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Abstract: Periodic change in reservoir water level will have a significant impact on berth-

ing position, and the impact caused by irregular operation during berthing will cause 

damage to wharf pile foundations. However, most of the existing monitoring methods 

adopt irregular methods, so it is difficult to accurately identify and analyze the damage 

causes. Taking a high-piled wharf in the Three Gorges Reservoir area as an example, the 

uncertainty of reservoir water level change is quantitatively analyzed. By establishing a 

simplified parametric wharf calculation model, the data set of an inversion model of pile 

of a high-piled wharf under ship impact is obtained, and the inversion analysis of pile 

damage of a high-piled wharf under ship pile is carried out based on the artificial neural 

network model. The results show that the inversion model can accurately and efficiently 

identify the intensity of ship impact, and a low water level is better than a high water level 

in the identification of impact position. In this paper, the behavior of wharf structure be-

fore and after damage is analyzed symmetrically under the action of damage inducement. 

In summary, the inversion analysis method can basically meet the requirements of inver-

sion identification of pile foundation damage of a high-pile wharf in a backwater fluctua-

tion area under ship impact. 

Keywords: ship impact; Three Gorges Reservoir area; uncertain quantification; inversion 

analysis 

 

1. Introduction 

As show in the Figure 1, the fluctuation of water level in inland river reservoir ports 

is closely related to factors such as dispatching and upstream inflow, and the fluctuation 

of water level is larger than that in a plain port. Taking the Three Gorges Reservoir as an 

example, the dispatching water level varies by 30 m, and the maximum drop between 

flood level and low water level can reach more than 35 m. Different from other waters, 

the research on the symmetry of damage inducement inversion in the Three Gorges res-

ervoir area is mainly aimed at the analysis of the symmetry results of pile foundation in 

different positions during the response process under the impact of ships. 
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Figure 1. Three Gorges Reservoir area. 

The berthing position and impact force affected by water flow in the berthing process 

of operating ships in the port area are closely related to the change in reservoir water level. 

Huang Qiujie [1] systematically simulated the movement law of water flow and sediment 

in the reach from Changshou to Luoqi and summarized the variation law of water level 

in the harbor basin. Zhao Tianhui [2] studied the prediction method of a high-piled wharf 

under ship impact by using a three-dimensional finite element analysis model. Liu Siqi et 

al. [3], in combination with time-varying reliability theory, carried out a dynamic analysis 

on the ship impact force of a high-piled wharf. Liu Xiaoxi et al. [4] applied the limit prob-

ability theory to analyze the load effect and carried out the failure probability and relia-

bility index analysis of the horizontal bearing capacity of a high-piled wharf. Wang 

Jianchao et al. [5] used numerical analysis to analyze and calculate the high-piled wharf 

structure under ship impact. 

In the research of pile foundation damage caused by ship impact, Ye Binbin [6] car-

ried out the experimental study of barge impact on a single pile foundation model, ex-

plored the dynamic response and vulnerable area of a single pile foundation structure 

under impact load, and further studied the dynamic response characteristics of a pile 

foundation structure under the impact of an inland barge on a high-pile cap group pile 

foundation system by numerical simulation. Zhu Ruihu et al. [7] conducted a study on 

the dynamic response of piles with different bent positions through impact load tests and 

put forward a reinforcement scheme. 

There is no relevant report on the inversion of pile foundation damage of a high-piled 

wharf in a fluctuating backwater area. In this paper, based on the hydrological statistical 

data of the Three Gorges Reservoir area, the uncertainty of water level variation in the 

waters where the wharf is located is quantitatively analyzed, and the parametric calcula-

tion model of the inland river overhead wharf is established. Based on the artificial neural 

network model, the inversion calculation of pile foundation damage of the high-piled 

wharf under the action of a ship pile foundation is carried out. The results show that this 

method has a good recognition effect on the strength and position of a ship pile founda-

tion, which provides a certain reference for optimizing wharf design. 

2. Uncertainty and Quantification of Ship Berthing 

The uncertainty of ship berthing includes tonnage, size, berthing speed, berthing po-

sition, etc. In this paper, we focus on the magnitude and position of the berthing force of 

a wharf pile foundation. 
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2.1. Quantification of Ship Tonnage Uncertainty 

The probability distribution of deadweight tons of ships is mostly a multimodal dis-

tribution [8], and the commonly used multimodal distribution fitting models are the 

mixed Weibull [9] and the Gaussian mixture model (GMM) [10]. Taking GMM as an ex-

ample, the single Gaussian probability density function can be expressed as follows [11]: 

g(𝑥, 𝑢, 𝜎) =
1

√2πσ2
exp [−

(𝑥 − 𝑢)2

2σ2
] (1) 

Taking the monthly statistical data of container transport vessels from January 1 to 

31 December 2020 at Chongqing Orchard and Cuntan Container Terminals in the Three 

Gorges Reservoir area as samples [12], according to the iterative method based on the 

Gaussian mixture model, the probability density function is fitted, and the results are 

shown in Table 1. 

Table 1. Fitting of probability density function of ship tonnage. 

Statistical Object 
Gaussian 

Component 
Weight Average Value 

Standard 

Deviation 

Ship tonnage 

1 0.191 5.98 2.55 

2 0.233 12.55 7.25 

3 0.456 1.98 0.89 

4 0.009 50.15 11.21 

It can be seen from the statistical results that the main types of container ships cur-

rently sailing in the Chongqing section of the Three Gorges Reservoir area are 3000 tons 

and 5000 tons, accounting for 44.28% and 23.09%, respectively, and the proportion of ships 

above 6000 tons is the smallest, only 6.81%. Considering that the damage cause deter-

mined in this study is that the structure bears the load under nonstandard operation con-

ditions such as “barbaric berthing,” the calculation benchmark in the calculation of ship 

berthing load is determined to be 6000 tons. 

2.2. Quantification of Ship Impact Position Uncertainty 

Taking the water level observation data of Cuntan Hydrological Station in the Yang-

tze River from 1 January 2016 to 31 December 2020 as a sample, the statistical analysis of 

reservoir water level changes was carried out [13], and the five-year average water level 

was fitted by a polynomial to determine the characteristic water level calculated by struc-

tural analysis. The results are shown in Figure 2. 

 

Figure 2. Fitting curve of average daily water level from 2016 to 2020. 

The deterministic coefficient of fitting is R2 = 0.8047, which shows that the polynomial 

fitting method can better fit the annual water level changes in the Three Gorges Reservoir 

area. The water level fitting polynomial can be obtained as follows: 

𝑦 = −8𝑒−11𝐷4 − 2𝑒−6𝐷3 + 0.0012𝐷2 − 0.2081𝐷 + 175.3 (2) 



Symmetry 2025, 17, 215 4 of 13 
 

 

According to the analysis results, it is determined that the three representative water 

levels calculated by structural analysis are 145 m (low), 160 m (medium), and 175 m (high), 

respectively, which serve as the action points of unfavorable incentives such as ship berth-

ing and bank slope sliding. 

3. Establishment of Sample Data Set for Damage Inversion 

For the neural network model, the input of the model plays a vital role in the predic-

tion results of the model. When the number of input samples is small, it will cause the 

sample model to be under-fitted. The model can make a good prediction for the given data 

set, but it is not good for the new data set, which is obviously unfavorable for the identi-

fication of damage incentives. In order to get a good prediction result, a large number of 

data samples need to be collected. 

The model is parameterized, and the solid element model is optimized into a beam 

element model. The finite element program is called by the Python program to carry out 

parametric calculation and data extraction of the model, and the stress data of pile groups 

are preprocessed and dimension-reduced. 

3.1. Establishment of Parametric Model 

The parametric model adopts beam theory, and this model adopts the Timoshenko 

beam theory to model. Assuming that the action of the bank slope is a horizontal thrust, 

the pile foundation is horizontally loaded under the action of the bank slope, so the elastic 

foundation beam method can be considered to simulate the pile-soil constraint of the beam 

element model. The riprap layer and foundation rock are assumed to be elastic bodies, and 

the pile is regarded as a beam on an elastic foundation. The model is shown in Figure 3. 

     

Figure 3. Parametric dock model. 

In order to distinguish different components in the subsequent calculation process, 

we numbered the load-bearing structure of the wharf: 1-11. The magnitude and longi-

tudinal position of ship impact are applied according to the values determined above, and 

the specific position is shown in Figure 4. 

 

Figure 4. Distribution of ship impact points. 
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3.2. Data Collection and Sample Set Construction 

The established beam element model db file is set as a callable model, the parameters 

under ship impact are extracted by random sampling, the parameters are loaded into a 

solution file (the solution file is an ANSYS command flow file, which contains commands 

for calling the finite element model, commands for all loads, commands for post-pro-

cessing to extract stress, and macro files for exporting data), and the MANSYS module is 

called via subprocess to load the call model. 

The solution file is loaded and calls the finite element model for calculation, collects 

data, and exports it. In order to meet the calculation requirements, 10,000 working condi-

tion data are randomly selected as samples. 

Because the stress data of pile groups have different stress values and too large of a 

span and the neural network is very sensitive to the data set, the obtained data are nor-

malized, so that all the data fall within the interval of [0,1]. 

The first two characteristics of each group of samples are taken as the horizontal axis 

and the vertical axis to draw the scatter diagram, as shown in Figure 5, which shows the 

original scatter diagram and normalized scatter diagram of pile foundation stress under 

ship collision. 

 

(a) Original scatter plot 

 

(b) Normalized scatter plot 

Figure 5. Stress scatter diagrams of pile foundation under ship impact. 
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After the pre-processing of pile group stress data, the data can be directly loaded into 

the inversion model for training. 

However, direct training may result in too long of a training time for the model and 

flooding of dimensions due to the large sample size of the task, so the principal component 

analysis method is used to reduce the dimensions of the stress sample data, and the initial 

principal component number is adjusted according to the recognition effect of the inver-

sion model. The result of dimension reduction is shown in Figure 6. 

 

Figure 6. Scatter diagram of dimension reduction treatment of pile stress under ship impact. 

The features obtained after normalization and dimension reduction of stress data are 

counted as sample features x, the number of rows of x is the number of samples, the num-

ber of columns is the number of features, the damage inducement action parameter y cor-

responding to the counted samples is the target vector, the number of rows of y is the num-

ber of samples, the number of columns is 3, y is expressed as [type number, position num-

ber, action intensity value], and the one-to-one correspondence between x and y is saved in 

matrix form [X,y], which is input into the inversion model as a data set for training. 

4. Establishment of Damage Inducement Inversion Model 

In this paper, the inversion model of wharf damage inducement is built based on the 

Python language [14]. The main tools used are numpy library and sklearn library. numpy 

library is a scientific computing library of Python, which provides the function of matrix 

operation. Sklearn library is a third-party library for Python machine learning, which pro-

vides a simple integrated tool for machine learning. Our team has carried out relevant phys-

ical model tests and simulated the point where the ship collided. The test results have high 

reference value for the confirmation of input points in finite element calculation [15–19]. 

The modeling steps are as follows: 

1) Collect stress characteristic data of finite element model pile groups under differ-

ent working conditions. 

2) Fuse and reconstruct the stress sample data; calculate the range, mean, variance, 

and discrete coefficient of the extracted stress features of each pile; and use the calculated 

results as a supplement to the sample features to construct a sample data set D, which 

contains features x and corresponding labels y, where X ∈ Rm × n, X ∈ Rm × q, m is the 

number of samples, and n is the number of features. 

3) Information fusion is carried out on the sample data set by the normalization 

method, and the first principal components, x_PCA ∈ RM × a, are extracted. 

4) The data set is randomly divided into a training set S and a test set T according to 

a ratio of 3:1 by adopting a set-aside method. 
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5) Construct the neural network full connection model ANN with three hidden lay-

ers. The model optimizer adopts adam algorithm, the activation function adopts {“iden-

tity,” “logistic,” “tanh,” “relu”}, the damage function of classification learner in the output 

layer adopts cross entropy loss, the loss function of regression learner adopts the mean 

square error function, and the range of penalty factor α is set (0.0001–10). Set the maxi-

mum iteration number and model convergence accuracy, set k-fold cross-validation, split 

the training set s and load it into the ANN model for self-adaptive training, train the clas-

sification problem and regression problem, respectively, and cross-validate the training 

to obtain the model score to evaluate the performance of the model. The performance 

metrics mainly adopt precision accuracy and average absolute error MAE, and the low 

score means the model is unreliable, so the next step of optimization and parameter ad-

justment is carried out. Parameter optimization is carried out through the Gridsearch 

toolkit, and the parameters searched include the optimal parameters of the model, such 

as the number of hidden layers of neural network, the number of hidden layer nodes, and 

penalty factors. 

6) After training and verifying the training set S, load the test set T into the model to 

further evaluate the generalization ability of the model. 

5. Inversion Analysis of Damage Inducement 

5.1. Artificial Neural Network Model Training 

The sample data set is allocated according to the ratio of 75% of the training samples 

and 25% of the test samples. The location label of ship collision action is loaded into the 

classification learner for training, and the intensity label of ship collision action is loaded 

into the regression learner for training. 

The grid search method is used to search for the optimal parameters, and the above 

key parameters are searched. The classification learner uses the precision index, and the 

regression learner uses the R2 index. The neural network model is verified by cross-vali-

dation. According to the set maximum iteration times and convergence error, each neural 

network model reaches the automatic stop of the convergence error model, and it is con-

sidered that the internal weight of the neural network model is optimal at this time. The 

optimized parameters of the neural network inversion model of ship impact obtained by 

grid search are shown in Table 2: 

Table 2. Optimal parameters of artificial neural network model. 

Parameter 
Parameter 

Classification Learner Regression Learner 

Optimizer Adam Adam 

Hidden layer 2 2 

Number of hidden layer nodes [50,30] [100,50] 

Activate function Relu Identity 

Convergence error 0.001 0.001 

Penalty factor 0.01 0.2 

Maximum number of iterations 500 500 

5.2. Damage Inversion Analysis Results 

1) Ship impact location identification 

Location recognition is a classification problem, and the classification learner uses 

cross entropy loss as the model loss index. It can be seen from Figure 7 that when the 

neural network model is iterated 160 times, the model converges. 
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Figure 7. Loss curve of classification learner. 

In order to test the generalization ability of the model at each action position of injury 

inducement, the trained model is verified on the training set and the test set at different 

positions, and the specific indexes are shown in Table 3. 

The accuracy in the table represents the correctness of the action position recognition 

result, and the closer it is to 1, the better it represents the result. F1 is based on the har-

monic average of sample recall rate and precision rate, and the closer to 1, the better the 

result. Hamming loss is the distance between the predicted value and the true value of 

the sample, and the closer it is to 0, the smaller the result error. 

Table 3. Identification results of ship impact position. 

Location 

Training Data Set Test Data Set 

Sample 

Number 
Precision F1 

Hamming 

Loss 

Sample 

Number 
Precision F1 

Hamming 

Loss 

1 526 0.95 0.949 0.049 169 0.899 0.888 0.1 

2 493 0.937 0.933 0.063 166 0.903 0.901 0.096 

3 497 0.974 0.998 0.026 163 0.975 0.975 0.024 

4 534 0.949 0.95 0.051 159 0.905 0.91 0.0943 

5 473 0.858 0.832 0.141 165 0.8 0.815 0.211 

6 513 0.988 0.987 0.012 160 0.969 0.952 0.0312 

7 499 0.952 0.949 0.048 177 0.949 0.948 0.0508 

8 480 0.885 0.882 0.114 158 0.829 0.831 0.17 

9 487 0.944 0.94 0.055 176 0.937 0.925 0.0625 

10 478 0.971 0.969 0.029 166 0.957 0.955 0.032 

11 522 0.998 0.989 0.001 167 0.998 0.986 0.001 

12 530 0.999 0.989 0.01 179 0.969 0.971 0.0287 

13 507 0.999 0.995 0.011 179 0.98 0.985 0.015 

14 466 0.989 0.985 0 157 0.971 0.979 0.0215 

15 495 0.99 0.995 0.02 159 0.982 0.985 0.0122 

total 7500 0.942 0.942 0.057 2500 0.943 0.941 0.0576 

It can be seen from Table 3 that the position recognition accuracy of the training set 

is mostly above 0.94, and the recognition accuracy of the test samples is also above 0.9, 

which indicates that the neural network model has strong generalization ability for ship 

collision and can correctly identify the position of ship collision inducement. 

2) Identification of ship impact strength 

The identification of ship impact strength is a regression problem, and the regression 

learner uses variance as the model loss index. As can be seen from Figure 8, when the 

neural network model is iterated 500 times, the loss error reaches about 0.001, at which 

time the model can be basically judged to converge. 
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Figure 8. Loss curve of regression learner. 

The results of the training set and the test set of ship impact damage inducement are 

counted by position, and the performance index Table 4 of the model is obtained. 

Table 4. Identification results of ship impact strength. 

Location 
Training Data Set Test Data Set 

Sample Number R2 MSE MAE Sample Number R2 MSE MAE 

1 526 0.997  33.476  4.601  169 0.997  37.917  5.016  

2 493 0.996  46.082  5.394  166 0.996  43.113  5.132  

3 497 0.997  40.894  5.006  163 0.997  39.684  5.019  

4 534 0.997  41.190  5.240  159 0.996  43.729  5.351  

5 473 0.996  51.385  5.789  165 0.995  66.184  6.395  

6 513 0.997  39.907  4.901  160 0.997  38.344  4.964  

7 499 0.997  40.407  5.077  177 0.996  56.719  5.907  

8 480 0.996  47.118  5.448  158 0.996  44.238  5.165  

9 487 0.996  53.087  5.900  176 0.996  49.533  5.739  

10 478 0.994  71.079  6.999  166 0.994  76.648  7.475  

11 522 0.997  35.147  4.738  167 0.998  34.737  4.732  

12 530 0.997  43.386  5.276  179 0.996  54.646  6.054  

13 507 0.997  39.084  5.051  179 0.996  46.148  5.428  

14 466 0.997  38.028  4.971  157 0.997  39.069  5.063  

15 495 0.997  39.171  5.022  159 0.997  43.802  5.331  

total 7500 0.992 43.963  5.294  2500 0.996  47.781  5.527  

R2 in Table 4 represents the fitting degree of the model to strength identification, and 

the closer it is to 1, the better it represents the model. MSE is the mean square error, which 

represents the expectation of the square error between the predicted value and the true 

value of intensity identification. The closer it is to 0, the higher the accuracy is. MAE is the 

mean absolute error, which reflects the actual situation of intensity prediction error. 

The minimum value of the goodness-of-fit index R2 of training set and test set is 

0.989, the mean square deviation is 30–70 kN, and the average absolute error is 3–7 kN, 

which is relatively small compared with the value of ship impact force. For comparison, 

the absolute error curve and relative error curve of test set are drawn, and 20 predicted 

samples are randomly selected for comparison with the set value, as shown in Figure 9. 



Symmetry 2025, 17, 215 10 of 13 
 

 

 

(a) Absolute error of test sample 

 

(b) Relative error of test samples 

 

(c) Comparison of predicted values of 20 random samples 

Figure 9. Comparative analysis of settlement results. 

It can be seen from Figure 9 that some samples in the test set have large errors, reach-

ing about 20 kN, most of which are within 10 kN, and the average relative error is about 

3%. The performance of the model is relatively excellent and can meet the demand of in-

version analysis of the inducement of ship impact damage. 

6. Conclusions 

Based on the wharf pile foundation in the high fill area of the Three Gorges Reservoir 

area, this paper carries out the back analysis of the damage inducement under the action 

of ship pile foundation, establishes the relevant data analysis model, and obtains a struc-

tural analysis conclusion suitable for similar engineering environments: 

1) Based on the statistical data of ships operating in the Three Gorges Reservoir area 

and water level, through the quantitative analysis of uncertainty, using probability 
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density function and polynomial fitting method, the analysis parameters of ship impact 

damage incentives in the fluctuating backwater area in the Three Gorges Reservoir area 

are obtained, which are 6000 tons in size and 145 m, 160 m, and 175 m in position. 

2) The optimal parameters of the neural network model are searched by a grid search, 

the scores of the evaluation indexes of the model are cross-verified, and the inducement 

of ship collision damage is analyzed. After analysis, the location recognition accuracy of 

ship collision is 0.94, and the average absolute error of size recognition is 5.5 kN. The in-

version model has a very good generalization ability for ship collision injury inducement 

samples. 

3) The finite element simplified analysis model is established, and the MANSYS mod-

ule is called by Python’s subprocess module for analysis, which proves the feasibility of 

batch calculation of pile foundation stress in the complex structure of the overhead verti-

cal high-pile wharf. By comparing the stress characteristics with the solid element model, 

the calculation results of the simplified analysis model are verified to be correct, so that 

the sample space for inversion analysis can be obtained by using the simplified model 

calculation results. 

4) After analysis, compared with the strength and position of the ship’s pile founda-

tion, the pile foundation of the inland river overhead high-pile wharf is more sensitive to 

the strength and the position of the pile foundation at low water level. Therefore, in the 

process of wharf pile foundation design and health inspection, attention should be paid 

to the structural state under the conditions of large tonnage and low water level. 

In recent years, the Laboratory of Complex Systems and Computational Intelligence 

of Taiyuan University of Science and Technology [20–29] has done a lot of research on 

data storage and modeling methods and has obtained a series of research results, among 

which the new modeling technology mentioned provides reference data for better solving 

the problem of damage inducement inversion model in this paper. In the follow-up re-

search, we will further optimize the modeling method and deepen the related research of 

this paper. 
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