
Academic Editor: Sergei Odintsov

Received: 13 November 2024

Revised: 6 January 2025

Accepted: 15 January 2025

Published: 21 January 2025

Citation: Shen, Y.; Liang, J.; Kang, H.;

Sun, X.; Chen, Q. NLAPSMjSO-EDA:

A Nonlinear Shrinking Population

Strategy Algorithm for Elite Group

Exploration with Symmetry

Applications. Symmetry 2025, 17, 153.

https://doi.org/10.3390/

sym17020153

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

NLAPSMjSO-EDA: A Nonlinear Shrinking Population
Strategy Algorithm for Elite Group Exploration with
Symmetry Applications
Yong Shen , Jiaxuan Liang, Hongwei Kang * , Xingping Sun and Qingyi Chen

School of Software, Yunnan University, Kunming 650000, China; sheny@ynu.edu.cn (Y.S.);
liangjiaxuan@mail.ynu.edu.cn (J.L.); sunxp@ynu.edu.cn (X.S.); devas9@ynu.edu.cn (Q.C.)
* Correspondence: hwkang@ynu.edu.cn

Abstract: This work effectively modifies APSM-jSO (a novel jSO variant with an adaptive
parameter selection mechanism and a new external archive updating mechanism) to offer
a new jSO (single objective real-parameter optimization: Algorithm jSO) version called
NLAPSMjSO-EDA. There are three main distinctions between NLAPSMjSO-EDA and
APSM-jSO. Firstly, in the linear population reduction strategy, the number of individuals
eliminated in each generation is insufficient. This results in a higher number of inferior
individuals remaining, and since the total number of iterations is fixed, these inferior
individuals will also consume iteration counts for their evolution. Therefore, it is essential
to allocate more iterations to the elite population to promote the emergence of superior
individuals. The nonlinear population reduction strategy effectively addresses this issue.
Secondly, we have introduced an Estimation of Distribution Algorithm (EDA) to sample
and generate individuals from the elite population, aiming to produce higher-quality indi-
viduals that can drive the iterative evolution of the population. Furthermore, to enhance
algorithmic diversity, we increased the number of individuals in the initial population
during subsequent experiments to ensure a diverse early population while maintaining
a constant total number of iterations. Symmetry plays an essential role in the design and
performance of NLAPSMjSO-EDA. The nonlinear population reduction strategy inherently
introduces a form of asymmetry that mimics natural evolutionary processes, favoring elite
individuals while reducing the influence of inferior ones. This asymmetric yet balanced
approach ensures a dynamic equilibrium between exploration and exploitation, aligning
with the principles of symmetry and asymmetry in optimization. Additionally, the incor-
poration of EDA utilizes probabilistic symmetry in sampling from the elite population,
maintaining structural coherence while promoting diversity. Such applications of sym-
metry in algorithm design not only improve performance but also provide insights into
balancing diverse algorithmic components. NLAPSMjSO-EDA, evaluated on the CEC 2017
benchmark suite, significantly outperforms recent differential evolution algorithms. In
conclusion, NLAPSMjSO-EDA effectively enhances the overall performance of APSM-jSO,
establishing itself as an outstanding variant combining jSO and EDA algorithms. The
algorithm code has been open-sourced.

Keywords: non-linear population shrinking; symmetry; estimation of distribution algorithm;
single objective real-parameter optimization; evolutionary computation

Symmetry 2025, 17, 153 https://doi.org/10.3390/sym17020153

https://doi.org/10.3390/sym17020153
https://doi.org/10.3390/sym17020153
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2430-8486
https://orcid.org/0000-0002-5466-7092
https://doi.org/10.3390/sym17020153
https://www.mdpi.com/article/10.3390/sym17020153?type=check_update&version=1

Symmetry 2025, 17, 153 2 of 45

1. Introduction
The optimization problem spans multiple fields such as mathematics, engineering,

computer science, economics, physics, biology, and operations research [1]. Optimization
is ubiquitous in daily life and is applicable across various practical problems that can be
formulated using optimization models. It is a wide field of study that suggests certain ap-
proaches to solve certain types of problems, including non-convex optimization, quadratic
programming, integer programming, and linear programming. In order to address a wide
range of issues, researchers concentrate on creating generic algorithms, which are further
divided into single- and multi-objective algorithms according to their goals [2,3]. Problems
are also classified as constrained [4] or unconstrained, each playing increasingly significant
roles in practical engineering applications [5,6].

Unconstrained single-objective optimization is a basic kind of optimization problem
that serves as the foundation for more complicated optimization issues. It finds extensive
applications in economic scheduling [7,8], production planning [9], engineering optimization
problems [10,11], image processing [12], and other domains [13]. Solving unconstrained
single-objective real-parameter optimization problems remains a challenging task.

The Differential Evolution (DE) method was first presented by Price and Storn [14],
and is favored for its practical implementation, robustness, and excellent performance in
single-objective optimization problems. During iterations, it employs mutation, crossover,
and selection operations to guide individuals in the population toward global optima. How-
ever, DE’s performance heavily relies on mutation strategies and control parameters [15,16].
The proper selection of these influences significantly enhances population convergence
speed and diversity. Conversely, poor choices can lead to decreased performance, caus-
ing premature convergence or stagnation [17,18], limiting exploration and exploitation in
subsequent generations. Therefore, ongoing research focuses on optimizing DE.

In the population-based optimization technique known as DE, individuals develop
within a population and the optimization results are influenced by their quality. Through-
out optimization iterations, individuals may gain valuable evolutionary directions and
information, but they may also acquire misleading cues without adjustment mechanisms,
potentially yielding adverse optimization results. Thus, maintaining good population
diversity is crucial. New evolutionary directions and information are acquired through
mutations. Mutation strategies determine search baselines, and new differential vectors
dictate search directions. To create trial vectors, crossover mixes mutation vectors—which
are produced via mutation—with target vectors, which are members of the population.
After trial vector fitness values are assessed using assessment criteria, valuable individuals
keep evolving.

In DE algorithms, different mutation strategies exhibit varying search performances [19,20].
Strategies like DE/rand/1 and DE/rand/2 initiate searches from randomly selected indi-
viduals, performing well in global exploration. DE/best/1 and DE/best/2 initiate searches
from the best individual. DE/current-to-pbest/1 linearly combines the current individual
with a randomly selected p% of high-fitness individuals as starting points, balancing global
and local searches. Combining these strategies can enhance optimization performance
during the search for optimal solutions [21,22].

Important control elements in DE include population size NP, crossover rate CR,
and scaling factor F. Among them, NP receives relatively less attention but low NP may
result in the loss of valuable individual information, hindering population convergence to
global optima. Currently, no definitive NP size has been proven to be superior, but effective
solutions like the L-shade algorithm series [23,24] dynamically adjust population size to
avoid unnecessary computations. During optimization, there will inevitably be a loss
of population variety and a slowdown in the rate of convergence. Excessive adherence

Symmetry 2025, 17, 153 3 of 45

to global exploration strategies increases diversity but may slow convergence, making it
challenging to find optimal individuals. Conversely, excessive convergence within the
population decreases diversity, potentially trapping solutions in local optima.

To address these challenges, this study improves upon existing approaches by integrat-
ing the latest variant of jSO, APSM-jSO, modifying population reduction strategies to allow
more generations for evolution, and introducing EDA algorithms to enhance population
diversity. Changes in population reduction strategies enable more generations to explore
optimal solutions, enhancing local exploration capabilities. Additionally, integrating EDA
algorithms alleviates the dilemma of late-stage diversity loss in jSO algorithms, indirectly
boosting global exploration capabilities.

2. Related Work
The “DE/current-to-pbest” mutation approach was first presented by Jade [25]. It is

still recognized as the foundation for new variations based on DE and uses representative
solutions kept in an external archive, together with the most representative adaptive
parameter management strategy.

By incorporating concepts from iL-SHADE [23], jSO [2], which was placed second in
the IEEE CEC 2017 competition, presented the DE/current-to-pbest-w/1 weighted mu-
tation approach in 2017. In the early and late phases of optimization, jSO uses varying
scaling factors to balance exploration and exploitation capabilities. Also, in the same year
Noor H. Awad et al. [26] adjusted scaling factors using two sine waves: non-adaptive sine
decrease and adaptive sine increase. This approach employed a performance-adaptive
mechanism based on early successes rather than random selection of sine waves. Addition-
ally, the crossover operator utilized Euclidean neighborhood covariance matrix learning
to establish suitable coordinates, enhancing LSHADE-Epsin’s ability to handle highly
correlated variables (The introduction of various algorithms is shown in Table 1).

Table 1. Introduction of Algorithms.

Algorithm Year Proposed Description

DE 1997

Standard Differential Evolution (DE) is an evolutionary algorithm for global
optimization, progressively improving candidate solutions in the population
through differential mutation, crossover, and selection operations to find optimal
solutions for complex problems [14].

L-SHADE 2014
This algorithm is an improvement upon SHADE [27], adjusting population size
through Linear Population Size Reduction (LPSR) during evolution to optimize
population scale [23].

L-SHADE-Epsin 2017 Enhanced version of L-SHADE integrating performance-adaptive sine methods
and covariance matrix learning in crossover operators [26].

EBOwithCMAR 2017

Covariance Matrix Adaptation with Retrospective (CMAR) improves local
search capabilities of Evolutionary Bridge Optimization (EBO) by generating
new solutions using the covariance matrix. This variant is referred to as
EBOwithCMAR [28].

MadDE 2021 A variant of LSHADE that makes use of several mutation techniques to take
advantage of different adaptation strategies [29].

IDE-EDA 2023 Algorithm combining Differential Evolution Algorithm (LSHADE-Rsp) with
Estimation of Distribution Algorithm (EDA) [30].

APSM-jSO 2023 New variant of jSO proposed by effective modifications, incorporating strategies
from LSHADE-RSP [31].

Symmetry 2025, 17, 153 4 of 45

Abhishek Kumar introduced Covariance Matrix Adaptation with Retrospective
(CMAR), which generates new solutions using the covariance matrix, thereby enhancing
local search capabilities for EBO. This version of EBO is referred to as EBOwithCMAR [28],
winning the IEEE CEC 2017 competition.

Stanovov et al.’s LSHADE-RSP [32], which employed a rank-based selection pressure
mechanism in lieu of randomly picked people in the mutation strategy was placed second
in the IEEE CEC 2018 competition.

Xia et al. [33] presented a unique fitness-driven hybrid in 2021 that takes into account
both fitness and novelty in order to balance exploration and exploitation capabilities. They
proposed the new DE-based version NFDDE.

Stanovov et al. [34] introduced the NL-SHADE-RSP method in 2021. It makes use of
non-linear population reduction, crossover rate control, and adaptive archive use.

Yintong Li proposed IDE-EDA in 2023 [30], which combines the Estimation of Distri-
bution Algorithm (EDA) with the Differential Evolution Algorithm (LSHADE-Rsp).

Also, in 2023 a new variant of jSO, APSM-jSO, was proposed by applying effective
modifications to jSO, utilizing strategies from LSHADE-RSP [31].

The explanation of various abbreviations is shown in Table 2 .

Table 2. Abbreviations and Terms of DE Algorithms.

Abbreviation Full Name Description

DE Differential Evolution
A standard evolutionary algorithm for global
optimization, improving candidate solutions
using mutation, crossover, and selection.

SHADE Success-History Based Adaptive Differential
Evolution

A variant of differential evolution that adapts
the scaling factor and crossover rate based on
the success history of previous generations. It
improves the balance between exploration and
exploitation during optimization.

L-SHADE Linear Population Size Reduction SHADE
An improvement of SHADE that adjusts
population size dynamically using LPSR during
optimization.

L-SHADE-Epsin Enhanced Performance SHADE with
Covariance Matrix

A version of L-SHADE integrating adaptive
sine methods and covariance matrix learning
for crossover operations.

EBOwithCMAR
Evolutionary Bridge Optimization with
Covariance Matrix Adaptation and
Retrospective

Combines covariance matrix learning with EBO
to enhance local search capabilities.

MadDE Multi-Adaptive Differential Evolution
A variant of L-SHADE that applies multiple
adaptation techniques for improved
optimization.

IDE-EDA Improved Differential Evolution with
Estimation of Distribution Algorithm

Combines L-SHADE with EDA to generate
high-quality solutions in high-dimensional
spaces.

APSM-jSO Adaptive Parameter Selection Mechanism-jSO A jSO variant integrating L-SHADE-RSP
strategies for effective parameter selection.

EDA Estimation of Distribution Algorithm

A population-based optimization algorithm
that models the distribution of the best
candidate solutions and uses it to generate new
solutions. It integrates probabilistic models to
guide the search process.

Symmetry 2025, 17, 153 5 of 45

2.1. Differential Evolution

A uniform distribution is used in the DE standard technique to produce the starting
population P [14]. Equation (1) illustrates how each potential solution xj

i is randomly
started at the beginning of the evolution process.

xj
i = xj

min + rand · (xj
max − xj

min), i ∈ {1, 2, . . . , NP}, j ∈ {1, 2, . . . , D} (1)

Here, xj
min and xj

max represent the problem’s lower and upper bounds in dimension j;
NP represents the population size, D represents the dimension size, and rand is a uniformly
distributed number between 0 and 1.

During the evolution process, it performs mutation, selection, and crossover op-
erations. The five widely used classic mutation strategies in DE, namely DE/rand/1,
DE/rand/2, DE/best/1, DE/current-to-best/1, and DE/rand-to-best/1, are described by
Equations (2)–(6).

vi = xr1 + F · (xr2 − xr3) (2)

vi = xr1 + F · (xr2 − xr3) + F · (xr4 − xr5) (3)

vi = xbest + F · (xr1 − xr2) (4)

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (5)

vi = xr1 + F · (xbest − xr1) + F · (xr2 − xr3) (6)

where r1, r2, r3, r4, r5 ∈ {1, 2, 3, . . . , NP} are uniformly distributed random indices that are
mutually exclusive. F is the scaling factor, xbest is the currently best individual obtained.
When vi exceeds the lower or upper bounds, it is corrected using the strategy shown in
Equation (7).

vj
i =


(

Lj + xj
i

)
/2, vj

i < Lj(
U j + xj

i

)
/2, vj

i > Uj
(7)

Using binomial crossover operation, the trial vector ui is generated based on the
mutation vector vi, as shown in Equation (8).

uj
i =

vj
i , if rand < Cr or j = jrand

xj
i , otherwise

(8)

where jrand ∈ {1, 2, 3, . . . , D} is a uniformly random index, and Cr is the crossover rate.
Equation (9) illustrates how the population is updated using a greedy method based

on the following fitness function:

xi =

ui, f (ui) ≤ f (xi)

xi, otherwise
(9)

where f (·) denotes the specific problem’s fitness function.

2.2. LSHADE

L-SHADE [23] algorithm enhances algorithm performance by introducing a linearly
decreasing population size in the SHADE algorithm, focusing on both exploration and
exploitation. The population reduction formula is shown in Equation (10):

NP = round
(

FES
FESmax

(NPmin − NPinit)

)
+ NPinit

(10)

Symmetry 2025, 17, 153 6 of 45

The rounding procedure is indicated by round in the formula above, and the maximum
and current iteration counts are represented by FESmax and FES, respectively. The initial
and minimal population sizes are denoted by NPinit and NPmin, respectively.

In Equation (13), MCR,k represents the k-th element in the historical memory used to
update the control parameter CR. This formula dynamically adjusts the value of CR as
follows: If MCR,k has not been initialized or if the number of successful individuals Scr in the
current generation is zero, MCR,k remains in an undefined state ⊥. Otherwise, it is updated
using the weighted Lehmer mean meanWL(SCR) of the successful CR values. The weighted

Lehmer mean is calculated as meanWL(SCR) =
∑n wn ·s2

n
∑n wn ·sn

, where wn denotes the weight (in
Equation (12)), typically associated with fitness improvement, and sn represents elements
in the set of successful CR values. This mechanism ensures that the update of MCR,k adapts
dynamically to the optimization performance in each generation, thereby enhancing the
algorithm’s search efficiency and robustness.

meanWL(S) =
∑
|S|
n=1 ωn · S2

n

∑
|S|
n=1 ωn · Sn

(11)

ωn =
| f (un)− f (xn)|

∑
|S|
n=1 | f (un)− f (xn)|

(12)

MCR,k =

⊥, MCR,k =⊥ or max(Scr = 0)

meanWL(SCR), otherwise
(13)

Equation (14) defines the control parameter Cri. If MCR,k = ⊥, indicating that the
historical memory is undefined or invalid, Cri is set to 0. Otherwise, Cri is generated ran-
domly around the center MCR,R with a deviation of 0.1, as defined by rand(MCR,R, 0.1). This
approach ensures that Cri remains stable when the memory is invalid while introducing
randomness for exploration when the memory is valid.

Cri =

0, MCR,k = ⊥
rand(MCR,R, 0.1), otherwise

(14)

In the L-SHADE algorithm, the greediness factor p is typically set to 0.2, which
randomly selects the best individuals from the top 20% elite, with the archive size set to
NP × Arate, where Arate controls the size of the external archive.

2.3. LSHADE-Epsin

In the first phase of LSHADE-Epsin, the mutation factor F for each target vector in
generation g is defined as shown in Equation (15):

Fi,g =
1
2

(
sin(2π · freq · g + π) · Gmax − g

Gmax
+ 1
)

(15)

Equation (15) defines the parameter Fi,g, which dynamically adjusts based on the genera-
tion index g. The formula includes a sinusoidal component modulated by the frequency freq
and the current generation g, combined with a linear decay factor. Specifically:

- The term sin(2π · freq · g + π) introduces oscillations in Fi,g over generations, with the
frequency controlled by freq.

- The factor Gmax−g
Gmax

ensures a gradual decrease in Fi,g as the generation g approaches
the maximum generation Gmax, simulating a decay effect.

Symmetry 2025, 17, 153 7 of 45

- The addition of 1 and division by 2 normalize the oscillation range, ensuring that Fi,g

remains within [0, 1].

This design allows Fi,g to balance exploration and exploitation over generations,
leveraging oscillations for diversity and decay for convergence.

Here, g represents the current generation, freq is a fixed value (freq = 0.5), i represents
the index of the individual, i ranges from 1 to the population size NP, and Gmax is the
maximum number of iterations.

As demonstrated by Equation (16), an adaptive sine rise adjustment is used in the
second arrangement.

Fi,g =
1
2

(
sin(2π · freqi · g) · g

Gmax
+ 1
)

(16)

In Equation (17), freqi,g represents the frequency for the i-th individual at gener-
ation g. It is generated using the function randc(ufreqri, 0.1), where randc introduces
controlled randomness.

The term ufreqri serves as the central value or the mean around which the randomness
is applied. The value 0.1 specifies the range or deviation for the random sampling, ensuring
that the generated frequency remains close to ufreqri.

The randc function is designed to create a bounded random value while maintaining
a controlled level of variability, supporting diversity among individuals in the population
without deviating excessively from the baseline value ufreqri.

freqi,g = randc(ufreqri, 0.1) (17)

The average success frequencies from prior generations are stored in an external
memory freqM, from which ufreqri is chosen at random. A random index r1 is selected
from [1, h] at the conclusion of generation g.

In the first phase, F is chosen to increase or decrease based on learning records’
probabilities.

In the second phase of LSHADE-Epsin, except for F using a Cauchy distribution,
the algorithm is similar to LSHADE.

Furthermore, for every algorithm generation, the crossover operator learns a covari-
ance matrix with probability pc based on Euclidean neighborhoods. The best person is
first determined by sorting the people according to their fitness ratings BestX. Then, we
compute the Euclidean distances between BestX and every other person in the population.
Individuals are classified, creating communities around the best individuals based on
their distances and NP. The percentage of people utilized to create the covariance matrix
C is ps. NP × ps also drops dynamically as a result of the population size dynamically
shrinking. This neighborhood is used to construct the covariance matrix C, as indicated by
Equations (18)–(20):

C = BDBT (18)

In this case, D is a diagonal matrix made up of eigenvalues, while BT and B are
orthogonal matrices.

Next, BT is used to update the target vectors X′
i,g and trial vectors V′

i,g, as shown in
Equations (19) and (20):

X′
i,g = BTX′

i,g (19)

V′
i,g = BTV′

i,g (20)

Symmetry 2025, 17, 153 8 of 45

Equation (21) defines the trial vector u′
i,j,g for the i-th individual at dimension j and

generation g. This formula is a key part of the mutation and crossover process in differential
evolution. Specifically,

- Case 1: If rand(0, 1) ≤ CRi,g or j = jrand, the component V′
i,j,g from the donor vector

is selected. rand(0, 1) is a random number uniformly distributed between 0 and 1.
CRi,g is the crossover rate for individual i at generation g, controlling the probability
of inheriting components from the donor vector. jrand ensures that at least one compo-
nent of the trial vector u′

i,j,g is inherited from the donor vector, preventing the trial
vector from being identical to the target vector.

- Case 2: Otherwise, the component X′
i,j,g from the target vector is retained.

This mechanism balances exploration and exploitation by probabilistically mixing
components from the donor vector and the target vector, encouraging diversity in the
population while preserving some characteristics of the original individuals.

U′
i,j,g =

V′
i,j,g, if rand(0, 1) ≤ CRi,g or j = jrand

X′
i,j,g, otherwise

(21)

Lastly, as shown by Equation (22), a binomial crossover is performed with X′
i,g and

V′
i,g to produce a trial vector U′

i,g in the eigenspace.

Ui,g = B · U′
i,g (22)

The vectors are subsequently converted back to the initial coordinate system.

2.4. EBOwithCMAR

The framework of EBOwithCMAR draws inspiration from the algorithm proposed in
UMOEAs-II [35]. The EBOwithCMAR algorithm begins by randomly generating an initial
population PS within the search boundary (initial solutions). Three sub-populations of
sizes PS1, PS2, and PS3 are then created from this population. While the third population is
used for CMAR, the first and second populations are used for EBO processing. During the
evolution process, the use of the EBO or CMAR algorithm is determined by probabilities
prob1 and prob2. These probabilities are not fixed and are updated as described later. In this
algorithm, a cycle is referred to as a control step (CS). The values of prob1 and prob2 are
initialized to 1 at the beginning of each CS.

(1) Superiority of Optimal Solutions Found by EBO and CMAR: This step evaluates
the quality of solutions produced by EBO (Enhanced Biogeography-based Optimization)
and CMAR (Cultural Memory Adaptive Rotation). EBO is responsible for the efficient
exploration of the search space through migration and mutation, while CMAR focuses on
enhancing exploitation by refining solutions using adaptive rotational strategies informed
by cultural memory. The combined approach leverages the strengths of both techniques,
and the superiority of the resulting solutions is demonstrated by comparing their objective
function values to those of standalone methods or benchmarks, showcasing an effective
balance of exploration and exploitation.

(2) Diversity Ratio of PS1 and PS3: This step measures the diversity ratio between
two solution subsets, PS1 and PS3, to evaluate the algorithm’s ability to maintain diversity
during optimization. PS1 typically represents diverse candidate solutions emphasizing
exploration, while PS3 focuses on refined solutions in promising regions for exploitation.
The diversity ratio ensures that the algorithm avoids premature convergence or stagnation,
effectively adapting to different stages of the optimization process. This metric reflects the
dynamic balance achieved by EBOwithCMAR.

Symmetry 2025, 17, 153 9 of 45

At the end of each CS, data sharing occurs, and the values of prob1 and prob2 are reset
to 1 [35]. The two algorithms then proceed to the next cycle, repeating the same process.
In order to optimize the developmental potential of EBOwithCMAR in the final phases
of the method, sequential quadratic programming (SQP) is utilized with the dynamic
probability probls when 75% of the process has been finished. In the event that the solution
discovered by local exploration with SQP is superior to the existing solutions, probls will
be set to its starting value. Should this not be the case, probls is assigned a very tiny value,
and the algorithm keeps running until the halting condition is satisfied.

A. Enhanced EBO: In the preceding part, the origin of the EBOwithCMAR framework
was introduced. In the following section, modifications to the original equations for
EBO perching and patrolling are made to increase the population’s variety. Adaptive
mechanisms are applied to parameters such as EBO, PS1, F, CR, and T (T typically represents
the current iteration number or time step, indicating the progress stage of the algorithm).
At the start of the algorithm, PS1 and PS2 populations are initialized by randomly selecting
solutions from the entire population X. The improved parts of EBO include the following:

1. Enhanced perching: A new form of perching with modified binomial crossover is
introduced as follows:

Sz,j =


x1z,j + Fz,j(x1ccz,j − x1z,j + x1r1z,j − (X1 ∪ X2)r2z,j), if

(randj(0, 1) ≤ crz,j or j − jrand)

x1z,j, otherwise

(23)

2. Enhanced Patrolling: A new form of patrolling with modified binomial crossover is
introduced as follows:

Sz,j =


x1z,j + Fz,j(x1bestz,j − x1z,j + x1ccz,j − (X1 ∪ X2)r2z,j), if

(randj(0, 1) ≤ crz,j or j − jrand)

x1z,j, otherwise

(24)

These two equations represent the improved perching mechanism and patrolling
mechanism in the EBOwithCMAR framework, utilizing modified binomial crossover
methods to enhance the algorithm’s exploration and exploitation capabilities. In the
perching mechanism, the generation of a new solution Sz,j is divided into two cases: if the
crossover condition (randj(0, 1) ≤ crz,j or j = jrand) is met, a new solution is generated using
the equation, which combines the current solution x1z,j, a differential vector (x1ccz,j − x1z,j),
and other sources x1r1z,j and (X1 ∪ X2)r2z,j to maintain diversity; otherwise, the current
solution x1z,j is retained. This mechanism focuses on expanding the search range and
enhancing the algorithm’s exploration capability.

The patrolling mechanism is similar to the perching mechanism but incorporates the
best solution x1bestz,j found so far to strengthen local exploitation. When the crossover
condition is satisfied, the new solution is generated by combining the current solution,
the best solution, and other differential solutions; otherwise, the current solution is retained.
The key difference lies in the differential strategy: the perching mechanism emphasizes
global exploration, while the patrolling mechanism reinforces exploitation by leveraging
information around the best solution. Parameters ccz, r1z, r2z denote the indices of different
individuals involved in the computation, crz,j is the crossover probability controlling the
inclusion of differential information, and Fz,j is the scaling factor adjusting the magnitude
of the differential vector, enabling a dynamic balance between exploration and exploitation
throughout the algorithm’s execution.

Symmetry 2025, 17, 153 10 of 45

3. Individual Selection bestz: A novel approach to the selection of bestz is suggested.
A random selection of the bestz for the z-th person is made from the D best individuals
when PS1 > 2D (dynamic population size higher than 2D). In the absence of this, if bestz is
smaller than 2D, a random selection is made from the top 10% of the population.

4. Compute probpech and probpat: Both probpat and probpech start off at 0.5. At the
conclusion of each iteration, the improvement rate of the objective function values It+1

i is
determined using Equations (25) and (26) in order to update these probabilities.

It+1
i =

∑PS1
z=1 max(0, f t+1

z − f t
z)

∑PS1
z=1 f t

z
(25)

∀x̄1z upadated by

perching, if i = 1

patrolling, if i = 2
(26)

probpearch = max(0.1, min(0.9,
I1

I1 + I2
)) (27)

probpat = 1 − probpearch (28)

The update strategy of ∀x̄1z is determined by probpech and probpat. Then, probpech and
probpat are calculated and updated as per Equations (27) and (28).

5. Linear Reduction in PS1 and PS2: At the end of each iteration, PS1 and PS2 are
linearly reduced by eliminating the worst and random individuals, similar to the LSHADE
method for reducing populations.

6. Adaptive F, jreq, CR, T: Parameter adaptation techniques are employed for adjusting
parameter F. For parameters jreq, CR, and T, new parameter settings are sampled using
SHBA in this process [27].

B. Covariance Matrix Adaptation Retreat (CMAR): To generate new sample solutions,
a mean matrix and covariance matrix are used with a randomly distributed basis. New
individuals generated by sampling are weighted based on their objective values. Based
on these values, an individual is selected from the sampled individuals to form a new
individual. The mean matrix and covariance matrix are then computed based on these new
individuals to generate offspring.

C. Probabilities prob1 and prob2 are updated: Two parameters are taken into account
in the updating of prob1 and prob2: the variety of the population and the caliber of the
solutions. Equation (29) computes the normalized quality value at the conclusion of half a
cycle as follows:

Q̂i =
f best
cs/2,i

f best
cs/2,1 + f best

cs/2,2
(29)

f best
cs/2,i represents the best objective function value at the end of half a cycle for the i-th

algorithm (EBO or CMAR). The diversity value is calculated as follows in Equation (30):

diν̂i =
diνi

diν1 + diν2
(30)

At the conclusion of half a cycle, diνi indicates the population diversity rate in relation
to the optimal solution, where i stands for the first or second algorithm (EBO or CMAR).
Then, Equation (31) is used to determine the progress index PIi:

PIi = (1 − Q̂i) + diν̂i, ∀i = 1, 2 (31)

Symmetry 2025, 17, 153 11 of 45

Ultimately, Equation (32) is used to compute the probabilities probi:

probi = max(0.1, min(0.9,
PIi

PI1 + PI2
)), ∀i = 1, 2 (32)

Pr1 and Pr2 are set to 1 if the total of PI is zero.
D. Information Sharing: The algorithm identifies the optimal method for each CS

cycle by calculating which algorithm (EBO or CMAR) has the highest probability value.
Solutions from population X3 are replaced, with the exception of step duration, by random
solutions from population X1, if EBO is thought to be the optimal method. The computation
of σ is carried out as follows: σ = σinitial ×

(
1 − FES

FESmax

)
. The default settings of the CMAR

parameters are reinstated. The worst individual in X1 is swapped out for the best individual
in X3, assuming that CMAR is the optimal algorithm for the cycle. This procedure is
repeated as sharing information carries over into the next cycle.

2.5. MadDE

MadDE utilizes three mutation strategies as shown in Equations (33)–(35). The first
strategy is a variant of the DE/current-to-pbest/1 mutation strategy based on JADE [25].
The second strategy is a variant of the DE/current-to-rand/1 mutation strategy. Both
strategies employ an archive. By maintaining an external archive A, some non-selected
solutions are stored. This helps reduce the loss of diversity caused by greedy operations,
thereby preserving population diversity and increasing the likelihood of avoiding local
optima in subsequent evolution.

DE/current-to-pbest/1 + archive

Vi = xi + Fi · (xpbest − xi) + Fi · (xr1 − xr3) (33)

DE/current-to-rand/1 + archive

Vi = xi + Fi · (xr1 − xr3) (34)

DE/weighted-rand-to-qbest/1

Vi = Fi · xr1 + Fi · Fa · (xqbest − xr2) (35)

Here, Xqbest,G is a solution randomly selected from the top q

q = 2p − p · FEs
FEsmax

(36)

And Fa is a variable attraction factor, defined as follows:

Fa = 0.5 + 0.5 · FEs
FEsmax

(37)

These tactics seek to progressively strengthen elitism by heightening the appeal of
superior solutions. A random selection of Xr1 and Xr2 from the population is used to adjust
the amount of greed.

During the crossover process, two main types are used: exponential and binomial
crossover. Crossover involves supplying components from the donor vector Vi,g to the
target vector Xi,g, generating a new trial vector Ui,g. This crossover mechanism maintains
population diversity, providing opportunities for subsequent evolutionary steps. Here,
the focus is on the second type, binomial crossover.

Symmetry 2025, 17, 153 12 of 45

Binomial Crossover (BX): a random number is created in [0, 1], and components from
the donor vector Vi,g are supplied if it is less than or equal to CR; if not, the target vector
Xi,g stays unaltered. The way it is applied is seen in Equation (38):

Uj,i,G =

Vj,i,G, if (randi,j[0, 1] ≤ Cr or j = jrand)

Xj,i,G, otherwise
(38)

q-best Crossover Binomial (qBX): This is a greedy version of the DE/current-to-pbest/1
mutation strategy, based on binomial crossover. In qBX, solutions chosen at random from
the top q% of the combined population P ∪ A are used to replace the target vector in
Equation (38). The calculation of q’s value follows the Formula (36). Equation (39) illustrates
how these crossover techniques are instantiated probabilistically depending on parameters:if (randi[0, 1] ≤ pqBX), Perform qBX

otherwise Perform BX
(39)

The greediness degree is controlled via parameters in this probabilistic crossover
approach. When pqBX = 0, it behaves entirely as binomial crossover, whereas when
pqBX = 1, it performs q-best binomial crossover (qBX). Generally, pqBX ∈ [0, 0.5].

2.6. IDE-EDA

LSHADE-RSP [32] is a new version of JADE that introduces RSP (Ranking-based
Selection Probability) to adjust Fi and CRi. The mutation strategy based on RSP, DE/current-
to-pbest-w/r, is as follows:

Vi = xi + Fwi · (xpbest − xi) + Fi · (xpr1 − xpr2) (40)

Pri = Ranki/(Ranki + Rank2 + ... + RankNP) (41)

Ranki = k · (NP − i) + 1 (42)

In this case, xpr1 denotes a vector picked from population P using a rank-based
probability and xpr2 can be a vector randomly selected from archive A or selected from P
using a rank-based probability. With respect to each person i, the selection probability Pri

is as follows:
Where Ranki represents the rank of individual i, with higher ranks corresponding to

higher probabilities, and NP is the population size. k is a factor that controls the greediness
of rank-based selection. Here, Pri represents the selection probability for the i-th individ-
ual, and Ranki is the rank of this individual. The ranks Rank1, Rank2, Rank3, . . . , RankNP

correspond to the ranks of all other individuals in the population, with NP being the total
number of individuals. The selection rule calculates Pri as the ratio of the individual’s
rank to the sum of the ranks of all individuals in the population. Typically, lower ranks
represent better individuals (e.g., better solutions in an optimization context), so this rule
ensures that individuals with lower ranks have a higher probability of being selected,
which is commonly used in evolutionary algorithms for reproduction or further operations.
Formulas are shown in Equations (40)–(42).

In Equation (43), S denotes SCR or SF. For each generation, only the k-th cell of MCR
and MF is updated. k starts from 1 and increments each generation. Once k exceeds a
predefined memory size H, it resets to 1. Initial values for all cells in MF and MCR are
set to 0.3. Additionally, throughout evolution, historical memory entries MCRH and MFH

are fixed at 0.9. This formula computes the weighted mean of the set S. In this calculation,

Symmetry 2025, 17, 153 13 of 45

each element Sn is weighted according to ωn. The numerator represents the sum of the
squared values of Sn weighted by ωn, while the denominator is the weighted sum of Sn

itself. The resulting value is a weighted mean, which is typically used to aggregate data
based on the importance or priority assigned to each element.

Formula (44) defines the weight ωn for each element n. The weight is computed as
the absolute difference between the fitness values f (un) and f (xn). These fitness values
correspond to two different vectors un and xn, which may represent different solutions or
individuals in an optimization problem. The weight is normalized by dividing the absolute
difference by the total sum of such differences across all elements, ensuring that the total
sum of weights equals 1.

Formula (45) defines the update rule for MF,k. If the set SF is empty (SF = ∅), then
MF,k remains unchanged. Otherwise, MF,k is updated by taking the average of its current
value and the weighted mean of SF, which is computed using the function meanWL(SF).
This rule ensures that MF,k is adjusted iteratively based on the current state of the set SF.

Formula (46) defines the update rule for MCR,k. If MCR,k is in an invalid state
(MCR,k =⊥) or the maximum value in the set SCR is zero (max(SCR) = 0), then MCR,k is
set to zero. Otherwise, MCR,k is updated by averaging its current value with the weighted
mean of the set SCR, computed as meanWL(SCR). This rule ensures that MCR,k is either
reset to zero or updated based on the state of SCR.

Here, a vector taken from population P using a rank-based probability is indicated
by xpr1, and a vector randomly selected from archive A or from P using a rank-based
probability can be indicated by xpr2. For every person i, the selection probability Pri is
as follows:

meanWL(S) =
∑
|S|
n=1 ωn · S2

n

∑
|S|
n=1 ωn · Sn

(43)

ωn =
| f (un)− f (xn)|

∑
|S|
n=1 | f (un)− f (xn)|

(44)

MF,k =

MF,k, SF = ∅
(meanWL(SF)+MF,k)

2 , otherwise
(45)

MCR,k =

0, MCR,k =⊥ or max(SCR) = 0
(meanWL(SCR)+MCR,k)

2 , otherwise
(46)

Fi = randc(MF,Ri , 0.1) (47)

Cri = randn(MCR,Ri , 0.1) (48)

The Fi and CRi generated in Equations (47) and (48) are adjusted according to Equa-
tions (49) and (50) during the evolutionary process:

Fi =


Apply Equation(45), Fi ≤ 0

min(Fi, 0.7), FEs < 0.6 · FEsmax and Fi > 0

min(Fi, 1), 0.6 · FEsmax ≤ FEs and Fi > 0

(49)

Cri =


0, Cri < 0

max(Cri, 0.7), FEs < 0.25 · FEsmax and Cri > 0

max(Cri, 0.6), 0.25 · FEsmax ≤ FEs < 0.5 · FEsmax and Cri > 0

min(Cri, 1), 0.5 · FEsmax ≤ FEs and Cri > 0

(50)

Symmetry 2025, 17, 153 14 of 45

Lastly, the LSHADE-RSP parameter values are as follows: All values in MF are
initialized to 0.3, k in Equation (42) is set to 3, and pmax in Equation (51) is set to 0.17.

P = Pmin + (Pmax − Pmin) ·
FES

FESmax
(51)

Two phases are established in the IDE-EDA framework, which is based on the traits of
LSHADE-RSP and EDA [33,36–38] (EDA algorithm steps are introduced in Section 3): First,
executing the standard LSHADE-RSP algorithm; second, selecting dominant populations
from the population to establish an EDA probability distribution model and using the EDA
algorithm to generate new solution individuals. The new solution individuals are ranked
with the originally generated solution individuals, and the corresponding population
size (NP) of solutions from LSHADE-RSP is selected to form a new population. This
approach leverages the strong exploitative nature represented by the rank-based mutation
selection strategy of LSHADE-RSP, while also fully utilizing the strong exploratory nature
of EDA during evolution. By combining these two approaches, deficiencies in orthogonal
improvement directions and evolution directions of EDA are mitigated, and EDA helps
alleviate the potential loss of diversity in LSHADE-RSP leading to local optima. The
interaction between the populations of the two algorithms is the key source of uniqueness
in this cooperative evolution system. A greedy approach is employed in maintaining
the outside archive A during the evolution process, shrinking it in size as the population
NP declines.

2.7. APSM-jSO

The performance of the jSO method is greatly influenced by the crossover factor CR
and scaling factor F [30]. The selection of MCR and MF in jSO follows the approach
from SHADE, which limits the frequent application of excellent entries during evolution.
To address this, an improvement mechanism called APSM (Adaptive Probability Selection
Mechanism) is proposed [31].

In APSM, probabilities of entries in MCR and MF are updated based on historical
utility information from the previous generation. The specific formulas are given by
Equations (52) and (53):

PRh =
SRh

∑H
h=1 SRh

, h = 1, 2, . . . , H (52)

SRh =
SNh
Nh

, h = 1, 2, . . . , H (53)

The value of Nh represents the number of times the h-th entry in MCR (or MF) is called
upon to construct Fi and CRi. The quantity of successful uses of the h-th item is shown by
SNh, indicating that ui created using them is superior to xi. Additionally, the maximum
SR is the success rate SRh of recently modified items in MCR and MF. In the event that
every trial participant underperforms their corresponding target participant, all probability
of entries in MCR and MF are reset to 1/H. It is worth noting that only entries from 1 to
H − 1 in MF and MCR are updated in the evolutionary procedure outlined in this study.

Moreover, the method uses the First-In-First-Out (FIFO) approach. In the original jSO
framework, the size of the outside archive |A| is set to NP × Arate. As the population size
NP decreases during evolution, Arate remains constant, causing the outside archive size
|A| to also decrease. Therefore, in the original jSO framework, some individuals need to
be discarded from the archive to store new individuals. Because the maintenance of the
external archive in the original jSO framework uses a random selection mechanism, newly
entered individuals are combined with existing individuals, and then a subset of size |A| is

Symmetry 2025, 17, 153 15 of 45

randomly selected as the archive. Because of this, certain individuals in the outside archive
might not be deleted for a number of generations, which would lead to the overuse of some
materials. Hence, APSM-jSO introduces a FIFO strategy where newly entered individuals
replace the oldest individuals.

Finally, applying the RSP (Ranking-based Selection Probability) method from
LSHADE-RSP improves the APSM-jSO algorithm’s exploitation potential. However, unlike
the original algorithm, this mechanism is used only for the selection of xpr1. Here, xr2 is an
individual chosen at random from the set of A and P; it is not the same as Xi, Xpbest, or Xpr1.
On one hand, the advantage of randomly selecting from A and P allows the external
archive to fully leverage its strengths, particularly in the later stages of evolution, thereby
effectively improving the variety of the population. On the other hand, under the selection
pressure of the RSP ranking, xpr1 is more likely superior to xr2, promoting evolution in a
more favorable direction. The strategy is represented as follows:

Vi = xi + Fwi · (xpbest − xi) + Fi · (xpr1 − xr2) (54)

where Fwi ranges as described in Equation (55):

Fwi =


0.7 · Fi, FEs < 0.2 · FEsmax

0.8 · Fi, 0.2 · FEsmax ≤ FEs < 0.4 · FEsmax

1.2 · Fi, FEs ≥ 0.4 · FEsmax

(55)

3. The Proposed NLAPSMjSO-EDA Algorithm
In recent years, significant research efforts have focused on adaptive control param-

eter settings and mutation strategy modifications for DE algorithms. The jSO method
was proposed by Brest in 2017 and performed well in the IEEE CEC 2017 competition [2].
Still, jSO’s adaptive mechanism has not reached its full optimization potential. The in-
troduction of APSM-jSO represents a significant improvement to the jSO algorithm [31],
incorporating straightforward yet effective modifications in scale factor selection, crossover
strategy, and external archive updating mechanisms, thereby substantially enhancing the
algorithm’s performance.

However, the adoption of a linear population reduction strategy significantly limits
the overall evolutionary iterations of the population. As a variant of jSO, APSM-jSO inher-
its the Linear Population Size Reduction (LPSR) scheme from L-SHADE. This approach
adjusts the population size linearly across generations. However, such a reduction strategy
can lead to an inefficient utilization of computational resources. Maintaining a relatively
larger population size in later generations, where exploitation is prioritized, increases the
likelihood of resource waste, as fewer meaningful improvements are typically found in
this phase. To address this, incorporating a nonlinear population size reduction mech-
anism might balance exploration and exploitation more effectively, ensuring resources
are allocated to areas with higher optimization potential. This results in a higher number
of inferior individuals remaining, and since the total number of iterations is fixed, these
inferior individuals will also consume iteration counts for their evolution. Therefore, we
need to allocate more iterations to the elite population to foster the emergence of superior
individuals. The nonlinear population reduction strategy can achieve this [39]. Addi-
tionally, we believe that under limited computational resources, moderately integrating
EDA algorithms could enhance the performance of the algorithm in high-dimensional
spaces [40,41].

Therefore, we have introduced an EDA (Estimation of Distribution Algorithm) to
sample and generate individuals from the elite population, aiming to produce higher-

Symmetry 2025, 17, 153 16 of 45

quality individuals to lead the iterative evolution of the population. Considering the
diversity of the algorithm, we increased the number of individuals in the initial population
in subsequent experiments to ensure the diversity of the early population, while the total
number of iterations remained unchanged.

In order to address these problems, this work uses the most recent iteration of jSO,
APSM-jSO, and suggests two key enhancements:

1. Non-linear population size reduction (NL): NLPSR was first introduced by AGSK
in [42] and subsequently employed in [34]. This method suggests using smaller population
sizes per generation under fixed maximum FEs, allowing the algorithm more generations
to potentially converge to the optimal value. Therefore, employing a non-linear population
reduction method enhances the algorithm’s capability to explore and exploit, thereby
improving both local and global search abilities. The formulas for linear and non-linear
population size reduction are shown in Equations (56) and (57), respectively:

NPL,G+1 = round
(

FES
FESmax

· (NPmin − NPinit) + NPinit

)
(56)

NPNL,G+1 = round

((
FES

FESmax

)1− FES
FESmax

· (NPmin − NPinit) + NPinit

)
(57)

A comparison between linear and non-linear decreases in population size is illustrated
in Figure 1, showing that non-linear reduction allows more generations for evolution under
a fixed total number of iterations.

Figure 1. Comparing approaches for reducing population numbers that are linear and non-linear.

Figure 2 illustrates the changes in the ellipsoidal probability density function (PDF)
in EDA.

2. Generating advantageous individuals through Gaussian model sampling (EDA).
The following are the standard EDA steps:

Step 1: Create M people at random to serve as the starting population.

Symmetry 2025, 17, 153 17 of 45

Step 2: Determine each person’s level of fitness for the g-th generation population and
review the terms of termination (g represents the generation, initially g = 0). After each
iteration update of the entire population, g is incremented by 1, i.e., g = g + 1. If satisfied,
break out of the loop; otherwise, carry on.

Step 3: Create the advantageous subpopulation of the (g + 1)-th generation by choosing
the top N (N ≤ M) beneficial individuals based on fitness values from the population.

Step 4: Using the favorable subpopulation as a basis, update the probability model.
Step 5: Create a new population (size M) by randomly selecting samples from the

probability model, then go back to Step 2.

Figure 2. Changes in ellipsoidal probability density function (PDF) in EDA.

The Gaussian model is the most often used model in continuous EDA algorithms [43].
Equation (58) expresses the joint Gaussian density function of D-dimensional random
variable X with mean u and covariance matrix C, with the mean and covariance matrix
displayed in Equations (59) and (60), respectively:

G(x)(µ,C) =

√
1

(2π)D det(C)
exp

(
−1

2
(x − µ)TC−1(x − µ)

)
(58)

µ =
1

|Pd|

|Pd |

∑
i=1

xi, xi ∈ Pd (59)

C =
1

|Pd|

|Pd |

∑
i=1

(xi − µ)(xi − µ)T , xi ∈ Pd (60)

where |Pd| denotes the cardinality of Pd, the set containing advantageous individuals.
As seen in Figure 2, the calculated Gaussian probability model is represented in

hyperspace by the PDF’s ellipsoid. The mean µ, or the search center of EDA, is represented
by the center of the ellipsoid in Figure 2, and the axis directions and lengths of the ellipsoid,
which indicate the search direction and range of EDA, are determined by the covariance
matrix C.

xi = µ + gi, g ∼ N(0, C) (61)

Symmetry 2025, 17, 153 18 of 45

The advantageous population’s estimated Gaussian distribution model is utilized to
create a new population using Equation (61). If the vector xiexceeds the search boundary, it
is modified using the Formula (62).

xj
i = xj

min + rand · (xj
max − xj

min), if xj
i < xj

min or xj
i > xj

max (62)

In EDA, the first parameter to consider is NPEDA, i.e., the number of advantageous indi-
viduals to sample and compute mean and covariance from the population NP generated by
APSM-jSO. Considering that APSM-jSO uses a linear population reduction method (LRSP),
even with our enhancement using non-linear population reduction (NLRSP), the magni-
tude of the population will eventually be down to a minimal amount, leading to insuffi-
cient sampling data and reduced diversity. Therefore, we use the following condition in
Equation (63) to select NPEDA advantageous individuals for sampling. The EDA algorithm
selects half of the individuals with high fitness as beneficial when the population size is
larger than or equal to 2 × D. When the population size is less than 2 × D, all individuals
are selected as advantageous individuals for the EDA algorithm.

NPEDA =

{
0.5 · NP, if NP ⩾ 2 · D
NP, if NP < 2 · D

(63)

Moreover, NPnew, the amount of fresh individuals to be created based on the Gaussian
model for selection, is a further variable to take into account. Here, we refer to the parameter
τ in the IED-EDA [30] algorithm, with the calculation of NPnew as shown in Equation (64).
The calculation formula for P is shown in Equation (51).

NPnew = τ · P · NP (64)

The NLAPSMjSO-EDA algorithm’s outline is shown in Figure 3, and Algorithm 1
presents its pseudocode.

Figure 3. NLAPSMjSO-EDA program sketch.

Symmetry 2025, 17, 153 19 of 45

Algorithm 1 NLAPSMjSO-EDA algorithm

Input: f (x), FESmax and solution space
Output: Best solution and objective value to f (x)

1: NP = NPinit, NPinit = 150 · D2/3, NPmin = 4, FEs = 0, H = 6, Pmax = 0.17,
Pmin = 0.085, A = ∅, nA = 0, Arate = 1.3, MCR = 0.8, MF = 0.3, PR = 1/H,
MF,H = 0.9, MCR,H = 0.9, τ = 0.9

2: Initialize population P by using (1).
3: Evaluate P to determine their fitness value by using f (x).
4: FEs = FEs + NP
5: while FEs < FESmax do
6: Generating p as per (51).
7: Generating Pr as per (41).
8: SCR = ∅, SF = ∅.
9: for each i = 1 in NP do

10: Generating Fi as per (47) and (49).
11: Generating FWi as per (55).
12: Generating cri as per (48) and (50).
13: Generating mutant vectorvi as per (54).
14: Checking bound-constraintsvi as per (7).
15: GeneratingUi as per (8).
16: EvaluatingUiand Xi as per (9).
17: FEs = FEs + 1
18: end for
19: for each i = 1 in NP do
20: if f (ui) < f (xi) then
21: Using FIFO strategy and update external archive A
22: nA = nA + 1.
23: xi = ui.
24: f (xi) = f (ui).
25: SCR = Cri ∪ SCR.
26: SF = Fi ∪ SF.
27: end if
28: end for
29: From population P with population size NP, the dominant population Pd with

population size NPEDA is selected to be run by EDA algorithm
30: Estimate G(x)(µ.c) by using (59) and (60).
31: Generating vector PE as per (61) X with quantity NPnew as per (64).
32: Checking bound-constraints by using (62).
33: EvaluatingPE fitness value by using f (PE).
34: FEs = FEs + NPnew
35: P = P ∪ PE
36: f (P) = f (P) ∪ f (PE)
37: Generating PR as per (52).
38: Updating memory MF and MCRas per (45) and46.
39: Calculating NP according to (57).
40: Shrinking P by discarding the worst solutions.
41: Shrinking A using the FIFO strategy if necessary.
42: end while

4. Numerical Trials Utilizing the CEC 2017 Test Suite
In this work, the efficiency of NLAPSMjSO-EDA in 10, 30, 50, and 100 dimensions is

examined using the IEEE CEC 2017 test suite [44]. As per the requirements provided by
the IEEE CEC 2017 test suite [44], FEsmax is set to 10, 000 · D, and the search boundaries for
all benchmark functions are [−100, 100]. Thus, for D = 10, 30, 50, and 100, respectively,
FEsmax is set to 100,000, 300,000, 500,000, and 1,000,000.

Unless otherwise noted, the findings of every numerical experiment are derived from
51 separate runs. In [44], a thorough explanation of the IEEE CEC 2017 test suite is provided.

Symmetry 2025, 17, 153 20 of 45

On a PC with an AMD Ryzen 7 5700X 8-Core Processor @ 3.60 GHz and 32GB RAM, all
tests are carried out in the MATLAB R2020b environment.

The findings document the error fitness value, which is defined as f (xBest)− f (x∗),
where f (x) is the objective function, between xBest and x∗. x∗ and xBest, respectively,
represent the global optimal solution and the best solution discovered by the issue’s
approach. For comparative analysis, non-parametric tests like the Friedman and Wilcoxon
signed-rank tests are used. The Wilcoxon signed-rank test [45] evaluates the statistical
significance between two algorithms for each benchmark function based on 51 separate runs,
and the Friedman and Nemenyi tests [45] are used to examine the size of the differences.

The Wilcoxon test [45] is a non-parametric statistical test used to compare the per-
formance of two groups, particularly when the data do not follow a normal distribution.
In this study, the Wilcoxon rank-sum test is applied to compare NLAPSMjSO-EDA with
each of the six algorithms across multiple test functions. The test determines whether
there is a statistically significant difference in performance, with small p-values (e.g., <0.05)
indicating significant differences, while larger p-values suggest no significant difference.

The Friedman test, another non-parametric method, is designed to evaluate the per-
formance of more than two algorithms across multiple datasets or functions. It provides
an overall comparison of the rankings of all algorithms, including NLAPSMjSO-EDA and
its six competitors, on the CEC2017 benchmark functions. If significant differences are
detected, post-hoc tests like Holm or Nemenyi can be used to identify specific differences
among the algorithms.

The Nemenyi test [45] is a post-hoc statistical method used following a significant
Friedman test result to identify specific pairs of algorithms with significant differences in
performance rankings. It works by comparing the average ranks of algorithms across mul-
tiple datasets or functions, determining significance based on whether the rank differences
exceed a critical value derived from the number of algorithms and datasets. In optimiza-
tion studies, the Nemenyi test is particularly useful for pinpointing which algorithms
outperform others after an overall difference has been detected.

Together, these tests offer a comprehensive analysis of the experimental results.
The Wilcoxon test highlights pairwise differences between NLAPSMjSO-EDA and other
algorithms, while the Friedman test assesses overall performance differences among all
competitors. Following a significant Friedman test result, the Nemenyi test provides fur-
ther insights by identifying which specific pairs of algorithms differ significantly in their
performance rankings. This combination of tests ensures a robust and detailed statistical
evaluation of the algorithms’ effectiveness across multiple benchmark functions.

4.1. Parameter Tuning

Parameter choices have a substantial impact on the efficiency of evolutionary algo-
rithms [46]. Algorithm research usually gives reference values for the parameters that
are involved, which the authors have adjusted. Because NLAPSMjSO-EDA introduces
the NL nonlinear population reduction method, the algorithm’s performance may be
impacted by the starting population size NPinit (the choice of 2/3 as the exponent for
D follows the initial population selection strategy used in APSM-jSO and IDE-EDA).
Therefore, we set the parameters as follows, except for NPinit: NPmin = 4, k = 3,
pmax = 0.17, and pmin = 0.085. Four initial values for NPinit are tested: NPinit = 75 · D2/3,
NPinit = 100 · D2/3, NPinit = 125 · D2/3, and NPinit = 150 · D2/3. The performance in 10,
30, 50, and 100 dimensions is compared and analyzed through 51 experiments using the
Friedman test.

Parameter tuning was carried out using all functions in the CEC 2017 test suite in
order to establish a suitable initial population size. Finding a parameter setting with a

Symmetry 2025, 17, 153 21 of 45

comparatively high average ranking was the aim. Take note that this section’s experimental
results are based on 51 separate runs. Table 3 presents the results of the statistical analysis
employing a Friedman test at a level of significance of α = 0.05. Figure 4 shows the rankings
of NLAPSMjSO-EDA according to the Friedman test for all dimensions.

Table 3. Friedman test rankings for four parameter settings (α = 0.05).

NPinit 10D 30D 50D 100D Mean Mean Rank

NPinit = 75 · D2/3 2.8966 3.0862 2.9828 3.1034 3.0172 4
NPinit = 100 · D2/3 2.2931 2.2759 2.2414 2.4138 2.3060 2
NPinit = 125 · D2/3 2.3793 2.2069 2.4655 2.5172 2.3922 3
NPinit = 150 · D2/3 2.4310 2.4310 2.3103 1.9655 2.2845 1

The chi-square for 100D is 11.94, and the p-value is 0.0076; The p-value for 50D is 0.087 and the chi-square is
6.57; the chi-square for 30D is 10.23, and the p-value is 0.0167; the p-value for 10D is 0.1513 and the chi-square is
5.3. Bold values indicate the minimum values in the Friedman ranking.This rule will be followed in subsequent
Friedman rankings.

Figure 4. Friedman rankings for four parameter settings.

As shown in the figure, NLAPSMjSO-EDA with NPinit = 100 · D2/3 achieves the best
rankings in 10D and 50D. The setting NPinit = 125 · D2/3 performs best in 30D, while
NPinit = 150 · D2/3 shows significant improvement in 100D. Regardless, all configurations
outperform NPinit = 75 · D2/3 across various dimensions. Therefore, we select the parame-
ter NPinit = 150D2/3, which has the highest overall ranking, to maximize the performance
of NLAPSMjSO-EDA and use it in subsequent experiments.

4.2. Analysis of Strategy Effectiveness

Two changes are recommended by this research to improve APSM-jSO efficiency.
Four distinct versions of the algorithm were developed in order to examine the effects
of NL and EDA on the efficiency of APSM-jSO. All four strategies start with an initial
population size NPinit = 150 · D2/3, with other parameters kept identical. NL denotes the
use of a nonlinear decreasing strategy, while EDA integrates an EDA algorithm. As shown
in Table 4.

We conducted tests on four algorithm variants with different strategies using the
CEC2017 benchmark functions. The Friedman ranking was obtained to evaluate the impact

Symmetry 2025, 17, 153 22 of 45

of each strategy on the original algorithms and to demonstrate the effectiveness of the
proposed strategies in improving performance.

Table 4. Comparison table of four strategies.

Strategy NLAPSMjSO-EDA NLAPSM-jSO APSMjSO-EDA APSM-jSO

NL Yes Yes NO NO
EDA Yes NO Yes NO

To offer a comprehensive examination of the impacts of NL and EDA on APSM-
jSO, Table 5 summarizes the Friedman test rankings of NLAPSMjSO-EDA, APSMjSO-
EDA, NLAPSM-jSO, and APSM-jSO. “Mean” denotes the average rank across dimensions,
whereas “Mean Rank” displays the “Mean” in order of sorting. All p-values across di-
mensions are smaller than α, as Table 5 illustrates, suggesting that NLAPSMjSO-EDA,
APSMjSO-EDA, NLAPSM-jSO, and APSM-jSO perform significantly differently from one
another. We show the ranks in Figure 5 to provide a visual representation of them. Based
on Table 5 and Figure 5, the following discussions are conducted:

(a) By comparing APSM-jSO with NLAPSM-jSO, we examine the effect of NL’s nonlin-
ear population reduction on APSM-jSO performance. NLAPSM-jSO outperforms APSM-
jSO in 30D, 50D, and 100D but performs worse in 10D. Thus, NL can enhance APSM-jSO
performance in 30D, 50D, and 100D but may degrade it in 10D.

(b) Comparing APSM-jSO with APSMjSO-EDA allows us to study the impact of
integrating EDA on APSM-jSO performance. APSMjSO-EDA performs worse than APSM-
jSO across all dimensions (10D, 30D, 50D, 100D), suggesting that EDA does not improve
APSM-jSO performance in these dimensions.

(c) Comparing APSM-jSO with NLAPSMjSO-EDA examines the combined impact
of NL and EDA on APSM-jSO performance. NLAPSMjSO-EDA outperforms APSM-jSO
in 30D, 50D, and 100D but slightly underperforms in 10D. Thus, by employing NL’s
nonlinear population reduction and integrating EDA, APSM-jSO performance can be
further improved across various dimensions.

Figure 5. Friedman ranks of four strategies.

Symmetry 2025, 17, 153 23 of 45

Table 5. Friedman ranks of four strategies.

Algorithm 10D 30D 50D 100D Mean Mean Rank

NLAPSMjSO-EDA 2.1724 1.7414 1.6897 2.0517 1.9138 1
APSMjSO-EDA 3.5172 3.4828 3.6897 3.7241 3.6034 4
NLAPSM-jSO 2.2069 2.1207 2.1207 1.9138 2.0905 2
APSM-jSO 2.1034 2.6552 2.500 2.3103 2.3922 3

Chi-square value for 100D is 36.81, with p-value of 5.04 × 10−8; Chi-square value for 50D is 42.19, with p-value of
3.65 × 10−9; Chi-square value for 30D is 35.35, with p-value of 1.02 × 10−7; Chi-square value for 10D is 30.93,
with p-value of 8.79 × 10−7.

The “Mean Rank” is a tool used to assess improvement methods’ overall impact
on APSM-jSO performance. First place goes to NLAPSMjSO-EDA, then NLAPSM-jSO,
APSM-jSO, and APSMjSO-EDA. APSM-jSO and its two versions are outperformed by
NLAPSMjSO-EDA, indicating the efficacy of our suggested enhancements and markedly
improving APSM-jSO optimization performance. NLAPSMjSO-EDA emerges as a promis-
ing variant of APSM-jSO.

To better illustrate the contributions of each strategy to improving the original al-
gorithm (APSM-jSO), the impact is quantified based on the differences in Mean Rank.
The Mean Rank of APSM-jSO (2.3922) is used as the baseline. For each strategy, the con-
tribution value is calculated as the difference between the baseline Mean Rank and the
strategy’s Mean Rank:

Contribution Value = Baseline Mean Rank − Algorithm Mean Rank.

Positive values indicate improvement, while negative values indicate degradation.
To express the contributions as percentages, the contribution values are normalized by
dividing each value by the total absolute sum of all contribution values:

Contribution Percentage =
Contribution Value

∑ |Contribution Values| × 100%.

This provides a clear and comparable metric for assessing the relative impact of
each strategy.

Based on the contributions analysis shown in Table 6, the following conclusions can
be drawn:

• NLAPSMjSO-EDA demonstrates the most significant positive contribution, with a
Contribution Value of 0.4784 and a Contribution Percentage of 24.04%. This indicates
that integrating both nonlinear adjustment and EDA mechanisms effectively improves
the baseline algorithm (APSM-jSO).

• APSMjSO-EDA shows a negative Contribution Value of −1.2112, resulting in a Contri-
bution Percentage of −60.86%. This suggests that the exclusive application of EDA
degrades the performance compared to the baseline, potentially due to imbalanced
parameter exploration and exploitation.

• NLAPSM-jSO achieves a moderate positive Contribution Value of 0.3017 and a Con-
tribution Percentage of 15.15%, indicating that the nonlinear adjustment alone has a
beneficial impact on algorithm performance.

• APSM-jSO serves as the baseline algorithm with a Contribution Value of 0, thus having
no direct improvement or degradation to compare.

In summary, the combination of nonlinear adjustment and EDA mechanisms in
NLAPSMjSO-EDA leads to the most substantial enhancement over the baseline. However,

Symmetry 2025, 17, 153 24 of 45

the negative contribution of APSMjSO-EDA highlights the need for careful design and
tuning of EDA strategies to avoid performance degradation.

Table 6. Contribution analysis of each algorithm compared to the baseline APSM-jSO.

Algorithm Mean
Rank Contribution Value Contribution (%)

NLAPSMjSO-EDA 1.9138 2.3922 − 1.9138 = 0.4784 0.4784
1.9908 × 100% = 24.04%

APSMjSO-EDA 3.6034 2.3922 − 3.6034 = −1.2112 −1.2112
1.9908 × 100% = −60.86%

NLAPSM-jSO 2.0905 2.3922 − 2.0905 = 0.3017 0.3017
1.9908 × 100% = 15.15%

APSM-jSO 2.3922 2.3922 − 2.3922 = 0 0%

Additionally, we measure the average population diversity (APD) of NLAPSMjSO-
EDA and APSM-jSO. Population diversity is evaluated based on the average population
diversity (APD) [47], as shown in Equation (65):

DI =

√√√√ 1
NP

NP

∑
i=1

D

∑
j=1

(
xij − xj

)2, xj =
1

NP

NP

∑
i=1

xij (65)

where xj denotes the mean position of dimension j across the population, and xij denotes
the value of variable j for individual i in the population.

Found in Figures 6–11, the average population diversity (APD) is derived from 51 sep-
arate runs. In comparison with algorithms utilizing Estimation of Distribution Algorithms
(EDA), the results indicated by the red lines demonstrate a faster decline in diversity com-
pared to the green lines. Similarly, the blue lines exhibit a quicker decrease in diversity
than the black lines. This observation confirms that the EDA strategy exhibits a stronger
tendency to explore regions near local optima, effectively enhancing local search capabili-
ties. Furthermore, fluctuations in diversity were noted when comparing functions F1, F3,
F10, F21, and F23; however, the implementation of the EDA strategy accelerated these
fluctuations. Notably, in function F30, the use of the EDA strategy enabled the identification
of a better local optimum, resulting in observable disturbances in diversity. These findings
validate the efficacy of the EDA strategy in augmenting local search capabilities. In contrast,
the NL strategy offers greater opportunities for local exploration.

Figure 6. Diversity Comparison of Four Strategies for Function F1 (50D).

Symmetry 2025, 17, 153 25 of 45

Figure 7. Diversity Comparison of Four Strategies for Function F4 (50D).

Figure 8. Diversity Comparison of Four Strategies for Function F10 (50D).

Figure 9. Diversity Comparison of Four Strategies for Function F21 (50D).

Symmetry 2025, 17, 153 26 of 45

Figure 10. Diversity Comparison of Four Strategies for Function F23 (50D).

Figure 11. Diversity Comparison of Four Strategies for Function F30 (50D).

4.3. Compared with Other Advanced DE Algorithms

The CEC 2017 test suite will be used to assess NLAPSMjSO-EDA’s performance in
comparison to the most advanced LSHADE or jSO variants, such as LSHADE [27], IDE-
EDA [30] (the most recent variant combining LSHADE-RSP and EDA), MadDE [29] (the
IEEE CEC 2021 competition winner), APSM-jSO [31] (the most recent variant combining
LSHADE-RSP and jSO), EBOwithCMAR [28] (the IEEE CEC 2017 competition champion),
and LSHADE-Epsin [26] (third place). To ensure a fair comparison and eliminate any
disagreements, the competitors’ parameter settings are based on the recommended values
from the original literature, as shown in Table 7.

Symmetry 2025, 17, 153 27 of 45

Table 7. Parameter settings of each algorithm.

Algorithm Parameter Setting

NLAPSMjSO-EDA NPinit = 150 · D2/3, H = 6, Pmax = 0.17, Pmin = 0.085, Arate = 1.3, MCR = 0.8, MF = 0.3,
PR = 1/H, MF,H = 0.9, MCR,H = 0.9, τ = 0.9

APSM-jSO [31] NPinit = 75 · D2/3, k = 3, H = 6, rrac = 1.0, Pmax = 0.17, Pmin = 0.085, τ = 0.9 ,|A| = 1.3 · NP

IDE-EDA [30] NPinit = 75 · D2/3, k = 3, H = 5, rrac = 1.0, , τ = 0.9

LSHADE-Epsin [26] NPmax = 18 · D, NPmin = 4, |A| = 1.4 · NP, H = 5, LP = 20, f req = 0.5, and Gls = 250

MadDE [29] NPinit = 2 · D2, pqBX = 0.01, p = 0.18, Arate = 2.30, NPm = 2, Hm = 10, F0 = 0.20, and
Cr0 = 0.20.

LSHADE [27] NPmax = 18 · D, NPmin = 4, |A| = 1.4 · NP; H = 6, and p = 0.11

EBOwithCMAR [28] PS1max = 18 · D, PS1min = 4, σ = 0.3, H = 6, PS3 = round(4 + 3 · log(D)), CS = 100, 200, and
300 for the 10D, 30D, and 50D, respectively. prob1s = 0.1 and c f els = 0.25 · FEsmax as in

4.3.1. Examination of the Wilcoxon Signed-Rank Test Outcomes

The NLAPSMjSO-EDA is evaluated using the CEC 2017 test suite. The results are
shown using the Mean (Std.Dev) format. In this case, the labels “Mean” and “Std.Dev”
refer to the average and standard deviation of the results.

Tables 8–12 summarize the Wilcoxon signed-rank test findings (α = 0.05) for the
51 unique results generated by NLAPSMjSO-EDA, EBOwithCMAR, IDE-EDA, MadDE,
APSM-jSO, LSHADE, and LSHADE-Epsin. The characters “+”, “−”, and “=” in Tables 8–11
denote statistically better, poorer, and similar performance of the competitor in relation to
NLAPSMjSO-EDA, respectively. Table 13 displays the results of the Wilcoxon rank-sum
test, with p < (a = 0.05) denoting a substantial improvement. If not, the improvement
is negligible.

Table 8. Comparison Results of NLAPSMjSO-EDA and Six Algorithms on 29 Functions in CEC2017
(Dim = 10).

APSM-jSO NLAPSMjSO-
EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F1 0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)

F3 0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)

F4 0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)

F5 1.4597 × 10◦

(7.7508 × 10−1)
9.7587 × 10−1

(6.1302 × 10−1)
9.7593 × 10−1

(7.8322 × 10−1)
1.9147 × 10◦

(8.6266 × 10−1)
3.8125 × 10◦

(1.0521 × 10◦)
2.5183 × 10◦

(8.5222 × 10−1)
0.0000 × 10◦

(0.0000 × 10◦)

F6 0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
1.9509 × 10−2

(1.3932 × 10−1)

F7 1.1551 × 101

(5.2623 × 10−1)
1.1493 × 101

(4.2897 × 10−1)
1.1612 × 101

(5.4942 × 10−1)
1.1949 × 101

(5.7307 × 10−1)
1.4419 × 101

(1.2423 × 10◦)
1.2196 × 101

(8.1454 × 10−1)
0.0000 × 10◦

(0.0000 × 10◦)

F8 1.5095 × 10◦

(6.4280 × 10−1)
1.2683 × 10◦

(7.4656 × 10−1)
1.1511 × 10◦

(7.5442 × 10−1)
1.8566 × 10◦

(7.6864 × 10−1)
5.0000 × 10◦

(1.3408 × 10◦)
2.4401 × 10◦

(3.9810 × 10◦)
1.0589 × 101

(2.0689 × 10−1)

F9 0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)

F10 1.0693 × 101

(2.4166 × 102)
1.6257 × 101

(4.0494 × 102)
1.1320 × 101

(2.3851 × 102)
3.8013 × 101

(5.2839 × 102)
1.0404 × 102

(6.7286 × 102)
2.0402 × 101

(3.3657 × 102)
0.0000 × 10◦

(0.0000 × 10◦)

F11 6.3820 × 10−3

(3.1235 × 10−2)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
1.4227 × 10◦

(6.6210 × 10−1)
2.7433 × 10−1

(5.5885 × 10−1)
3.9587 × 101

(5.5759 × 102)

Symmetry 2025, 17, 153 28 of 45

Table 8. Cont.

APSM-jSO NLAPSMjSO-
EDA IDE-EDA LSHADE-

Epsin MadDE LSHADE EBOwithCMAR

F12 7.3944 × 10◦

(2.8401 × 101)
2.7141 × 10◦

(1.6589 × 101)
2.7355 × 10◦

(1.6742 × 101)
1.1495 × 102

(5.5348 × 101)
2.1831 × 101

(4.5654 × 101)
2.7060 × 101

(5.0675 × 101)
0.0000 × 10◦

(0.0000 × 10◦)

F13 4.3752 × 10◦

(1.6480 × 10◦)
3.6244 × 10◦

(2.2233 × 10◦)
2.8547 × 10◦

(2.5608 × 10◦)
3.9926 × 10◦

(2.6160 × 10◦)
2.9518 × 10◦

(2.3148 × 10◦)
3.8560 × 10◦

(2.0549 × 10◦)
1.0665 × 102

(6.1680 × 101)

F14 1.9514 × 10−2

(1.3932 × 10−1)
0.0000 × 10◦

(0.0000 × 10◦)
1.9509 × 10−2

(1.3932 × 10−1)
1.1705 × 10−1

(3.8002 × 10−1)
5.8937 × 10−1

(5.3219 × 10−1)
3.4572 × 10−1

(4.8875 × 10−1)
2.8540 × 10◦

(2.8306 × 10◦)

F15 3.1266 × 10−1

(2.1628 × 10−1)
3.4376 × 10−1

(1.9172 × 10−1)
2.7643 × 10−1

(2.2674 × 10−1)
2.7473 × 10−1

(2.1863 × 10−1)
2.8470 × 10−1

(2.2042 × 10−1)
1.5156 × 10−1

(2.0560 × 10−1)
5.6592 × 10−3

(1.1130 × 10−2)

F16 6.4498 × 10−1

(2.4729 × 10−1)
7.6056 × 10−1

(2.6579 × 10−1)
6.5754 × 10−1

(3.2556 × 10−1)
6.5355 × 10−1

(2.8097 × 10−1)
4.9953 × 10−1

(1.8805 × 10−1)
3.3955 × 10−1

(1.6896 × 10−1)
1.9364 × 10−1

(1.9585 × 10−1)

F17 5.7917 × 10−1

(3.8260 × 10−1)
5.0180 × 10−1

(3.0953 × 10−1)
8.3106 × 10−1

(4.5791 × 10−1)
6.2966 × 10−1

(2.7969 × 10◦)
2.7211 × 10−1

(2.5102 × 10−1)
1.3142 × 10−1

(1.5680 × 10−1)
3.9752 × 10−1

(1.7763 × 10−1)

F18 2.2732 × 10−1

(2.0887 × 10−1)
3.7546 × 10−1

(1.6474 × 10−1)
3.4962 × 10−1

(1.8379 × 10−1)
2.6770 × 10◦

(6.4939 × 10◦)
2.5931 × 10−1

(2.2275 × 10−1)
1.6608 × 10−1

(1.8225 × 10−1)
1.5317 × 10−1

(1.6495 × 10−1)

F19 9.5610 × 10−3

(1.0595 × 10−2)
1.6679 × 10−2

(1.8402 × 10−2)
9.9120 × 10−3

(1.0569 × 10−2)
1.9230 × 10−2

(2.8908 × 10−2)
2.8768 × 10−2

(1.0627 × 10−2)
7.7280 × 10−3

(1.0048 × 10−2)
8.0265 × 10◦

(2.7653 × 10◦)

F20 3.1217 × 10−1

(1.3961 × 10−1)
3.6726 × 10−1

(1.6168 × 10−1)
4.2235 × 10−1

(1.6309 × 10−1)
2.9993 × 10−1

(2.2477 × 10−1)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
2.1317 × 10−2

(2.3376 × 10−2)

F21 1.4033 × 102

(5.0551 × 101)
1.1623 × 102

(3.7646 × 101)
1.4029 × 102

(5.0664 × 101)
1.5023 × 102

(5.1738 × 101)
1.0181 × 102

(1.4021 × 101)
1.5731 × 102

(5.1566 × 101)
1.4691 × 10−1

(1.5737 × 10−1)

F22 1.0000 × 102

(0.0000 × 10◦)
1.0000 × 102

(0.0000 × 10◦)
1.0000 × 102

(0.0000 × 10◦)
1.0003 × 102

(9.7577 × 10−2)
8.8925 × 101

(2.2536 × 101)
1.0001 × 102

(4.0631 × 10−2)
1.2201 × 102

(4.2028 × 101)

F23 3.0054 × 102

(1.1887 × 10◦)
3.0023 × 102

(7.8683 × 10−1)
3.0057 × 102

(1.1770 × 10◦)
3.0187 × 102

(1.4831 × 10◦)
2.8144 × 102

(8.2934 × 101)
3.0312 × 102

(1.6646 × 10◦)
1.0000 × 102

(8.9223 × 10−14)

F24 2.7513 × 102

(9.8121 × 101)
2.6131 × 102

(1.0516 × 102)
2.8902 × 102

(8.8373 × 101)
3.1577 × 102

(5.4499 × 101)
9.8039 × 101

(1.4003 × 101)
2.9962 × 102

(7.9080 × 101)
2.9486 × 102

(4.2135 × 101)

F25 4.0513 × 102

(1.6791 × 101)
4.0864 × 102

(1.9445 × 101)
4.1486 × 102

(2.2172 × 101)
4.2212 × 102

(2.3025 × 101)
3.9775 × 102

(4.1010 × 10−2)
4.1410 × 102

(2.2018 × 101)
1.5774 × 102

(9.7721 × 101)

F26 3.0000 × 102

(0.0000 × 10◦)
3.0000 × 102

(0.0000 × 10◦)
3.0000 × 102

(0.0000 × 10◦)
3.0000 × 102

(0.0000 × 10◦)
1.5490 × 102

(1.4875 × 102)
3.0000 × 102

(0.0000 × 10◦)
4.1593 × 102

(2.2244 × 101)

F27 3.8948 × 102

(1.3915 × 10−1)
3.8950 × 102

(1.0046 × 10−1)
3.8945 × 102

(1.7810 × 10−1)
3.8913 × 102

(1.3836 × 10◦)
3.8853 × 102

(7.3392 × 10−1)
3.8947 × 102

(1.4103 × 10◦)
2.8431 × 102

(3.6729 × 101)

F28 3.8284 × 102

(1.3621 × 102)
3.0611 × 102

(4.3664 × 101)
3.0000 × 102

(0.0000 × 10◦)
3.8323 × 102

(1.2191 × 102)
2.8235 × 102

(7.1291 × 101)
3.2947 × 102

(9.0380 × 101)
3.9124 × 102

(2.2515 × 10◦)

F29 2.3401 × 102

(2.0036 × 10◦)
2.3337 × 102

(2.4295 × 10◦)
2.3444 × 102

(3.7422 × 10◦)
2.2863 × 102

(2.0165 × 10◦)
2.4915 × 102

(6.2155 × 10◦)
2.3333 × 102

(2.4978 × 10◦)
3.2618 × 102

(8.3744 × 101)

F30 3.9547 × 102

(6.7405 × 10◦)
3.9452 × 102

(4.4939 × 10−2)
3.9451 × 102

(2.5976 × 10−2)
1.1928 × 104

(6.2866 × 104)
9.5139 × 102

(1.3874 × 103)
1.6422 × 104

(1.1443 × 104)
3.9543 × 102

(5.9055 × 10◦)

+/=/− 9+/7=/13− - 10+/8=/11− 5+/8=/16− 14+/5=/10− 8+/6=/15− 14+/4=/11−

Table 9. Comparison Results of NLAPSMjSO-EDA and Six Algorithms on 29 Functions in CEC2017
(Dim = 30).

APSM-jSO NLAPSMjSO-EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F1 0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
2.0085 × 103

(4.4686 × 102)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)

F3 0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)
3.0987 × 104

(1.0225 × 104)
0.0000 × 10◦

(0.0000 × 10◦)
0.0000 × 10◦

(0.0000 × 10◦)

F4 5.8562 × 101

(0.0000 × 10◦)
5.8670 × 101

(7.7797 × 10−1)
5.8562 × 101

(0.0000 × 10◦)
3.1183 × 101

(3.8292 × 10◦)
8.9962 × 101

(1.4548 × 101)
5.8562 × 101

(2.6662 × 10−14)
5.8888 × 101

(1.3203 × 10◦)

Symmetry 2025, 17, 153 29 of 45

Table 9. Cont.

APSM-jSO NLAPSMjSO-EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F5 6.7565 × 100

(1.8352 × 100)

5.4804 × 100

(1.3898 × 100)
7.7081 × 100

(2.2610 × 100)

1.1975 × 101

(2.4555 × 100)
7.8469 × 101

(9.6110 × 100)
6.1353 × 100

(1.4639 × 100)
2.6848 × 100

(1.5856 × 100)

F6 0.0000 × 100

(1.0000 × 10−6)

0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

4.7399 × 10−7

(7.4314 × 10−7)
1.0989 × 10−1

(3.4848 × 10−2)
2.6838 × 10−9

(1.9166 × 10−8)
0.0000 × 100

(0.0000 × 100)

F7 3.7697 × 101

(1.2529 × 100)

3.6192 × 101

(1.0408 × 100)
3.8789 × 101

(1.9953 × 100)

4.2446 × 101

(2.5291 × 100)
1.0720 × 102

(1.2097 × 101)
3.7334 × 101

(1.6946 × 100)
3.3490 × 101

(8.8282 × 10−1)

F8 7.3926 × 100

(1.5676 × 100)

5.8561 × 100

(1.5547 × 100)
7.4528 × 100

(2.2873 × 100)

1.3141 × 101

(1.9587 × 100)
7.2186 × 101

(8.4910 × 100)
6.9884 × 100

(1.4808 × 100)
2.8330 × 100

(1.4515 × 100)

F9 0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
2.1760 × 101

(1.4946 × 101)
0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

F10 1.5155 × 103

(2.3436 × 102)

1.4653 × 103

(2.4785 × 102)
1.8065 × 103

(2.8564 × 102)

1.3996 × 103

(2.4664 × 102)
2.8562 × 103

(3.3359 × 102)
1.4307 × 103

(2.2902 × 102)
1.4024 × 103

(2.4578 × 102)

F11 1.1380 × 101

(1.8879 × 101)

2.5650 × 100

(8.5401 × 100)
3.0654 × 100

(8.3613 × 100)

1.3413 × 101

(1.8733 × 101)
7.3983 × 101

(1.6706 × 101)
2.4105 × 101

(2.7314 × 101)
6.5152 × 100

(1.4094 × 101)

F12 1.9993 × 102

(1.4808 × 102)

2.6371 × 102

(1.5222 × 102)
1.6374 × 102

(1.1883 × 102)

2.6755 × 102

(1.4290 × 102)
3.4694 × 105

(1.3673 × 105)
1.0163 × 103

(3.7359 × 102)
4.0322 × 102

(2.3769 × 102)

F13 1.7566 × 101

(4.7196 × 100)

1.5568 × 101

(4.3536 × 100)
1.5186 × 101

(6.0672 × 100)

1.5193 × 101

(6.6141 × 100)
1.3548 × 104

(4.2719 × 103)
1.4493 × 101

(5.8338 × 100)
1.6450 × 101

(5.0096 × 100)

F14 2.0727 × 101

(3.0563 × 100)

2.0731 × 101

(7.0364 × 10−1)
2.1231 × 101

(1.0372 × 100)

1.9712 × 101

(5.1714 × 100)
8.4834 × 101

(1.7561 × 101)
2.1051 × 101

(3.9133 × 100)
2.2554 × 101

(2.5901 × 100)

F15 7.8145 × 10−1

(5.5639 × 10−1)

8.4824 × 10−1

(4.9491 × 10−1)
7.7364 × 10−1

(5.4136 × 10−1)

2.2930 × 100

(1.5081 × 100)
3.0360 × 102

(2.2397 × 102)
3.2227 × 100

(1.8159 × 100)
3.8908 × 100

(2.1510 × 100)

F16 3.9764 ×101

(3.1365 ×101)

2.6545 ×101

(3.4830 ×101)
1.9145 ×101

(1.9085 ×101)

1.3066 ×101

(2.9480 ×100)
4.6873 ×102

(1.3235 ×102)
6.1516 ×101

(5.9672 ×101)
5.4572 ×101

(6.1076 ×101)

F17 3.4999 ×101

(6.5204 ×100)

3.0752 ×101

(6.6701 ×100)
3.4884 ×101

(8.0769 ×100)

3.2269 ×101

(5.2834 ×100)
7.4356 ×101

(1.4805 ×101)
3.3008 ×101

(4.9354 ×100)
2.9453 ×101

(6.8529 ×100)

F18 1.9502 ×101

(4.8035 ×100)

2.0635 ×101

(2.7044 ×10−1)
2.0922 ×101

(4.4771 ×10−1)

2.0828 ×101

(5.5874 ×10−1)
6.3282 ×104

(2.8611 ×104)
2.2093 ×101

(1.3765 ×100)
2.2729 ×101

(1.5512 ×100)

F19 3.4884 ×100

(9.7255 ×10−1)

3.9742 ×100

(1.0955 ×100)
3.2951 ×100

(7.5657 ×10−1)

5.0388 ×100

(1.4817 ×100)
2.3781 ×102

(3.3868 ×102)
5.1640 ×100

(1.6073 ×100)
8.4408 ×100

(2.2095 ×100)

F20 3.2112 ×101

(6.0540 ×100)

3.1208 ×101

(4.9836 ×100)
3.1443 ×101

(7.5601 ×100)

3.4842 ×101

(6.8990 ×100)
9.9491 ×101

(4.9076 ×101)
3.1880 ×101

(5.3892 ×100)
3.4757 ×101

(5.9441 ×100)

F21 2.0728 ×102

(1.9872 ×100)

2.0513 ×102

(1.5871 ×100)
2.0689 ×102

(2.1918 ×100)

2.1208 ×102

(2.3964 ×100)
1.9316 ×102

(6.8232 ×101)
2.0732 ×102

(1.5645 ×100)
2.0103 ×102

(1.4510 ×101)

F22 1.0000 ×102

(0.0000 ×100)

1.0000 ×102

(0.0000 ×100)
1.0000 ×102

(0.0000 ×100)

1.0000 ×102

(1.7244 ×10−13)
1.0000 ×102

(1.7148 ×10−4)
1.0000 ×102

(1.4352 ×10−14)
1.0000 ×102

(1.4352 ×10−14)

F23 3.4933 ×102

(3.1823 ×100)

3.4619 ×102

(2.8766 ×100)
3.5047 ×102

(3.6723 ×100)

3.5506 ×102

(4.0714 ×100)
4.1390 ×102

(1.0748 ×101)
3.5006 ×102

(2.7872 ×100)
3.5098 ×102

(3.3913 ×100)

F24 4.2477 ×102

(1.7595 ×100)

4.2258 ×102

(1.7986 ×100)
4.2680 ×102

(2.3096 ×100)

4.2852 ×102

(2.4915 ×100)
4.8637 ×102

(9.3561 ×100)
4.2538 ×102

(1.6907 ×100)
4.0770 ×102

(7.0254 ×101)

F25 3.8670 ×102

(7.8140 ×10−3)

3.8670 ×102

(6.5260 ×10−3)
3.8670 ×102

(4.7190 ×10−3)

3.8664 ×102

(7.1702 ×10−3)
3.8674 ×102

(8.3036 ×10−1)
3.8674 ×102

(2.7818 ×10−2)
3.8649 ×102

(8.4923 ×10−1)

F26 9.0020 ×102

(3.4582 ×101)

8.9164 ×102

(2.5635 ×101)
8.9204 ×102

(3.4491 ×101)

9.3483 ×102

(5.2234 ×101)
2.6863 ×102

(4.6863 ×101)
9.3156 ×102

(4.1785 ×101)
6.0244 ×102

(3.0953 ×102)

F27 4.9830 ×102

(6.4090 ×100)

4.9554 ×102

(7.9651 ×100)
4.9628 ×102

(7.5166 ×100)

5.0308 ×102

(6.0626 ×100)
5.1375 ×102

(3.6290 ×100)
5.0184 ×102

(5.4446 ×100)
5.0323 ×102

(4.2700 ×100)

Symmetry 2025, 17, 153 30 of 45

Table 9. Cont.

APSM-jSO NLAPSMjSO-EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F28 3.2193 ×102

(4.4885 ×101)

3.0670 ×102

(2.7085 ×101)
3.1522 ×102

(3.8592 ×101)

3.1448 ×102

(3.7607 ×101)
3.9797 ×102

(3.5451 ×100)
3.3513 ×102

(5.2525 ×101)
3.1278 ×102

(3.5396 ×101)

F29 4.3604 ×102

(1.2925 ×101)

4.3337 ×102

(8.1997 ×100)
4.4741 ×102

(2.0588 ×101)

4.3594 ×102

(8.4600 ×100)
5.3511 ×102

(2.2883 ×101)
4.3130 ×102

(6.8252 ×100)
4.3460 ×102

(9.8897 ×100)

F30 1.9700 × 103

(2.0442 × 101)

1.9693 × 103

(9.0305 × 100)
1.9681 × 103

(9.4167 × 100)

1.9712 × 103

(3.5227 × 101)
1.2249 × 104

(3.5520 × 103)
2.0009 × 103

(7.4845 × 101)
1.9925 × 103

(4.7484 × 101)

+/=/− 6+/4=/19− - 7+/4=/18− 6+/3=/20− 2+/0=/27− 5+/3=/21− 9+/5=/15−

Table 10. Comparison Results of NLAPSMjSO-EDA and Six Algorithms on 29 Functions in CEC2017
(Dim = 50).

APSM-jSO NLAPSMjSO-EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F1 0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
1.2010 × 104

(5.4914 × 103)
0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

F3 0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
1.2439 × 105

(1.0812 × 104)
0.0000 × 100

(0.0000 × 100)
2.4009 × 10−10

(1.7146 × 10−9)

F4 5.5393 × 101

(4.4368 × 101)

4.6894 × 101

(3.9567 × 101)
4.9237 × 101

(3.9615 × 101)

5.8050 × 101

(4.7078 × 101)
1.1569 × 102

(2.3266 × 101)
7.0589 × 101

(4.8305 × 101)
4.7009 × 101

(3.4263 × 101)

F5 1.4720 × 101

(3.0272 × 100)

1.1698 × 101

(1.8313 × 100)
1.5473 × 101

(3.8358 × 100)

2.6401 × 101

(6.7155 × 100)
3.1115 × 102

(1.7204 × 101)
1.1932 × 101

(2.0199 × 100)
8.1039 × 100

(2.8686 × 100)

F6 1.0000 × 10−6

(1.0000 × 10−6)

3.0000 × 10−6

(3.0000 × 10−6)
0.0000 × 100

(0.0000 × 100)

7.1807 × 10−7

(5.9741 × 10−7)
2.0683 × 100

(3.3956 × 10−1)
4.7207 × 10−7

(1.2484 × 10−6)
1.2629 × 10−7

(1.8426 × 10−7)

F7 6.5165 × 101

(2.2624 × 100)

6.0569 × 101

(1.7499 × 100)
6.9353 × 101

(3.8844 × 100)

7.6433 × 101

(6.4880 × 100)
3.5319 × 102

(2.3165 × 101)
6.3227 × 101

(1.6055 × 100)
5.8011 × 101

(1.2300 × 100)

F8 1.5509 × 101

(2.9423 × 100)

1.2215 × 101

(2.2012 × 100)
1.6540 × 101

(3.6965 × 100)

2.6879 × 101

(6.1634 × 100)
3.0697 × 102

(1.7207 × 101)
1.2344 × 101

(2.1352 × 100)
9.1497 × 100

(2.5172 × 100)

F9 0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
2.7392 × 103

(7.8244 × 102)
1.7555 × 10−3

(1.2536 × 10−2)
0.0000 × 100

(0.0000 × 100)

F10 3.2865 × 103

(3.1859 × 102)

2.9900 × 103

(3.4975 × 102)
3.8357 × 103

(3.2249 × 102)

3.1717 × 103

(3.8363 × 102)
8.1868 × 103

(4.9821 × 102)
3.1687 × 103

(3.2478 × 102)
3.1445 × 103

(4.9974 × 102)

F11 2.7450 × 101

(2.7581 × 100)

2.5050 × 101

(3.2510 × 100)
2.3738 × 101

(3.5157 × 100)

2.1988 × 101

(1.6800 × 100)
3.4092 × 102

(2.5958 × 101)
4.8303 × 101

(1.0170 × 101)
2.6359 × 101

(3.2242 × 100)

F12 1.8097 × 103

(4.0267 × 102)

1.8850 × 103

(4.3245 × 102)
1.4341 × 103

(4.3548 × 102)

1.3060 × 103

(3.5632 × 102)
3.2015 × 106

(4.9104 × 105)
2.0860 × 103

(4.9910 × 102)
2.1117 × 103

(1.1489 × 103)

F13 2.9583 × 101

(2.0744 × 101)

3.2872 × 101

(1.8885 × 101)
3.3759 × 101

(3.0118 × 101)

7.1298 × 101

(3.1669 × 101)
2.4848 × 104

(7.9340 × 103)
6.8967 × 101

(3.3985 × 101)
4.2140 × 101

(2.2268 × 101)

F14 2.3439 × 101

(1.6283 × 100)

2.2885 × 101

(2.1051 × 100)
2.3247 × 101

(1.6316 × 100)

2.6370 × 101

(2.0023 × 100)
1.0228 × 105

(4.0681 × 104)
3.0143 × 101

(2.8262 × 100)
3.1606 × 101

(3.7935 × 100)

F15 2.2697 × 101

(2.3810 × 100)

2.2876 × 101

(2.2918 × 100)
2.1854 × 101

(2.0887 × 100)

2.4569 × 101

(2.9591 × 100)
1.6001 × 104

(2.3481 × 103)
3.9492 × 101

(8.3078 × 100)
2.9178 × 101

(5.7264 × 100)

F16 4.1301 × 102

(1.1377 × 102)

3.0713 × 102

(1.3395 × 102)
3.3154 × 102

(1.5416 × 102)

2.7536 × 102

(1.2406 × 102)
1.0820 × 103

(1.7037 × 102)
4.1221 × 102

(1.2354 × 102)
3.6862 × 102

(1.2392 × 102)

F17 2.5339 × 102

(6.4772 × 101)

2.6388 × 102

(7.1260 × 101)
2.8673 × 102

(8.7716 × 101)

2.3397 × 102

(6.3996 × 101)
7.7755 × 102

(1.3328 × 102)
2.3288 × 102

(6.7878 × 101)
2.8093 × 102

(9.5695 × 101)

F18 2.4661 × 101

(2.0646 × 100)

2.3622 × 101

(1.5667 × 100)
2.3592 × 101

(1.9076 × 100)

2.4927 × 101

(2.6581 × 100)
8.0578 × 105

(2.4935 × 105)
3.7748 × 101

(9.6766 × 100)
3.1987 × 101

(5.7828 × 100)

F19 1.3119 × 101

(2.8199 × 100)

1.3158 × 101

(2.3164 × 100)
1.0881 × 101

(2.2857 × 100)

1.7701 × 101

(2.8843 × 100)
1.6661 × 104

(1.5324 × 103)
2.4099 × 101

(7.0376 × 100)
2.4345 × 101

(3.5351 × 100)

Symmetry 2025, 17, 153 31 of 45

Table 10. Cont.

APSM-jSO NLAPSMjSO-EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F20 1.6744 × 102

(7.2812 × 101)

1.1559 × 102

(4.7050 × 101)
1.4987 × 102

(7.8564 × 101)

1.0996 × 102

(3.5348 × 101)
5.6374 × 102

(1.1694 × 102)
1.5178 × 102

(4.4205 × 101)
1.5415 × 102

(7.4509 × 101)

F21 2.1457 × 102

(2.7378 × 100)

2.1153 × 102

(2.0945 × 100)
2.1544 × 102

(4.1310 × 100)

2.2690 × 102

(7.1453 × 100)
4.7043 × 102

(1.4674 × 101)
2.1291 × 102

(1.9909 × 100)
2.1290 × 102

(4.2491 × 100)

F22 2.1052 × 103

(1.7718 × 103)

7.0897 × 102

(1.3309 × 103)
1.2822 × 103

(1.9543 × 103)

1.6216 × 103

(1.6989 × 103)
1.4367 × 102

(2.8222 × 101)
2.1285 × 103

(1.7068 × 103)
3.0263 × 102

(8.1718 × 102)

F23 4.2843 × 102

(4.7068 × 100)

4.2158 × 102

(6.6591 × 100)
4.3148 × 102

(5.9473 × 100)

4.3881 × 102

(7.3573 × 100)
7.0828 × 102

(2.0503 × 101)
4.2923 × 102

(4.2074 × 100)
4.3655 × 102

(5.8378 × 100)

F24 5.0487 × 102

(3.6790 × 100)

5.0099 × 102

(3.2923 × 100)
5.0558 × 102

(3.7585 × 100)

5.1379 × 102

(6.5528 × 100)
7.6715 × 102

(1.7173 × 101)
5.0654 × 102

(2.2771 × 100)
5.0755 × 102

(2.3982 × 100)

F25 4.8093 × 102

(2.7535 × 100)

4.8169 × 102

(5.9462 × 100)
4.8215 × 102

(7.7789 × 100)

4.8086 × 102

(2.7551 × 100)
6.0809 × 102

(1.1948 × 100)
4.8382 × 102

(1.3545 × 101)
4.8507 × 102

(1.5280 × 101)

F26 1.0987 × 103

(3.7166 × 101)

1.0511 × 103

(5.9213 × 101)
1.0967 × 103

(5.3759 × 101)

1.2036 × 103

(1.0068 × 102)
3.0645 × 102

(1.3578 × 100)
1.1516 × 103

(5.6520 × 101)
6.1662 × 102

(3.8385 × 102)

F27 5.0853 × 102

(1.0166 × 101)

5.0736 × 102

(7.7208 × 100)
5.0735 × 102

(8.6624 × 100)

5.2841 × 102

(1.4494 × 101)
7.1222 × 102

(2.4731 × 101)
5.3132 × 102

(1.7523 × 101)
5.2366 × 102

(9.3748 × 100)

F28 4.6268 × 102

(1.3263 × 101)

4.5981 × 102

(6.8398 × 100)
4.5885 × 102

(0.0000 × 100)

4.5948 × 102

(1.1709 × 101)
5.5467 × 102

(8.6326 × 100)
4.7576 × 102

(2.3184 × 101)
4.6385 × 102

(1.4677 × 101)

F29 3.6545 × 102

(1.0769 × 101)

3.5537 × 102

(1.1602 × 101)
3.8181 × 102

(2.0988 × 101)

3.5226 × 102

(9.7004 × 100)
1.1263 × 103

(1.1904 × 102)
3.5243 × 102

(1.0687 × 101)
3.5965 × 102

(1.9821 × 101)

F30 6.1178 × 105

(3.8188 × 104)

5.8287 × 105

(1.4549 × 104)
5.8919 × 105

(2.3478 × 104)

6.6199 × 105

(8.5436 × 104)
4.0079 × 106

(6.3440 × 105)
6.7276 × 105

(7.3600 × 104)
6.2112 × 105

(3.9548 × 104)

+/=/− 7+/2=/20− - 8+/2=/19− 10+/2=/17− 2+/0=/27− 2+/2=/25− 6+/1=/22−

Table 11. Comparison Results of NLAPSMjSO-EDA and Six Algorithms on 29 Functions in CEC2017
(Dim = 100).

APSM-jSO NLAPSMjSO-EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F1 0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
2.1054 × 109

(2.6158 × 108)
0.0000 × 100

(0.0000 × 100)
1.1936 × 10−8

(2.1982 × 10−8)

F3 0.0000 × 100

(0.0000 × 100)

0.0000 × 100

(0.0000 × 100)
5.0000 × 10−6

(7.0000 × 10−6)

0.0000 × 100

(0.0000 × 100)
3.5902 × 105

(2.1660 × 104)
1.0381 × 10−6

(1.0381 × 10−6)
2.0227 × 10−5

(8.3569 × 10−6)

F4 1.9494 × 102

(1.7830 × 101)

1.9035 × 102

(3.0388 × 101)
1.8616 × 102

(3.0133 × 101)

1.9907 × 102

(7.9237 × 100)
8.4051 × 102

(4.2385 × 101)
1.9317 × 102

(1.9335 × 101)
1.8333 × 102

(5.4423 × 101)

F5 4.1726 × 101

(4.9713 × 100)

3.1067 × 101

(4.0847 × 100)
5.1883 × 101

(1.1504 × 101)

5.4717 × 101

(6.8995 × 100)
1.0468 × 103

(2.8217 × 101)
3.9267 × 101

(3.6770 × 100)
2.8893 × 101

(4.8578 × 100)

F6 2.6100 × 10−4

(6.7000 × 10−4)

7.0000 × 10−4

(8.1500 × 10−4)
2.7000 × 10−5

(1.4000 × 10−5)

5.7405 × 10−5

(1.5336 × 10−5)
2.5410 × 101

(2.8788 × 100)
6.8190 × 10−3

(4.8034 × 10−3)
1.5502 × 10−5

(6.7106 × 10−6)

F7 1.4426 × 102

(6.1990 × 100)

1.2605 × 102

(3.4714 × 100)
1.6295 × 102

(1.0431 × 101)

1.6215 × 102

(5.6573 × 100)
1.1711 × 103

(3.8832 × 101)
1.3909 × 102

(5.1328 × 100)
1.2155 × 102

(3.7098 × 100)

F8 4.2962 × 101

(5.0001 × 100)

3.1879 × 101

(3.8034 × 100)
5.2367 × 101

(1.1561 × 101)

5.5538 × 101

(1.1238 × 101)
1.0323 × 103

(2.7414 × 101)
3.7470 × 101

(5.6760 × 100)
3.0122 × 101

(5.5578 × 100)

F9 1.2419 × 10−2

(6.5510 × 10−2)

3.1598 × 10−2

(5.3188 × 10−2)
1.0287 × 10−1

(1.7963 × 10−1)

0.0000 × 100

(0.0000 × 100)
4.4959 × 104

(2.9529 × 103)
5.0594 × 10−1

(4.5005 × 10−1)
0.0000 × 100

(0.0000 × 100)

F10 9.9772 × 103

(5.3900 × 102)

8.6097 × 103

(5.0696 × 102)
1.1573 × 104

(6.1048 × 102)

1.0305 × 104

(4.8317 × 102)
2.4716 × 104

(5.4244 × 102)
1.0230 × 104

(6.4982 × 102)
9.8544 × 103

(1.7422 × 103)

F11 1.1181 × 102

(3.6692 × 101)

9.1331 × 101

(3.0331 × 101)
8.4828 × 101

(2.3402 × 101)

5.9879 × 101

(3.8462 × 101)
5.8713 × 104

(5.5282 × 103)
4.5169 × 102

(9.9310 × 101)
6.5514 × 101

(2.2478 × 101)

Symmetry 2025, 17, 153 32 of 45

Table 11. Cont.

APSM-jSO NLAPSMjSO-EDA IDE-EDA LSHADE-Epsin MadDE LSHADE EBOwithCMAR

F12 1.3734 × 104

(6.1133 × 103)

1.7672 × 104

(7.7379 × 103)
1.5908 × 104

(8.4677 × 103)

4.7761 × 103

(6.9664 × 102)
2.1713 × 108

(2.3476 × 107)
2.1733 × 104

(8.0538 × 103)
4.3560 × 103

(6.9693 × 102)

F13 1.4710 × 102

(3.8451 × 101)

2.1667 × 102

(5.3916 × 101)
1.3358 × 102

(4.0724 × 101)

1.1058 × 102

(4.0592 × 101)
4.6689 × 104

(9.4467 × 103)
5.2834 × 102

(3.6883 × 102)
2.8679 × 102

(1.0669 × 102)

F14 6.3204 × 101

(1.1469 × 101)

6.3583 × 101

(1.1249 × 101)
4.8601 × 101

(7.3205 × 100)

5.0545 × 101

(7.1128 × 100)
2.5363 × 106

(5.4105 × 105)
2.5861 × 102

(3.0048 × 101)
1.3837 × 102

(2.9338 × 101)

F15 1.7414 × 102

(3.5252 × 101)

1.9228 × 102

(4.0967 × 101)
1.3598 × 102

(3.6218 × 101)

1.0995 × 102

(4.1445 × 101)
2.3982 × 104

(7.0650 × 103)
2.5563 × 102

(4.9458 × 101)
1.5375 × 102

(3.1048 × 101)

F16 1.7344 × 103

(3.3369 × 102)

1.3588 × 103

(2.5016 × 102)
1.6713 × 103

(4.0174 × 102)

1.2035 × 103

(2.5448 × 102)
6.4020 × 103

(2.5452 × 102)
1.6989 × 103

(2.5395 × 102)
1.5455 × 103

(3.9645 × 102)

F17 1.1889 × 103

(2.1246 × 102)

1.0001 × 103

(1.7403 × 102)
1.3132 × 103

(2.3774 × 102)

9.4853 × 102

(1.9887 × 102)
3.5602 × 103

(2.0434 × 102)
1.1651 × 103

(1.9100 × 102)
1.1688 × 103

(2.7815 × 102)

F18 1.7818 × 102

(3.6906 × 101)

1.6367 × 102

(3.3743 × 101)
1.3817 × 102

(3.0013 × 101)

7.5498 × 101

(1.8433 × 101)
2.7533 × 106

(5.3899 × 105)
2.2812 × 102

(4.3136 × 101)
2.5556 × 102

(5.5086 × 101)

F19 1.2112 × 102

(2.2019 × 101)

1.3646 × 102

(2.2338 × 101)
8.0693 × 101

(1.5373 × 101)

5.6083 × 101

(7.1312 × 100)
3.2232 × 104

(1.3641 × 104)
1.7239 × 102

(2.4797 × 101)
1.2393 × 102

(2.1448 × 101)

F20 1.4964 × 103

(2.2073 × 102)

1.2158 × 103

(2.0828 × 102)
1.6036 × 103

(2.4354 × 102)

1.0483 × 103

(1.9606 × 102)
3.4537 × 103

(2.2572 × 102)
1.5024 × 103

(2.1159 × 102)
1.5095 × 103

(2.8897 × 102)

F21 2.6310 × 102

(5.3056 × 100)

2.4855 × 102

(4.6462 × 100)
2.5715 × 102

(1.3399 × 101)

2.8051 × 102

(1.2598 × 101)
1.1198 × 103

(2.6842 × 101)
2.5824 × 102

(5.9881 × 100)
2.5796 × 102

(5.4792 × 100)

F22 1.0634 × 104

(6.1506 × 102)

9.6001 × 103

(5.6253 × 102)
1.2375 × 104

(7.5754 × 102)

1.0774 × 104

(5.3054 × 102)
2.5451 × 104

(2.2021 × 103)
1.1032 × 104

(1.5871 × 103)
1.1467 × 104

(1.7739 × 103)

F23 5.6438 × 102

(1.0977 × 101)

5.6442 × 102

(8.0281 × 100)
5.6737 × 102

(9.4905 × 100)

5.9525 × 102

(1.2459 × 101)
1.4056 × 103

(2.4844 × 101)
5.7047 × 102

(5.8842 × 102)
5.7733 × 102

(1.2023 × 101)

F24 8.9596 × 102

(6.3263 × 100)

8.8337 × 102

(6.1563 × 100)
8.9675 × 102

(8.1714 × 100)

9.1349 × 102

(8.7061 × 100)
1.7680 × 103

(3.8087 × 101)
9.0980 × 102

(7.9294 × 100)
9.1969 × 102

(1.4433 × 101)

F25 7.3119 × 102

(3.4307 × 101)

7.3768 × 102

(3.1478 × 101)
7.2571 × 102

(4.5376 × 101)

6.6960 × 102

(4.1732 × 101)
1.5871 × 103

(4.0363 × 101)
7.4829 × 102

(3.2178 × 101)
7.3274 × 102

(3.8238 × 101)

F26 3.1418 × 103

(8.0749 × 101)

3.0120 × 103

(8.9381 × 101)
3.0960 × 103

(8.6477 × 101)

3.1196 × 103

(2.0652 × 102)
1.8142 × 104

(1.4210 × 103)
3.2897 × 103

(7.0783 × 101)
3.0198 × 103

(8.0864 × 102)

F27 5.8505 × 102

(1.7139 × 101)

5.6703 × 102

(1.7687 × 101)
5.7523 × 102

(1.9574 × 101)

5.8838 × 102

(1.5396 × 101)
1.2576 × 103

(1.2576 × 103)
6.3057 × 102

(2.1779 × 101)
5.8728 × 102

(1.7361 × 101)

F28 5.3251 × 102

(2.7242 × 101)

5.3985 × 102

(2.8746 × 101)
5.2537 × 102

(2.6127 × 101)

5.1001 × 102

(1.9563 × 101)
2.0852 × 103

(8.5242 × 101)
5.2474 × 102

(2.4086 × 101)
5.2095 × 102

(2.7354 × 101)

F29 1.2617 × 103

(1.8323 × 102)

9.4607 × 102

(9.7974 × 101)
1.1206 × 103

(1.7561 × 102)

1.1356 × 103

(1.5407 × 102)
6.0901 × 103

(1.9487 × 102)
1.1689 × 103

(1.5533 × 102)
1.2860 × 103

(2.3983 × 102)

F30 2.3639 × 103

(1.6222 × 102)

2.2193 × 103

(9.7362 × 101)
2.1689 × 103

(9.8707 × 101)

2.3724 × 103

(1.7574 × 102)
3.7075 × 106

(5.4850 × 105)
2.3799 × 103

(1.3355 × 102)
2.3519 × 103

(1.2372 × 102)

+/=/− 7+/2=/20− − 12+/1=/16− 13+/2=/14− 0+/0=/29− 0+/0=/29− 12+/0=/17−

Table 12. Results of the Wilcoxon signed-rank test for six DE variants and NLAPSMjSO-EDA.

Algorithm 10D 30D 50D 100D Total

NLAPSMjSO-EDA VS. APSM-jSO 13+/7=/9− 19+/4=/6− 20+/2=/7− 20+/2=/7− 72+/15=/29−
NLAPSMjSO-EDA VS. IDE-EDA 11+/8=/10− 18+/4=/7− 19+/2=/8− 16+/1=/12− 64+/15=/37−
NLAPSMjSO-EDA VS. LSHADE-Epsin 16+/8=/5− 20+/3=/6− 17+/2=/10− 14+/2=/13− 67+/15=/34−

Symmetry 2025, 17, 153 33 of 45

Table 12. Cont.

Algorithm 10D 30D 50D 100D Total

NLAPSMjSO-EDA VS. MadDE 10+/5=/14− 27+/0=/2− 27+/0=/2− 29+/0=/0− 93+/5=/18−
NLAPSMjSO-EDA VS. LSHADE 15+/6=/8− 21+/3=/5− 25+/2=/2− 29+/0=/0− 90+/11=/15−
NLAPSMjSO-EDA VS. EBOwithCMAR 11+/4=/14− 16+/4=/9− 22+/1=/6− 17+/0=/12− 66+/9=/41−

Table 13. P-values for Wilcoxon Rank-Sum Tests of NLAPSMjSO-EDA and Six Algorithms.

Algorithm 10D 30D 50D 100D

NLAPSMjSO-EDA VS. APSM-jSO 3.9097 × 10−2 1.5169 × 10−3 2.3602 × 10−3 1.293 × 10−2

NLAPSMjSO-EDA VS. IDE-EDA 2.744 × 10−1 1.8828 × 10−2 2.1796 × 10−3 1.6516 × 10−1

NLAPSMjSO-EDA VS. LSHADE-Epsin 1.5258 × 10−3 1.4401 × 10−2 1.7241 × 10−2 4.2615 × 10−1

NLAPSMjSO-EDA VS. MadDE 3.3672 × 10−1 2.3467 × 10−5 2.8208 × 10−5 1.3159 × 10−6

NLAPSMjSO-EDA VS. LSHADE 4.5526 × 10−3 7.3196 × 10−4 5.6227 × 10−5 6.315 × 10−6

NLAPSMjSO-EDA VS. EBOwithCMAR 3.6073 × 10−1 1.4039 × 10−1 3.1395 × 10−3 3.1091 × 10−2

The discussion of the results from Tables 8–12 is as follows:
(a) For 10D, the advantages (disadvantages) of NLAPSMjSO-EDA compared to

APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR in the
test functions are 13(9), 11(10), 16(5), 10(14), 15(8), and 11(14), respectively. This means
that NLAPSMjSO-EDA outperforms four DE-based competitors (APSM-jSO, IDE-EDA,
LSHADE-Epsin, LSHADE) in 10D and is underperformed by MadDE and EBOwithCMAR.

(b) For 30D, the advantages (disadvantages) of NLAPSMjSO-EDA compared to
APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR in the
test functions are 19(6), 18(7), 20(6), 27(2), 21(5), and 16(9), respectively. This means
that NLAPSMjSO-EDA outperforms all six DE-based competitors (APSM-jSO, IDE-EDA,
LSHADE-Epsin, MadDE, LSHADE, EBOwithCMAR) in 30D.

(c) For 50D, the advantages (disadvantages) of NLAPSMjSO-EDA compared to
APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR in the
test functions are 20(7), 19(8), 17(10), 27(2), 25(2), and 22(6), respectively. This means
that NLAPSMjSO-EDA outperforms all six DE-based competitors (APSM-jSO, IDE-EDA,
LSHADE-Epsin, MadDE, LSHADE, EBOwithCMAR) in 50D.

(d) For 100D, the advantages (disadvantages) of NLAPSMjSO-EDA compared to
APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR in the test
functions are 20(7), 16(12), 14(13), 29(0), 29(0), and 17(12), respectively. This means that
NLAPSMjSO-EDA outperforms four DE-based competitors (APSM-jSO, LSHADE-Epsin,
LSHADE, EBOwithCMAR) in 100D and is outperformed by MadDE and EBOwithCMAR.

Table 12’s “Total” column shows that, for the test functions, NLAPSMjSO-EDA’s
benefits (disadvantages) over APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE,
and EBOwithCMAR are 72(29), 64(37), 67(34), 93(18), 90(15), and 65(41), in that order. This
indicates that NLAPSMjSO-EDA outperforms all six DE variants.

The discussion of the results from Table 13 is as follows:
(a) For 10D, the p-values of the Wilcoxon rank-sum test for NLAPSMjSO-EDA com-

pared to APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR
are 0.039097, 0.2744, 0.0015258, 0.33672, 0.0045526, and 0.36073, respectively. This indicates
that NLAPSMjSO-EDA is significantly better than three DE-based competitors (APSM-
jSO, LSHADE-Epsin, LSHADE) in 10D and shows no significant difference compared to
IDE-EDA, MadDE, and EBOwithCMAR.

Symmetry 2025, 17, 153 34 of 45

(b) For 30D, the p-values of the Wilcoxon rank-sum test for NLAPSMjSO-EDA com-
pared to APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR
are 0.0015169, 0.018828, 0.014401, 2.3467 × 10−5, 0.00073196, and 0.14039, respectively. This
indicates that NLAPSMjSO-EDA is significantly better than five DE-based competitors
(APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE) in 30D and shows no significant
difference compared to EBOwithCMAR.

(c) For 50D, the p-values of the Wilcoxon rank-sum test for NLAPSMjSO-EDA com-
pared to APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR are
0.0023602, 0.0021796, 0.017241, 2.8208 × 10−5, 5.6227 × 10−5, and 0.0031395, respectively.
This indicates that NLAPSMjSO-EDA is significantly better than six DE-based competitors
(APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR) in 50D.

(d) For 100D, the p-values of the Wilcoxon rank-sum test for NLAPSMjSO-EDA com-
pared to APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE, and EBOwithCMAR
are 0.01293, 0.16516, 0.42615, 1.3159 × 10−6, 6.315 × 10−6, and 0.031091, respectively. This
indicates that NLAPSMjSO-EDA is significantly better than four DE-based competitors
(APSM-jSO, LSHADE-Epsin, LSHADE, EBOwithCMAR) in 100D and shows no significant
difference compared to IDE-EDA and LSHADE-Epsin.

4.3.2. Analysis of Friedman Test Results

In this part, we evaluate the Friedman test results to investigate the overall perfor-
mance differences between NLAPSMjSO-EDA and six DE variants. Table 14 summa-
rizes the Friedman test ranks, and Figure 12 shows how they are graphically represented.
Table 14 shows that the p-values for 30D, 50D, and 100D are all less than α, indicating
significant differences between NLAPSMjSO-EDA and the six DE-based versions.

The following provides specific Friedman test results:
(a) For 10D, NLAPSMjSO-EDA ranks first, followed by EBOwithCMAR, IDE-EDA,

MadDE, APSM-jSO, LSHADE, and LSHADE-Epsin. This indicates that NLAPSMjSO-EDA
outperforms the six DE-based competitors in 10D according to the Friedman test results,
though the differences are not significant.

(b) For 30D, NLAPSMjSO-EDA ranks first, followed by IDE-EDA, EBOwithCMAR,
APSM-jSO, LSHADE, LSHADE-Epsin, and MadDE. This indicates that NLAPSMjSO-EDA
significantly outperforms the six DE-based competitors in 30D according to the Friedman
test results.

(c) For 50D, NLAPSMjSO-EDA ranks first, followed by IDE-EDA, APSM-jSO,
EBOwithCMAR, LSHADE-Epsin, LSHADE, and MadDE. This indicates that NLAPSMjSO-
EDA significantly outperforms the six DE-based competitors in 50D according to the
Friedman test results.

(d) For 100D, NLAPSMjSO-EDA ranks first, followed by LSHADE-Epsin, EBOwithC-
MAR, IDE-EDA, APSM-jSO, LSHADE, and MadDE. This indicates that NLAPSMjSO-EDA
significantly outperforms the six DE-based competitors in 100D according to the Friedman
test results.

In Table 14, NLAPSMjSO-EDA is ranked first by the “Mean Rank”; IDE-EDA, EBOwith-
CMAR, APSM-jSO, LSHADE-Epsin, LSHADE, and MadDE are ranked thereafter. We may
infer that NLAPSMjSO-EDA performs better than any of its rivals, proving that it greatly
improves APSM-jSO performance. A competitive jSO version and a potential APSM-jSO
variation is NLAPSMjSO-EDA.

In order to validate the differences between NLAPSMjSO-EDA, EBOwithCMAR,
IDE-EDA, MadDE, APSM-jSO, LSHADE, and LSHADE-Epsin based on the Friedman
test findings, Nemenyi tests [45] were also employed as post-hoc testing. The extent of
differences across dimensions between NLAPSMjSO-EDA and the six DE-based rivals

Symmetry 2025, 17, 153 35 of 45

is shown in Figure 13, while the differences in the “Overall dimension-wise comparison
ranking” based on Friedman test findings are shown in Figure 14. Significant statistical
differences are shown by the red lines.

Figure 12. Friedman rankings of the seven algorithms.

Table 14. Algorithm Performance Comparison.

Algorithm 10D 30D 50D 100D Mean Mean Rank

NLAPSMjSO-EDA 3.6724 2.6207 2.4310 2.7931 2.8793 1
APSM-jSO 3.9483 3.6379 3.6379 3.6552 3.7198 4
IDE-EDA 3.7759 3.3966 3.1897 3.4138 3.4440 2
LSHADE-Epsin 4.8103 4.0862 3.8793 3.0517 3.9569 5
MadDE 3.7931 6.4655 6.5862 7 5.9612 7
LSHADE 4.2414 4.2414 4.4655 4.6897 4.4095 6
EBOwithCMAR 3.7586 3.5517 3.8103 3.3966 3.6293 3

At 100D, the chi-square is 79.89 with a p-value of 3.76 × 10−15. At 50D, the chi-square is 66.49 with a p-value of
2.14 × 10−12. At 30D, the chi-square is 60.81 with a p-value of 3.08 × 10−11. At 10D, the chi-square is 7.37 with a
p-value of 0.2876.

From Figure 13, NLAPSMjSO-EDA ranks first in 10D, showing no significant dif-
ferences from its competitors. In 30D, 50D, and 100D, NLAPSMjSO-EDA considerably
outperforms MadDE, and in 50D and 100D, it outperforms LSHADE and MadDE, re-
spectively. However, for EBOwithCMAR, IDE-EDA, APSM-jSO, and LSHADE-Epsin,
there are no significant differences. Figure 14 indicates that NLAPSMjSO-EDA shows no
significant differences in overall dimension-wise comparison rankings compared to IDE-
EDA and EBOwithCMAR, but significantly outperforms MadDE, APSM-jSO, LSHADE,
and LSHADE-Epsin.

Considering the poor performance of MadDE in 30D, 50D, and 100D, it was excluded,
and the Friedman test rankings were recalculated, resulting in Figures 15 and 16. From
Figure 15, NLAPSMjSO-EDA ranks first in 10D, showing no significant differences from
its competitors. NLAPSMjSO-EDA performs much better than LSHADE and LSHADE-
Epsin for 30D and 50D, but it does not vary significantly from EBOwithCMAR, IDE-EDA,
or APSM-jSO. In 100D, NLAPSMjSO-EDA significantly outperforms LSHADE. Figure 16
indicates that in the overall dimension-wise comparison rankings, NLAPSMjSO-EDA
shows no significant differences compared to IDE-EDA, but significantly outperforms

Symmetry 2025, 17, 153 36 of 45

EBOwithCMAR, APSM-jSO, LSHADE, and LSHADE-Epsin. Overall, NLAPSMjSO-EDA
proves to be a highly competitive algorithm.

Figure 13. Comparing NLAPSMjSO-EDA and six DE-based rivals dimension-wise with CDV.

Figure 14. Comparing six DE-based rivals with NLAPSMjSO-EDA overall dimension-wise
utilizing CDV.

Symmetry 2025, 17, 153 37 of 45

Figure 15. Comparing NLAPSMjSO-EDA and five DE-based rivals dimension-wise with CDV.

Figure 16. Comparing five DE-based rivals with NLAPSMjSO-EDA overall dimension-wise
utilizing CDV.

4.3.3. Evaluation of Time Complexity

To evaluate the computational intricacy of NLAPSMjSO-EDA, this section uses the
algorithm complexity assessment guidelines from the IEEE CEC 2017 benchmark [44].
The method complexity is (T2 − T1)/T0, where T0, T1, and T2 are specified in compliance
with [44].

Symmetry 2025, 17, 153 38 of 45

Table 15 contrasts six DE-based versions with NLAPSMjSO-EDA in terms of com-
plexity. In Algorithm 2, T0 is calculated by measuring the total execution time required
to perform a set of basic mathematical operations repeated 1,000,000 times. The elapsed
time serves as a benchmark for normalizing the computational complexity of other al-
gorithms using the formula (T2 − T1)/T0. Table 15 presents the computational com-
plexity of NLAPSMjSO-EDA, APSM-jSO, IDE-EDA, LSHADE-Epsin, MadDE, LSHADE,
and EBOwithCMAR for a more understandable comparison. Here, S represents seconds.

Table 15. Comparison of Time Complexity.

Algorithm
T2/S (T2 − T1)/T0

10D 30D 50D 100D 10D 30D 50D 100D

NLAPSMjSO-EDA 0.97188 1.6696 2.1975 5.0469 0.4389 0.5943 2.1698 1.632
APSM-jSO 0.57405 0.84655 1.2811 3.1345 2.0174 1.8693 2.1886 0.6933
IDE-EDA 0.65074 1.0083 1.5201 3.518 0.1018 1.4811 3.6839 2.3867
LSHADE-Epsin 5.1412 3.4443 3.0373 6.3919 2.1651 0.6745 0.882 1.7735
MadDE 1.1175 1.3686 4.7020 114.9105 14.1085 14.4811 15.4717 265.0896
LSHADE 0.78221 0.93036 1.3424 4.2259 11.0090 9.0066 9.2877 10.5189
EBOwithCMAR 1.8511 2.5996 4.0179 12.3922 0.4953 1.1651 3.2736 7.1415

T0 = 0.0212, T1(10D) = 0.96258, T1(30D) = 1.6822, T1(50D) = 2.2435, T1(100D) = 5.0815 for NLAPSMjSO-EDA;
T0 = 0.0212, T1(10D) = 0.53128, T1(30D) = 0.88618, T1(50D) = 1.3275, T1(100D) = 3.1492 for APSM-jSO;
T0 = 0.0212, T1(10D) = 0.6529, T1(30D) = 1.0397, T1(50D) = 1.4402, T1(100D) = 3.5686 for IDE-EDA; T0 = 0.0212,
T1(10D) = 5.0953, T1(30D) = 3.4586, T1(50D) = 3.056, T1(100D) = 6.3543 for LSHADE-Epsin; T0 = 0.0212,
T1(10D) = 1.4166, T1(30D) = 1.6756, T1(50D) = 5.03, T1(100D) = 120.5304 for MadDE; T0 = 0.0212,
T1(10D) = 1.0156, T1(30D) = 1.1213, T1(50D) = 1.5393, T1(100D) = 4.4489 for LSHADE; T0 = 0.0212,
T1(10D) = 1.8406, T1(30D) = 2.6243, T1(50D) = 3.9485, T1(100D) = 12.5436 for EBOwithCMAR.

NLAPSMjSO-EDA shows lower computational complexity than other algorithms in
the 30D dimension.

At 10D, NLAPSMjSO-EDA is less complex than IDE-EDA and on par with EBOwithCMAR.
At 50D, NLAPSMjSO-EDA is less complex than LSHADE-Epsin and IDE-EDA,

and comparable to APSM-jSO.
At 100D, NLAPSMjSO-EDA is less complex than APSM-jSO and comparable to

LSHADE-Epsin.

Algorithm 2 Computer T0.

Input: Initialize x to 0.55;
1: Start timer;
2: for i from 1 to 1,000,000 do
3: x = x + x;
4: x = x/2;
5: x = x × x;
6: x =

√
x;

7: x = log x;
8: x = exp x;
9: x = x/(x + 2);

10: end for
11: Stop timer;
Output: Calculate elapsed_time;
12: Display elapsed_time;

Symmetry 2025, 17, 153 39 of 45

4.3.4. Convergence and Robustness Analysis

This section discusses NLAPSMjSO-EDA’s robustness and convergence performance.
Only six benchmark functions in 50 dimensions—a unimodal function (F1), a basic mul-
timodal function (F4), a hybrid function (F10), and three composite functions (F21, F23,
and F30)—have convergence and box plots supplied for the sake of conciseness. The graph-
ics show convergence and box plots for every function in every dimension.

Figure 17 shows the average convergence plots of NLAPSMjSO-EDA and 6 DE-based
competitors over 51 independent runs on the mentioned functions. NLAPSMjSO-EDA
demonstrates superior convergence speed compared to MadDE, APSM-jSO, IDE-EDA,
LSHADE-Epsin, and LSHADE on the selected functions. On functions F10, F21, and F23,
NLAPSMjSO-EDA’s convergence speed is slightly inferior to that of EBOwithCMAR. Over-
all, the convergence performance of NLAPSMjSO-EDA is comparable to EBOwithCMAR,
but it shows significant advantages over the other five competitors. These results indicate
that NLAPSMjSO-EDA is a competitive choice among the evaluated algorithms.

The robustness of NLAPSMjSO-EDA is illustrated by the box plots of 51 separate run
results, which are displayed in Figures 18–23. The center median, outliers, and first and
third quartile values are displayed in every box graphic.The symbol “+” represents an
outlier, which is commonly used in statistical analysis and data visualization to identify
data points that significantly deviate from the main distribution. It can be observed that
NLAPSMjSO-EDA exhibits outliers only in F21 and F23, similar to APSM-jSO. IDE-EDA
shows three outliers, LSHADE-Epsin shows two outliers, MadDE shows three outliers,
LSHADE shows three outliers, and EBOwithCMAR shows four outliers. This suggests that
APSM-jSO’s robustness is maintained even while its performance is improved.

Figure 17. Cont.

Symmetry 2025, 17, 153 40 of 45

Figure 17. Convergence plots of results obtained by NLAPSMjSO-EDA and 6 competitors (D = 50).

Figure 18. Boxplox of Algorithm Result of F1 (D = 50).

Figure 19. Boxplox of Algorithm Result of F4 (D = 50).

Symmetry 2025, 17, 153 41 of 45

Figure 20. Boxplox of Algorithm Result of F10 (D = 50).

Figure 21. Boxplox of Algorithm Result of F21 (D = 50).

Figure 22. Boxplox of Algorithm Result of F23 (D = 50).

Symmetry 2025, 17, 153 42 of 45

Figure 23. Boxplox of Algorithm Result of F30 (D = 50).

5. Conclusions and Future Work
In order to further boost APSM-jSO performance, this work suggests combining a new

population reduction strategy (NL non-linear decrement) with a new population update
technique (EDA Gaussian sampling to generate an elite population). By modifying the pop-
ulation reduction method, it is possible to explore the optimal solution for more generations,
enhancing local exploration capabilities. Furthermore, by reducing the difficulty of escap-
ing local optima brought on by the APSM-jSO algorithm’s latter phases of diversity loss,
the EDA algorithm can indirectly improve the system’s capacity for global exploration. In
an effort to significantly boost APSM-jSO efficiency, a novel population reduction approach
(NL non-linear decrement) and a population updating method (EDA Gaussian sampling to
produce an elite population) are introduced in this study. The findings of statistical anal-
ysis verify that in 10D, NLAPSMjSO-EDA performs similarly to IDE-EDA, is marginally
worse than EBOwithCMAR and MadDE, and considerably surpasses APSM-jSO, LSHADE-
Epsin, and LSHADE. In 30D, NLAPSMjSO-EDA significantly outperforms APSM-jSO,
LSHADE-Epsin, LSHADE, and IDE-EDA, and is comparable to EBOwithCMAR. In 50D,
NLAPSMjSO-EDA significantly outperforms all algorithms. In 100D, NLAPSMjSO-EDA
significantly outperforms APSM-jSO, LSHADE-Epsin, and LSHADE, and is comparable to
LSHADE-Epsin and IDE-EDA. Overall, in terms of average ranking across all dimensions,
NLAPSMjSO-EDA ranks first and shows a significant performance gap compared to the
other six algorithms.

In conclusion, the NLAPSMjSO-EDA proposed in this work is a possible jSO and EDA
modification that may successfully further enhance the overall efficiency of APSM-jSO,
even though APSM-jSO is already an extremely efficient method. To fully realize the
performance potential of NLAPSMjSO-EDA, more adjustments to its parameters can be
made in subsequent work. However, this study has some limitations that require further
exploration. First, the applicability of the proposed method has primarily been validated
through benchmark function tests, and its performance in real-world complex engineering
problems needs further investigation and evaluation. Second, the algorithm has not yet
been tested or optimized for multi-objective optimization problems, which represents an
important direction for future research. The algorithm code has been open-sourced at
https://github.com/ljxzzl/NLAPSMjSO-EDA (accessed on 16 January 2025).

https://github.com/ljxzzl/NLAPSMjSO-EDA

Symmetry 2025, 17, 153 43 of 45

Author Contributions: Conceptualization, H.K.; methodology, H.K.; project administration, J.L.
and Y.S.; software, X.S.; validation, X.S. and Q.C.; visualization, J.L. and Q.C.; formal analysis,
H.K.; investigation, Q.C.; resources, Y.S.; data curation, J.L.; writing—original draft preparation, J.L.;
writing—review and editing, H.K. and X.S.; supervision: X.S.; funding acquisition: Y.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supplied by the National Natural Science Foundation of China (62366057)
and Open Foundation of Key Laboratory of Software Engineering of Yunnan Province (Grant Nos.
2020SE308 and 2020SE309).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: We certify that we have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials
discussed in this manuscript.

References
1. Vargas, D.E.C.; Lemonge, A.C.C.; Barbosa, H.J.C.; Bernardino, H.S. An interactive reference-point-based method for incorporating

user preferences in multi-objective structural optimization problems. Appl. Soft Comput. 2024, 165, 112106. [CrossRef]
2. Brest, J.; Maucec, M.S.; Boskovic, B. Single objective real-parameter optimization: Algorithm jSO. In Proceedings of the 2017 IEEE

Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1311–1318.
[CrossRef]

3. Wang, X.; Tang, L. An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization.
Inf. Sci. 2016, 348, 124–141. [CrossRef]

4. Gong, W.; Cai, Z.; Liang, D. Adaptive ranking mutation operator based differential evolution for constrained optimization. IEEE
Trans. Cybern. 2015, 45, 716–727. [CrossRef] [PubMed]

5. Sun, J.; Li, Y. Multi-feature fusion network for road scene semantic segmentation. Comput. Electr. Eng. 2021, 92, 107155. [CrossRef]
6. Wang, P.; Wang, D.; Zhang, X.; Li, X.; Peng, T.; Lu, H.; Tian, X. Numerical and experimental study on the maneuverability of an

active propeller control-based wave glider. Appl. Ocean Res. 2020, 104, 102369. [CrossRef]
7. Chen, X. Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with

valve-point effects. Energy 2020, 203, 117874. [CrossRef]
8. Dong, Z.; Mao, S.; Perc, M.; Du, W.; Tang, Y. A distributed dynamic event-triggered algorithm with linear convergence rate for the

economic dispatch problem. IEEE Trans. Netw. Sci. Eng. 2023, 10, 500–513. [CrossRef]
9. Jodlbauer, H.; Strasser, S. Capacity-driven production planning. Comput. Ind. 2019, 113, 103126. [CrossRef]
10. Mohamed, A.W.; Mohamed, A.K.; Elfeky, E.Z.; Saleh, M. Enhanced directed differential evolution algorithm for solving

constrained engineering optimization problems. Int. J. Appl. Metaheuristic Comput. 2019, 10, 1–28. [CrossRef]
11. Shen, Y.; Liang, Z.; Kang, H.; Sun, X.; Chen, Q. A modified jSO algorithm for solving constrained engineering problems. Symmetry

2020, 13, 63. [CrossRef]
12. Lu, H.; Zhang, M.; Xu, X.; Li, Y.; Shen, H. Deep fuzzy hashing network for efficient image retrieval. IEEE Trans. Fuzzy Syst. 2020,

29, 166–176. [CrossRef]
13. Peng, J.; Li, Y.; Kang, H.; Shen, Y.; Sun, X.; Chen, Q. Impact of population topology on particle swarm optimization and its

variants: An information propagation perspective. Swarm Evol. Comput. 2022, 69, 100990. [CrossRef]
14. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359.:1008202821328. [CrossRef]
15. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business

Media: New York, NY, USA, 2006.
16. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2010, 15, 4–31.

[CrossRef]
17. Aslantas, V.; Kurban, R. Fusion of multi-focus images using differential evolution algorithm. Expert Syst. Appl. 2010, 37, 8861–8870.

[CrossRef]
18. Segura, C.; Coello, C.A.C.; Hernández-Díaz, A.G. Improving the vector generation strategy of differential evolution for large-scale

optimization. Inf. Sci. 2015, 323, 106–129. [CrossRef]

http://doi.org/10.1016/j.asoc.2024.112106
http://dx.doi.org/10.1109/CEC.2017.7969456
http://dx.doi.org/10.1016/j.ins.2016.01.068
http://dx.doi.org/10.1109/TCYB.2014.2334692
http://www.ncbi.nlm.nih.gov/pubmed/25055390
http://dx.doi.org/10.1016/j.compeleceng.2021.107155
http://dx.doi.org/10.1016/j.apor.2020.102369
http://dx.doi.org/10.1016/j.energy.2020.117874
http://dx.doi.org/10.1109/TNSE.2022.3216572
http://dx.doi.org/10.1016/j.compind.2019.103126
http://dx.doi.org/10.4018/IJAMC.2019010101
http://dx.doi.org/10.3390/sym13010063
http://dx.doi.org/10.1109/TFUZZ.2020.2984991
http://dx.doi.org/10.1016/j.swevo.2021.100990
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1016/j.eswa.2010.06.011
http://dx.doi.org/10.1016/j.ins.2015.06.029

Symmetry 2025, 17, 153 44 of 45

19. Mallipeddi, R.; Lee, M. An evolving surrogate model-based differential evolution algorithm. Appl. Soft Comput. 2015, 34, 770–787.
[CrossRef]

20. Sun, X.; Wang, D.; Kang, H.; Shen, Y.; Chen, Q. A two-stage differential evolution algorithm with mutation strategy combination.
Symmetry 2021, 13, 2163. [CrossRef]

21. Zhu, L.; Ma, Y.; Bai, Y. A self-adaptive multi-population differential evolution algorithm. Nat. Comput. 2020, 19, 211–235.
[CrossRef]

22. Ma, Y.; Bai, Y. A multi-population differential evolution with best-random mutation strategy for large-scale global optimization.
Appl. Intell. 2020, 50, 1510–1526. [CrossRef]

23. Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings
of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 1658–1665. [CrossRef]

24. Sun, X.; Jiang, L.; Shen, Y.; Kang, H.; Chen, Q. Success history-based adaptive differential evolution using turning-based mutation.
Mathematics 2020, 8, 1565. [CrossRef]

25. Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009,
13, 945–958. [CrossRef]

26. Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighbor-
hood for solving CEC2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC),
Donostia, Spain, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017. [CrossRef]

27. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 71–78.
[CrossRef]

28. Kumar, A.; Misra, R.K.; Singh, D. Improving the local search capability of effective butterfly optimizer using covariance matrix
adapted retreat phase. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June
2017; IEEE: Piscataway, NJ, USA, 2017. [CrossRef]

29. Biswas, S.; Saha, D.; De, S.; Cobb, A.D.; Das, A.; Jalaian, B.A. Improving differential evolution through Bayesian hyperparameter
optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 12–15 July 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 832–840. [CrossRef]

30. Li, Y.; Han, T.; Tang, S.;Huang, C.; Zhou, H.; Wang, Y. An improved differential evolution by hybridizing with estimation-of-
distribution algorithm. Inf. Sci. 2023, 619, 439–456. [CrossRef]

31. Li, Y.; Zhang, W.; Li, X.; Ma, H. APSM-jSO: A novel jSO variant with an adaptive parameter selection mechanism and a new
external archive updating mechanism. Swarm Evol. Comput. 2023, 78, 101283. [CrossRef]

32. Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017
Benchmark problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13
July 2018; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]

33. Xia, X.; Tong, L.; Zhang, Y.; Xu, X.; Yang, H.; Gui, L.; Li, Y.; Li, K. NFDDE: A novelty-hybrid-fitness driving differential evolution
algorithm. Inf. Sci. 2021, 579, 33–54. [CrossRef]

34. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-RSP algorithm with adaptive archive and selective pressure for CEC 2021
numerical optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 12–15
July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 809–816. [CrossRef]

35. Elsayed, S.; Harnza, N.; Sarker, R. Testing united multi-operator evolutionary algorithms-II on single objective optimization
problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2966–2973. [CrossRef]

36. Mühlenbein, H.; Paaß, G. From recombination of genes to the estimation of distributions I. Binary parameters. In Parallel Problem
Solving from Nature; Springer: Berlin, Germany, 1996; pp. 178–187.—982. [CrossRef]

37. Larrañaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Kluwer: Boston, MA,
USA, 2002. . [CrossRef]

38. Pelikan, M.; Goldberg, D.E.; Lobo, F. A survey of optimization by building and using probabilistic models. Comput. Optim. Appl.
2002, 21, 5–20. https://10.1109/ACC.2000.879173. [CrossRef]

39. Zhou, B.; Huang, Y. An adaptive archive differential evolution with non-linear population size reduction and selective pressure.
Inf. Sci. 2024, 682, 121273. [CrossRef]

40. Zhou, B.-H.; Hu, L.-M.; Zhong, Z.-Y. A hybrid differential evolution algorithm with estimation of distribution algorithm for
reentrant hybrid flow shop scheduling problem. Neural Comput. Appl. 2018, 30, 193–209. [CrossRef]

41. Du, K.-L.; Swamy, M.N.S. Estimation of distribution algorithms. Search and Optimization by Metaheuristics: Techniques and
Algorithms Inspired by Nature; Springer International Publishing: Cham, Switzerland, 2016; pp. 105–119. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2015.06.010
http://dx.doi.org/10.3390/sym13112163
http://dx.doi.org/10.1007/s11047-019-09757-3
http://dx.doi.org/10.1007/s10489-019-01613-2
http://dx.doi.org/10.1109/CEC.2014.6900380
http://dx.doi.org/10.3390/math8091565
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1109/cec.2017.7969336
http://dx.doi.org/10.1109/CEC.2013.6557555
http://dx.doi.org/10.1109/cec.2017.7969524
http://dx.doi.org/10.1109/CEC45853.2021.9504792
http://dx.doi.org/10.1016/j.ins.2022.11.029
http://dx.doi.org/10.1016/j.swevo.2023.101283
http://dx.doi.org/10.1109/cec.2018.8477977
http://dx.doi.org/10.1016/j.ins.2021.07.082
http://dx.doi.org/10.1109/CEC45853.2021.9504959
http://dx.doi.org/10.1109/CEC.2016.7744164
http://dx.doi.org/10.1007/3-540-61723-X—982
http://dx.doi.org/10.1007/978-1-4615-1539-5
http://dx.doi.org/10.1023/A:1013500812258
http://dx.doi.org/10.1016/j.ins.2024.121273
http://dx.doi.org/10.1007/s00521-016-2692-y
http://dx.doi.org/10.1007/978-3-319-41192-77

Symmetry 2025, 17, 153 45 of 45

42. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H. Evaluating the performance of adaptive gaining-sharing knowledge
based algorithm on CEC2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [CrossRef]

43. Ren, Z.; Liang, Y.; Wang, L.; Yao, X. Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm.
Knowl. Based Syst. 2018, 146, 142–151. [CrossRef]

44. Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special
Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang
Technological University: Singapore, 2016.

45. Li, Y.; Han, T.; Zhou, H.; Zhao, X. An adaptive L-SHADE algorithm and its application in UAV swarm resource configuration
problem. Inf. Sci. 2022, 606, 350–367. [CrossRef]

46. Yi, W.; Chen, Y.; Pei, Z.; Lu, J. Adaptive differential evolution with ensembling operators for continuous optimization problems.
Swarm Evol. Comput. 2022, 69, 100994. [CrossRef]

47. Pluhacek, M.; Viktorin, A.; Kadavy, T.; Kazikova, A. On the common population diversity measures in metaheuristics and their
limitations. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 7–10
December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CEC48606.2020.9185901
http://dx.doi.org/10.1016/j.knosys.2018.02.001
http://dx.doi.org/10.1016/j.ins.2022.05.058
http://dx.doi.org/10.1016/j.swevo.2021.100994
http://dx.doi.org/10.1109/SSCI50451.2021.9660135

	Introduction
	Related Work
	Differential Evolution
	LSHADE
	LSHADE-Epsin
	EBOwithCMAR
	MadDE
	IDE-EDA
	APSM-jSO

	The Proposed NLAPSMjSO-EDA Algorithm
	Numerical Trials Utilizing the CEC 2017 Test Suite
	Parameter Tuning
	Analysis of Strategy Effectiveness
	 Compared with Other Advanced DE Algorithms
	 Examination of the Wilcoxon Signed-Rank Test Outcomes
	Analysis of Friedman Test Results
	Evaluation of Time Complexity
	Convergence and Robustness Analysis

	Conclusions and Future Work
	References

