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Abstract: Our goal in this paper is to generalize the class of additive functions to a more
general class of functions, h-additive functions, and give several characterizations of this
class by using its symmetry. Also, we provide a definition of this class of hn-additive
functions and give several characteristics for it. The density of this class of functions in the
plane is given as well. The characterization of the continuity of this class also is presented.
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1. Introduction
Throughout this paper, Q, Q+, R, R+, and G denote the set of rational numbers,

positive rational numbers, the set of real numbers, the set of non-negative real numbers,
and an additive group, respectively. A function f : R → R is said to be additive if
the equality

f (x + y) = f (x) + f (y) (x, y ∈ R) (1)

holds true. Additive functions have many applications in functional equations and other
mathematical fields including real and complex analysis, functional analysis, geometry,
fluid and dynamical systems, statistics, probability, economics, and partial differential
equations. Equation (1) is also known as Cauchy’s functional equation. Cauchy [1] first
found the general continuous solution for (1). An investigation of (1) assumes various
types of regularity of the known function f : R → R; each of these regularities yields the
existence of c ∈ R such that f (x) = cx for all x ∈ R. For instance, Cauchy [1] supposed that
f is continuous, Darboux [2] assumed that f is either bounded on an interval or monotone,
Fréchet [3], Sierpiński [4] and Figiel [5] assumed that f is Lebesgue measurable, Mehdi [6]
supposed that f is bounded above on a second Baire set, and Kormes [7] imposed that f is
bounded on a measurable set of positive measures. Hamel [8] investigated Equation (1)
without any regularity on f ; he used the Hamel bases to find all nonlinear solutions. Maksa
and Volkmann [9] characterized the additive functions and gave inequalities that imply
them. Aczél and Dhombers [10] gave the proof of the density of additive functions in the
plane. A function f : R → R is said to be a square-norm (or quadratic, parallelogram, or
Jordan–von Neumann) function if it fulfills the equality

f (x + y) + f (x − y) = 2 f (x) + 2 f (y) (x, y ∈ R).
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A function f : R → R is said to be a monomial if

∆n
y f (x) = n! f (y) (x, y ∈ R),

where ∆1
y f (x) = ∆y f (x) = f (x + y)− f (x) for all x, y ∈ R and ∆n+1

y f (x) = ∆y(∆n
y f (x))

for all x, y ∈ R and n ∈ N. The additive function is a monomial with n = 1 and the
square-norm function is a monomial with n = 2.

Gilanyi [11] gave several characterizations of square-norm functions. Daroczy and
Kátai [12] gave a characterization of a differentiable additive function. Daroczy and
Kátai [13] gave a characterization of continuous additive functions. Daroczy and Kátai [14]
characterized the additive functions in the circle group. Páles and Shihab [15] proved that
the discontinuous additive functions satisfy several inequalities. For more details and
characteristics of additive functions, we refer to references [10,16–19]. Ng [20] characterized
the Wright convex function by the convex and additive functions. Maksa and Páles [21]
generalized Ng’s Theorem to a higher-order convexity. Páles and Shihab [22] gave a
new proof of the decomposition theorem of Maksa and Páles. In addition, Páles and
Shihab [23] gave a generalization of Ng’s Theorem for the convexity with respect to the
Chebyshev system.

In this paper, we generalize the additive functions to a more general class, namely
h-additive functions, and give several characterizations for it in Section 2. In Section 3, we
study such a class of h-additive functions, namely hn-additive functions.

Our investigation of this class assumes that f is continuous to introduce the existence
of c ∈ R such that f (x) = cx for all x ∈ R. We give a solution for the problem studied
by Cauchy and the authors mentioned above in our new class of hn-additive functions.
We prove the homogeneity of this class with respect to rational numbers. The density of
discontinuous functions in this class is given. The continuity characterization of this class is
presented as well. The motivation of this generalization is to introduce a class of functions
that satisfy several symmetry properties of the standard class of additive functions.

2. h-Additive Functions
In this section, we give a definition of h-additive functions and several characteriza-

tions of this class. In what follows, we say that a function f : G → R is h-additive if there
exists a function h : G → R such that the equality

f (x + y) = h(x) f (x) + h(y) f (y) (x, y ∈ G) (2)

holds true. We give an example of an h-additive function.

Example 1. Let f (x) = x + c and h(x) =
x+ 1

2 c
x+c , where f , h : R → R and c is a real constant

with c ̸= −x. Therefore, the right-hand side of (2) is

x + 1
2 c

x + c
(x + c) +

y + 1
2 c

y + c
(y + c) = x + y + c,

which is the left-hand side of (2). This equality shows that f is an
x+ 1

2 c
x+c -additive function.

Clearly, the particular case of (2) when h(x) = 1 is an additive function. In the present
paper, we consider h : G → R as an arbitrary function. We consider the norm defined by
∥x∥ =

√
⟨x, x⟩ for all x ∈ R.

In the next two theorems, we give characterizations of h-additive functions. The next
theorem is a counterpart of a result given by Maksa and Volkmann [9].
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Theorem 1. Let f : G → R be an arbitrary function. If the inequality

∥ f (x + y)− h(x) f (x)∥ ≤ ∥h(y) f (y)∥ (x, y ∈ G) (3)

holds, then f is h-additive.

Proof. According to (3), we have that

∥ f (x + y)∥2 + ∥h(x) f (x)∥2 − 2⟨ f (x + y), h(x) f (x)⟩ ≤ ∥h(y) f (y)∥2 (x, y ∈ G)

By exchanging the role of x and y in this equation, we have that

∥ f (x + y)∥2 + ∥h(y) f (y)∥2 − 2⟨ f (x + y), h(y) f (y)⟩ ≤ ∥h(x) f (x)∥2 (x, y ∈ G)

Adding the above two inequalities, we have that

2∥ f (x + y)∥2 − 2⟨ f (x + y), h(x) f (x) + h(y) f (y)⟩ ≤ 0 (x, y ∈ G) (4)

This inequality, after being divided by 2, implies that

⟨ f (x + y), f (x + y)− h(x) f (x)− h(y) f (y)⟩ ≤ 0 (x, y ∈ G). (5)

According to the inequality (4), we have that

⟨ f (x + y),−h(x) f (x)− h(y) f (y)⟩ ≤ 0 (x, y ∈ G). (6)

In view of the positivity of ∥h(x) f (x) + h(y) f (y)∥, we have that

−∥h(x) f (x) + h(y) f (y)∥2 ≤ 0 (x, y ∈ G)

This inequality implies that

⟨−h(x) f (x)− h(y) f (y),−h(x) f (x)− h(y) f (y)⟩ ≤ 0 (x, y ∈ G). (7)

Adding (6) and (7), we have that

⟨ f (x + y)− h(x) f (x)− h(y) f (y),−h(x) f (x)− h(y) f (y)⟩ ≤ 0 (x, y ∈ G). (8)

Adding (5) and (8), we have that

⟨ f (x + y)− h(x) f (x)− h(y) f (y), f (x + y)− h(x) f (x)− h(y) f (y)⟩ ≤ 0 (x, y ∈ G).

This inequality implies that

∥ f (x + y)− h(x) f (x)− h(y) f (y)∥2 ≤ 0 (x, y ∈ G).

Therefore, the equality (2) is proven. Thus, f is h-additive.

Corollary 1. Let f : G → R be an arbitrary function. If the inequality

∥ f (x + y)− h(y) f (y)∥ ≤ ∥h(x) f (x)∥ (x, y ∈ G) (9)

then the equality (2) holds.
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Proof. By changing the role of x and y in the inequality (9), we have that

∥ f (x + y)− h(x) f (x)∥ ≤ ∥h(y) f (y)∥ (x, y ∈ G).

Now, applying Theorem 1 yields that Equation (2) holds for x, y ∈ G.

The next example shows that the inequality

∥h(x) f (x) + h(y) f (y)∥ ≤ ∥ f (x + y)∥ (x, y ∈ G), (10)

in general does not imply Equation (2). If we assume that h = 0 and f is a non-zero constant
c, then we have that this inequality holds but the equality (2) does not hold.

We look for a condition on the function h such that the inequality (10) implies (2).

Theorem 2. Let f : G → R be an arbitrary function. If (10) and

⟨h(x) f (x) + h(y) f (y)− f (x + y),− f (x + y)⟩ ≤ 0 (x, y ∈ G) (11)

hold, then the equality (2) holds.

Proof. Equation (10) is equivalent to

∥h(x) f (x) + h(y) f (y)− f (x + y) + f (x + y)∥2 ≤ ∥ f (x + y)∥2 (x, y ∈ G).

This inequality implies that

∥h(x) f (x) + h(y) f (y)− f (x + y)∥2 + ∥ f (x + y)∥2+2⟨h(x) f (x) + h(y) f (y)− f (x + y), f (x + y)⟩
≤ ∥ f (x + y)∥2 (x, y ∈ G).

This inequality implies that

∥h(x) f (x) + h(y) f (y)− f (x + y)∥2+2⟨h(x) f (x) + h(y) f (y)− f (x + y), f (x + y)⟩
≤ 0 (x, y ∈ G).

Adding this inequality to (11), we have that

∥h(x) f (x) + h(y) f (y)− f (x + y)∥2+⟨h(x) f (x) + h(y) f (y)− f (x + y), f (x + y)⟩
≤ 0 (x, y ∈ G).

From this inequality, we infer that

⟨h(x) f (x) + h(y) f (y)− f (x + y), h(x) f (x) + h(y) f (y)⟩ ≤ 0 (x, y ∈ G).

Now, combining this inequality with (11), we obtain that

⟨h(x) f (x) + h(y) f (y)− f (x + y), h(x) f (x) + h(y) f (y)− f (x + y)⟩ ≤ 0 (x, y ∈ G).

Therefore, this inequality yields that

∥h(x) f (x) + h(y) f (y)− f (x + y)∥2 ≤ 0 (x, y ∈ G),

which implies Equation (2).
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3. A New Class of h-Additive Functions
In this section, we define a subclass of additive functions called hn-additive functions.

For all n ∈ N, a function f : G → R is said to be hn-additive if there exists a function
h : G → R such that for x1, . . . , xn ∈ G, the function f satisfies the equation

f (x1 + · · ·+ xn) = h(x1) f (x1) + · · ·+ h(xn) f (xn) (x1, . . . , xn ∈ G). (12)

One can easily see that any hn-additive function is h additive, but the converse implication is
not always true. The first result of this section shows the homogeneity of the multiplication
of h and hn-additive functions with rational numbers. The next theorem is a counterpart of
a result given by Cauchy [1].

Theorem 3. If a function f : R → R is hn-additive and satisfies

h(0) = 0, (13)

then
h(rx) f (rx) = rh(x) f (x) (r ∈ Q, x ∈ R). (14)

Furthermore, if h and f are continuous, then h(x) f (x) = cx, where x ∈ R and c is a constant.

Proof. Putting x = y = 0 in (2), we have that

f (0) = h(0) f (0) + h(0) f (0).

Using (13), this equality shows that
f (0) = 0. (15)

By definition, we have that

f (x1 + · · ·+ xn) = h(x1) f (x1) + · · ·+ h(xn) f (xn) (x1, . . . , xn ∈ R).

If x1 = · · · = xn = x, we have that

f (nx) = nh(x) f (x) (x ∈ R). (16)

Assume x = n
m t, where m ∈ N and t ∈ R. This implies that

mx = nt.

This equation yields that
f (mx) = f (nt).

In view of (16), we conclude that

mh(x) f (x) = nh(t) f (t).

This equation yields that
mh( n

m t) f ( n
m t) = nh(t) f (t).

This equation implies that

h( n
m t) f ( n

m t) =
n
m

h(t) f (t). (17)

If t = 1, we obtain
h( n

m ) f ( n
m ) = n

m h(1) f (1).
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Assume h(1) f (1) := c and r := n
m . Therefore, this equality implies that

h(r) f (r) = cr (r ∈ Q+). (18)

If r = 0, then by (15), we have that (18) holds. Since h and f are continuous, by taking limit
on both sides of (18), we obtain

h(x) f (x) = cx (x ∈ R+).

We show that (18) also holds for negative rational r. Since f is h-additive, (2) holds. Putting
y = −x in (2), we have that

f (0) = h(x) f (x) + h(−x) f (−x) (x ∈ R). (19)

In view of our assumption f (0) = 0, this equation yields that

h(x) f (x) = −h(−x) f (−x) (x ∈ R).

Now, this equation and (17) imply that

h(− n
m t) f (− n

m t) = − n
m h(t) f (t).

Therefore, we have that (18) also holds for negative rational r. This proves (14).
Putting x = 1 in (14), we have that

h(r) f (r) = rh(1) f (1) (r ∈ Q).

Assume that h(1) f (1) := c; therefore, we have that

h(r) f (r) = cr (r ∈ Q).

Furthermore, the continuity of h and f allows us to take a limit on both sides of this
equation; thus, we have that

h(x) f (x) = cx (x ∈ R).

Our next result, as a corollary of Theorem 3, shows the homogeneity of the hn-
additive function.

Corollary 2. Assume that a function h satisfies the equality

h(rx) = h(x) (r ∈ Q+, x ∈ R).

If a function f : R → R is hn-additive and satisfies f (0) = 0, then

f (rx) = r f (x) (r ∈ Q, x ∈ R). (20)

Furthermore, if f is continuous, then f (x) = cx, where x ∈ R and c is a constant.

Our next result shows that the hn-additive function is dense in the plane. To prove
this result, we need this lemma in the sequel.
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Lemma 1. Let f : R → R be an hn-additive function and

f (0) = 0.

Assume that n ∈ N for r1, . . . , rn ∈ Q and x1, . . . , xn ∈ R; we have that

f (r1x1 + · · ·+ rnxn) = r1h(x1) f (x1) + · · ·+ rnh(xn) f (xn).

Proof. By definition of hn-additive functions and Theorem 3, we have that

f (r1x1 + · · ·+ rnxn) =h(r1x1) f (r1x1) + · · ·+ h(rnxn) f (rnxn)

= r1h(x1) f (x1) + · · ·+ rnh(xn) f (xn).

So, we obtain what we needed.

Theorem 4. If the function f : R → R is a discontinuous hn-additive and

h(0) = 0,

then everywhere is dense in R2.

Proof. Let x1 ̸= 0 in R. Assume that f is a discontinuous h-additive, hn-additive function
with f (0) = 0; therefore, by Theorem 3, for some x ∈ R, the function f does not satisfy
the equation

h(x) f (x) = cx (c is constant).

Thus, we can find a non-zero point x2 ∈ R such that

h(x1) f (x1)

x1
̸= h(x2) f (x2)

x2
. (21)

In other words, we have that ∣∣∣∣∣x1 h(x1) f (x1)

x2 h(x2) f (x2)

∣∣∣∣∣ ̸= 0.

Therefore, the two rows p1 = (x1, h(x1) f (x1)) and p2 = (x2, h(x2) f (x2)) are linearly
independent. Therefore, they span the plane R2. So, any vector in R2 can be written as
a linear combination of these two vectors. Let r1 and r2 be two rational numbers. By
performing simple calculations and applying Lemma 1, we have that

r1 p1 + r2 p2 =r1(x1, h(x1) f (x1)) + r2(x2, h(x2) f (x2))

= (r1x1 + r2x2, r1h(x1) f (x1) + r2h(x2) f (x2))

= (r1x1 + r2x2, f (r1x1 + r2x2)).

For x1 ̸= 0 and x2 ̸= 0 satisfying (21), we have that the set

G := {(x, y) : x = r1x1 + r2x2, y = f (x); (r1, r2) ∈ Q2}

is dense everywhere in R2. This shows that f is dense in R2.

It is known that additive functions are dense everywhere in R2; therefore, this theorem
generalizes the density of hn-additive functions.

Note that the h-additive function is a special case of hn-additive functions for n = 2.
Therefore, in view of the above theorem in the case where n = 2, we conclude that the
h-additive function is dense everywhere in R2.
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Darboux [24] proved that if an additive function is continuous at a single point x0,
then it is continuous throughout its domain. Therefore, Theorem 4 is a counterpart of
Darboux’s Theorem. The motivation of Theorem 4 is to introduce a class of functions larger
than additive functions satisfying Darboux’s Theorem.

In the following, we generalize this result to the h-additive function.

Theorem 5. Let f : R → R be an hn-additive function. If f and h are continuous at a single point
x0 and h is idempotent, then f is continuous on R.

Proof. If h = 0, then f = 0, which is continuous on all of the real line. Assume that h is
non-zero, and f and h are continuous at x0; therefore, for x ∈ R, we have that

lim
u→x

f (u) = lim
u−x+x0→x0

f (u − x + x0 + x − x0) = lim
t→x0

f (t + x − x0)

= lim
t→x0

h(t) f (t) + lim
t→x0

h(x) f (x)− lim
t→x0

h(x0) f (x0)

= h(x0) f (x0) + h(x) f (x)− h(x0) f (x0) = h(x) f (x).

Now, we have that

lim
u→x

f (u) =
h2(x)
h(x)

f (x).

Since h is idempotent, we have that

lim
u→x

f (u) = f (x).

This equality shows that f is continuous on R.

It is known that additive functions satisfy the above theorem; therefore, this theorem
is a generalization of additive functions. The motivation of Theorem 5 is to introduce a
class of functions larger than additive functions that characterize the continuity of the
hn-additive functions.

According to the above theorem, when n = 2, we have the following corollary:

Corollary 3. Let f : R → R be an h-additive function. If f and h are continuous at a single point
x0 and h is idempotent, then f is continuous on R.

4. Conclusions
In this paper, we define such a class of functions called “h-additive functions”. This

class is more general than the additive functions. The additive functions have many
applications. In this work, we show that h-additive functions have several of these. We
generalize Cauchy’s Theorem to the h-additive function setting. We prove the homogeneity
of this class with respect to rational numbers. The density of discontinuous functions of
this class is given. The continuity characterization of this class is presented as well. We
leave several investigations of additive functions that can be generalized to our new class
for future research.
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