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Abstract: Multi-UAV path planning for police patrols plays an important role in public 
security work, and while many path-planning algorithms have been applied in this area, 
all of them possess various degrees of shortcomings. To further improve the accuracy and 
efficiency of multi-UAV path planning for police patrols, this paper proposes a multi-
UAV police patrol path-planning method based on an improved wolf pack optimization 
algorithm using the strategies of Composite Directional Raid and Dynamic Random 
Search (PMU-3PM-IWPA). Firstly, a multi-UAV police patrol path-planning model was 
constructed to reflect the planning problem for multi-UAV police patrol paths (PMU-
3PM). Moreover, to enhance the performance of the existing wolf pack optimization algo-
rithm, this paper proposes an improved wolf pack optimization algorithm (for short CDR-
DRS-WPOA), including the Composite-Directional Raid Strategy (CDRS), aimed at en-
hancing global exploration capability, as well as the Dynamic Random Search Strategy 
(DRSS), with a view to speeding up the convergence for simple problems and heightening 
the optimization accuracy for difficult problems. Finally, the improved wolf pack optimi-
zation algorithm was adopted to solve the issue of multi-UAV path planning for police 
patrols, and numerical experiments were carried out on 20 public classical datasets as well 
as PMU-3PM compared with GA, PSO, WDX-WPOA, and DAF-BRS-CWOA. The results 
indicate that CDR-DRS-WPOA took 20~80% less time and possessed more optimization 
accuracy, and that PMU-3PM-IWPA based on CDR-DRS-WPOA offers excellent perfor-
mance. 
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1. Introduction 
With the rapid development of unmanned aerial vehicle (for short, UAV) technology 

and the demand for police patrols for social security, police UAV patrols are widely used 
in the daily patrol work of public security. Drones are increasingly being used in policing 
in many countries, as they can help police detect hazards and respond to emergencies in 
a timely manner and at a low cost [1]. Furthermore, efficient and well-organized drone 
patrols can save time and police resources and maximize the chances of apprehending 
criminals [2]. However, how to rationally deploy drones is an important issue today, and 
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drones need to be combined with advanced navigation algorithms and artificial intelli-
gence technology to meet the challenges of operating in complex environments [3]. 

Many scholars have reflected on the development of police drone patrol policing 
modes and the optimization of drone patrol routes. In terms of drone policing patrols, 
Wang et al. proposed a multi-UAV patrol response strategy based on target clustering and 
combinatorial genetic algorithms based on crime prediction results [4]; Yang et al. studied 
a patrol solution based on air‒ground cooperation between multiple UAVs and police 
vehicles [5]; Wang et al. used the area coverage traversal algorithm of multiple unmanned 
ships to study a large-scale maritime patrol task in which multiple unmanned ships coop-
erate to perform area coverage tasks [6]; Liu et al. proposed a whale algorithm based on 
chaos theory to plan the patrol tasks of multiple UAVs to solve the border patrol tasks in 
complex environments [7]; and Andrey V. Savkin et al. designed a model predictive con-
trol-based multi-UAV path-planning algorithm [8]. In terms of UAV path optimization, 
Xiao et al. proposed an enhanced dynamic group-based collaborative optimization to 
solve UAV path planning [9]; Bai et al. developed a new algorithm for UAV flight path 
planning based on improved A∗ and dynamic window algorithms [10]; Yu et al. devel-
oped a hybrid algorithm based on gray wolf optimizer and differential evolution for UAV 
path planning [11]; Zhu et al. proposed UCAV path planning for avoiding obstacles using 
cooperative co-evolution spider monkey optimization [12]; and Wang et al. proposed a 
Modified Mayfly Algorithm for UAV path planning [13]. 

In the past few years, the wolf pack optimization algorithm has attracted extensive 
attention from researchers due to its good global convergence and computational robust-
ness in solving multi-modal complex functions [14]. For instance, Duan et al. developed a 
target allocation method based on the wolf behavior mechanism [15], which solves the 
problem of collaborative target allocation among UAV groups; Lai et al. proposed a dis-
crete wolf pack optimization algorithm aimed at the no-wait flow shop scheduling prob-
lem [16]; and Wang et al. proposed ship automation collision avoidance tactics based on 
the quantum-behaved wolf pack optimization algorithm [17]. At the same time, many 
scholars have improved the performance of the wolf pack optimization algorithm by im-
proving some of its shortcomings. Sun et al. proposed a new wolf intelligent optimization 
algorithm, which have a faster convergence speed and higher robustness [18]; Zhao et al. 
proposed an improved wolf pack optimization algorithm that provides scout wolves var-
iable scouting directions and scouting step length that can be adjusted dynamically based 
on the Fibonacci Sequence to increase the global search capability [19]; and in paper [20], 
the researchers proposed a chaotic disturbance wolf pack optimization algorithm for solv-
ing ultrahigh-dimensional complex functions. 

Therefore, the effective use of the wolf pack optimization algorithm prompts us to 
use an improved wolf pack optimization algorithm to solve the problem of police multi-
UAV security patrol path optimization. This paper therefore proposes an improved wolf 
pack optimization algorithm (CDR-DRS-WPOA) and a discrete algorithm (PMU-3PM-
IWPA) based on CDR-DRS-WPOA to optimize the police multi-UAV security patrol path. 
Moreover, this paper considers various factors, such as energy consumption, to construct 
a practical model (PMU-3PM). In addition, this paper demonstrates the advantages of this 
model through a series of comparative experiments with other existing algorithms, in-
cluding the testing of 20 classical functions and the PMU-3PM model. 

2. Related Works 
2.1. Principle of WDX-WPOA 

Many creatures in nature with limited individual abilities have shown amazing abil-
ities through individual cooperation. Scientists have designed many swarm intelligence 
optimization algorithms by simulating the behavioral characteristics of these biological 
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groups, and have optimized complex functions by mimicking simple rules and interac-
tions between biological individuals; the wolf pack algorithm is a typical representative 
of this. The wolf pack optimization algorithm (WPOA) was first proposed by Yang et al. 
[21], and abstracts the five intelligent lines of Initialization, Migration, Summon-Raid, 
Siege, and Regeneration. The WDX-WPOA was proposed in 2018 by Wang et al. in [22], 
and is an efficient variant of the wolf pack optimization algorithm in the optimization field 
aimed at solving application problems efficiently. Its key steps are as follows. 

Initialization: initialize the necessary parameters and assign the wolf pack to the so-
lution space or definition domain of a function. Assuming that the number of wolves is N 
and the dimension of the solution space is D, then the position of wolf i is shown in Equa-
tion (1). ൜ 𝑥 = ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … … 𝑥ሻ, (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . . ,𝐷)                                                   𝑥ௗି௪ = 𝑟𝑎𝑛𝑔 + 𝑟𝑎𝑛𝑑(1) ∗ (𝑟𝑎𝑛𝑔௫ − 𝑟𝑎𝑛𝑔), (𝑖 = 1, 2, . . . ,𝑁;𝑑 = 1, 2, . . . ,𝐷)  (1)

where, rand (1) is variables randomly distributed in the interval [0, 1], and rangmax and 
rangmin are the upper and lower bounds of the solution space, respectively. 

Migration: wolves roam in search of prey; for the current wolf, an adaptive mesh 
with D dimension is generated to reflect the local neighborhood space of the current po-
sition, (2*k + 1) D points are generated according to Equation (2), and the optimal wolf is 
found to replace the current wolf. 

൞ 𝑠𝑡𝑒𝑝_𝑎 = [1 − (௧ିଵ் )ଶ] ∗ 𝑠𝑡𝑒𝑝_𝑎, (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . ,𝐷)                                     𝑥ௗି௪ = 𝑥ௗ + 𝑠𝑡𝑒𝑝_𝑐 ∗ 𝑘, (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . . ,𝐷, 𝑘 = −𝐾,−𝐾 + 1 … …𝐾)𝑥ି௪ = (𝑥ଵି௪ , 𝑥ଶି௪ , 𝑥ଷି௪ , … … 𝑥ି௪), (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . ,𝐷)       (2)

where, step_a0 is the initial value of migration step size; t is the number of the current 
iteration; T is the maximum number of the current iteration; and K means the number of 
points taken in the same direction of each dimension. 

Summon-Raid: once the wolf receives the summoning signal, it will move towards 
the lead wolf during the raid according to Equation (3), and at the same time look for prey. 
If the new location is a better fit than the current location, the current location is changed 
to the new position according to Equation (3). 

⎩⎪⎪
⎨⎪
⎪⎧ 𝑥ௗି௦௧ = 2 ∗ 𝑏𝑒𝑠𝑡𝑤𝑜𝑙𝑓 − 𝑥ௗ  , (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . ,𝐷)                            𝑥ௗ_ௗ = (௫ା௦௧௪)ଶ , (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . . ,𝐷)                                                    𝑥 = (𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠ൣ𝑥_ଵ, 𝑥_ଶ, … … , 𝑥_(ିଵ), 𝑥_൧, ൣ𝑥_ଵ, 𝑥_ଶ, … … 𝑥_(ௗିଵ), 𝑥ௗ_൧, … …,       ൣ𝑥_ଵ, 𝑥ௗ_ଶ, … … , 𝑥ௗ_(ିଵ), 𝑥ௗ_൧, ൣ𝑥_ଵ, 𝑥ௗ_ଶ, … … , 𝑥ௗ_(ିଵ), 𝑥ௗ_൧, 𝑥ௗି௦௧), (𝑖 =  1,2, … ,𝑁;  𝑑 =  1,2, … ,𝐷;  𝑖 ≤ 𝑛𝑢𝑚/2)             𝑥ௗ_௪ = bestwolf + 𝑟𝑎𝑛𝑑(1) ∗ 𝑠𝑡𝑒𝑝_𝑏, ቀ𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . . ,𝐷; 𝑖 > ୬୳୫ଶ ቁ   

  (3)

where, xid is the coordinate of the wolf i; bestwolf means the coordinate of the best wolf at 
dimension d; ximid_d means the position of the middle point between the wolf i and the best 
wolf; bestfitness means the best fitness of all points, with this line of formula representing 
the best fitness of xi and ximid_d after permutation; xid_opposition; num means the number of the 
wolf population; and step_b means the raid step length. 

Siege: All the wolves are ambushed around the lead wolf (the lead wolf position is 
considered the prey position). A D-dimensional mesh is generated to reflect the local 
neighborhood space of the current location according to Equation (4), and the optimal 
wolf is searched to replace the current wolf. 
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⎩⎪⎪⎨
⎪⎪⎧𝑠𝑡𝑒𝑝_𝑐 = 𝑠𝑡𝑒𝑝_𝑐 ∗ (𝑥ௗି௫ − 𝑥ௗି) ∗ exp ቈ𝑡 ∗ 𝑙𝑛(𝑠𝑡𝑒𝑝_𝑐௫ − 𝑠𝑡𝑒𝑝_𝑐)𝑇              𝑠𝑡𝑒𝑝_𝑐 = [1 − (𝑡 − 1𝑇 )ଶ] ∗ 𝑟𝑎𝑛𝑑(1) ∗ 𝑠𝑡𝑒𝑝_𝑐                                                                                   𝑥ௗି௪ = 𝑥ௗ + 𝑠𝑡𝑒𝑝_𝑐 ∗ 𝑘, (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . . ,𝐷, 𝑘 = −𝐾,−𝐾 + 1 … …𝐾)    𝑥ି௪ = (𝑥ଵି௪ , 𝑥ଶି௪ , 𝑥ଷି௪, … … 𝑥ି௪), (𝑖 =  1, 2, . . . ,𝑁;  𝑑 =  1, 2, . . ,𝐷)        

  (4)

where, step_cmin means the minimum value of the siege step size; step_cmax means the max-
imum value of the siege step size; xd−max means the maximum value of the wolves in d 
dimension; xd−min means the minimum value of the wolves in d dimension; t means the 
current number of iterations; T is the maximum number of iterations; and K means the 
number of points taken in the same direction of each dimension. 

Regeneration: according to the principle of food distribution based on the survival 
of the fittest, the strong will be prioritized for more food while the weak will starve to 
death and be eliminated, so the stronger wolves can continue to survive and the popula-
tion has a better ability to adapt. According to the principle of survival of the fittest, wolves 
with less adaptability are eliminated according to Equation (5), and the same number of 
wolves are regenerated according to Equation (1). 𝑥_௪௦௧ = 𝑤𝑜𝑟𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … … 𝑥), (𝑖 =  1, 2, . . . ,𝑁)                (5) 

where, worstfitness means the five coordinate points with the worst fitness. 
Finally, the overall algorithm will follow the above steps to cycle and determine 

whether the exit condition is reached, and when the stop condition is reached, the algo-
rithm will exit and output the optimal value. 

2.2. Datasets 

In order to verify the excellent performance of the new proposed CDR-DRS-WPOA 
in solving the optimization problem, the functions with unique characteristics, such as 
measured functions, including multi-modal, highly complex, and multi-peak function as 
shown in Table 1, are selected as test datasets. The choice of 20 public datasets is solid, as 
it provides a broad basis for bench marking the algorithm. All test functions will go 
through 50 consecutive tests to obtain data, and calculate the optimal value, worst value, 
average value, standard deviation, number of iterations, average run time, and other in-
dicators of 50 consecutive tests to fully reflect the performance of each algorithm.
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Table 1. Datasets for performance validation. 

Order Function Expression Dimension Range Optimum 

1 Ackley F1= − 20 𝑒𝑥𝑝⎝⎛−0.2ඩ12𝑥ଶଶ
ୀଵ ⎠⎞ − −exp (12  ଶୀଵ cos (2𝜋𝑥)) + 20 + exp (1) 2 [−32.768,32.768] Min f = 0 

2 Three-Hump-Camel F2=2𝑥ଵଶ − 1.05𝑥ଵସ + 𝑥ଵ6 + 𝑥ଵ𝑥ଶ + 𝑥ଶଶ 2 [−5,5] Min f = 0 

3 Drop-Wave 𝐹3 = − 1 + cos ቀ12ඥ𝑥ଵଶ + 𝑥ଶଶቁ0.5(𝑥ଵଶ + 𝑥ଶଶ) + 2  2 [−5.12,5.12] Min f = −1 

4 Leon F5=100(𝑥ଶ − 𝑥ଵଷ)ଶ + (𝑥ଵ − 1)ଶ 2 [−10,10] Min f = 0 

5 Griewank  F7= 𝑥ଶ4000ଶ
ୀଵ −ෑ𝑐𝑜𝑠ଶ

ୀଵ ൬𝑥√𝑖൰ + 1 2 [−600,600] Min f = 0 

6 Levy 𝐹6 == sinଶ (𝜋𝑤ଵ) +  ଶିଵ
ୀଵ (𝑤 − 1)ଶ[1 + 10 sinଶ(𝜋𝑤 + 1)] + (𝑤ଶ − 1)ଶ[1 + sinଶ(2𝜋𝑤ଶ)], where 𝑤 = 1 + 𝑥 − 14 , for all 𝑖 = 1,2 2 [−10,10] Min f = 0 

7 Levy13 𝐹11 = sinଶ (3𝜋𝑥ଵ) + (𝑥ଵ − 1)ଶ[1 + sinଶ (3𝜋𝑥ଶ)] + (𝑥ଶ − 1)ଶ[1 + sinଶ (2𝜋𝑥ଶ)] 2 [−10,10] Min f = 0 

8 Rastrigin F12=10𝑑 + ൣ𝑥ଶ − 10 𝑐𝑜𝑠(2𝜋𝑥)൧ଶ
ୀଵ  2 [−5.12,5.12] Min f = 0 

9 Schaffer2 𝐹9 = 0.5 + sinଶ (𝑥ଵଶ − 𝑥ଶଶ) − 0.5[1 + 0.001(𝑥ଵଶ + 𝑥ଶଶ)]ଶ 2 [−100,100] Min f = 0 

10 Bohachevsky1 F10=𝐱ଵଶ + 2𝐱ଶଶ − 0. 3∗cos(3𝜋𝐱ଵ) − 0. 4∗cos(4𝜋𝐱ଶ) + 0.7 2 [−100,100] Min f = 0 

11 Trecanni F11=𝑥ଵସ + 4𝑥ଵଷ + 4𝑥ଵଶ + 𝑥ଶଶ 2 [−5,5] Min f = 0 

12 
Rotated-Hyper-Ellip-

soid 
F12=𝑥ଶ

ୀଵ
ଶ
ୀଵ  2 [−65.536,65.536] Min f = 0 
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13 Sum-Squares F13=𝑖ଶ
ୀଵ 𝑥ଶ 2 [−10,10] Min f = 0 

14 Trid F14=(𝑥 − 1)ଶଶ
ୀଵ −𝑥ଶ

ୀଶ 𝑥ିଵ 2 [−4,4] Min f = 2 

15 Beale F15=(1.5 − 𝑥ଵ + 𝑥ଵ𝑥ଶ)ଶ + (2.25 − 𝑥ଵ + 𝑥ଵ𝑥ଶଶ)ଶ + (2.625 − 𝑥ଵ + 𝑥ଵ𝑥ଶଷ)ଶ 2 [−4.5,4.5] Min f = 0 

16 Matyas F16=0.26(𝑥ଵଶ + 𝑥ଶଶ) − 0.48𝑥ଵ𝑥ଶ 2 [−10,10] Min f = 0 

17 Zakharov F17=𝑥ଶଶ
ୀଵ + ൭0ଶ

ୀଵ . 5𝑖𝑥൱ଶ + ൭ 0ଶ
ୀଵ . 5𝑖𝑥൱ସ 2 [−5,10] Min f = 0 

18 Easom F18= − cos(x1)∗cos(x2)∗exp[−(x1 − π)ଶ − (x2 − π)ଶ] 2 [−100,100] Min f = −1 

19 Eggcrate F19= xଵଶ + xଶଶ + 25∗(sinଶ xଵ + sinଶ xଶ) 2 [−10,10] Min f = 0 

20 Bohachevsky3 F20=𝑥ଵଶ + 2𝑥ଶଶ − 0.3cos(3𝜋𝑥ଵ + 4𝜋𝑥ଶ) + 0.3 2 [−100,100] Min f = 0 
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2.3. Police Multi-UAV Patrol Model Construction (PMU-3PM) 

Police unmanned aerial vehicles have become an important means to improve the 
efficiency of police patrols of public security organs, with the wide application of un-
manned aerial vehicles. Moreover, police drone patrols are an important measure for pub-
lic security aircraft to maintain social stability and ensure the safety of people’s lives and 
property. According to the requirements of police patrols, public security organs need to 
patrol key areas and facilities, such as government seats, stations, commercial venues, 
schools, and so on. Assuming that the police drone departs from the police station and 
returns there after completing the patrol of each point, the patrol task is completed with 
the shortest total flight distance for multiple drones and the least number of drones ac-
cording to the spatial distribution of key patrol places and areas within the jurisdiction of 
the police station and the time requirements for patrolling each area. 

Suppose there are L locations that need to be patrolled in the jurisdiction of a police 
station and the endurance of a certain type of UAV is D kilometers, then the distance from 
the i-th patrol point to the j-th one is dij and the distance from the i-th patrol point to the 
police station is d0i. Moreover, if R represents the flight path of the k-th drone, then the 
element rki in the path represents the i-th passing point of the k-th drone. It should be noted 
that the starting and ending points of the path are both police stations, the police station 
is rk0, and nk is the number of points passing through the kth drone (excluding the starting 
point and end point). Furthermore, there are no obstacles during the flight and there is no 
need to adjust the flight altitude up and down when the UAV always flies high enough, 
so the Euclidean distance is used to calculate the distance between two points, as shown 
in Equation (6). Therefore, if the shortest range is taken as the objective function, the fol-
lowing UAV patrol path optimization model can be established. sign(𝑛) = ൜1, 𝑛 ⩾ 10, others

           (6) 

As in Equation (6), the equation indicates that when the patrol points of the k-th UAV 
are greater than or equal to 1, the UAV participates in the patrol and takes sign(nk) = 1; 
when the patrol points of the k-th UAV are less than 1, the UAV does not participate in 
the patrol and takes sign(nk) = 0. 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧  ೖ
ୀ ଵ [𝑑ೖ(- భ)ೖ + 𝑑ೖೖೖబsign(𝑛)] ⩽ 𝐷   0 ⩽ 𝑛 ⩽ 𝐿                                                              
ୀଵ 𝑛 = 𝐿                                                              𝑅 = {𝑟|𝑟 ∈ {1,2,⋯ , 𝐿}, 𝑖 = 1,2,⋯ ,𝑛}   𝑅భ ∩ 𝑅మ = ∅, 𝑘ଵ ≠ 𝑘ଶ                                     

   (7) 

Equation (7) above concerns the constraints. The first equation indicates that the 
flight distance of each drone does not exceed its maximum flight distance; the second 
equation indicates that the number of patrol points passed by each drone does not exceed 
the total number of patrol points; the third equation means that each patrol point needs 
to be patrolled but only needs to be patrolled once; the fourth equation indicates the patrol 
points contained in each patrol path; and the last equation indicates that there is no inter-
section between any two patrol paths, which means that only one drone needs to patrol 
each patrol point. Based on the above constraints, the following fitness function is con-
structed. 
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൞ 𝑑 = ට൫𝑥 − 𝑥൯ଶ + ൫𝑦 − 𝑦൯ଶ                𝑚𝑖𝑛𝑍 = ∑  ୀଵ ቄ∑  ೖୀଵ [𝑑ೖ(షభ)ೖ + 𝑑ೖೖೖబsign(𝑛)]ቅ  (8) 

As in Equation (8), this accounts for a small proportion of the total flight distance 
because the police drone flies at a low altitude and the amplitude of the up-and-down 
flight is small but higher than the average building. Therefore, this paper ignores the up-
and-down flight distance and flight obstacles to calculate the distance between two patrol 
points using the Euclidean distance in the two-dimensional plane. As a result, the objec-
tive function is constructed as shown in the third formula of Equation (8). 

Police drones patrol a wide variety of routes with varying numbers and path lengths. 
As shown in Figure 1a, multiple UAVs are used to patrol key areas in an area and there is 
a police station, as shown by the red triangle. Moreover, unplanned patrol routes can be 
lengthy and require a large number of UAVs, as shown in Figure 1b. It is necessary to 
reasonably plan the patrol path to make the patrol path as short as possible while ensuring 
that it completely covers the key areas, so that the number of UAVs required is also lower, 
as shown in Figure 1c. 

 
(a) 

  
(b) (c) 

Figure 1. (a) Patrol Locations; (b) Randomly Arranged Security Patrol Path Planning; (c) Optimized 
Security Patrol Path Planning. 
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This paper takes a public case of a police station patrol location in a city in southern 
China, as shown in Figure 1a; there are 32 key areas to patrol and a police station, and a 
certain type of UAV is employed, with a maximum flight distance of no more than 18 km. 
Moreover, it is important to use as few drones as possible and to fly as far as possible to 
patrol the patrol point in the map and fly back to the police station. It is clear that the 
above description is a discrete problem, which is different from the dataset in 2.2. In order 
to solve this problem, this paper proposes a discrete algorithm according to the WPOA 
idea to solve the discrete problem. 

3. Improvement and Design of the New Proposed Method 
3.1. Composite-Directional Raid Strategy (CDRS) 

In WDX-WPOA, half of the wolves will find the symmetrical coordinates of the cur-
rent wolf with respect to the best wolf according to Equation (9). Then, the midpoint be-
tween the current wolf, the symmetrical wolf, and the best wolf will be found and ar-
ranged according to the dimensions. However, symmetrical coordinates can exceed 
boundary constraints. If a dimension of a symmetry coordinate exceeds the constraint 
boundary, the dimension value takes the value of the boundary. Half of the wolves will 
search for the above points, as shown in Figure 2a,b. Furthermore, the other half of the 
pack is airdropped directly around the current best wolf, as shown in Figure 2a,b. More-
over, DAF-BRS-CWOA [23] introduces the Balanced Raid Strategy and dynamic factor on 
the basis of WDX-WPOA; the number of wolves searched will decrease with the number 
of iterations and the number of wolves that are airdropped will increase. Moreover, 
searching wolves also search for the midpoint between the current wolf and the points 
where the current wolf is in the opposite position relative to the best wolf, as well as the 
points where the midpoint and the current point are arranged and combined according to 
the spatial dimension, as shown in Figure 2c,d. 𝑤𝑜𝑙𝑓_𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 = 2 ∗ 𝑏𝑒𝑠𝑡𝑤𝑜𝑙𝑓 −  𝑝𝑜𝑝 (𝑖, ∶)  (9)

where, wolf_opposite means the opposite location of the current wolf while bestwolf means 
the current best wolf and pop (i, :) means the current wolf. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 2. (a,b) the original raiding strategy in WDX-WPOA; (c,d) the old raiding strategy in DAF-
BRS-CWOA; (e,f) the new adaptive raiding strategy in new algorithm (CDR-DRS-WPOA). 

Additionally, this paper proposes a new optimal raid strategy based on the summon-
raid strategy for DAF-BRS-CWOA, which not only checks the reverse position of the cur-
rent wolf, but also arranges and combines the coordinates of the current wolf and the 
coordinates of the wolf in the opposite position, according to the dimensions, to make up 
the points in all directions. After that, the point with the best fitness among these points 
is identified, and then the midpoint between this and the best wolf coordinates is searched 
for, as well as the points where the midpoint and this point are arranged and combined 
according to the spatial dimensions of the search, as shown in Equation (10). The other 
part of the airdrop wolves still follows the summon-raid strategy for DAF-BRS-CWOA. 
This increases the probability of finding the global optimal solution and optimizes the 
computational resumption, as shown in Figure 2e,f. 

⎩⎪⎨
⎪⎧𝑟𝑎𝑖𝑑_𝑤𝑜𝑙𝑓_𝑓𝑡 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡ℎ𝑒 (𝑟𝑎𝑖𝑑_𝑤𝑜𝑙𝑓)                                                                      [𝑟𝑎𝑖𝑑_bestwolf_ft, 𝑟𝑎𝑖𝑑_bestwolf_no] = 𝑚𝑖𝑛(𝑟𝑎𝑖𝑑_𝑤𝑜𝑙𝑓_𝑓𝑡)                                              𝑟𝑒𝑠 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑆𝑢𝑚𝑚𝑜𝑛_𝑅𝑎𝑖𝑑_𝑀𝑒𝑠ℎ(𝑟𝑎𝑖𝑑_𝑤𝑜𝑙𝑓(𝑟𝑎𝑖𝑑_bestwolf_no, : ), 𝑏𝑒𝑠𝑡𝑤𝑜𝑙𝑓)   [𝑠𝑢𝑚𝑚𝑜𝑛_bestwolf_ft, 𝑠𝑢𝑚𝑚𝑜𝑛_bestwolf_no] = min(FitnessFunction(res))               𝑡𝑒𝑚_𝑏𝑒𝑠𝑡𝑤𝑜𝑙𝑓 = res(tem_bestwolf_no, : )                                                                                  (10)

where, raid_wolf_ft means the fitness regarding raid_wolf; FitnessFunction is a fitness func-
tion; raid_wolf is the point where the pack needs to search; raid_bestwolf_ft means the best 
one in raid_wolf_ft and raid_bestwolf_no is the serial number of raid_bestwolf_ft in 
raid_wolf_ft; res represents the locations between raid_bestwolf and bestwolf according to the 
Summon-Raid rules while original_Summon_Raid_Mesh_Process is a function that returns 
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some related locations determined by Summon-Raid rules in DAF-BRS-CWOA; sum-
mon_best_ft means the fitness regarding FitnessFunction(res); summon_bestwolf_no is the se-
rial number of the best one in FitnessFunction(res); and tem_bestwolf is the best one corre-
sponding to summon_best_ft in res. 

3.2. Dynamic Random Search Strategy (DRSS) 

According to the principle of WDX-WPOA and DAF-BRS-CWOA, during the migra-
tion or siege of the wolf pack, the position of the current wolf is the center, and at the same 
time, a uniformly distributed search is carried out in the num direction, assuming that the 
dimension of the solution space is D, and the total number of wolves is fixed at (2*num + 
1)D, as shown in Figure 3a,b. In the real world, however, a pack with a smaller number of 
wolves will be able to catch simple prey and more wolves will be summoned to besiege 
difficult prey. The wolves will summon more wolves to assist as the difficulty of migration 
or siege increases within a certain range. Abstracted into the model, the number of itera-
tions is an important indicator of the difficulty of prey catching; simple fitness functions 
usually require fewer iterations to find the optimal value, while more complex fitness 
functions usually require more iterations to find the optimal value. According to this idea, 
this paper proposes a dynamic search strategy based on a specific threshold, in which the 
wolf population only searches along the diagonal of the search space in the first 10 itera-
tions (then the total number of wolves is only D*num-D + 1), and more wolves are added 
to perform a randomly distributed search after more than 10 iterations and the number of 
wolves will reach (2*num + 1)D in the end. The number of iterations does not exceed 10, as 
shown in Figure 3c,d, and the rest is shown in Figure 3e,f. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 3. (a,b): about WDX-WPOA; (c,d) iterations do not exceed 10 in new algorithm (CDR-DRS-
WPOA); (e,f) iterations exceed 10 in new algorithm (CDR-DRS-WPOA). 

In summary, when the number of iterations exceeds 10, the number of wolves will 
increase with the number of iterations. The number of wolves randomly distributed after 
more than 10 iterations is shown in Equation (11). When the iterations reach 11, there will 
suddenly be a lot of wolves summoned to raid to help capture prey. However, the number 
of wolves increased each time was relatively stable in subsequent iterations. This idea can 
promote the algorithm to quickly iterate to solve simple problems in the early iteration 
process, and add search points in subsequent iterations to improve the global and com-
putational accuracy to solve complex problems. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 = ൝0, (𝑡 < 10)                                                       𝑓𝑙𝑜𝑜𝑟 ቀଶ(୲ିଵ)ଷ(ିଵ) + ଵଷቁ × (2 ∗ 𝐾), (𝑡 ≥ 10)           (11)

where, t means the number of current iterations; T means the number of the maximum 
iteration; floor means a function that returns the calculated result rounded down to ensure 
that wolf_number is an integer; K means the maximum number of wolves in a directional 
dimension; and D means the dimension of the solution space. 

Simple test functions tend to require fewer iterations to find the optimal value, while 
complex test functions require more iterations. Therefore, this new search method will 
reduce a large number of search points for simple test functions to save a lot of calcula-
tions, and for complex test functions, a large number of wolves will be added in the mid-
dle and late stages to enhance the optimization effect. As a result, this search method not 
only reduces the optimization time of simple test functions, but also improves the calcu-
lation accuracy of complex functions. 

3.3. Steps of Algorithms 

On the basis of the strategy of dynamically increasing the number of wolves within 
a specific threshold in the process of migration and siege as well as of compound direc-
tional raid in the process of raid, the CWOA is improved and the CDR-DRS-WPOA algo-
rithm is proposed. 

All the steps are consistent with DAF-BRS-CWOA, with the exception of the use of 
PMU-3PM-IWPA during migration and siege and the use of composite directional raid 
strategies during raids, as detailed in 3.1 and 3.2. The steps of CDR-DRS-WPOA and how 
to implement the CDR-DRS-WPOA are shown in Figure 4. The overall algorithm will fol-
low the above steps to determine whether the exit condition is met, and when the exit 
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condition is met, the algorithm will exit. At the end of the loop, the wolf with the best 
fitness will be the global optimal value that the algorithm is committed to finding. 

 

Figure 4. Flowchart for CDR-DRS-WPOA. 

At the same time, this paper proposes a discrete algorithm (PMU-3PM-IWPA) to deal 
with multi-UAV path planning for police patrol problems based on CDR-DRS-WPOA, 
as shown in Figure 5. 

 

Figure 5. Flowchart for PMU-3PM-IWPA. 
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4. Experiments and Analysis 
4.1. Experimental Environment & Comparative Algorithms 

All the numerical experiments were conducted on a computer equipped with Win-
dows 11 Home 22H2 operating system, Intel(R) Core (TM) i7-12700H proces-
sor(CA,American), 16G memory, and the integrated development environment was 
MATLAB-2023b. To verify the optimization ability of CDR-DRS-WPOA, the genetic algo-
rithm (GA), particle swarm optimization (PSO), and WDX-WPOA are adopted as com-
parative experiments, and 21 test functions, including PMU-3PM, were used as testing 
datasets. 

A special toolbox in Matlab2023b was utilized for the GA experiment and a “PSOt” 
toolbox from Matlab2023b was used for the PSO experiment. The experiment concerning 
WDX-WPOA was carried out according to the process set out in reference [22] while the 
experiment relating to DAF-BRS-CWOA was conducted based on the process set out in 
reference [23]. CDR-DRS-WPOA was implemented based on the steps and approach set 
out in Section 3. Table 2 displays the configurations of the preceding algorithms, and each 
of the above algorithms was independently executed 50 times on 21 test datasets, includ-
ing PMU-3PM, to verify the excellent performance of the new algorithm.  

Table 2. Arithmetic Configuration. 

Order Algorithm Name Configuration 

1 GA 
The crossover probability is 0.8, the mutation probability is 0.01, the max iteration T = 600, popula-

tion size N = 50. 

2 PSO 
Inertia weight is 0.5, the cognitive coefficient is 1.5, the social coefficient is 1.5, the max iteration T = 

600, population size N = 50. 

3 WDX-WPOA 

Initial value of search step size step_a0 =1.5; the initial max value of sicge step size step_cmax= 1 × 106 

and the minimum value of siege step size step_cmin = 1 ×10−40; the maximum iteration time T = 600; 

the wolf population N = 50. 

4 DAF-BRS-CWOA 

Initial value of search step size step_a0 =1.5; the initial max value of sicge step size step_cmax= 1 × 

106 and the minimum value of siege step size step_cmin = 1 ×10−40; the maximum iteration time T = 

600; the wolf population N = 50. 

5 CDR-DRS-WPOA 

Initial value of search step size step_a0 =1.5; the initial max value of siege step size step_cmax= 1 × 

106 and the minimum value of siege step size step_cmin = 1 ×10−40; the maximum iteration time T = 

600; the wolf population N = 50. 

4.2. Test Function Results and Analysis 

Firstly, the new proposed algorithm CDR-DRS-WPOA was conducted inde-
pendently 50 times with four other algorithms on 20 test functions and the average value 
was taken, as shown in Table 3. Seen from the perspective of the optimal value and calcu-
lation accuracy, CDR-DRS-WPOA can find the theoretical optimal value of all test func-
tions, as can DAF-BRS-CWOA and WDX-WPOA, but other methods cannot fully do so. 
Moreover, in terms of the worst and average values, CDR-DRS-WPOA performed best 
among the 5 algorithms (PSO, GA, WDX-WPOA, DAF-BRS-CWOA, and CDR-DRS-
WPOA), and its worst and average values reached the theoretical optimal values while 
other algorithms did not have this ability. As a result, CDR-DRS-WPOA has better opti-
mization accuracy. 
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Table 3. Raw Data of Experiments. 

Function Algorithm Optimal Value Worst Value Average Value Standard Deviation 
Average Itera-

tion 
Average Time Spent 

1. Ackley min f = 
0 

GA 7.92 × 10−6 1.28 × 10−4 5.17 × 10−5 6.95 × 10−10 600 0.23365 
PSO 1.71 × 10−5 5.72 × 10−4 1.14 × 10−4 6.89 × 10−9 600 0.046053 

WDX-WPOA 0 0 0 0 25.48 0.031144 
DAF-BRS-CWOA 0 0 0 0 22.12 0.028735 
CDR-DRS-WPOA 0 0 0 0 16.42 0.019348 

2. Three-Hump-
Camel min f = 0 

GA 2.04 × 10−14 0.29864 0.035837 9.70 × 10−2 600 0.15705 
PSO 1.60 × 10−206 0.29864 0.011946 5.85 × 10−2 600 0.081915 

WDX-WPOA 0 0 0 0 24.32 0.063319 
DAF-BRS-CWOA 0 0 0 0 21.1 0.058633 
CDR-DRS-WPOA 0 0 0 0 16.44 0.027872 

3. Drop-Wave 
min f = −1 

GA −0.99992 −0.78573 −0.93986 0.04808 600 0.034075 
PSO −1 −0.93625 −0.98512 0.026965 218.6333 0.020236 

WDX-WPOA −1 −1 −1 0 15.16 0.014995 
DAF-BRS-CWOA −1 −1 −1 0 13.14 0.013978 
CDR-DRS-WPOA −1 −1 −1 0 7.52 0.0075679 

4. Leon min f = 0 

GA 2.18 × 10−2 8.7913 2.1025 2.7501 600 0.024246 
PSO 0 1.26 × 10−19 4.20 × 10−21 2.26 × 10−20 595.3 0.10341 

WDX-WPOA 0 0 0 0 28.54 0.046596 
DAF-BRS-CWOA 0 0 0 0 24.12 0.044818 
CDR-DRS-WPOA 0 0 0 0 20.58 0.02608 

5. Griewank min 
f = 0 

GA 0.004788 0.31789 0.075813 0.063402 600 0.013661 
PSO 0 0.019719 0.0026303 0.0045421 339.3 0.0085504 

WDX-WPOA 0 0 0 0 16.8 0.018748 
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DAF-BRS-CWOA 0 0 0 0 13.64 0.016633 
CDR-DRS-WPOA 0 0 0 0 8.36 0.0090338 

6. Levy min f = 0 

GA 0.00024335 1.1263 0.12324 0.21281 600 0.038618 
PSO 1.50 × 10−32 1.50 × 10−32 1.50 × 10−32 1.09 × 10−47 600 0.039204 

WDX-WPOA 0 8.59 × 10−8 1.72 × 10−9 1.20 × 10−8 551.54 0.67339 
DAF-BRS-CWOA 0 0.71613 0.024478 0.11739 509.82 0.61078 
CDR-DRS-WPOA 0 5.02 × 10−9 1.16 × 10−10 7.09 × 10−10 91.16 0.12264 

7. Levy13 min f = 
0 

GA 0.011247 2.2797 0.22303 0.76184 600 0.01238 
PSO 0.00010961 −0.97283 −0.97283 3.33 × 10−16 600 0.012789 

WDX-WPOA 0 0 0 0 25.14 0.032147 
DAF-BRS-CWOA 0 0 0 0 21.66 0.02904 
CDR-DRS-WPOA 0 0 0 0 15.98 0.01774 

8. Rastrigin min f 
= 0 

GA 0.013678 6.3489 2.2711 1.7587 600 0.0119 
PSO 0 0.99496 0.066331 0.24819 110.4333 0.0023772 

WDX-WPOA 0 0 0 0 12.58 0.013655 
DAF-BRS-CWOA 0 0 0 0 10.74 0.012917 
CDR-DRS-WPOA 0 0 0 0 7.4 0.0077144 

9. Schaffer2 min f 
= 0 

GA 1.03 × 10−6 0.042464 0.010477 0.0093243 600 0.01321 
PSO 0 0 0 0 66.9667 0.012164 

WDX-WPOA 0 0 0 0 11.32 0.01139 
DAF-BRS-CWOA 0 0 0 0 9.78 0.010517 
CDR-DRS-WPOA 0 0 0 0 6.42 0.0061977 

10. Bohachev-
sky3 min f = 0 

GA 0.011268 0.91934 0.48134 0.25563 600 0.011984 
PSO 0 0 0 0 78.1667 0.015723 

WDX-WPOA 0 0 0 0 14.34 0.014551 
DAF-BRS-CWOA 0 0 0 0 11.94 0.013178 
CDR-DRS-WPOA 0 0 0 0 10.32 0.0099612 

11. Trecanni  GA 7.43 × 10−7 0.0038742 0.00037922 7.20 × 10−4 600 0.027606 
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min f = 0 PSO 2.34 × 10−168 3.55 × 10−15 1.42 × 10−15 1.74 × 10−15 600 0.107907 
WDX-WPOA 0 0 0 0 24.48 0.062238 

DAF-BRS-CWOA 0 0 0 0 20.96 0.056577 
CDR-DRS-WPOA 0 0 0 0 16 0.026963 

12. Rotated-Hy-
per-Ellipsoid 
min f = 0 

GA 0.00039244 0.12985 0.034819 0.03493 600 0.012687 
PSO 1.96 × 10−134 1.02 × 10−129 8.56 × 10−131 2.28 × 10−130 600 0.013828 

WDX-WPOA 0 0 0 0 26.04 0.02325 
DAF-BRS-CWOA 0 0 0 0 22.66 0.021667 
CDR-DRS-WPOA 0 0 0 0 17.22 0.015096 

13. Sum-Squares 
min f = 0 

GA 2.42 × 10−6 0.0025094 0.00051005 0.00048937 600 0.012084 
PSO 5.91 × 10−137 2.18 × 10−132 3.76 × 10−133 5.82 × 10−133 600 0.013233 

WDX-WPOA 0 0 0 0 24.4 0.021132 
DAF-BRS-CWOA 0 0 0 0 20.98 0.021415 
CDR-DRS-WPOA 0 0 0 0 16.16 0.014255 

14. Trid min f = 
−2 

GA −0.037736 −1.9991 −1.8925 0.11219 600 0.01241 
PSO −2 −2 −2 0 523 0.014356 

WDX-WPOA −2 −2 −2 0 10.92 0.010908 
DAF-BRS-CWOA −2 −2 −2 0 9.22 0.0094853 
CDR-DRS-WPOA −2 −2 −2 0 6.52 0.0065244 

15. Beale min f = 
0 

GA 1.62 × 10−5 0.068489 0.021623 0.019766 600 0.022946 
PSO 0 0.76207 0.050805 0.19009 190.4333 0.030796 

WDX-WPOA 0 0 0 0 23.86 0.041922 
DAF-BRS-CWOA 0 0 0 0 20.12 0.037743 
CDR-DRS-WPOA 0 0 0 0 20.08 0.02635 

16. Matyas min f 
= 0 

GA 9.11 × 10−6 0.042161 0.010059 0.010711 600 0.01241 
PSO 1.76 × 10−120 2.71 × 10−116 2.87 × 10−117 5.48 × 10−117 600 0.013081 

WDX-WPOA 0 0 0 0 24.42 0.022231 
DAF-BRS-CWOA 0 0 0 0 20.72 0.020007 
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CDR-DRS-WPOA 0 0 0 0 16.16 0.014232 

17. Zakharov 
min f = 0 

GA 2.32 × 10−6 0.0016735 0.00069625 0.00057972 600 0.015955 
PSO 3.10 × 10−137 7.27 × 10−131 3.57 × 10−132 1.30 × 10−131 600 0.016975 

WDX-WPOA 0 0 0 0 24.6 0.046247 
DAF-BRS-CWOA 0 0 0 0 21.26 0.040252 
CDR-DRS-WPOA 0 0 0 0 16.02 0.02342 

18. Easom min f 
= −1 

GA −1 0 −0.75001 0.18749 72.91 0.084762 
PSO −1 −6.30 × 10−61 −0.90001 0.089988 593.02 0.033852 

WDX-WPOA −1 −1 −1 0 13.62 0.014799 
DAF-BRS-CWOA −1 −1 −1 0 11.88 0.013726 
CDR-DRS-WPOA −1 −1 −1 0 7.98 0.0080525 

19. Eggcrate min 
f = 0 

GA 1.13 × 10−11 3.20 × 10−8 4.13 × 10−9 4.66 × 10−17 600 0.085997 
PSO 6.23 × 10−24 1.42 × 10−8 1.42 × 10−10 1.99 × 10−18 597.56 0.030566 

WDX-WPOA 0 0 0 0 24.78 0.023696 
DAF-BRS-CWOA 0 0 0 0 21.68 0.021977 
CDR-DRS-WPOA 0 0 0 0 16.28 0.015303 

20. Bohachev-
sky1 min f = 0 

GA 0.0053751 2.2884 0.57643 0.42923 600 0.022766 
PSO 0 0 0 0 86.92 0.014321 

WDX-WPOA 0 0 0 0 14.38 0.016296 
DAF-BRS-CWOA 0 0 0 0 12.28 0.014996 
CDR-DRS-WPOA 0 0 0 0 8.6 0.0089217 
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Moreover, the standard deviation of the new algorithm in all test functions except 
function 6 “Levy” is zero. Nevertheless, in function 6 “Levy”, CDR-DRS-WPOA outper-
forms other algorithms in terms of Worst Value, Standard Deviation, and Runtime. There-
fore, CDR-DRS-WPOA has good stability overall. 

Furthermore, in terms of the average number of iterations, CDR-DRS-WPOA is the 
smallest of all test functions. Although there is almost no improvement in the number of 
iterations of DAF-BRS-CWOA in function 15, “Beale”, it is about the same as DAF-BRS-
CWOA but has a shorter run time. This is made possible by the Composite-Directional 
Raid Strategy proposed in this paper. In general, CDR-DRS-WPOA has a better advantage 
in terms of iterations. 

Finally, as shown in Table 3 in relation to average times, the average time spent on 
functions 6 “Levy”, 7 “Levy13”, 12 “Rotated-Hyper-Ellipsoid”, 13 “Sum-Squares”, 15 
“Beale”, 16 “Matyas”, and 17 “Zakharov” CDR-DRS-WPOA was slightly longer for GA 
and PAO. However, the performance and accuracy of finding the optimal value are better 
than GA or PSO. Among the other test functions, CDR-DRS-WPOA requires the shortest 
time among the five algorithms, and has the best performance and accuracy in finding the 
optimal value. As shown in Table 4, CDR-DRS-WPOA is an improvement over DAF-BRS-
CWOA and WDX-WPOA in all tested functions. Therefore, CDR-DRS-WPOA has a good 
convergence speed while also offering good computational accuracy. 

Table 4. Time-Spent Comparison between DAF-BRS-CWOA, WDX-WPOA, and CDR-DRS-WPOA. 
(The Improvement Rate is CDR-DRS-WPOA compared to DAF-BRS-CWOA). 

Algorithm
Function 

WDX-WPOA DAF-BRS-CWOA CDR-DRS-WPOA Improvement Rate 

F1: Ackley 0.031144 0.028735 0.019348 32.67% 
F2: Three-Hump-Camel 0.063319 0.058633 0.027872 52.46% 

F3: Drop-Wave 0.014995 0.013978 0.0075679 45.86% 
F4: Leon 0.046596 0.044818 0.02608 41.81% 

F5: Griewank 0.018748 0.016633 0.0090338 45.69% 
F6: Levy 0.67339 0.61078 0.12264 79.92% 

F7: Levy13 0.032147 0.02904 0.01774 38.91% 
F8: Rastrigin 0.013655 0.012917 0.0077144 40.28% 
F9: Schaffer2 0.01139 0.010517 0.0061977 41.07% 

F10: Bohachevsky1 0.014551 0.013178 0.0099612 24.41% 
F11: Trecanni 0.062238 0.056577 0.026963 52.34% 

F12: Rotated-Hyper-Ellipsoid 0.02325 0.021667 0.015096 30.33% 
F13: Sum-Squares 0.021132 0.021415 0.014255 33.43% 

F14: Trid 0.010908 0.0094853 0.0065244 31.22% 
F15: Beale 0.041922 0.037743 0.02635 30.19% 

F16: Matyas 0.022231 0.020007 0.014232 28.86% 
F17: Zakharov 0.046247 0.040252 0.02342 41.82% 

F18: Easom 0.014799 0.013726 0.0080525 41.33% 
F19: Eggcrate 0.023696 0.021977 0.015303 30.37% 

F20: Bohachevsky3 0.016296 0.014996 0.0089217 40.51% 

On the premise of maintaining accuracy and absolute global optimization capabili-
ties, it can be seen from Table 4 and Figure 6 that CDR-DRS-WPOA takes less time and 
offers at least a 20% improvement for all test functions. Of these, only 2 test functions had 
the smallest improvement, between 20 and 30%, and they concentrated between 30 and 
50% for most of the improvements. It is worth mentioning that the improvement rate of 
function 2 “Three-Hump-Camel”, function 6 “Levy”, and function 11 “Trecanni” is more 
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than 50%, which means that the runtime of CDR-DRS-WPOA compared to DAF-BRS-
CWOA has been reduced by more than half while maintaining absolute global optimiza-
tion capabilities. In particular, the improvement rate of function 6 “Levy” is nearly 80%, 
and seen from the Optimal Value Worst Value, Average Value, and Standard Deviation 
in Table 3, CDR-DRS-WPOA has better indicators. This means that CDR-DRS-WPOA not 
only has higher global and computational accuracy, but also offers a much shorter time 
spent. 

 

Figure 6. Histograms of improvement rate for time spent by comparing CDR-DRS-WPOA and DAF-
BRS-CWOA on all 20 test functions in this paper. (Table 4 lists the functions corresponding to se-
quence numbers). 

In a word, CDR-DRS-WPOA has the advantages of good optimization accuracy, 
stronger globality, less time spent, and fast convergence speed. 

4.3. Test Results and Analysis of PMU-3PM 

All the algorithms were conducted independently 50 times on PMU-3PM and the 
related raw data are shown in Table 5; Accordingly, it can be seen that PMU-3PM-IWPA 
has the best performance in terms of Optimal Value, Worst Value, and Average Value 
compared to PMU-3PM-GA, PMU-3PM-PSO, PMU-3PM-WDX-WPOA, and PMU-3PM-
DAF-BRS-CWOA. Moreover, in terms of Standard Deviation, PMU-3PM-IWPA has a 
slightly higher value than WDX-WPOA and DAF-BRS-CWOA, but better than GA and 
PSO. As a whole, therefore, PMU-3PM-IWPA offers better stability and the best optimiza-
tion accuracy. 

Table 5. Raw Data for PMU-3PM. 

Algorithm Optimal Value Worst Value Average Value Standard Deviation Average Time 
PMU-3PM-GA 47.031 77.8299 64.2782 6.4325 0.14386 
PMU-3PM-PSO 34.909 53.9059 45.7949 4.1645 0.69808 

PMU-3PM-WDX-WPOA 27.955 45.3993 32.9021 3.6069 11.2806 
PMU-3PM-DAF-BRS-CWOA 27.242 44.722 34.6783 3.3169 10.4916 

PMU-3PM-IWPA 25.082 42.0629 31.196 3.8514 8.8258 
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From the perspective of time spent, the WPOA family algorithm took much longer 
than GA and PSO to solve PMU-3PM, but what is exciting is that the WPOA family algo-
rithm offers better performance in terms of optimization accuracy than GA and PSO, as 
shown in Table 5 and Figure 7. It is well-known that every coin has two different sides to 
it and a flaw cannot overshadow the brilliance of jade. Furthermore, it is a consolation that 
PMU-3PM-IWPA spent less time than PMU-3PM-WDX-WPOA and PMU-3PM-DAF-
BRS-CWOA. In relation to optimization performance, as shown in Table 5 and Figure 7, 
PMU-3PM-IWPA is about 15.9% better than PMU-3PM-DAF-BRS-CWOA in terms of time 
spent, while ensuring better optimization accuracy. Therefore, it can be concluded that 
PMU-3PM-IWPA offers better performance in relation to time spent. 

 

Figure 7. Time-spent comparison for solving PMU-3PM. 

In short, PMU-3PM-IWPA has better stability, the best optimization accuracy, better 
performance in terms of time spent, and a faster convergence speed. 

5. Conclusions 
Multi-UAV path planning for police patrols plays an important role in public security 

work, and while many path-planning algorithms have been applied in this area, all of 
them possess various degrees of shortcomings. To further improve the accuracy and effi-
ciency of multi-UAV path planning for police patrols, this paper proposed PMU-3PM-
IWPA. Firstly, PMU-3PM was constructed to reflect the planning problem for multi-UAV 
police patrol paths. Moreover, to enhance the performance of current existing wolf pack 
optimization algorithms, this paper proposed an improved wolf pack optimization algo-
rithm named CDR-DRS-WPOA, including CDRS, aimed at enhancing the global explora-
tion capability, as well as DRSS, with a view to speeding up the convergence for simple 
problems and heighten the optimize accuracy for difficult problems. Finally, CDR-DRS-
WPOA was adopted to solve PMU-3PM, and numerical experiments were carried out on 
20 public classical datasets, as well as PMU-3PM compared with GA, PSO, WDX-WPOA, 
and DAF-BRS-CWOA. The results indicate that CDR-DRS-WPOA spent 20~80% less time 
and possessed greater optimization accuracy, and that PMU-3PM-IWPA based on CDR-
DRS-WPOA offers excellent performance. 

Unfortunately, nothing is perfect, and CDR-DRS-WPOA also has its own respective 
shortcomings, such as in terms of time spent. Although CDR-DRS-WPOA offered better 
optimization performance in solving PMU-3PM, it spent more time than GA and PSO, as 
shown in Table 5. To summarize the reasons, GA and PSO are suitable for fast and rough 
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optimization calculations while CDR-DRS-WPOA is more suitable for optimization cal-
culations with higher accuracy and requirements. Similarly, the stability of CDR-DRS-
WPOA is slightly reduced compared to DAF-BRS-CWOA as a result of the fact that the 
distribution of wolves in the Dynamic Search Strategy based on a specific threshold is 
random, as shown in Table 5. However, none of this detracts from the fact that CDR-DRS-
WPOA is an excellent algorithm. 

In future work, we will continue to improve the new proposed algorithm by reducing 
its time spent and enhancing its stability with a view to ensuring superior performance. 
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