ∂t + V̂ l∂l − iλ(dt)[
2

f (α)−1]
∂l∂l , i =

√
−1, l = 1, 2, 3 (1)

V̂ l = V l
D − iV l

F (2)

∂t =
∂

∂t
, ∂l =

∂

∂xl , ∂l∂l =
∂2

∂x2
l

(3)
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In relations (1)–(3), V̂ l is the velocity component at global scale resolution (we will
call it global velocity), V l

D is the velocity component at differentiable scale resolution
(we will call it differentiable velocity), V l

F is the velocity component at non-differentiable
scale resolution (we will call it non-differentiable velocity), xl is the multifractal spatial
coordinate, t is the non-multifractal temporal coordinate, λ is a coefficient associated
with the multifractal–non-multifractal transition, f (α) is the singularity spectrum of order
α ≡ α(DF) for motion curves in the fractal dimension DF, and dt is the scale resolution.
From such a perspective, by using f (α), we gain the following advantages:

(i) The presence of a prevailing fractal dimension in any complex system dynamics
allows for the identification of a global pattern. The explication of such a pattern
becomes compatible with global structuralities and functionalities, specific only to
monofractal dynamics;

(ii) The presence of fractal dimensions “set” in any complex system dynamics allows the
identification of zonal patterns. The explication of such patterns becomes compatible
with local structuralities and functionalities, specific only to multifractal dynamics;

(iii) Through the functionality of the singularity spectrum of order α, universality classes
can be identified in any complex system dynamics, even in the case in which the
attractors associated with these dynamics have different aspects.

Now, also according to the Multifractal Theory of Motion [12], the dynamics of a com-
plex system can be explicated based on the following scale covariance principle: the motion
laws of any complex system are invariant, both in relation with space-time coordinates
transformation, and in relation with scale resolution transformations.

In this framework, for example, the specific momentum conservation law at global
scale resolution has the following form:

d̂V̂p

dt
= ∂tV̂p + V̂ l∂lV̂p − iλ(dt)[

2
f (α)−1]

∂l∂lV̂p = 0, p = 1, 2, 3 (4)

Now, by separating dynamics on scale resolution, we can obtain the following:

d̂Vi
D

dt
= ∂tVi

D + V l
D∂lVi

D −
[

Vi
F + λ(dt)[

2
f (α)−1]

∂l
]

∂lVi
F = 0 (5)

at differentiable scale resolution, and

d̂Vi
F

dt
= ∂tVi

F + V l
D∂lVi

F +

[
V l

F + λ(dt)[
2

f (α)−1]
∂l
]

∂lVi
D = 0 (6)

at non-differentiable scale resolution.

3. Dynamics Analysis Scenarios
In particular, for irrotational dynamics expressed through constraints:

εilkV̂k = 0 (7)

where εilk is Levi–Civita’s pseudotensor, a complex scalar potential for the velocities field
can be defined as follows:

V̂i = −2iλ(dt)[
2

f (α)−1]
∂l ln ψ (8)

where ψ is the multifractal state function. From here, two scenarios for describing any
complex system’s dynamics become viable:

(i) a Schrödinger multifractal scenario explicated through the differential equation (for
details see [12]):
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λ2(dt)[
4

f (α)−2]
∂l∂lψ + iλ(dt)[

2
f (α)−1]

∂tψ = 0 (9)

Let us note that, for complex systems monofractal dynamics characterized by Peano-
type curves at fractal dimension DF = 2 [12] and at Compton scale resolution, λ = ℏ/2m0

(where ℏ is the reduced Planck constant and m0 is the microparticle’s rest mass), Equation (9)
is reduced to Schrödinger’s differential equation from Quantum Mechanics;

(ii) a Madelung multifractal scenario explicated through the multifractal hydrodynamics
differential equations system (for details see [12]):

∂tVi
D +

(
V l

D∂l

)
Vi

D = −∂iQ

∂tρ + ∂i(ρVi
D
)
= 0

(10)

with
Q = −2λ2(dt)[

4
f (α)−2] ∂l∂l

√
ρ√

ρ = −Vl
FVFl
2 − λ(dt)[

2
f (α)−1]

∂iVi
F

Vi
D = 2λ(dt)[

4
f (α)−2]

∂iϕ, Vi
F = λ(dt)[

2
f (α)−1]

∂iϕ

ψ =
√

ρeiϕ, ψ =
√

ρe−iϕ, ρ = ψψ,

(11)

√
ρ the amplitude and ϕ the phase of the state function. The first Equation (10) corresponds

to the specific multifractal momentum conservation law, while the second Equation (10)
corresponds to the multifractal states density conservation law. From such a perspec-
tive, several consequences can be highlighted: (a) any complex system identifies as a
non-differentiable fluid (multifractal fluid), its dynamics being described through the mul-
tifractal hydrodynamics equations system; (b) any complex system structural entity is in
permanent interaction with a multifractal medium by means of specific multifractal poten-
tial Q; (c) the absence of vl

F from the multifractal states density conservation law specifies
that it does not intervene in the actual motion, but contributes both to the specific multi-
fractal momentum transfer and to the multifractal energy transfer; (d) any interpretation
of Q must take into account the self-interactive nature of specific multifractal momentum
transfer. In this framework, if we admit for the first Equation (10) the general form:

∂tvi
D +

(
vl

D∂l

)
vi

D = −∂i(Q + U), (12)

where U is the specific multifractal scalar potential, from Equation (12), the multifractal
energy conservation law can be obtained for dynamical states (∂t = 0, vi

D ̸= 0):

1
2

vi
DvDi + U + Q = E = const. (13)

It follows that, while a part of the multifractal energy is stored, both in the form of
a specific multifractal kinetic energy, 1

2 vi
DvDi, and in the form of a specific multifractal

potential energy, U, other parts are available in the form of Q and only the total multifractal
energy is conserved. In this way, by means of the multifractal momentum and energy
conservation laws, the multifractal reversibility and the existence of multifractal eigenstates
are assured; (d) in the case of complex systems monofractal dynamics described through
Peano-type curves in the fractal dimension DF = 2 [12] and at Compton scale resolution,
λ = ℏ/2m0, Equation (10) are reduced to the quantum hydrodynamics differential equation
system [12].
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4. Correlative Dynamics by Means of Two Scenarios
In its usual vectorial form, at a given scale resolution, the Schrödinger multifractal

equation, besides the fact that it is invariant with respect to a Galilean-type group, it is
also invariant, in a separate way, to time and radial coordinates transformations (which
represent a group in themselves [12]). They constitute, in the most general case of motion in
a singular direction [10–12], a realization of the Lie SL(2R) group structure, in two variables
with 3 parameters, by the following action:

t′ → αt+β
γt+δ , r′ → r

γt+δ

α, β, γ, δ ∈ R
(14)

The Lie SL(2R) algebra corresponding to action (14) of the group is given by the
following vector base which acts in two variables:

X̂1 =
∂

∂t
, X̂2 = t

∂

∂t
+

r
2

∂

∂r
, X̂3 = t2 ∂

∂t
+ tr

∂

∂r
(15)

These differential operators satisfy the typical SL(2R) algebra’s commutative relations:[
X̂1, X̂2

]
= X̂1,

[
X̂2, X̂3

]
= X̂3,

[
X̂3, X̂1

]
= −2X̂3 (16)

An invariant function is canceled by the algebra’s general vector and thus is dependent
on three arbitrary constants.

If F(t, r) is such a function, it must represent a solution of the partial derivatives
equation: (

a3X̂1 + 2a2X̂2 + a1X̂3
)
(F) = 0 (17)

or explicitly, (
a1t2 + 2a2t + a3

)∂F
∂t

+ (a1t + a2)
∂F
∂r

= 0 (18)

Therefore, it must be a continuous function of an algebraic expression:

F(r, t) =
r2

a1t2 + 2a2t + a3
(19)

In the particular case in which such a function is a constant (for example, F(r, t) ≡ 1),
it results the following:

r2 = a1t2 + 2a2t + a3 (20)

Equation (20) is indeed the radial motion equation of a free particle, with position
represented by a linearly time-dependent vector, according to classical dynamics. In this
interpretation, a1 is the square of the initial velocity vector, a2 is the scalar product of the
initial velocity and the initial position vector, and a3 is the square of the initial position
vector. This radial motion is a prototype in displaying the modern idea of the “dynamics
reduction procedure”, through which certain dynamics are presented as cinematics of
special freedom degrees [14]. We must also note that Equation (20), as a classical motion
equation, represents non-trivial dynamics with significant radial motion: the motion of a
charged particle in the field of a magnetic monopole–the so-called Poincaré monopole [15].
In the context of an “ensemble of motions”, and therefore in the context of fractalization
through stochasticization, these dynamics display, by means of the Multifractal Theory of
Motion, a special interpretation, from a cosmological point of view.

Eddington showed that, from a cosmological perspective, r2 can be interpreted as
a standard particle Gaussian ensemble variance that characterizes the relativistic uni-
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verse [16]. This fact suggests a general way of seeing things. Equation (20) can indeed
represent a variance in the time moments ensemble corresponding to the concept of the
same scale resolution. In this case, its interpretation is general, in the sense that it is
independent from Kepler’s second law, due to the fact that Equation (20), in the form

dt
dθ

= a1t2 + 2a2t + a3, (21)

represents in fact the connection between the average and the variance of the most general
ensembles employed in current physics, i.e., exponential ensembles with a quadratic
variance function [17]. Among these, the Gaussian ensembles from Eddington’s work are
only a particular case.

In this way, the time parameter t has the interpretation of an average on-time moments
ensembles corresponding to a value of the parameter θ which is characteristic of the
statistical distribution of variance r2. In the case of motion in the multifractal potential Q,
parameter θ is the polar angle of the sample body’s position, the angle in relation to which
the r(t) = const. ensemble “unfolds” along the sample body’s closed orbit. On the other
hand, the cosmological perspective helps in placing the previous statistical interpretation
among the special reduction procedure mentioned above. It is now necessary to remind
an older idea, related to the changing of the time scale [18]. Indeed, Equation (21) can
be adequately solved by providing t as a function of θ parameter. Now, if parameter θ

is itself taken as a time, let us consider, for example, the choice θ = k−1τ, k = const. (a
fixed time in a certain time scale), then the solution of Equation (21) represents different
time scales, Milne’s scale is one of them. Let us analyze in detail this situation. In this
framework, Equation (21), with adequate normalization and notations bi = kai, i = 1, 2, 3,
is transformed into a Riccati-type differential equation (Riccati-type gauge):

dt
dτ

= P(t), P(t) = b1t2 + 2b2t + b3 (22)

Here, the parameters, bi are constants that characterize a certain geodesic of the family.
Let us note that, a choice like (22) highlights correlations between the dynamics present
in the two above-mentioned multifractal scenarios (the Schrödinger multifractal scenario
gives us the invariant function, through the SL(2R) symmetry group, taking into account
that the Madelung multifractal scenario gives us the force field’s centrality).

For obvious reasons, it is important to identify the most general solution of the
differential Equation (22). Reference [19] offers a modern and pertinent method for the
integrability of the Riccati differential equation. For the present work, it is sufficient to note
that the relations:

t1 = − b2

b1
+

i
b1

ω, t2 = − b2

b1
− i

b1
ω, ω2 = b3b1 − b2

2, i =
√
−1 (23)

can be assimilated to the roots of the polynomial P(t). As such, the homographic transfor-
mation needs to be performed first:

z =
t − t1

t − t2
(24)

and now it is easy to see, by means of direct calculation, that z is a solution of the differential
equation:

.
z = 2iωz, z(τ) = z(0)eiωτ (25)
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Therefore, if the initial condition z(0) is conveniently expressed, it is possible to obtain
the general solution of the differential Equation (22), by inversing the transformation (24),
which implies (i.e., the solution):

t =
t1 + rexp[2iω(τ − τ0)]t2

1 + rexp[2iω(τ − τ0)]
(26)

where r and τ0 are two real constants, specific to the solution.
By using relations (23), it is possible to obtain the solution in real terms, as follows:

z = − b2

b1
+

ω

b1

[
2r sin[2ω(τ − τ0)]

1 + r2 + 2r cos[2ω(τ − τ0)]
+ i

1 − r2

1 + r2 + 2r cos[2ω(τ − τ0)]

]
(27)

resulting in a self-modulation of ω through the Stoler-type transformation (usually referred
to as Stoler coherent states [20]), leading to a complex form of this complex parameter. We
present, in Figure 1, the explication of “self-modulation” in complex systems dynamics,
based on Equation (27), through Re(zb1 + b2; b1 = b2 ≡ 1), for ω = 17 and r = 0.2; 0.6; 1.
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Moreover, if we write:
r = coths (28)

then Equation (20) becomes:

z = − b2

b1
+

ω

b1
h (29)

where h has the expression

h = −i
cosh s − exp[−2iω(τ − τ0)]sinhs
cosh s + exp[−2iω(τ − τ0)]sinhs

(30)

5. Correlative Dynamics by Means of Schrödinger Multifractal Scenario
Let us reconsider the first Equation (14), which represents the homographic action of

the generic matrix:

M̂ =

(
α β

γ δ

)
(31)

The issue that needs to be tackled is the following: a relation must be found between
the ensemble of matrices M̂ and the ensemble of values pertaining to t, for which t′

remains constant.
From a geometric perspective, this means finding the ensemble of points (α, β, γ, δ),

which univocally correspond to the values of the parameter t. By using the first Equa-
tion (14), the issue is solved by a Riccati differential equation (Riccati-type gauge), which
can be obtained as a consequence of the constancy of t′: dt′ = 0.

dt + ω1t2 + ω2t + ω3 = 0 (32)

where the following notations are used [12,19]:

ω1 =
γdα − αdγ

αδ − βγ
, ω2 =

δdα − αdδ + γdβ − βdγ

αδ − βγ
, ω3 =

δdβ − βdδ

αδ − βγ
(33)

It is then easily noticeable that the metric

ds2 =
(αdδ + δdα − βdγ − γdβ)2

4(αδ − βγ)2 − dαdδ − dβdγ

αδ − βγ
(34)

is in direct relation with the discriminant of the quadratic polynomial from Equation (32)

ds2 =
1
4

(
ω2

2 − 4ω1ω2

)
(35)

Let us note that, for a particular case of 1-forms ω1, ω2, ω3 [12], the metric (35) also
admits the SL(2R) symmetry.

The three differential forms from Equation (33) constitute a coframe [12] at any point
of the absolute space. This allows the translation of the geometric properties of the absolute
space to algebraic properties linked to the differential Equation (32).

The simplest of these properties refer to dynamics on matrix geodesics, which are
directly translated to statistical properties. In this case, the 1-forms ω1, ω2, ω3 are differen-
tiated exactly in the same parameter the length l of the geodesic arc. Along these geodesics,
Equation (32) is transformed into a Riccati-type differential equation (Riccati-type gauge):

dt
dl

= P(t), P(t) = c1t2 + 2c2t + c3 (36)
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We can notice that such a situation implies in-phase correlative dynamics of com-
plex systems.

Here, the parameters c1, c2, c3 are constants that characterize a certain geodesic of the
family. The formalism employed for Equation (22) can also be applied to this equation. In
this case, Equation (36) highlights dynamics correlated by Stoler coherent states. Let us
note the similarities between the dynamics given by Equations (22) and (36), due to the fact
that both are substantiated by the SL(2R) symmetry group [12,20].

In accordance with [9,10], the complex parameter (30) operates as a harmonic mapping
between the usual space (i.e., the measurement space) and the hyperbolic one.

We present in Figure 2a–d chaotic in complex systems dynamics, based on Equa-
tion (27), through Re(zc1 + c2; c1 = c2 ≡ 1) ≡ F(ω, t) for ωmax = 13.
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Figure 2. (a,b)—3D plot (a), contour plot (b), time series (c), and reconstructed attractor (d) for
solution Re(zc1 + c2; c1 = c2 ≡ 1) ≡ F(ω, t) corresponding to the maximum value of the pulsation-
type characteristic ωmax = 13.

6. Correlative Dynamics by Means of Madelung Multifractal Scenario
Let us suppose that the velocity field is described by the variables

(
Y j), for which we

have the metric:
hijdYidY j (37)
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in an ambient space of metric:
γαβdxαdxβ (38)

In this situation, the velocity field equations are derived from a variational principle,
connected to the Lagrangian [12]:

L = γαβhij
∂Yi

∂xα

∂Y j

∂xβ
(39)

Therefore, if the variational principle

δ
∫

Ldv = 0 (40)

where the quantities have the standard meaning from [12], is considered as a fundamental
premise, the main purpose in the dynamics of complex systems would be to produce
metrics of the Lobachevsky plane (or related to them).

In such a framework, let us admit that, in the case of one-dimensional dynamics of the
velocity field, the restriction:

V2
D + V2

F ≡ 1 (41)

Indeed, the metric of the Lobachewsky plane can be produced as a Caleylean metric
of a Euclidian plane, for which the absoluteness is a circle with unit radius:

x2 + y2 = 1 (42)

where we admitted the following:

x ≡ VD, y ≡ VF (43)

This way, the Lobachevsky plane can be put into biunivoc correspondence with the
interior side of this circle. The general procedure of metrization of a Caylean space starts
with the definition of the metric as an anharmonic ratio [12].

Let us suppose that the absoluteness of the space is represented by the quadratic form
Ω(X,Y) where X denotes any vector. The Caylean metric is then given by the following
differential quadratic form:

−ds2

k2 =
Ω(dX, dX)

Ω(X, X)
− Ω2(X, dX)

Ω2(X, X)
(44)

where Ω(X,Y) is the duplication of Ω(X,X) and k is a constant connected to the space curvature.
In the case of the Lobachevsky plane, we have the following:

Ω(X, X) = 1 − x2 − y2,

Ω(X, dX) = −xdx − ydy

Ω(dX, dX) = −dx2 − dy2

(45)

which yields:
ds2

k2 =

(
1 − y2)dx2 + 2xydxdy +

(
1 − x2)dy2

(1 − x2 − y2)
2 (46)

Performing now the coordinate transformation:

x =
hh − 1
hh + 1

, y =
h + h
hh + 1

(47)
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the metric (46) becomes as follows:

ds2

k2 = −4
dhdh(

h − h
)2 (48)

Let us note that this metric admits a symmetry of SL(2R) type [12].
In such context, by applying the variational principle (40) to the Lagrangean

L = −4
∇h∇h(
h − h

)2 (49)

where h is the complex conjugate of h, the following field equations can be found the
following: (

h − h
)
∇2h − 2(∇h)2 = 0 (50)

These equations have the solution

h = i
cos hκ + sin hκe−iω

cos hκ − sin hκe−iω (51)

where κ satisfies the Laplace equation ∆κ = 0. Therefore, also in this case, the com-
plex parameter (50) operates as a harmonic mapping between the usual space (i.e., the
measurement space) and the hyperbolic one.

7. Characterization of Bifurcation Diagram and Lyapunov
Exponent Graph

Bifurcation diagrams and Lyapunov exponent graphs are fundamental tools for ana-
lyzing the behavior of nonlinear dynamical systems. These graphs provide insight into the
transitions between dynamical regimes of the system from periodic stability to chaos.

In this case, the analysis takes place for the control parameter ω for variable intervals
and for a fixed parameter (r = 0.5). The variation of this control parameter changes the
way in which the system evolves, leading to either stable steady states, periodic cycles, or
chaotic behavior.

7.1. Bifurcation Diagram

The bifurcation diagram shows the stationary values of the dynamic function after the
transient effects are removed. It shows how the system solutions evolve as a function of
the control parameter.

Related to the bifurcation diagram we can make the following observations:

i. Bifurcation diagram (Figure 3a):

• For smaller values of ω (around 1.0–1.5), a “fan-like” structure is observed, which
is indicative of stable solutions, starting initially with a point or a slightly deviated
orbit, which as ω increases, undergoes successive branching (bifurcations or
period doubling).

• Over larger and larger intervals of ω, the structure becomes denser and denser,
with orbits that no longer converge to a limited set of points. This filling of a
range of amplitudes indicates a chaotic regime: the orbit is no longer periodic,
and the set of points has a fractal character.

• Occasionally, periodicity windows between chaotic zones can be observed: small
intervals of ω in which the system returns to a simpler periodic cycle (orbit of
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period 3, 5, etc.), after which, at a small variation of the parameter, it returns
to chaos.

ii. Zoom on the bifurcation diagram (Figure 3b,c):

• A zoom (middle and right images) on the intervals 1.8–2.0 and 1.86–1.9, respec-
tively, shows typical structures of chaotic systems with periodic windows. Such
windows appear as periodicity windows (short parameter intervals in which the
system has a stable periodic orbit).

• Between these windows, the density of the points increases, suggesting a dy-
namics sensitive to initial conditions. The points no longer tend towards a single
stable cycle but appear as multiple, interspersed, branching bands.
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7.2. The Lyapunov Exponents

The plot of the Lyapunov exponents as a function of ω (for r = 0.5, another probable
internal parameter of the system) shows how, as ω increases, the Lyapunov exponents
become mostly positive (or at least larger than zero)—see Figure 4.
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Figure 4. Plot of the Lyapunov exponents as a function of ω.

A positive Lyapunov exponent λ > 0 indicates chaos, i.e., there is an exponential
divergence of trajectories initiated from very close initial conditions. A λ ≈ 0 or negative λ

would indicate order or periodicity.
The presented curve has an oscillating shape: there are portions where λ drops below

zero, indicating windows of periodicity, and areas where λ is strongly positive, signaling
robust chaos. As ω increases towards 3.0, the mean values of λ seem to remain high,
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suggesting pronounced and persistent chaos, with short windows of periodic stability
(points where sudden decreases in the Lyapunov exponent occur).

From what can be observed, the system exhibits dynamics typical of a transition to
chaos through a scale of period-doubling bifurcations. At low values of ω, the system may
have a fixed point or a stable periodic orbit.

7.3. Multifractal Characteristics of Chaotic Attractors

In a chaotic regime, the set of points towards which the orbit evolves in-phase space
is not a simple one, such as a point or a periodically bounded curve. Instead, the system
converges to a chaotic attractor that generally has a fractal or even multifractal geometry.
A multifractal attractor is characterized by the fact that different regions of the attractor
have different local fractal dimensions, and the extent to which the points of the orbits are
distributed on the attractor is non-uniform.

In areas of dense bifurcation (such as those observed for values of ω between 1.8 and
2.0 or finer, between 1.86 and 1.9 in Figure 3b,c), multifractal features become evident: as
the parameters change, the structure of the attractor rearranges, the local densities of the
distribution of orbits on the attractor change, generating a complex multifractal spectrum.

Positive Lyapunov exponents (0.5–1.5 in large ω ranges) indicate high sensitivity to
initial conditions. In an area with λ > 1, for example, a richer multifractal structure can
be expected, as the rapid divergence of the trajectories causes the orbit to “blanket” the
attractor in an irregular and non-uniform way. In intervals where λ < 0 or close to zero
(periodic windows), the attractor simplifies, having a fractal dimension close to zero, and
lacking the multifractal character.

Between these windows, when reentering chaos, the system again develops a complex
fractal attractor. Thus, the value of the fractal dimensions and the multifractal spectrum
vary strongly depending on the parameter, giving rise to a complex parametric landscape.

8. Conclusions
The main conclusions of the present paper are the following:

(i) By assimilating any complex system to a multifractal-type object, it is shown that, in
accordance with the Multifractal Theory of Motion, its dynamics can be described
through continuous and non-differentiable curves;

(ii) The covariant derivative is defined and, based on a covariance principle, the specific
multifractal momentum conservation law is determined. In such context, the dynam-
ics of any complex system can be separated on differentiable and non-differentiable
resolution scales;

(iii) If the velocities field can be expressed through a gradient, then two scenarios (a
Schrödinger-type and a Madelung-type multifractal scenario) become operable;

(iv) In the Schrödinger-type multifractal scenario, the motion laws are related to the
invariant functions of an SL(2R) algebra;

(v) In the Madelung-type multifractal scenario, the non-differentiable components of the
velocity field induce a central-type force;

(vi) These two scenarios can be correlated, highlighting SL(2R) symmetries and Riccati-
type gauges in complex systems dynamics;

(vii) Correlative dynamics in either of the two scenarios, based on the same SL(2R) sym-
metry, can be obtained by Stoler coherent states;

(viii) Several non-trivial dynamics, which imply SL(2R) symmetries through a Riccati-type
gauge, are discussed the following: charged particle dynamics in a magnetic monopole
(Poincaré monopole), relativistic cosmology in Edington’s sense, and temporal scale
variance in Milner’s sense;
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(ix) Our model substitutes constrained dynamics in a usual space with interaction-free
dynamics in a multifractal space (in this case, the interaction is taken over by the scale
resolution and fractal dimension of the motion curves, just as, in General Relativity,
the interaction is taken over by the curvature of space).

(x) The presented dynamical system, with the bifurcation diagram and the Lyapunov
exponent as a function of the parameter ω, shows a classical picture of the transition
to chaos, with extensive areas of chaotic regime. Lyapunov analysis shows the exis-
tence of many intervals of chaos (positive Lyapunov exponents), interspersed with
periodic windows where the Lyapunov exponent drops abruptly (a dynamical regime
approaching more ordered dynamics). In chaotic regimes, the asymptotic attractors
possess fractal or even multifractal properties. Additionally, the presence of periodic
windows interrupting chaotic zones helps to understand the dynamical complexity:
the system is not simply chaotic, but has a “fabric” of more ordered/periodic states
interposed between chaotic zones, each with its own structural behavior. For exam-
ple, period doubling can be observed both at microscopic scales and at macroscopic
scales [21–23].
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