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Abstract: This study aimed to examine changes in the number of live and dying trees in 

central Lithuanian forests over time. Results were obtained using stochastic differential 

equations combined with the normal copula function. The examination of each tree’s 

individual size variables (height and diameter) showed that the mean values of dead or 

dying trees’ size variables had significantly lower trajectories that were particularly 

pronounced in mature stands. According to the data set under examination, the tree 

mortality rate gradually declined with age, reaching approximately 7% after 10 years. 

Birch trees 60–70 years old were the first species to reach the 1% mortality rate, followed 

by spruce trees 70–80 years old and pine trees 80–90 years old. The Maple symbolic 

algebra system was used to implement all results. 
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1. Introduction 

Theories that suggested a decline in resource usage efficiency and received 

significant support in the past were not accurately formalized mathematically. Much of 

that research was undertaken to determine the importance of specific tree size variables 

when analyzing the mortality rate in a forest stand that is not influenced by environmental 

perturbations [1]. Forest statisticians studied the equilibrium between a stand’s tree sizes 

and stocking density. The fundamental idea discussed in modeling literature is that there 

is a relationship between the balance of mortality, stocking density, and stand growth 

after a forest stand’s mortality has reached a plateau [2]. The main goal of this study was 

to provide a quantitative evaluation of changes in live and dying tree numbers over time 

(not static) according to different tree species in mixed-species and uneven-aged stands. 

A key factor driving changes in stands’ spatial heterogeneity is the tree mortality 

phenomenon. When a stand is first established, thousands of seedlings are planted per 

hectare, and the evolution of unmanaged stands demonstrates that most trees in a stand 

naturally die due to competition [1,2]. The literature provides an extensive overview of 

the rates and causes of mortality at various stages of stand evolution; however, little 

research has addressed the dynamics of the number of dead or dying trees or how this 

process changes with age [1,3,4]. Assessing tree mortality factors and dynamics is among 

the most essential aspects of the proper use, conservation, and restoration of forest 
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ecosystems. In boreal forests, tree mortality is mainly influenced by competition, age, 

disease, and random changes in the forest environment. In the early phases of forest 

development, competition is especially intense as young trees fiercely compete for water, 

nutrients, and sunlight [5]. This study refers to dying and dead trees in a stand as forming 

the same class. Standing dead trees, which can take a long time to die, and fallen trees are 

both sources of clusters of dying trees. Even with the far-reaching effects of dead wood 

accumulation, our quantitative understanding of trees’ ongoing mortality and the 

reduction in wood volume over longer periods is quite limited. As the value of the tree-

level size variable in a stand and the demand for resources to support the growth process 

both increase, competition between neighboring trees arises, resulting in two processes 

occurring simultaneously: the process of each individual tree’s natural mortality and the 

growth process of living tree size variables. The regular loss of trees due to mortality 

means that a stand’s biomass at a particular age consists of the biomass of growing trees 

and dying trees. The forecasted mortality time of a particular tree depends on many fixed 

and random environmental factors, including location, species composition, air quality, 

and climate. The most common statistical model used to study individual tree and stand 

mortality is the logistic regression model. Annual survival logistic regression equations 

predict the probability that a tree will survive the following year. Consequently, it might 

be challenging to calculate annual survival probability using data that are routinely 

obtained at intervals longer than a year. The process-driven model presented in this study 

is dynamic and can be fitted with remeasurements in cycles of unequal periods. Age and 

tree-level size variables (diameter, height, crown base height, etc.) are the main drivers of 

tree mortality in a stand, making tree mortality a dynamic phenomenon [6–8]. 

Individual tree mortality occurs when a tree is recorded as dead, but it is not possible 

to determine the exact time and cause of death. A precise mathematical definition of the 

dynamic process of mortality in a forest stand requires repeated measurements of 

experimental plots, which are usually not large enough. Most models that explain forest 

mortality dynamics rely on databases that combine dendrochronologically derived 

information on individual tree age and radial growth with static data on the forest’s 

structure and composition [9–11]. The dynamics of a region’s forests can be characterized 

using tree mortality rates. 

For the past 20 years, experimental plots have served as the foundation for the 

majority of ecosystem-scale studies on tree mortality in stands [12,13]. Long-term tree 

mortality trajectories would undoubtedly greatly improve our understanding of growth 

processes and increase our capacity for predicting stand development. However, long-

term stand monitoring is expensive and time-consuming, which raises the problem of 

how to replace regression models used to simulate growth processes with more complex 

models that cover the whole age range of tree growth. Normal distribution with constant 

variance has long been central to building regression models for a wide range of values of 

modeled variables, but unfortunately, regression concepts are often applied to highly 

asymmetrical data [14–16]. 

This study proposed a dynamic model in all respects, defined by mixed-effects 

parameters and stochastic differential equations with unknown parameters estimated 

from repeated measurements on permanent experimental plots. Most current models of 

the mortality process are based on even-aged forest conditions, as they assume that 

mortality is simply calculated as the ratio of the mean annual mortality to the number of 

trees per hectare and requires uniform intervals of the remeasurement cycle throughout 

the time interval. These models, therefore, have two main limitations: (1) they may distort 

the actual underlying process, as it is continuous in time, which may lead to the 

misidentification of relationships, and (2) they have difficulty adjusting to non-uniform 

intervals in remeasurement cycles. Without a doubt, many phenomena that have been 
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continually observed throughout time in domains like forestry, biology, and ecology have 

inherent uncertainty [17–20]. Stochastic differential equation models outperform 

deterministic models in these situations because they relate to stochastic processes that 

can capture both the unpredictability of the underlying trajectory and the deterministic 

trend [21,22]. Typically, random noise drives stochastic differential equations and is 

represented by the standard Brownian process [23,24]. Using Brownian motion to control 

a stochastic differential equation’s trajectory is mathematically supported by the central 

limit theorem, which states that normal distribution is naturally found in “many” 

situations, namely as a case of a limit distribution. Therefore, to model biological processes 

without sufficient information about the shape of the probability distribution of the 

quantity being modeled, it is appropriate to define changes in the quantity over time using 

a stochastic differential equation constructed using a normal distribution [25]. Stochastic 

differential equations with fixed- and random-effect parameters have been used to predict 

tree-size components (diameter at breast height, height, crown base height, volume, etc.) 

using univariate or multivariate measurements. Because the modeled variable was 

dynamic, it was possible to analyze the dynamics of the current size increment as well as 

tree-level size variables in detail using models defined by stochastic differential equations 

[26,27]. For a long time, forest statisticians focused on modeling individual tree size 

variables (diameter, height, etc.) using sigmoidal regression models, as changes in plant 

development over time follow a sigmoidal pattern [28]. 

The development of model systems that describe the growth behavior of trees and 

stands has yielded a significant amount of knowledge. Fluctuations in the number of 

living and dying trees in a stand over time are described herein, taking into account the 

process-driven method’s superiority and focusing on earlier research regarding stochastic 

differential equations and copula functions. This approach is superior to commonly 

applied static regression methods. Notably, in the past, the number of living trees was 

traditionally determined using the balancing regression equation between a stand’s 

stocking density and tree sizes. 

2. Methodology 

The main goal of this study was to define the linkage between a tree’s potentially 

occupied area and tree mortality processes to characterize more precisely the dynamics of 

the number of dead and living trees per hectare. Two methods were used in this study: 

(1) the dynamic of the individual tree size variable was described in the diffusion process’ 

framework, and the corresponding exact transition probability density function was 

obtained; (2) density functions of individual tree size variables were combined using the 

normal copula function. In this paper, we present a mixed-effects 4-parameter Gompertz-

type stochastic differential equation to define the dynamics of tree size variables. Fixed- 

and random-effect parameters were estimated using an approximate maximum 

likelihood procedure and an observed estimation dataset. The number of living and dead 

trees per hectare and their relationship to the mean tree diameter and occupied area in a 

stand were examined. Results are illustrated visually and statistically and were 

implemented using the Maple symbolic algebra system. 

This paper presents a simulation framework for the tree mortality process in a forest 

stand using stochastic differential equations (SDEs) and the normal copula function. The 

number of living and dead trees per hectare and their relationship to a stand’s mean 

diameter and height are examined. Transition probability density functions are derived 

in the exact form using the proposed mixed-effects parameters SDE framework, and 

parameter estimators for the diameter and occupied area are produced using an 

approximated maximum likelihood technique. In the next step, we estimate the 

dependence parameter of the two-dimensional copula density function. Finally, we define 



Symmetry 2025, 17, 213 4 of 18 
 

 

the number of live trees in the stand as the mean value of the random variable using the 

integration operation, as all densities with the corresponding parameter estimates are 

known, and using the derivative operation, we define the number of dying trees in the 

stand. This formalization also makes it possible to write formulas for volume and basal 

area calculations using an integration process, which may support foresters in assessing 

various management strategies. The framework was designed to make it as flexible as 

possible by allowing machine-learning resources to adapt in response to evolving 

conditions at any point, as depicted in Figure 1. 

 

Figure 1. SDE algorithm flow chart visualization. 

2.1. Stochastic Differential Equation Framework 

The probability distribution of tree-level size variables is useful for defining the 

mean, mode, median, quantiles, and other numerical characteristics of tree-level and 

stand-level size attributes. The main tools for assessing tree or stand quantitative and 

qualitative characteristics are tree height and diameter distributions [29,30]. Classical, 

well-known distributions, including gamma, Weibull, normal, exponential, and others, 

are most frequently used by forest statisticians [31,32]. The main drawback of these 

distribution models is that they are not associated with trees’ ages. Itô-type [23,33] 

stochastic differential equations, which describe diffusion processes, can be effectively 

used to determine the relationship between changes in a tree size variable and a tree’s age 

or a stand’s average age. 

Vasicek, Gompertz, Bertalanffy, and gamma SDE growth models provide exact 

solution transition probability density functions. In this paper, we use a multiplicative 

form of noise and a one-dimensional mixed-effects 4-parameter Gompertz-type stochastic 

differential equation, separately defining the dynamics of the area occupied by the tree 

and those of the tree’s diameter. Suppose that change rates in tree diameter at breast 

height 𝑋1𝑘
𝑖 (𝑡), i = 1, …, M; k = 1, …, ni1 (M is the number of plots and ni1 is the number of 

trees in the ith plot), and change rates in the occupied area 𝑋2𝑘
𝑖 (𝑡)  are determined 

according to the Gompertz-type stochastic differential equation: 

𝑑𝑋𝑗𝑘
𝑖 (𝑡)  = ((𝛼𝑗 + 𝜑𝑗

𝑖) − 𝛽𝑗𝑙𝑛(𝑋𝑗𝑘
𝑖 (𝑡) − 𝛾𝑗)) (𝑋𝑗𝑘

𝑖 (𝑡) − 𝛾𝑗)𝑑𝑡 + √𝜎𝑗(𝑋𝑗𝑘
𝑖 (𝑡) − 𝛾𝑗)𝑑𝑊𝑗𝑘

𝑖 (𝑡), (1) 

where 𝛼1 and 𝛼2 are birth rate parameters, 𝛽1 and 𝛽2 are death rate parameters (𝛼1, 𝛼2 

> 0 and 𝛽1 , 𝛽2  > 0), 𝛾1 and  𝛾2  are threshold parameters, 𝜎1 and  𝜎2  are volatility 

coefficients, and random effects 𝜑1
𝑖  , 𝜑2

𝑖  , i = 1, …, M have constant variances and zero 

means. They are independent, normally distributed random variables, respectively, 

𝜑1
𝑖 ~𝑁(0; 𝜎11

2 ) and 𝜑2
𝑖 ~𝑁(0; 𝜎21

2 ). Moreover, 𝜑𝑗
𝑖 is a random variable that is independent 

to 𝑊𝑗𝑘
𝑖 (𝑡), and an initial condition takes the following form: if t = t0, then 𝑋1

𝑖(𝑡0) = 𝑥10, 

and 𝑋2
𝑖 (𝑡0) = 𝑥20 = 𝛿 (𝑥10 > 𝛾1, 𝑥20 > 𝛾2).  The unknown fixed-effect parameters vectors 

Ɵ1 = {𝛼1, 𝛽1, 𝛾1, 𝜎1} and Ɵ2 = {𝛼2, 𝛽2, 𝛾2, 𝜎2, 𝛿} must be estimated. 

After performing the process transformation 𝑌𝑗𝑘
𝑖 = 𝑒𝛽𝑗𝑡 𝑙𝑛(𝑋𝑗𝑘

𝑖 (𝑡) − 𝛾𝑗), j = 1, 2, we can 

derive the transition probability density function of the solution in the exact form. The 

solution of the 4-parameter Gompertz-type stochastic differential Equation (1) 𝑋𝑗𝑘
𝑖 (𝑡) − 𝛾𝑗 
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has a lognormal distribution 𝐿𝑁1 (𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖); 𝑣𝑗(𝑡|Ɵ𝑗)) , i = 1, ...M, with the mean 

𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖), the variance 𝑣𝑗(𝑡|Ɵ𝑗), j = 1, 2; k = 1, …, nij, and the probability density function 

𝑓𝑗
𝑖(𝑥𝑗𝑘, 𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖), as follows: 

𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) = 𝑙𝑛(𝑥𝑗0 − 𝛾𝑗) 𝑒−𝛽𝑗(𝑡−𝑡0)𝑒−𝛽𝑗(𝑡−𝑡0) +
1

𝛽𝑗
(1 − 𝑒−𝛽𝑗(𝑡−𝑡0)) (𝛼𝑗 + 𝜑𝑗

𝑖 −
𝜎𝑗

2
),  (2) 

𝑣𝑗(𝑡|Ɵ𝑗) =
1−𝑒

−2𝛽𝑗(𝑡−𝑡0)

2𝛽𝑗
𝜎𝑗,  (3) 

𝑓𝑗
𝑖(𝑥𝑗 , 𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) =
1

√2𝜋𝑣𝑗(𝑡|Ɵ𝑗)(𝑥𝑗−𝛾𝑗)
𝑒𝑥𝑝 (−

(𝑙𝑛(𝑥𝑗−𝛾𝑗)−𝜇𝑗
𝑖 (𝑡|Ɵ𝑗,𝜑𝑗

𝑖 ))
2

2𝑣𝑗(𝑡|Ɵ𝑗)
). (4) 

The dynamics of the mean, 𝑚𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖), median, 𝑚𝑒𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖), mode, 𝑚𝑜𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖), 

qth quantile (0 < q < 1), 𝑞𝑚𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) , and variance, 𝑤𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) , i = 1, …, M, of the 

diameter are given by the following expressions: 

𝑚𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) = 𝛾𝑗 + 𝑒𝑥𝑝 (𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) +
1

2
𝑣𝑗(𝑡|Ɵ𝑗)), (5) 

𝑚𝑒𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) = 𝛾𝑗 + 𝑒𝑥𝑝(𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖)), (6) 

𝑚𝑜𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) = 𝛾𝑗 + 𝑒𝑥𝑝(𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) − 𝑣𝑗(𝑡|Ɵ𝑗)), (7) 

𝑞𝑚𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) = 𝛾𝑗 + 𝑒𝑥𝑝 (𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) + √𝑣𝑗(𝑡|Ɵ𝑗)𝛷𝑞
−1(0; 1)), (8) 

𝑤𝑗
𝑖(𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) = 𝑒𝑥𝑝(2𝜇𝑗
𝑖 (𝑡|Ɵ𝑗 , 𝜑𝑗

𝑖) + 𝑣𝑗(𝑡|Ɵ𝑗)) ⋅ (𝑒𝑥𝑝(𝑣𝑗(𝑡|Ɵ𝑗)) − 1). (9) 

2.2. Bivariate Normal Copula 

Copula functions play an important role in linking one-dimensional probability 

distributions to multidimensional distributions of a particular form. That parameter 

estimates of tree diameter and occupied area stochastic differential Equation (1) may be 

obtained utilizing different samples highlights the benefit of employing the copula 

function method. Sklar’s theorem makes this link possible [34]. The normal copula 

function has attracted particular attention because the normal probability distribution is 

widely used in agriculture, biology, engineering, economics, and finance. Let us define a 

normal two-dimensional copula function. The two-dimensional normal copula 

distribution function with correlation parameter 𝜌 ∊ (−1; 1)  is defined using Sklar’s 

formula in the following form: 

𝐶(𝑢, 𝑣; 𝜌) = 𝛷2(𝛷−1(𝑢), 𝛷−1(𝑣); 𝜌), (10) 

where 

𝛷(𝑥) = ∫ 𝜑(𝑧)𝑑𝑧
𝑥

−∞
, 𝜑(𝑥) =

1

√2𝜋
𝑒−

𝑥2

2 , (11) 

𝛷2(𝑥, 𝑦; 𝜌) = ∫ ∫ 𝜑2(𝑧1, 𝑧2; 𝜌)𝑑𝑧1𝑑𝑧2
𝑦

−∞

𝑥

−∞
, 𝜑2(𝑥, 𝑦; 𝜌) =

1

2𝜋√1−𝜌2
𝑒

−
𝑥2−2𝜌𝑥𝑦+𝑦2

2(1−𝜌2) . (12) 

The two-dimensional normal copula probability density function takes the following 

form: 

𝑐2(𝑢, 𝑣; 𝜌) =
1

√1−𝜌2
𝑒

−
𝜌2(𝑥2+𝑦2)−2𝜌𝑥𝑦

2(1−𝜌2) , (13) 
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where 𝑥 = 𝛷−1(𝑢) and 𝑦 = 𝛷−1(𝑣). The joint two-dimensional copula-type probability 

density function 𝑓(𝑥, 𝑦) is given as follows: 

𝑓(𝑥1, 𝑥2) = 𝑐2(𝐹1(𝑥1), 𝐹2(𝑥2); 𝜌)𝑓1(𝑥1)𝑓2(𝑥2), (14) 

where 𝑓𝑗(𝑥𝑗) and 𝐹𝑗(𝑥𝑗), j = 1, 2 are the probability density and cumulative distribution 

functions of Xj, respectively. 

The conditional probability density function of 𝑋𝑗(𝑡), j = 1, 2 at a given (𝑋𝑘(𝑡) = 𝑥𝑘), 

j ≠ k, is defined as follows: 

𝑓1|2(𝑥1|𝑥2) =
𝑓(𝑥1,𝑥2)

𝑓2(𝑥2)
, 𝑓2|1(𝑥2|𝑥1) =

𝑓(𝑥1,𝑥2)

𝑓1(𝑥1)
. (15) 

2.3. Semiparametric Maximum Pseudo-Likelihood Procedure 

Given that in the previous section we determined the exact transition probability 

density functions for tree diameter and occupied area and the two-dimensional normal 

copula function that connects them, we can directly apply the maximum likelihood 

method to estimate unknown parameters. The direct implementation of the one-step 

maximum likelihood method raises several numerical problems in optimizing the 

maximum log-likelihood function [35]. Naturally, estimating parameters using the 

maximum log-likelihood function can be divided into two steps. 

In the first step, Equations (1) and (2) can be fitted to the diameter sample dataset 

{𝑥11
𝑖 , 𝑥12

𝑖 , … , 𝑥1𝑛𝑖𝑗

𝑖 }  or occupied area sample dataset {𝑥21
𝑖 , 𝑥22

𝑖 , … , 𝑥2𝑛𝑖𝑗

𝑖 }  at discrete times 

(ages) {𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑛𝑖𝑗
𝑖 } (nij is the number of observed trees of the ith plot for the jth variable, 

i = 1, 2, …, M) using the maximum likelihood procedure. The associated maximum log-

likelihood function for the mixed-effects parameters takes the following form: 

𝐿𝐿𝑗(Ɵ𝑗 , 𝜎𝑗1, 𝛹𝑗) = ∑ ∫ (∑ 𝑙𝑛
𝑛𝑖𝑗

𝑘=1 (𝑓𝑗
𝑖(𝑥𝑗𝑘

𝑖 , 𝑡𝑘
𝑖 |Ɵ𝑗 , 𝜑𝑗

𝑖)) + 𝑙𝑛(𝑝(𝜑𝑗
𝑖|𝜎𝑗1

2 ))) ⋅ 𝑑𝜑𝑗
𝑖+∞

−∞
𝑀
𝑖=1 , j = 1, 2, (16) 

where (Ɵ𝑗 , 𝜎𝑗1)  are fixed-effect parameters (the same for all plots), the normal density 

function of random effects is 𝑝(𝜑𝑗
𝑖|𝜎𝑗1

2 ), and 𝛹𝑗 = (𝜑𝑗
1, 𝜑𝑗

2, … , 𝜑𝑗
𝑀). 

For mixed-effects parameters Models (1) and (2), the two-stage approximated 

maximum log-likelihood procedure takes the following form (j = 1, 2; i = 1, …, M): 

𝐿𝐿𝑗(Ɵ𝑗 , 𝜎𝑗1, 𝛹̂𝑗) ≈ ∑ (𝑔(𝜑𝑗
𝑖̂|Ɵ1) +

1

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛 (𝑑𝑒𝑡 ([−

𝜕2𝑔(𝜑𝑗
𝑖|Ɵ𝑗)

𝜕(𝜑𝑗
𝑖)

2 ]) |
𝜑𝑗

𝑖 =𝜑𝑗
𝑖̂ ))

𝑀

𝑖=1

 (17) 

𝜑𝑗
𝑖̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑔

𝜑𝑗
𝑖

(𝜑𝑗
𝑖|Ɵ𝑗̂), 

(18) 

where 

𝑔(𝜑𝑗
𝑖|Ɵ𝑗) = ∑ 𝑙𝑛

𝑛𝑖

𝑘=1

(𝑓𝑗
𝑖(𝑥𝑗𝑘

𝑖 , 𝑡𝑘
𝑖 |Ɵ𝑗 , 𝜑𝑗

𝑖)) + 𝑙𝑛(𝑝(𝜑𝑗
𝑖|𝜎𝑗1

2 )), (19) 

and argmax is an operation that finds the argument that gives the maximum value from a 

target function. 

The maximization of 𝐿𝐿𝑗(Ɵ𝑗, 𝜎𝑗1, 𝛹𝑗)  is a two-stage optimization problem. The 

internal optimization step estimates the 𝜑𝑖 for every plot i = 1, …, M using Equation (18). 

The external optimization step maximizes 𝐿𝐿𝑗(Ɵ𝑗 , 𝜎𝑗1, 𝛹̂𝑗) after plugging 𝜑𝑗
𝑖̂, i = 1, …, M 

into Equation (17). 

In the second step, we estimate the density parameters of the two-dimensional copula 

density function defined using Equation (13) by maximizing the log-likelihood copula 

function defined as follows: 
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l(p)=∑ ∑ 𝑙𝑛 (𝑐2 (𝛷−1 (𝐹1
𝑖(𝑥1𝑘

𝑖 , 𝑡𝑘
𝑖 )) , 𝛷−1 (𝐹2

𝑖(𝑥2𝑘
𝑖 , 𝑡𝑘

𝑖 ))))
𝑛𝑖𝑗

𝑘=1
𝑀
𝑖=1 , (20) 

where 𝐹𝑗
𝑖(𝑥𝑗𝑘

𝑖 , 𝑡𝑘
𝑖 ) = ∫ 𝑓𝑗

𝑖(𝑧, 𝑡𝑘
𝑖 |Ɵ𝑗̂, 𝜑𝑗

𝑖̂)𝑑𝑧
𝑥𝑗𝑘

𝑖

𝛾𝑗
  and 𝛷−1  is the inverse of a standard normal 

distribution. 

2.4. Parameter Calibration 

The main challenge in defining the dynamics of tree size variables comes from 

calibrating random effects to the new stand. Observed data from a new plot were used in 

this study to estimate random effects [36]. If there are no measurements of standing dead 

trees in a new plot, the random effects needed to define the dynamics of the dead tree size 

variables are equated to the corresponding random effects of the living trees. For a new 

plot, the random effects 𝜑̂ are defined in the following form [37]: 

𝜑
∧

𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜑𝑗

(∑ 𝑙𝑛 (𝑓𝑗 (𝑥𝑗𝑘, 𝑡𝑘 |𝜃
∧

𝑗 , 𝜑𝑗)) + 𝑙𝑛(𝑝(𝜑𝑗|𝜎̂𝑗1
2 ))𝑚

𝑘=1 ), (21) 

where the number of observed trees in a plot is denoted by m, {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑚}, j = 1, 2 (tree 

diameter or occupied area) is the newly observed dataset (measured plot) on fixed time 

values {𝑡1, 𝑡2,, … , 𝑡𝑚}, t0 = 4, and 𝑓𝑗 (𝑥𝑗𝑘, 𝑡𝑘 |𝜃
∧

, 𝜑𝑗) is the log-normal density function defined 

using Equation (5). Estimated values of fixed-effect parameters for mixed-effects Models (1) 

and (2) are denoted by “hat” and are estimated separately for living and dead trees using an 

approximated maximum likelihood procedure described using Equations (17)–(19). 

3. Material 

3.1. Sample Collection 

In this paper, we present 37 years of measurements from continued monitoring of 

permanent experimental plots. During the 1983–1987 period, 53 permanent experimental 

plots were installed in the forests of Lithuania’s Kazlų Rūda region and measured 

between one and seven times at 2- to 37-year intervals. Figure A1 shows the location of 

the permanent experimental plots in the forests of the Kazlų Rūda region of Lithuania. 

The sampling method used rectangular plots that consisted of about 0.16–0.72 ha. The area 

covered by Scots pine (Pinus sylvestris L.) stands accounts for 63.8% of the particular 

allocation; Norway spruce (Picea abies) for 30.2%; silver birch (Betula pendula Roth and 

Betula pubescens Ehrh.) for 5.8%; and other stands for 0.2%. From 1983 to 2020, 58,829 live 

trees (36,689 pine, 18,738 spruce, 3270 birch, and 132 other species) were measured in 48 

plots. During each measurement, the following were recorded for every sample tree: age, 

diameter at breast height, and tree position (x and y coordinates). The area occupied by a 

tree was determined by measuring each tree’s location inside the plots and utilizing a 

Voronoi diagram [37]. Trees that fell out of measurement within 37 years were considered 

dead. Figure 2 shows the dynamics of the number of trees per ha depending on the stand’s 

average age by tree species. A total of 16,857 trees (10,620 pine, 5049 spruce, 1104 birch, 

and 94 others) died in 48 plots from 1983 to 2020, which represents 28.7% of the sample 

population (58,829 trees). In most cases, we were unable to identify the causal agent, and 

death was not consistently associated with biotic or abiotic forest characteristics. 
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Figure 2. Dynamics of the number of observed trees per hectare: (a) all species; (b) Scots pine; (c) 

Norway spruce; and (d) silver birch. 

Notably, the data-gathering process design likely contributed to the uncertainty of 

model predictions. Most likely, number-of-trees-per-hectare models lacked precision 

because age was a complicated variable to control in these ongoing experiments. This was 

problematic, as only 10% of trees whose height was measured had their age measured; 

the remaining trees were evaluated based on an average age. 

3.2. Parameter Estimation 

We used the semiparametric maximum likelihood method described above to find 

unknown parameters, where the diameter of the trees {𝑥11
𝑖 , 𝑥12

𝑖 , … , 𝑥1𝑛𝑖

𝑖 }  and the area 

occupied by the trees {𝑥21
𝑖 , 𝑥22

𝑖 , … , 𝑥2𝑛𝑖

𝑖 }  at a fixed point in time {𝑡1
𝑖 , 𝑡2

𝑖 , … , 𝑡𝑛𝑖
𝑖 }  were 

discretely measured for i = 1,..., M in M = 48 plots. Parameters of the stochastic differential 

Equation (1) were estimated separately for living and dead (dying) trees under four 

possible outcomes: all trees, Scots pine, Norway spruce, and silver birch. The results of 

the parameter estimation are summarized in Table 1. All parameters were statistically 

significant. The observed Fisher information matrix, which is the negative of the second 

derivative (the Hessian matrix) of the approximated maximum log-likelihood function, 

was used to estimate standard deviations [38]. 

Table 1. Parameter estimates for Equations (1) and (2) for living and dead trees. 

Species 
Living Trees Dead Trees 

𝜶𝟏 𝜷𝟏 ɣ𝟏 δ 𝝈𝟏  𝝈𝟏𝟏 𝜶𝟏 𝜷𝟏 ɣ𝟏 δ 𝝈𝟏  𝝈𝟏𝟏 

Diameter,  Ɵ̂1 

All 0.0904 0.0252 −6.3206 - 0.0051 0.0075 0.0904 0.0251 −3.4080 - 0.0059 0.0112 

Pine 0.0815 0.0198 −20.0858 - 0.0008 0.0027 0.1043 0.0292 −7.3245 - 0.0021 0.0067 

Spruce 0.0967 0.0296 −1.5744 - 0.0098 0.0102 0.1415 0.0564 −0.5799 - 0.0185 0.0233 

Birch 0.1421 0.0427 −4.6322 - 0.0071 0.0159 0.4630 0.1865 0.0479 - 0.0504 0.0938 

 𝜶𝟐 𝜷𝟐 ɣ𝟐 δ 𝝈𝟐  𝝈𝟐𝟏 𝜶𝟐 𝜷𝟐 ɣ𝟐 δ 𝝈𝟐  𝝈𝟐𝟏 

Occupied area,  Ɵ̂2 

All 0.0499 0.0139 −1.8124 1.6003 0.0075 0.0086 0.0586 0.0195 −0.8030 1.6003 0.0121 0.0118 

Pine 0.0620 0.0177 −1.6587 1.6040 0.0079 0.0086 0.0486 0.0126 −1.1019 1.6040 0.0078 0.0099 

Spruce 0.0559 0.0180 −0.8855 2.1216 0.0131 0.0103 0.0533 0.0176 −0.6102 2.1216 0.0148 0.0101 

Birch 0.0581 0.0177 −2.0621 2.0168 0.0083 0.0093 0.1042 0.0408 −2.1966 2.0168 0.0134 0.0151 
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Equation (20) was used to estimate the parameter of dependence, ρ̂, which yielded 

values of 0.2913 for all tree species, 0.2180 for pine, 0.2374 for spruce, and 0.1999 for birch. 

4. Results and Discussion 

4.1. Effect of Age on Mortality 

Deadwood is generally classified according to its position in relation to the forest 

canopy as standing or fallen because the decay rate of standing deadwood can be much 

lower than that of fallen deadwood. In this study, each stand’s standing and fallen dead 

trees were merged into a single class called dead (dying) trees. As trees age, stands 

naturally change into a phase of spontaneous decline in stem number in a process known 

as self-thinning. In forestry research, a complicated phenomenon like tree self-thinning is 

typically described mathematically as a power function between the number of trees per 

hectare (stand density) and tree size (e.g., mean diameter, volume, or biomass) [39–41]. 

This proposed power function is universal but dependent on species, age, and 

environmental conditions. Subsequent investigations by Yoda [3] and Mrad et al. [42] 

documented similar patterns relating to the time dependency of tree size and density. 

Modeling forest growth requires self-thinning equations to predict changes in stand 

density by tree species, age, and any combination of species or age. Using the stochastic 

differential Equation (1) for the dynamics of a tree’s occupied area (j = 2), we defined the 

dynamics of the number of trees per ha for four outcomes: all tree species, pine species, 

spruce species, and birch species in a forest stand using the following equation: 

𝑁𝑙𝑖(𝑡) =
10,000

𝑚2
𝑖 (𝑡|Ɵ̂2,𝜑̂2

𝑖 )
, i = 1, …, M, (22) 

where estimates of fixed-effect parameters Ɵ̂2 are from living trees data in Table 1; and 

random effects 𝜑̂2
𝑖   are calibrated using Equation (21) or, in the case of a fixed-effect 

scenario, are set to the mean values, namely zero (𝜑̂2
𝑖 = 𝐸𝜑2

𝑖 = 0). 

We defined the dynamics of the number of trees per hectare of dead trees using the 

derivative operation, as follows: 

𝑁𝑑𝑖(𝑡) = −10,000
𝑑

𝑑𝑡
(

1

𝑚2
𝑖 (𝑡|Ɵ̂2,𝜑̂2

𝑖 )
), i = 1, …, M, (23) 

where estimates of fixed-effect parameters Ɵ̂2 are taken from living trees data in Table 1; 

and random effects 𝜑̂2
𝑖  are calibrated using Equation (21) or, in the case of a fixed-effect 

scenario, are set to the mean values, namely zero (𝜑̂2
𝑖 = 𝐸𝜑2

𝑖 = 0). 

Tree mortality per hectare is often defined differently [43,44], so it makes sense to 

have a single measure of mortality. The absolute mortality rate per hectare derived from 

Equation (23) depends on the existing number of trees in the stand and is therefore not 

useful for mortality analysis when comparing stands with different initial numbers of 

trees. In this case, the relative mortality rate, or, in other words, the instantaneous 

dynamics of the relative mortality rate, is defined as the decrease in the number of trees 

per hectare compared to the current number of trees (using a percentage scale) in the 

following form: 

𝑀𝑟𝑖(𝑡) = −
𝑑

𝑑𝑡
(𝑙𝑛 (𝑁𝑙𝑖(𝑡))100=−

𝑑

𝑑𝑡
(

1

𝑚2
𝑖 (𝑡|Ɵ̂2,𝜑̂2

𝑖 )
) ∙ 𝑚2

𝑖 (𝑡|Ɵ̂2, 𝜑̂2
𝑖 )100, i = 1, 2, …, M. (24) 

The relationship between relative mortality and logarithmic size characteristics, 

expressed in Equation (24), is commonly used in forestry, for example, to describe the 

relationship between the number of trees per hectare in a stand and tree size [25,45,46]. 

Figure 3 shows simulated trajectories of the number of trees per hectare of living and 

dead trees, along with observations, and dynamics of tree mortality in the stand are shown 

on a percentage scale. Figure 3a–c shows that thinning occurred at a high rate in stands 
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up to 60 years of age, whereas in stands above 90 years of age, the rate was below 1%. 

Figure 3 also shows trends in the number of living and dead trees per ha in all mixed-

species, uneven-aged stands in the region, ignoring the plot’s characteristics (only fixed-

effect parameters were used). Figure 4 visualizes analogous trajectories for Scots pine, 

Norway spruce, and silver birch species separately. In this region, Norway spruce had 

significantly lower relative mortality than other tree species, as seen by comparing Figure 

4(p3,s3,b3). 

 

Figure 3. Trajectories of number of trees per 1 ha: (a) living trees; (b) dead trees; (c) dead–living trees 

ratio expressed as a percentage. Circles indicate observed values. 

 

Figure 4. Trajectories of number of trees per 1 ha: (p1,s1,b1) living trees; (p2,s2,b2) dead trees; 

(p3,s3,b3) dead–living trees ratio expressed as a percentage; (p1,p2,p3) pine species; (s1,s2,s3) 

spruce species; (b1,b2,b3) birch species. Circles indicate observed values. 

4.2. Effect of Tree Size on Mortality 

Next, we analyze how the mean diameter of trees in a stand affects the number of 

trees per ha. To determine the conditional number of trees per hectare in relation to the 

mean diameter of trees in the stand, we use a copula-type two-dimensional probability 

density function of the tree diameter and the occupied area, which is defined using 

Equation (14) and an additional integration operation, as follows: 

𝑁𝑙𝑖(𝑡| 𝑥1) = 10,000[∫ 𝑥2𝑓2|1
𝑖 (𝑡, 𝑥2|𝑥1)𝑑𝑥2

+∞

0
]

−1
, i = 1, 2, …, M, (25) 

where conditional probability density function is defined as: 

𝑓2|1
𝑖 (𝑡, 𝑥2|𝑥1) = 𝑐2(𝐹1

𝑖( 𝑥1, 𝑡), 𝐹2
𝑖( 𝑥2, 𝑡); 𝜌̂)𝑓2

𝑖(𝑥2, 𝑡|Ɵ̂2, 𝜑̂2
𝑖 ),  (26) 

and 𝐹𝑗
𝑖( 𝑥𝑗 , 𝑡) = ∫ 𝑓𝑗

𝑖(𝑧, 𝑡|Ɵ̂𝑗 , 𝜑̂𝑗
𝑖)𝑑𝑧

 𝑥𝑗

0
; j = 1, 2; estimates of fixed-effect parameters Ɵ̂𝑗 are 

taken from living trees data in Table 1; the parameter of dependence 𝜌̂ is estimated using 
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Equation (21) (for all tree species, 0.2913; for pine, 0.2180; for spruce, 0.2374; and for birch 

0.1999); and random effects 𝜑̂𝑗
𝑖 are calibrated using Equation (21) or, in the case of a fixed-

effect scenario, are set to the mean values, namely zero (𝜑̂𝑗
𝑖 = 𝐸𝜑𝑗

𝑖 = 0). 

Next, we visually analyze whether the number of trees per hectare is affected by the 

mean diameter of a forest stand. For Figure 5, the number of trees per hectare was 

modeled by taking three different trajectories of tree diameter dynamics: the mean 

(defined using Equation (6)), the 5% quantile, and the 95% quantile (defined using 

Equation (9)). Figure 5 shows that a strong increase in the diameter trajectory significantly 

affected the dynamics of the number of trees per ha. In this context, it is appropriate to 

investigate the rates of increase and decrease in the number of trees per ha as a function 

of the rate of change in the trajectory of tree diameter in a forest stand. For this purpose, 

the mean tree diameter in the stand, as defined using Equation (6), was increased or 

decreased by 10%, 25%, and 50%, and the effect on the number of trees per ha is shown 

graphically in Figure 6. Increasing the mean stand diameter by 10%, 25%, and 50% would 

reduce the number of trees per hectare by more than 3.5%, 8%, and 14%, respectively, at 

an average stand age of 60 years (see Figure 6a). On the other hand, reducing the mean 

stand diameter by 10%, 25%, and 50% would increase the number of trees per hectare by 

more than 4%, 10%, and 24%, respectively, at an average stand age of 60 years (see Figure 

6b). This confirms that thinning accelerates the increase in stand diameter and reduces the 

number of trees in the stand. 

 

Figure 5. Dynamics of the number of trees per ha of living trees using different trajectories of tree 

diameter in a stand: mean diameter trend (black); the trend of the diameter’s 5% quantile (red); the 

trend of the diameter’s 95% quantile (blue). Circles indicate the observed dataset. 

 

Figure 6. Percentage dynamics of decreases or increases in the number of trees per hectare: (a) mean 

increases in diameters of the stand’s trees of 10% (blue), 25% (red), and 50% (black); (b) mean 

decreases in diameters of the stand’s trees of 10% (blue), 25% (red), and 50% (black). 

The analysis of the number of trees per hectare shown in Figures 4–6 was carried out 

using a fixed-effect scenario, i.e., random effects were equated to their mean values, which 

were zero under the previous assumption. The analysis of the dynamic of the number of 

trees per hectare under the mixed-effects scenario is presented below. For this purpose, 
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estimates of fixed-effect parameters were taken from Table 1, and random effects were 

calibrated according to Equation (21). Figure 7 shows the dynamic of the number of trees 

per ha for living and dead trees and the dynamic of the relative mortality (dead–live trees 

ratio). Simulated trajectories of the number of trees per ha for all species of trees were in 

good agreement with the observed values for both living and dead trees, as shown in 

Figure 7(a1,p1,s1,b1) (for living trees) and Figure 7(a2,p2,s2,b2) (for dead trees). Notably, 

the tree mortality rate reached about 7% from the age of 10 years onwards and steadily 

decreased with age (see Figure 7(a3,p3,s3,b3)). Figure 7(a3,p3,s3,b3) shows that birch 

species (60–70 years old) reached the 1% mortality rate the fastest, followed by spruce 

species (70–80 years old) and then pine species (80–90 years old). In the case of pine 

species, the proportion of species in the species composition did not affect the mortality 

rate (see Figure 7(p3)). In contrast, birch species showed a higher mortality rate with a low 

proportion of birch species (see Figure 7(b3)). 

 

Figure 7. Trajectories of the number of trees per 1 ha for the mixed-effects scenario: (a1,a2,a3) all 

species of trees: the first stand consisted of 92% pine (P), 2% spruce (S), and 6% birch (B) (black), the 

second stand consisted of 14% P, 82% S, and 4% B (red), and the third stand consisted of 60% P, 3% 

S, and 37% B (blue); (p1,p2,p3) pine trees: the first stand consisted of 99% P, 0% S, and 1% B (black), 

the second stand consisted of 65% P, 31% S, and 4% B (red), and the third stand consisted of 18% P, 

80% S, and 2% B (blue); (s1,s2,s3) spruce trees: the first stand consisted of 18% P, 80% S, and 2% B 

(black), the second stand consisted of 49% P, 48% S, and 3% B (red), and the third stand consisted of 

60% P, 3% S, and 37% B (blue); (b1,b2,b3) birch trees: the first stand consisted of 37% P, 26% S, and 

37% B (black), the second stand consisted of 84% P, 0% S, and 16% B (red), and the third stand 

consisted of 92% P, 2% S, and 6% B (blue); (a1,p1,s1,b1) living trees; (a2,p2,s2,b2) dead trees; 

(a3,p3,s3,b3) dead–living trees ratio, expressed as a percentage. Circles indicate observed values. 
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To understand the mechanisms underlying tree mortality, it is worthwhile to 

investigate further the relationship between stand size attributes (mean diameter, height, 

etc.) and the relative mortality between different tree species and environmental 

conditions. To find a link between relative mortality and mean size attributes, we used 

tree diameter, height, and occupied area as size proxies and investigated their relationship 

with relative mortality. It has been repeatedly observed in the literature that mortality 

rates have a general multivariate dependence on tree size attributes and various 

environmental factors [4,47]. The analysis of the dynamic of relative mortality’s 

dependence on mean diameter and mean occupied area, shown in Figure 8, was carried 

out using a fixed-effect scenario; i.e., random effects were set to their mean values, which 

were assumed to be zero according to the previous assumption, estimates of fixed-effect 

parameters in Table 1 (living trees) were taken into account, and the mean trajectories of 

diameter and occupied area were calculated using Equation (5). 

 

Figure 8. Dead–living trees ratios, expressed as percentages, for the fixed-effect scenario: (a1,a2,a3) 

all species of trees; (p1,p2,p3) pine species; (s1,s2,s3) spruce species; (b1,b2,b3) birch species; 

(a1,p1,s1,b1) dynamic of dead–living trees ratio versus mean diameter; (a2,p2,s2,b2) dynamic of 

dead–living trees ratio versus mean occupied area; and (a3,p3,s3,b3) dynamic of dead–living trees 

ratio versus mean height. 

As Figure 8 shows, Norway spruce’s relative mortality was the most likely to reduce, 

by up to 4%, when the mean diameter exceeded 1.5 cm or the occupied area exceeded 3 

m2. In addition, Norway spruce’s relative mortality was reduced by up to 2% when the 

mean diameter exceeded 8 cm or the occupied area exceeded 6.5 m2. The next most 

common species in terms of the rate of decline in relative mortality was silver birch, for 

which the relative mortality rate decreased by up to 4% when the mean diameter was 

greater than 8 cm or the occupied area was greater than 4.5 m2. The relative mortality of 

silver birch decreased by up to 2% when the mean diameter exceeded 15 cm or when the 
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occupied area exceeded 8 m2. The smallest decreases in relative mortality were observed 

for Scots pine: 4% relative mortality occurred when the mean diameter exceeded 9 cm or 

the occupied area exceeded 4.5 m2, and 2% relative mortality occurred when the mean 

diameter exceeded 19.5 cm or the occupied area exceeded 10 m2. 

Relative mortalities shown in Figure 8 reflect all stands in the Kazlų Rūda region and 

do not take into account the peculiarities of tree growth processes in a particular stand. 

To reflect the effects of individual stands on differences in relative mortality required a 

mixed-effects scenario to be applied. Figure 9 shows the relationship of relative mortality 

with the mean tree diameter and the mean area occupied in three different stands. Figure 

9 also shows the dependence of the relative mortality dynamic on the mean diameter and 

the mean occupied area under a mixed-effects scenario; i.e., random effects were 

calibrated according to Equation (21), fixed-effect parameters from Table 1 (living trees) 

were used, and the mean trajectories of diameter, height, and occupied area were 

calculated according to Equation (5). The asymptotic values of mean diameter and mean 

occupied area for pine species are roughly illustrated in Figure 9: e.g., mean diameters 

were 32 cm (black in the first plot), 42 cm (red in the second plot), and 49 cm (blue in the 

third plot); and mean occupied areas were 23 m2 (black in the first plot), 24 m2 (red in the 

second plot), and 31 m2 (blue in the third plot). Through analysis, we observed that the 

relative mortality was lower in the plot where asymptotic values of the explanatory 

variable (diameter or occupied area) were smaller. Therefore, Figure 9 indicates that the 

process of slowing down relative mortality is proportional to the increase in tree size 

attributes (mean diameter and occupied area). Figure 9 also shows that site characteristics 

such as tree species composition and soil type had the greatest influence on the relative 

mortality rate of birch trees and the least influence on pine trees. This shows that the Kazlų 

Rūda region, where these observations were made, had the most favorable conditions for 

pine species tree growth. 

 

Figure 9. Dynamics of relative mortality over mean diameter, mean occupied area, and mean height 

for mixed-effects scenario: (a1,a2,a3) all species of trees; (p1,p2,p3) pine species; (s1,s2,s3) spruce 

species; (b1,b2,b3) birch species; (p1,s1,b1) dynamic of relative mortality versus mean diameter; 
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(p2,s2,b2) dynamic of relative mortality versus mean occupied area; and (p3,s3,b3) dynamic of 

relative mortality versus mean height. 

Table 2 presents the potential for forecasting the number of trees per hectare using 

the newly developed mixed-effects parameters model. It utilizes fixed-effect parameter 

estimates from Table 1 and random effects for the occupied area calibrated using Equation 

(21) and the observed datasets. The presented model showed high goodness-of-fit 

statistical measures for the number of trees per hectare of live tree predictions in this 

region. For example, the root mean square error (percentage root mean square errors) for 

all species and pine, spruce, and birch species were 171.6 (15.4%), 130.1 (16.6%), 101.4 

(24.2%), and 22.0 (30.0%), respectively, and the coefficient of determination for all species 

and pine, spruce, and birch species were 94.4%, 96.9%, 94.6%, and 95.8%, respectively. 

Table 2. Statistical measures * for the number of live trees per hectare model defined using Equation 

(22). 

Tree Species B (%) AB (%) RMSE (%) R2 

All 
131.963 133.167 171.593 

0.9439 
(11.82) (11.93) (15.37) 

Pine 
88.359 89.201 130.075 

0.9691 
(11.25) (11.36) (16.56) 

Spruce 
59.866 66.511 101.429 

0.9457 
(14.30) (15.89) (24.23) 

Birch 
3.292 13.651 22.028 

0.9577 
(4.47) (18.56) (29.95) 

* Statistical measures: the mean bias, B =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

∧
)𝑛

𝑖=1   (the percentage mean bias, %𝐵 =

1

𝑛
∑

𝑦𝑖−𝑦𝑖
∧

𝑦𝑖
∗ 100𝑛

𝑖=1 ); the absolute mean bias, 𝐴𝐵 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖

∧
|𝑛

𝑖=1  (the percentage absolute mean bias, 

%𝐵 =
1

𝑛
∑ |

𝑦𝑖−𝑦𝑖
∧

𝑦𝑖
| ∗ 100𝑛

𝑖=1 ); the root mean square error, 𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

∧
)

2
𝑛
𝑖=1  (the percentage 

root mean square error, %𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

𝑦𝑖−𝑦𝑖
∧

𝑦𝑖
)

2
𝑛
𝑖=1 ∗ 100 ); and the coefficient of determination, 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖

∧
)

2
𝑛
𝑖=1

∑ (𝑦𝑖−𝑦)2𝑛
𝑖=1

. 

This paper suggests analyzing the instantaneous tree relative mortality in a forest 

stand using models based on stochastic differential equations. Higher predictability and 

interpretability are the primary benefits of newly developed stochastic differential 

equation models. 

5. Conclusions 

The main achievement of this study was the application of a 4-parameter Gompertz-

type diffusion process to model tree mortality in mixed-species, uneven-aged stands. The 

normal copula function combined several diffusion processes and allowed the inclusion 

of not only age but also additional explanatory variables, such as tree diameter, height, 

crown base height, and crown width, to explain stand mortality. These newly derived 

probability density functions allow the formulation of equations describing the mean, 

quantile, and variance of the number of living and dead trees in mixed-species, uneven-

aged forest stands. 

Future work will focus on the derivation of multivariate distributions (e.g., diameter, 

height, and occupied area) with a general shape, which would allow the study of the basal 

area and volume and their increments of living and dead trees in a stand. To generate 
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multivariate distributions, it is appropriate to use the copula method and stochastic 

differential equations. 
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