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Abstract: This paper introduces a bio-inspired meta-heuristic algorithm, the Besiege and
Conquer Algorithm (BCA), developed to tackle complex and high-dimensional optimiza-
tion problems. Drawing inspiration from the concept of symmetry and guerrilla warfare
strategies, the BCA incorporates four core components: besiege, conquer, balance, and feed-
back. The besiege strategy strengthens exploration, while the conquer strategy enhances
exploitation. Balance and feedback mechanisms maintain a dynamic equilibrium between
these capabilities, ensuring robust optimization performance. The algorithm’s effectiveness
is validated through benchmark test functions, demonstrating superior results in compari-
son with existing methods, supported by Friedman rankings and Wilcoxon signed-rank
tests. Beyond theoretical and experimental validation, the BCA showcases its real-world rel-
evance through applications in engineering design and classification problems, addressing
practical challenges. These results underline the algorithm’s strong exploration, exploita-
tion, and convergence capabilities and its potential to contribute meaningfully to diverse
real-world domains.

Keywords: besiege and conquer algorithm; meta-heuristics optimizer; swarm intelligence;
computational intelligence

1. Introduction
Optimization is the systematic approach of selecting a strategy to achieve the most

favorable outcome under defined or uncertain constraints [1]. Optimization problems can
be broadly categorized into constrained and unconstrained types. In the context of Artificial
Neural Networks (ANNs), optimization is a high-dimensional and non-linear task, where
the objective is to minimize the loss function by adjusting parameters such as weights
and biases. Due to the presence of multiple local minima in the loss landscape, achieving
optimal model performance is a global optimization problem. Conventional methods,
such as gradient descent, often struggle with convergence to global minima, becoming
trapped in local optima. Conversely, meta-heuristic algorithms, with their global search
capabilities, have shown promise in navigating these complex landscapes and are designed
to reach the global optimal solution, thus addressing one of the primary challenges in ANN
optimization. These advanced approaches offer robust alternatives by diversifying search
mechanisms to explore solutions beyond local regions, enhancing overall model accuracy
and stability across diverse problem domains.

The Multi-Layer Perceptron (MLP) is a foundational model in deep learning and
machine learning [2], widely applied across various domains [3,4], including classification,
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regression, and pattern recognition. Its architecture, consisting of multiple layers of inter-
connected neurons, enables MLPs to learn complex non-linear relationships in data, making
them highly effective for tasks that require intricate pattern recognition. This flexibility has
positioned MLPs as essential components in advancing machine-learning methodologies,
contributing to the development of powerful predictive models [5]. However, MLPs are
often regarded as “black-box” models, making the interpretation of internal weights and
feature extraction processes challenging. Furthermore, the performance of MLPs can vary
significantly depending on the problem, often requiring task-specific optimization and
adjustments to prevent overfitting or underfitting in complex, high-dimensional datasets.
Although MLPs have reached a level of maturity in their application within deep learning,
they continue to present valuable areas for research and development. MLPs can become
even more robust and adaptable to a wider range of applications, meeting the increasing
demands for interpretable and efficient machine-learning models.

Meta-heuristic algorithms can effectively solve complex optimization problems such
as high-dimensional, non-convex, and multimodal problems by balancing global search
and local development [6,7]. Their strong adaptability and innovation have demonstrated
excellent problem-solving capabilities in practical problems such as resource allocation,
path planning, and hyperparameter optimization. Meta-heuristics methods, such as Gray
Wolf Optimization (GWO) [8], Ant Colony Optimization (ACO) [9], and Genetic Algorithms
(GA) [10], have become increasingly prominent in neural network training, particularly
in optimizing MLPs [11]. The application and optimization in optimizing the parameters
of MLPs offers significant advantages, particularly in complex and non-linear optimiza-
tion landscapes where traditional gradient-based methods may struggle. Meta-heuristics
methods excel in global search capabilities, systematically exploring expansive parameter
spaces to identify optimal solutions, a robustness that is particularly valuable in neural
network training for circumventing the challenges of local minima in high-dimensional
spaces [12]. Despite the above advantages, they also face notable challenges in MLP op-
timization. Firstly, these methods often experience slower convergence rates, especially
in high-dimensional parameter spaces, which can significantly increase training complex-
ity. Secondly, these methods may still become trapped in suboptimal regions in highly
rugged or complex landscapes. Finally, due to the vast diversity for their architectures
and applications, meta-heuristic methods may require tailored adaptations to achieve opti-
mal performance. These methods may need to be redesigned or fine-tuned to effectively
address specific network structures, data distributions, or optimization objectives [13].
To address the above challenges, recent research focuses on hybrid approaches, adaptive
parameter tuning, and dynamic meta-heuristic methods variations. As the application of
meta-heuristic methods continues to evolve, research on these advancements is expected to
address existing limitations and fully exploit the potential in optimizing MLPs and other
neural network architectures [14,15].

These algorithms typically combine multiple strategies or processes, which in turn
amplifies interdependencies among the individual components [16]. Furthermore, the in-
trinsic complexity of hybrid frameworks constrains their scalability, making it challenging
to implement these algorithms for larger or more complex problems without significant
alterations. In contrast, newly proposed single algorithms often feature a simplified struc-
ture and reduced parameter count to facilitate both their design and implementation [17].
Unlike the generalized frameworks of hybrid algorithms, single algorithms are typically
tailored to address specific challenges or bottlenecks in particular problem domains. These
specialized algorithms frequently exhibit enhanced performance on specific problems, as
their design is more closely tailored to meet the particular demands of the optimization
task [18,19].
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With the accelerated development of machine learning, traditional optimization algo-
rithms frequently demonstrate limitations for high-dimensional data and intricate model
structures. Particularly in the training of MLPs, conventional optimization methods often
struggle with challenges such as suboptimal convergence rates and a pronounced suscepti-
bility to local optima [20]. These constraints may impede the performance of the model,
thereby diminishing its efficiency and generalizability in tackling intricate, real-world chal-
lenges. As models become increasingly complex and the dimensions of data expand, these
challenges may intensify the computational requirements, rendering the training process
both resource-intensive and time-consuming. It is imperative to address these challenges
in order to enhance the applicability of MLPs in domains that demand efficient, robust,
and scalable solutions. This underscores the need for the development of more advanced
optimization techniques that are specifically designed to meet the evolving requirements of
contemporary neural network architectures.

This study proposes an intelligent optimization algorithm, termed the Besiege and
Conquer Algorithm (BCA), which incorporates innovative strategies, including besiege,
conquer, balance, and feedback. The proposal of the BCA is inspired by the collaborative
dynamics and tactical behaviors observed between armies and soldiers during warfare,
effectively translating these principles into a computational framework for optimization.
The BCA introduces distinctive “besiege” and “conquer” strategies based on the symmetry
concept. The mutual assistance of besiege and conquer strategies in the search process can
solve the local stagnation problem of traditional methods for high-dimensional problems,
such as PSO and ACO. The BCA is based on a feedback mechanism and the adaptive update
of the Besiege and Conquer Balance (BCB), which makes it more adaptable when solving
complex optimization problems. In addition, the BCA can effectively optimize the weights
and biases. This approach not only fosters a more efficient global search but also enhances
local refinement to achieve fast convergence and efficient training performance. The BCA
exhibits considerable promise in improving adaptability and resilience in various intricate
training contexts, thereby serving as a viable alternative for parameter optimization in
high-dimensional, non-linear optimization challenges. Eventually, the main contributions
of this research can be summarized as follows:

• A methodology grounded in human behavior is proposed, and a thorough besiege
and conquer strategy is conducted.

• All mechanisms are modeled mathematically, including besiege, conquer, balance,
and feedback strategies. The besiege strategy contributes to exploration, while the
conquer strategy is dedicated to exploitation. The balance and feedback strategies
enhance the balance between exploration and exploitation capabilities.

• The BCA introduces the parameter BCB, which controls the balance mechanism to
speed up convergence.

• The superiority of the BCA is verified on IEEE CEC 2017 benchmark test functions,
two engineering designs, and three classification problems.

The performance of the BCA is tested by the IEEE CEC 2017 benchmark functions
and compared with some other meta-heuristic algorithms, such as weIghted meaN oF
vectOrs (INFO) [21], Reptile Search Algorithm (RSA) [22], Self-Organizing Migrating Al-
gorithm Team To Team Adaptive (SOMA T3A) [23], Butterfly Optimization Algorithm
(BOA) [24], GWO [8], Differential Evolution (DE) [25], Genetic Algorithm (GA) [10], and
PSO [26], using Friedman ranking and the Wilcoxon signed statistical test. In addition,
the BCA’s applicability is demonstrated by two engineering designs, including the Ten-
sion/Compression Spring [27] and Gear Train Design [28] problems, and three classification
problems, including the XOR [29], Ballon [30], and Tic-Tac-Toe [31] datasets.



Symmetry 2025, 17, 217 4 of 42

2. Related Work
2.1. Meta-Heuristic Algorithms

Meta-heuristic algorithms constitute an advanced category of optimization method-
ologies aimed at discovering optimal or near-optimal solutions for intricate optimization
challenges. These algorithms utilize the principles of computational intelligence and are
inspired by a wide range of natural phenomena and human behaviors, drawing from
various fields, including biology, physics, and the social sciences [32,33]. Meta-heuristic
algorithms can be categorized into (1) evolutionary algorithms, (2) swarm intelligence
algorithms, (3) human-based algorithms, and (4) physics-based algorithms. Through these
classifications, meta-heuristic algorithms demonstrate significant versatility in tackling a
diverse array of optimization challenges, making them essential instruments in disciplines
such as engineering, finance, and artificial intelligence. Their adaptive characteristics and
ability to conduct global searches enhance their effectiveness in managing the complexities
and uncertainties that are intrinsic to real-world optimization issues.

Evolutionary algorithms based on evolution mainly simulate the evolutionary law
of survival of the fittest in nature (Darwin’s law) to achieve the overall progress of the
population and finally solve the optimal solution. A brief review is shown in Table 1.
Among them, the two most prominent ones are GA [10] and DE [25].

Table 1. A brief review of evolutionary algorithms.

Algorithm Abbreviations Authors and Year

Evolution Strategy ES Rechenberg et al., 1973 [34]
Genetic Algorithm GA Holland et al., 1992 [10]
CoEvolutionary Algorithm CEA Hillis et al., 1990 [35]
Differential Evolution DE Storn et al., 1997 [25]
Imperialist Competitive
Algorithm ICA Atashpaz-Gargari et al., 2007 [36]

Differential Search Algorithm DSA Civicioglu et al., 2012 [37]
Backtracking Search
Optimization Algorithm BSA Civicioglu et al., 2013 [38]

Stochastic Fractal Search SFS Salimi et al., 2015 [39]
Synergistic Fibroblast
Optimization SFO Dhivyaprabha et al., 2018 [40]

Wildebeests Herd Optimization WHO Motevali et al., 2019 [41]
Learner Performance based
Behavior Algorithm LPB Rahman et al., 2021 [42]

Human-based algorithms are primarily derived from various aspects of human be-
havior, including teaching, social interaction, learning processes, emotional responses,
and management practices. Notable examples of such algorithms encompass Teaching–
Learning-Based Optimization (TLBO) [43], Group Search Optimizer (GSO) [44], Colliding
Bodies Optimization (CBO) [45], League Championship Algorithm (LCA) [46], and Queu-
ing Search Algorithm (QSA) [47], among others, as illustrated in Table 2.
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Table 2. A brief review of human-based algorithms.

Algorithms Abbreviations Authors and Year

Imperialist Competitive
Algorithm ICA Atashpaz-Gargari et al., 2007 [36]

Human-Inspired Algorithm HIA Zhang et al., 2009 [48]
League Championship Algorithm LCA Kashan et al., 2014 [46]
Teaching–Learning-Based
Optimization TLBO Rao et al., 2011 [43]

Anarchic Society Optimization ASO Shayeghi et al., 2012 [49]
Human Mental Search HMS Mousavirad et al., 2017 [50]
Volleyball Premier League VPL Moghdani et al., 2018 [51]
Gaining Sharing Knowledge GSK Mohamed et al., 2020 [52]
Coronavirus Herd Immunity
Optimizer CHIO Al-Betar et al., 2021 [53]

Ali baba and the Forty Thieves AFT Braik et al., 2022 [54]

Physics-based algorithms, such as Simulated Annealing (SA) [55], Gravitational Local
Search Algorithm (GLSA) [56], Central Force Optimization (CFO) [57], and others in Table 3,
are based on physics and chemistry and are mainly derived from the physical rules and
chemical reactions in the universe [55].

Table 3. A brief review of physics-based algorithms.

Algorithms Abbreviations Authors and Year

Simulated Annealing SA Kirkpatrick et al., 1983 [55]
Variable Neighborhood Search VNS Mladenović et al., 1997 [58]
Big Bang–Big Crunch BB-BC Erol et al., 2006 [59]
Central Force Optimization CFO Formato et al., 2007 [57]
Gravitational Search Algorithm GSA Rashedi et al., 2009 [60]
Black Hole Algorithm BHA Hatamlou et al., 2013 [61]
Colliding Bodies Optimization CBO Kaveh et al., 2014 [45]
Lightning Search Algorithm LSA Shareef et al., 2015 [62]
Multi-Verse Optimizer MVO Mirjalili et al., 2016 [63]
Thermal Exchange Optimization TEO Kaveh et al., 2017 [64]
Equilibrium Optimizer EO Faramarzi et al., 2020 [65]

Swarm Intelligence (SI) algorithms are designed to achieve the global optimal solu-
tion by simulating swarm intelligence [66]. In these algorithms, each group is representative
of a biological population. These populations are capable of executing tasks that individual
members cannot accomplish independently, as exemplified by the methodologies. These
algorithms leverage the cooperative behaviors exhibited by individuals within the pop-
ulation. The SI techniques outlined in Table 4 draw inspiration from the hunting and
movement patterns observed in natural biological systems [67]. The process initiates with
a random initialization of particles, which subsequently engage in a search for the global
optimal solution within the designated search space. The core of SI algorithms is the
combined concepts of exploration and exploitation [68,69]. Given that the optimal solution
may be located anywhere within the search space, exploration involves a comprehensive
examination of this space [70]. Generally, SI algorithms strive to achieve an optimal balance
between exploitation and exploration.
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Table 4. A brief review of swarm-intelligence-based algorithms.

Algorithms Abbreviations Authors and Year

Ant Colony Optimization ACO Dorigo et al., 1991 [9]
Particle Swarm Optimization PSO Kennedy et al., 1995 [26]
Firefly Algorithm FA Yang Xin-She, 2009 [71]
Fruit Fly Optimization FOA Pan Wen-Tsao, 2012 [72]
Ant Lion Optimizer ALO Mirjalili 2015 [73]
Tree-Seed Algorithm TSA Kiran, 2015 [74]
Dragonfly Algorithm DA Mirjalili et al., 2016 [75]
Whale Optimization Algorithm WOA Mirjalili et al., 2016 [76]
Grasshopper Optimization
Algorithm GOA Saremi et al., 2017 [77]

Salp Swarm Algorithm SSA Mirjalili et al., 2017 [78]
Butterfly Optimization
Algorithm BOA Arora et al., 2019 [24]

Bald Eagle Search Algorithm BES Alsattar et al., 2020 [79]
Harris Hawks Optimizer HHO Abualigah et al., 2021 [80]
Red Fox Optimizer RFO Połap et al., 2021, [81]
Dingo Optimization Algorithm DOA Bairwa et al., 2021 [82]
Chameleon Swarm Algorithm CSA Braik, 2021 [83]
Reptile Search Algorithm RSA Abualigah et al., 2022 [22]
White Shark Optimizer WSO Braik Malik et al., 2022 [84]

2.2. Multi-Layer Perceptron (MLP)

MLP is a fundamental architecture, shown in Figure 1, typically comprising three
components: an input layer, one or more hidden layers, and an output layer. Neurons
in each layer are interconnected through weighted connections, facilitating the flow of
information across the network. The key characteristics of the MLP include the following:

• Feedforward Architecture: Information flows from the input layer through the hidden
layers to the output layer without any feedback connections.

• Non-linear Activation Functions: Each neuron typically employs an activation func-
tion, such as ReLU, sigmoid, or tanh, to introduce non-linearity, enabling the network
to learn complex functional relationships.

• Backpropagation Training: The network is trained using the backpropagation algo-
rithm, which calculates gradients to update weights, thereby minimizing the discrep-
ancy between the predicted outputs and the actual target values.

S
o
ftm

a
x

  

  

  

        

Input Layer Hidden Layer Output Layer

Figure 1. A simple Multilayer Perceptron (MLP) model.
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2.3. Enhancing MLP Optimization Using Meta-Heuristic Optimization Methods

Meta-heuristic optimization methods offer a promising approach for optimizing MLPs
by effectively navigating the complex parameter space and addressing the limitations
in traditional optimization techniques. However, due to the high-dimensional and non-
convex nature of the weight space, traditional methods like gradient descent may struggle
with issues such as slow convergence and local optima. Meta-heuristic algorithms, in-
cluding PSO [85], GA [86], and DE [87], can overcome the above challenges by leveraging
their global search capabilities. These algorithms use population-based search processes
that maintain multiple potential solutions and iteratively refine them, which enhances
exploration and reduces the likelihood of getting trapped in local minima. Moreover, meta-
heuristic algorithms can be adapted to diverse MLP architectures and problem requirements
through flexible parameter settings and dynamic search strategies. This adaptability al-
lows these methods to adjust the complexity for different tasks, such as classification or
regression, and provides a generalized approach for high-dimensional, complex data.

In summary, meta-heuristic optimization techniques present considerable benefits
in the training of MLPs. These approaches are proficient in performing effective global
searches, display adaptability to various problems, and are resilient in avoiding local optima.
Although the computational demands of these methods can be substantial, their ability
to deliver high-quality solutions highlights their importance in optimizing MLPs. This is
particularly relevant in fields that require robust, scalable, and efficient machine-learning
models, further emphasizing their crucial role in advancing optimization methodologies.

3. Besiege and Conquer Algorithm (BCA)
3.1. Inspiration

Besiege strategy. An essential strategy in force maneuvering involves coordinating
frontline units to attack the enemy’s flanks or rear, creating a siege scenario [88]. Besiege
tactics can be classified by scale (strategic, battle, and tactical) and style (one-wing, two-
wing, four-breadth, and vertical besiegement). The goal is to isolate and immobilize the
enemy, enabling a decisive outcome. The besiege duration is determined by strategic plans,
objectives, and battlefield conditions. Initially, when enemy defenses are strong, the main
forces launch a concentrated assault, while smaller units target weak points. During the
later stages, it becomes a war of attrition, with coordinated attacks from all directions—east,
west, north, and south, as shown in Figure 2.

x

z

y

x

z

y

x

z

(a) axial migration (b) diagonal migration (c) omnidirectional migration

Figure 2. Soldier’s besiege behavior in three-dimensional space.

Conquer strategy. Conquering the enemy is a core war strategy, involving coordinated
attacks to establish order across all units [89]. Optimal force deployment aims to maximize
battlefield effectiveness and utilize resources efficiently. The central strategy focuses on seiz-
ing the battlefield initiative by engaging enemy strengths and exploiting weaknesses. This
approach involves dividing forces strategically and dispersing them to mount centripetal
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attacks from multiple directions [90]. By effectively timing and positioning breakthroughs,
units can disrupt the enemy’s influence and control on the battlefield.

Approach strategy. The approach strategy in warfare enables troops to advance
effectively, securing critical terrain and targets to gain battlefield initiative. By swiftly
occupying strategic positions and controlling advantageous areas, this strategy disrupts
enemy defenses, disrupts plans, and forces the enemy into a passive stance. Various tactical
maneuvers, such as penetration, flanking, and encirclement, increase unpredictability,
supporting the execution of a successful conquest strategy. This approach maximizes speed,
flexibility, and concentration of forces to exploit enemy weaknesses, achieving both tactical
and strategic objectives.

Balance strategy. The balance strategy in warfare aims to optimize resource alloca-
tion and ensure a stable equilibrium between offense and defense, short- and long-term
goals, and local and overall objectives. By diversifying tactics and deploying forces across
multiple points, this approach reduces dependency on a single tactic and minimizes the
risk of total failure due to localized losses. It emphasizes sustained combat capability,
allowing commanders to respond flexibly and adjust across different battlefields. Key
benefits include resource efficiency, enhanced adaptability, comprehensive combat readi-
ness, sustained morale, and improved decision-making, all crucial for success in complex
battlefield environments.

3.2. Initialization Phase

The initialization operation is the first step in space search based on the symmetry
concept; the set of a randomly generated army is computed by Equation (1).

Ai,d = lb + (ub − lb) ∗ rand (1)

where rand is a random constant and lb and ub present the lower and upper bounds of the
given search space, respectively. Parameter Ai,d is denoted to the dth dimension of the ith
army, and the random army solution in Equation (2) is generated stochastically.

A =


A1,1 .. A1,m .. A1,j−1 .. A1,d

A2,1 .. A2,m .. A2,j−1 .. A2,d

.. .. .. ..
Ai−1,1 .. Ai−1,m .. Ai−1,j−1 .. Ai−1,d

Ai,1 .. Ai,m .. Ai,j−1 .. Ai,d

 (2)

There are several soldiers in each army, and the number of soldiers is set to nSoldiers.
Soldiers are moved based on the best or a random army. Each army surrounds the enemy
by dividing the army into scattered soldiers. Scattered soldiers form a unit, surrounded
by a second-level scatter, and then disperses in the nth level until it surrounds the enemy
and launches an attack until the enemy is destroyed. The army has control over dispersed
soldiers, forces formed by randomly distributed soldiers to keep moving toward their
targets, and dispersing as they progress until they surround and attack the enemy.

3.3. Besiege and Conquer Strategies

The besiege mechanism of soldiers determines the updating direction of the army, that
is, the direction of finding the optimal solution. The position approach of a soldier will
also change when influenced by different rules. In the BCA, three soldier position besiege
mechanisms are designed, as shown in Figure 3.
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①

④③

EastWest

North

South

②

0

Besiege the enemy

Besiege the enemy

(a)

EastWest

North

South

① ②

③ ④

Conquer the enemy 

(b)

Figure 3. Besiege and conquer mechanisms controlled by parameter k. (a) Besiege strategy from four
directions: east, west, north, and south. (b) Conquer strategy from four directions: east, west, north,
and south.

Migration mechanism. The purpose of this mechanism is to gradually approach
the global optimal solution through concentrated search. The besiege mechanism mainly
consists of surrounding the best army (discovered enemy), forming an updated circle
around it. The generation position of soldiers can be computed by Equation (3).

St+1
j,d = Bt

d + |At
r,d − At

i,d| ∗ k1 when

| k1 |< 0.5, Conquer operator

0.5 <| k1 |< 1, Besiege operator
(3)

where St+1
j,d is the jth soldier of the dth dimension with (t + 1)th iterations, Bt

d is the current

best army (discovered enemy) with tth iterations, At
i,d is the ith army of the dth dimension

with tth iterations, At
r,d is a random army of the dth dimension with tth iterations, and k1 is

the cover coefficient.
Approach mechanism. Improving the diversity of global search to effectively balance

exploration and exploitation, Equation (4) is adopted to generate new soldiers to facilitate
the search for optimal solutions. This soldier position focuses on the best army and the
current army, promoting soldiers to achieve the best army and speeding up convergence
capability. It reaches a nearby position of the best army by the parameter Besiege and
Conquer Balance (BCB).

St+1
j,d = BCBt ∗ Bt

d + αt ∗ At
i,d (4)

where αt is computed by Equation (5).

αt = 1 − BCBt (5)

Cover mechanism. Exploration and exploitation are two critical parts. This mechanism
ensures that the BCA explores and exploits a significant amount of search space. The other
strategy is computed by Equation (6) to increase the chance of finding the global optimal
solution. Additionally, it can increase population diversity and exploration capability.

St+1
j,d = At

r,d + |At
r,d − At

i,d| ∗ k2 (6)

where k2 is the cover coefficient.
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However, discarding the soldiers generated beyond the scope of the search space will
reduce the diversity of the population and slow down the convergence speed. Therefore,
considering these above problems, soldiers are randomly generated in the search space to
compensate for the diversity loss and increase their exploration capability when soldiers
cross the border. The randomly generated soldier is computed by Equation (7).

Sj,d = lb + (ub − lb) ∗ rand (7)

where rand is a random constant in the range of [0, 1]. To speed up the convergence rate, a
trigonometric function (including sine and cosine functions) is added to disturb the soldiers’
migration position. Since the trigonometric function changes in both positive and negative
directions in the range, it promotes the diversity of soldiers in location migration and avoids
local stagnation. The right of Figure 4 shows the wave pattern of trigonometric functions.
As shown in Figure 4, the effects of the sine and cosine functions with the range in [−1, 1]
illustrate the direction of the soldier’s migration location, whether away from or near the
current best army. This mechanism ensures that the BCA explores and exploits a significant
amount of search space. The parameters are implemented with Equations (8) and (9).

k1 = sin(2 ∗ pi ∗ rand) (8)

k2 = cos(2 ∗ pi ∗ rand) (9)

Best army

Current soldier

θ
Cosθ

Sinθ

Coordinates

(cos ,sin )

Figure 4. Besiege and conquer mechanisms with the influence of sine and cosine functions.

Unlike linear functions, sin(2 ∗ pi ∗ rand) and cos(2 ∗ pi ∗ rand) are mathematical
functions that describe smooth repetitive oscillations. The values of the sine function are
randomly distributed as a sinusoidal wave. This mechanism enhances the exploration
capability to find the global optimum. k1 and k2 control the direction and length of the
cover mechanism, which can balance the exploration and exploitation capabilities. |k| < 0.5
contributes to the conquer mechanism, and 0.5 < |k| < 1 is conducive to the besiege
mechanism. k1 in Equation (3) controls the exploration direction, and k2 in Equation (6)
guides the exploitation direction. These two parameters control the approach strategy and
influence the movement of the army to find the global optimum position.

3.4. Balance Strategy

Adopting which besiege or conquer mechanism is decided by the relationship between
rand and BCB. The allocation of the besiege and conquer mechanisms to update the soldiers’
positions are shown in Figure 5 . The design of the balance mechanism is conducive to
achieving an equilibrium between exploration and exploitation capabilities. The selection
of different strategies can help find the global optimal solution. Meanwhile, there is an
80% probability to further update the position of the soldiers with the best army, and
a remaining 20% probability of using random soldiers as benchmarks to approach the
soldiers. The two different strategies complement each other and can help avoid local
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stagnation and accelerate convergence. Equation (10) shows how to choose the approach
strategy to attack the enemy in different circumstances. The practical cooperation of the
two strategies can promote the capability of global search and increase its effectiveness in
finding the optimal solution.

St+1
j,d =

Bt
d + |At

r,d − At
i,d| ∗ k1 , i f rand < BCB

At
r,d + |At

r,d − At
i,d| ∗ k2 , else

(10)
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Figure 5. Allocation methods of the strategy selection mechanism.

3.5. Feedback Strategy

In the BCA, the parameter BCB is adjusted dynamically according to the distance
between the current army and the best army to effectively achieve a balance between explo-
ration and exploitation capabilities. BCB is used for balancing the behavior between besiege
and conquer, that is, exploration and exploitation. According to the Pareto Principle [91],
the parameter BCB is initially set to 0.8. BCB controls both the exploration and the exploita-
tion capabilities. A higher value of BCB enhances a powerful local search and convergence
speed, while a lower value of BCB results in slow convergence but a powerful global search.
In other words, the BCA’s exploration and exploitation capabilities are controlled by the
BCB. The BCB in Equation (4) controls the approach strategy of soldiers, which influences
the exploration ability and convergence speed. By adjusting the parameter of BCB through
the feedback mechanism, the speed of finding the optimal solution can be accelerated. The
BCA contains mechanisms that complement each other, and the relationship between these
mechanisms is shown in Figure 6.
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Figure 6. The cooperative relationship of these four mechanisms.

All of the parameters and explanations involved in this study are shown in Table 5.

Table 5. Notations

Notation Meaning

Ai,d The dth dimension of the ith army
St+1

j,d The jth soldier of the dth dimension with (t + 1)th iteration
Bt

d The current best army (discovered enemy) with tth iteration
At

r,d A random army of the dth dimension with tth iteration
αt Regularization parameter

k1, k2 The cover coefficient
lb,ub The lower and upper bound of the given search space

nSoldiers The number of soldiers
BCB Besiege and Conquer Balance

3.6. Computational Complexity

The computational complexity of the BCA involves definition, initialization, soldier
evaluation, and soldier update. It is mainly influenced by the number of iterations (T),
the problem dimension (D), the population (army) number (N), the number of soldiers
(nSoldiers), and the function assessment’s cost (c). The computational complexity can be
given as follows. Note that the computational complexity of the initialization processes,

with
N

nSoldier
, is O(

N
nSoldier

). The computational complexity of the updating process is

O(nSoldier×T×D). Therefore, the computational complexity of the BCA can be computed
by Equation (11).

O(BCA) = O(problem.de f ine) +O(intilization) +O(army.cost) +O(soldier.update) (11)

where the computational complexities of the components of Equation (12) can be defined
as follows:

• Problem definition is set as O(1).

• Initialization of the population demands O(
N

nSoldier
× D).

• Generation of soldiers demands O(nSoldier × D × T).

• Evaluation of solutions demands O(T × c
nSoldier

× D).

O(BCA) = O(1 +
N × D

nSoldier
+ T × nSoldier × D +

T × c × N
nSoldier

) (12)

The flow of the BCA is shown in Figure 7, and its pseudo code is shown in Algorithm 1.
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Figure 7. The workflow of the BCA.

Algorithm 1 BCA: Besiege and Conquer Algorithm

Step 1: Initialize parameters:
1.1 Initialize population and the number of soldiers (nSoldiers).
1.2 Put up Besiege and Conquer Balance (BCB) parameter.
1.3 Set the iteration number (MaxIteration).
1.4 Set the number of army (nArmy).
1.5 Initialize the upper bound (ub) and lower bound (lb) of the search space.
1.6 Determine the termination condition (MaxIteration).
1.7 Initialize the army position through Equation (1).
1.8 Evaluate initialized objective values for each army.

Step 2:
While t < MaxIter
2.1 For i: nArmy

2.1.1 Determination of the neighbor for ith army
2.1.2 For j: nSoldiers

For d: dim
If rand <=BCB

Update the position of the ith soldier by Equation (3)
If Sj,d > ub || Sj,d < lb

Update the position of the ith soldier by Equation (4)
End If

Else
Update the position of the ith soldier by Equation (6)
If (Sj,d > ub || Sj,d < lb)

Update the position of the ith soldier by Equation (7)
End If

End For
End For

End For
2.1.3 Evaluate soldiers’ objectives in each army

End While
Step 3:

3.1 Determine the best army location obtained so far.
3.2 Judge whether the army optimal value is updated.
3.3 If army optimal value is updated

BCB(t + 1) = 0.2;
Else

BCB(t + 1) = 0.8;
End If

Step 4: Update the best army.



Symmetry 2025, 17, 217 14 of 42

4. Experiment Setting
The experiment codes are executed in the Matlab R2015b environment under the

Windows 10 operating system; all simulations were performed on a computer with Intel
Core(TM) i3-6100 CPU @ 3.70 GHz, and its memory was 8 GB.

4.1. Experimental Test Functions

The IEEE CEC 2017 benchmark function test set, which consists of a diverse collection
of benchmark functions, including uni-model, multi-model, hybrid, and composition
functions, is commonly employed to assess and verify the performance of the BCA. These
functions are carefully designed to test the robustness and versatility of optimization
methods across a wide range of problem complexities.

4.2. Comparative Algorithms

The performance of the proposed algorithm and its superiority compared to other
algorithms are verified by comparison with classical, popular, and recent algorithms, such
as INFO [21], RSA [22], SOMA T3A [23], BOA [24], GWO [8], DE [25], GA [10], and PSO [26].
The selected algorithms are introduced in detail as follows. These algorithms represent
a variety of optimization approaches, such as EAs, SI, and DE, which have been widely
applied to similar optimization problems. By comparing with these algorithms, we aim to
demonstrate the effectiveness and efficiency of our method across different optimization
paradigms.

For all comparative algorithms, the population number is set to 30 and the maximum
number of iterations is set to 500. For different comparison methods, the hyper-parameter
settings of the comparison methods mainly refer to the proposed references, and their
parameters are set in Table 6. In addition, each algorithm is executed 30 times to ensure
statistics. “Mean” represents the mean of the best value obtained by the algorithm, “Std.”
represents the standard deviation of the best value, and “Median” represents the median of
the best value. In addition, the Friedman ranking test is used to obtain the average and
final ranking. The Wilcoxon signed-rank test is used to check the algorithm’s effectiveness
and whether or not it is significantly different from other algorithms.

Table 6. List of parameter settings for comparative algorithms.

Algorithms Parameter Value Reference

BCA BCB 0.8
nSoldiers 3

INFO No hyperparameter settings [21]

RSA
Evolutionary sense 2 × randn × (1 − (iter/maxiter))

[22]Sensitive parameter controlling the exploration
accuracy 0.005

Sensitive parameter controlling the exploitation
accuracy 0.1

GWO a Liner from 2 to 0 [8]

BOA
Power exponent 0.1

[24]Sensory modality 0.01
Probability switch (p) 0.8

SOMA T3A Step 0.2 +
0.05 × cos(2 × π × FEscount/FEsMax) [23]

PRT 0.05 + 0.95 × (FEscount/FEsMax)



Symmetry 2025, 17, 217 15 of 42

Table 6. Cont.

Algorithms Parameter Value Reference

PSO Cognitive component 2 [26]Social component 2

DE

Scale factor primary 0.6

[25]Scale factor secondary 0.5
Scale factor secondary 0.3

Crossover rate 0.8

GA
CrossPercent 70%

[10]MutatPercent 20%
ElitPercent 10%

5. Experimental Results and Discussion
5.1. Computational Complexity Analysis

Computational complexity is also one of the criteria for evaluating algorithm perfor-
mance. The computational complexity of traditional algorithms is affected by the number
of iterations (T), the problem dimension (D), the population number (N), and the function
assessment’s cost (c). The computational complexities of the components can be defined as
follows:

1. Initialization of problem definition demands O(1).
2. Initialization of population demands O(N × D).
3. Assessment of the cost function demands O(T × c × N).
4. Evaluation of solutions demands O(T × N × D).
Thus, the general computational complexity of traditional algorithm can be expressed

in Equation (13).

O(Algorithm) = O(1 + N × D + T × c × N × D + T × N × D) (13)

The computational complextity of the BCA can be computed: O(BCA) = O(1 +
N × D

nSoldier
+ T × nSoldier × D +

T × c × N
nSoldier

).

The
N × D

nSoldier
<= N × D,

T × c × N
nSoldier

<= T × c × N, and T × nSoldier × D <=

T × N × D demonstrate that the BCA needs less computational cost when compared with
traditional swarm intelligence algorithms.

5.2. Parameters Sensitivity

The BCA’s optimization framework proposed in this study models the concept of
multiple soldiers operating within each army to enhance the search process. Specifically,
the parameter nSoldiers determines the number of soldiers assigned to each army, playing a
pivotal role in guiding the army’s progress toward updating the optimal global solution.
This mechanism leverages the collaborative behaviors of soldiers to enhance the explo-
ration and exploitation capabilities, helping to avoid local stagnation and improving the
efficiency of convergence. Increasing the number of soldiers per army diversifies the search,
allowing exploration of a broader solution space and mitigating the risk of being trapped
in local optima. However, this comes at the cost of computational resources, as a larger
number of soldiers requires additional iterations and evaluations. Therefore, while a more
substantial number of soldiers theoretically enhances the robustness, it also introduces
diminishing returns due to the escalating computational overhead. As detailed in Table 7,
the experimental results demonstrate that different values of nSoldiers significantly impact
the BCA’s ability to find the global optimum. When the number of soldiers is too low,
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the BCA risks insufficient exploration, leading to premature convergence and suboptimal
solutions. Conversely, when the number of soldiers is too high, the computation time
and resource consumption increase disproportionately, leading to inefficiency without
significant gains in solution quality. Through extensive experimentation, it was found
that the optimal configuration occurs when nSoldiers is set to three (i.e., three soldiers per
army). This configuration strikes an effective balance between exploration and exploita-
tion, achieving high-quality solutions while minimizing computational costs. The results
underscore that this choice avoids local stagnation, accelerates convergence, and ensures
computational efficiency, making it the most effective setup for the algorithm in the context
of the problems tested.

5.3. Exploitation Analysis

The unimodal functions (F1 and F2) can test the exploitation ability of the BCA, and it
can be seen from Table 8 that the BCA can find the best solution on F1 and F2 functions
compared with other algorithms. Tables 9–11 show the obtaining results of the BCA and
other comparative algorithms. It can be seen that the BCA can effectively solve single
objective problems and has a stronger exploitation capability than other algorithms. This is
due to two different strategy selection mechanisms in the BCA.

5.4. Exploration Analysis

The exploration capability can be verified by multi-model functions (F3 to F19); experi-
mental results show that the BCA is superior to the other algorithms in Table 8. “w” means
that the BCA is superior to (win) the comparative algorithms, “l” means that the BCA is
weaker (lose) than the comparative algorithms, and “e” means that the BCA is equal to the
comparative algorithms. It can be seen from Tables 9–11 that the BCA can obtain the best
global solution. Compared to other algorithms, the BCA can quickly find the global optimal
solution and has a strong exploration capability. The strong exploration capability benefits
from the cover mechanism, which helps to jump out from local solutions, generate new
soldiers’ positions, increase the diversity of global search, and find the optimal solution in
multimodal functions.

5.5. Local Minima Avoidance Analysis

Local minima avoidance is a standard characteristic to evaluate algorithms. It can be
seen from Figures 8–10 that the BCA, compared to other comparison algorithms, shows
more rapid convergence and has a stronger capability of avoiding local stagnation. Accord-
ing to Table 8, the BCA is superior to other algorithms in terms of hybrid and composition
benchmark functions with 30D, 50D, and 100D; hence, it shows that the BCA has a good
balance between exploration and exploitation. Due to the cooperation between balance
and feedback mechanisms, the search capability can be improved adaptively.
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Table 7. Results of the various nSoldiers with 10D, 30D, 50D, and 100D.

10D 30D
Function nSoldier = 2 nSoldier = 3 nSoldier = 4 nSoldier = 5 Function nSoldier = 2 nSoldier = 3 nSoldier = 4 nSoldier = 5

Unimodal Functions F1 3.0846 × 103 2.7349 × 103 7.7035 × 104 1.3394 × 107
Unimodal Functions F1 5.4825 × 103 5.8610 × 103 1.1128 × 109 4.2021 × 109

F2 3.0949 × 102 3.0000 × 102 2.4666 × 103 1.0033 × 104 F2 9.5782 × 104 9.1813 × 104 8.8295 × 104 9.6163 × 104

Multimodal Functions

F3 4.0602 × 102 4.0906 × 102 4.3333 × 102 4.2246 × 102

Multimodal Functions

F3 4.8535 × 102 5.1259 × 102 7.6105 × 102 1.4731 × 103

F4 5.1145 × 102 5.1430 × 102 5.2292 × 102 5.2810 × 102 F4 6.9397 × 102 6.3094 × 102 6.3101 × 102 6.8227 × 102

F5 6.0000 × 102 6.0032 × 102 6.0344 × 102 6.1100 × 102 F5 6.0028 × 102 6.0157 × 102 6.2252 × 102 6.3103 × 102

F6 7.3803 × 102 7.2268 × 102 7.3195 × 102 7.4333 × 102 F6 9.6636 × 102 9.4231 × 102 1.0266 × 103 1.1529 × 103

F7 8.1197 × 102 8.1401 × 102 8.2305 × 102 8.2462 × 102 F7 1.0044 × 103 9.1677 × 102 9.2094 × 102 9.5984 × 102

F8 9.0035 × 102 9.0559 × 102 1.0147 × 102 1.0088 × 103 F8 9.6527 × 102 1.2018 × 103 3.4503 × 103 4.0112 × 103

F9 1.6642 × 103 1.5155 × 103 1.6689 × 103 1.7918 × 103 F9 8.6455 × 103 8.0815 × 103 6.6932 × 103 5.7858 × 103

Hybrid Functions

F10 1.1060 × 103 1.1169 × 103 1.1516 × 103 1.6462 × 103

Hybrid Functions

F10 1.2447 × 103 1.1850 × 103 3.3216 × 103 4.0884 × 103

F11 1.4101 × 104 1.8262 × 104 7.6760 × 105 2.7037 × 106 F11 5.6230 × 105 9.7535 × 105 1.2471 × 107 1.2526 × 108

F12 6.3975 × 103 1.0754 × 104 8.7964 × 103 1.2086 × 104 F12 2.1185 × 104 2.3155 × 104 1.7233 × 106 3.0925 × 107

F13 1.4446 × 103 1.4436 × 103 1.4575 × 103 2.2201 × 103 F13 4.5091 × 104 7.8492 × 104 1.0781 × 106 1.6536 × 106

F14 1.6004 × 103 1.5665 × 103 2.0493 × 103 6.5510 × 103 F14 1.2666 × 104 1.1432 × 104 1.3389 × 104 3.9439 × 105

F15 1.6235 × 103 1.6946 × 103 1.8341 × 103 1.8097 × 103 F15 3.2972 × 103 2.8115 × 103 2.6830 × 103 2.8585 × 103

F16 1.7339 × 103 1.7370 × 103 1.7720 × 103 1.7691 × 103 F16 2.0290 × 103 2.0641 × 103 2.1830 × 103 2.3095 × 103

F17 7.6635 × 103 7.5756 × 103 9.1449 × 103 8.5387 × 103 F17 1.8141 × 106 1.4815 × 106 3.4402 × 106 5.0139 × 106

F18 2.0163 × 103 1.9412 × 103 2.9480 × 103 3.3431 × 103 F18 1.1171 × 104 1.4182 × 104 1.5584 × 104 6.6029 × 105

F19 2.0093 × 103 2.0347 × 103 2.1076 × 103 2.1114 × 103 F19 2.4423 × 103 2.4354 × 103 2.5215 × 103 2.5333 × 103

Composition Functions

F20 2.3135 × 103 2.2993 × 103 2.3069 × 103 2.3106 × 103

Composition Functions

F20 2.5061 × 103 2.4294 × 103 2.4247 × 103 2.4567 × 103

F21 2.3542 × 103 2.2991 × 103 2.4485 × 103 2.3745 × 103 F21 3.6015 × 103 5.3314 × 103 5.1472 × 103 5.8761 × 103

F22 2.6134 × 103 2.6172 × 103 2.6336 × 103 2.6467 × 103 F22 2.7878 × 103 2.7657 × 103 2.8392 × 103 2.9193 × 103

F23 2.7260 × 103 2.7278 × 103 2.7333 × 103 2.7556 × 103 F23 3.0183 × 103 2.9604 × 103 2.9892 × 103 3.0420 × 103

F24 2.9366 × 103 2.9315 × 103 2.9410 × 103 2.9384 × 103 F24 2.8892 × 103 2.8986 × 103 3.0963 × 103 3.2930 × 103

F25 3.1356 × 103 3.3707 × 103 3.1790 × 103 3.2100 × 103 F25 4.7202 × 103 4.3892 × 103 5.4223 × 103 6.7499 × 103

F26 3.1030 × 103 3.1240 × 103 3.1397 × 103 3.1405 × 103 F26 3.2282 × 103 3.2482 × 103 3.3226 × 103 3.3470 × 103

F27 3.3097 × 103 3.2913 × 103 3.3675 × 103 3.4173 × 103 F27 3.2279 × 103 3.2397 × 103 3.5564 × 103 3.9394 × 103

F28 3.2144 × 103 3.2056 × 103 3.2466 × 103 3.2717 × 103 F28 3.7674 × 103 3.7521 × 103 4.0859 × 103 4.1870 × 103

F29 2.0827 × 105 2.8017 × 105 6.0841 × 105 1.0338 × 106 F29 1.2610 × 104 1.0956 × 104 1.5343 × 105 2.0374 × 107
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Table 7. Cont.

50D 100D
Function nSoldier = 2 nSoldier = 3 nSoldier = 4 nSoldier = 5 Function nSoldier = 2 nSoldier = 3 nSoldier = 4 nSoldier = 5

Unimodal Functions F1 2.2155 × 106 2.0239 × 105 6.7977 × 109 2.1753 × 1010
Unimodal Functions F1 4.2844 × 109 2.5720 × 109 6.2050 × 1010 1.2140 × 1011

F2 2.4021 × 105 2.4341 × 105 2.3537 × 105 2.3822 × 105 F2 6.4573 × 105 6.3313 × 105 6.5750 × 105 6.7979 × 105

Multimodal Functions

F3 5.8195 × 102 5.9412 × 102 1.8270 × 103 3.6785 × 103

Multimodal Functions

F3 1.5671 × 103 1.1256 × 103 9.3277 × 103 2.1264 × 104

F4 9.0606 × 102 8.1345 × 102 7.7596 × 102 8.8940 × 102 F4 1.6604 × 103 1.4450 × 103 1.3806 × 103 1.6253 × 103

F5 6.0550 × 102 6.0710 × 102 6.3175 × 102 6.4129 × 102 F5 6.3002 × 102 6.2828 × 102 6.4901 × 102 6.6447 × 102

F6 1.2670 × 103 1.2209 × 103 1.5840 × 103 2.0320 × 103 F6 2.4678 × 103 2.5133 × 103 3.8345 × 103 5.0119 × 103

F7 1.2240 × 103 1.0672 × 103 1.1088 × 103 1.1795 × 103 F7 1.9327 × 103 1.7600 × 103 1.7474 × 103 1.9928 × 103

F8 4.0432 × 103 5.3850 × 103 1.3424 × 104 1.9343 × 104 F8 3.5799 × 104 3.8626 × 104 6.4847 × 104 7.6842 × 104

F9 1.5238 × 104 1.5087 × 104 1.2615 × 104 1.1332 × 104 F9 3.2727 × 104 3.2433 × 104 3.1304 × 104 2.9131 × 104

Hybrid Functions

F10 1.8119 × 103 1.5757 × 103 5.9873 × 103 1.4609 × 104

Hybrid Functions

F10 1.4601 × 105 1.4255 × 105 9.7561 × 104 1.1785 × 105

F11 7.5257 × 106 5.7793 × 106 9.4934 × 108 3.9893 × 109 F11 3.5939 × 108 1.1284 × 108 1.2216 × 1010 2.7504 × 1010

F12 9.1517 × 103 1.2298 × 104 1.1167 × 108 7.9810 × 108 F12 1.5045 × 104 1.3561 × 105 6.7898 × 108 3.4474 × 109

F13 2.7398 × 105 5.6463 × 105 3.3394 × 106 6.5692 × 106 F13 4.8115 × 106 2.7004 × 106 1.8884 × 107 2.8560 × 107

F14 7.7526 × 103 8.2671 × 103 4.3185 × 106 3.8452 × 107 F14 7.3906 × 103 7.3133 × 103 8.2907 × 107 8.4903 × 108

F15 5.0489 × 103 4.2202 × 103 3.4537 × 103 3.9827 × 103 F15 1.1266 × 104 1.0296 × 104 7.4809 × 103 8.4029 × 103

F16 3.9683 × 103 3.6335 × 103 3.3731 × 103 3.5296 × 103 F16 7.8248 × 103 7.4606 × 103 6.8917 × 103 1.5298 × 104

F17 8.3843 × 106 4.4784 × 106 9.7898 × 106 2.2358 × 107 F17 1.9926 × 107 1.3042 × 107 1.8313 × 107 3.738 × 107

F18 1.9051 × 104 1.5268 × 104 8.9817 × 104 2.3109 × 107 F18 1.1467 × 104 9.5134 × 103 7.4317 × 107 6.1740 × 108

F19 4.0439 × 103 3.6484 × 103 3.3779 × 103 3.487 × 103 F19 7.6536 × 103 7.7604 × 103 7.0747 × 103 7.2755 × 103

Composition Functions

F20 2.7426 × 103 2.6121 × 103 2.6046 × 103 2.6857 × 103

Composition Functions

F20 3.4163 × 103 3.2773 × 103 3.3503 × 103 3.5862 × 103

F21 1.5769 × 104 1.5592 × 104 1.3809 × 104 1.3377 × 104 F21 3.5191 × 104 3.492 × 104 3.0837 × 104 2.9716 × 104

F22 3.0911 × 103 3.0069 × 103 3.2211 × 103 3.3350 × 103 F22 3.8555 × 103 3.5242 × 103 4.0349 × 103 4.1911 × 103

F23 3.3510 × 103 3.2801 × 103 3.3271 × 103 3.4428 × 103 F23 4.4885 × 103 4.1094 × 103 4.9017 × 103 5.3913 × 103

F24 3.0758 × 103 3.0885 × 103 4.1700 × 103 5.9169 × 103 F24 4.3383 × 103 3.8788 × 103 1.0377 × 104 1.6568 × 104

F25 7.6214 × 103 6.0522 × 103 8.8032 × 103 1.0473 × 104 F25 1.7191 × 104 1.4683 × 104 2.1762 × 104 2.7959 × 104

F26 3.3861 × 103 3.4761 × 103 3.8879 × 103 4.1217 × 103 F26 3.7895 × 103 3.6972 × 103 4.3947 × 103 4.7517 × 103

F27 3.3468 × 103 3.3626 × 103 5.2080 × 103 6.6049 × 103 F27 5.3290 × 103 4.6914 × 103 1.4082 × 104 1.9022 × 104

F28 4.6264 × 103 4.34027 × 103 5.1836 × 103 5.6978 × 103 F28 1.0077 × 104 7.9907 × 103 1.00667 × 104 1.4889 × 104

F29 1.1449 × 106 1.1202 × 106 1.2465 × 107 6.4638 × 107 F29 3.5244 × 105 9.0104 × 104 4.7855 × 108 3.1963 × 109
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Table 8. Statistics for the BCA and its comparative algorithms.

30D

Function type BCA vs. INFO BCA vs. RSA BCA vs. SOMA T3A BCA vs. GWO BCA vs. BOA BCA vs. DE BCA vs. PSO BCA vs. GA
(w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e)

Uni-model
Function 1/1/0 1/1/0 2/0/0 1/1/0 2/0/0 2/0/0 2/0/0 1/1/0

Multi-model
Function 5/2/0 7/0/0 7/0/0 5/2/0 7/0/0 5/2/0 5/2/0 6/1/0

Hybrid
Functions 5/5/0 10/0/0 10/0/0 9/1/0 10/0/0 5/5/0 8/2/0 10/0/0
Composition
Functions 8/2/0 10/0/0 10/0/0 7/3/0 10/0/0 8/2/0 10/0/0 10/0/0

Total 19/11/0 28/1/0 29/0/0 22/7/0 29/0/0 20/9/0 25/4/0 27/2/0

50D

Function type BCA vs. INFO BCA vs. RSA BCA vs. SOMA T3A BCA vs. GWO BCA vs. BOA BCA vs. DE BCA vs. PSO BCA vs. GA
(w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e)

Uni-model
Function 1/1/0 2/0/0 1/1/0 2/0/0 2/0/0 2/0/0 2/0/0 1/1/0

Multi-model
Function 5/2/0 7/0/0 7/0/0 6/1/0 7/0/0 5/2/0 6/1/0 6/1/0

Hybrid
Functions 4/6/0 10/0/0 10/0/0 7/3/0 10/0/0 9/1/0 6/4/0 9/1/0
Composition
Functions 8/2/0 10/10/0 10/10/0 8/2/0 10/10/0 9/1/0 9/1/0 9/1/0

Total 19/11/0 29/0/0 28/1/0 23/6/0 29/0/0 25/4/0 23/6/0 25/4/0

100D

Function type BCA vs. INFO BCA vs. RSA BCA vs. SOMA T3A BCA vs. GWO BCA vs. BOA BCA vs. DE BCA vs. PSO BCA vs. GA
(w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e) (w/l/e)

Uni-model
Function 1/1/0 1/1/0 1/1/0 2/0/0 2/0/0 2/0/0 2/0/0 1/1/0

Multi-model
Function 2/5/0 6/1/0 6/1/0 3/4/0 7/0/0 5/2/0 6/1/0 6/1/0

Hybrid
Functions 4/6/0 10/0/0 9/1/0 8/2/0 10/0/0 9/1/0 6/4/0 9/1/0
Composition
Functions 9/1/0 9/1/0 9/1/0 7/3/0 9/1/0 9/1/0 9/1/0 9/1/0

Total 16/13/0 26/3/0 25/4/0 20/9/0 28/1/0 25/4/0 23/6/0 25/4/0

0 100 200 300 400 500

Iterations

102

104

106

108

1010

1012

B
e
s
t 
s
c
o
re

 o
b
ta

in
e
d

 s
o
 f
a

r

Convergence Curve of F1

BCA

INFO

GA

SOMA T3A

RSA

PSO

BOA

DE

GWO

(a) F1

0 100 200 300 400 500

Iterations

103

104

105

106

B
e
s
t 
s
c
o
re

 o
b
ta

in
e
d

 s
o
 f
a

r

Convergence Curve of F10

BCA

INFO

GA

SOMA T3A

RSA

PSO

BOA

DE

GWO

(b) F10

0 100 200 300 400 500

Iterations

104

105

106

107

108

109

1010

1011

B
e
s
t 
s
c
o
re

 o
b
ta

in
e
d

 s
o
 f
a

r

Convergence Curve of F12

BCA

INFO

GA

SOMA T3A

RSA

PSO

BOA

DE

GWO

(c) F12

0 100 200 300 400 500

Iterations

2800

3000

3200

3400

3600

3800

4000

B
e
s
t 
s
c
o
re

 o
b
ta

in
e
d
 s

o
 f
a

r

Convergence Curve of F22

BCA

INFO

GA

SOMA T3A

RSA

PSO

BOA

DE

GWO

(d) F22

0 100 200 300 400 500

Iterations

3000

3200

3400

3600

3800

4000

4200

4400

B
e
s
t 
s
c
o
re

 o
b
ta

in
e
d
 s

o
 f
a

r

Convergence Curve of F23

BCA

INFO

GA

SOMA T3A

RSA

PSO

BOA

DE

GWO

(e) F23

0 100 200 300 400 500

Iterations

103

104

105

106

107

108

109

1010

B
e
s
t 
s
c
o
re

 o
b
ta

in
e
d
 s

o
 f
a

r

Convergence Curve of F29

BCA

INFO

GA

SOMA T3A

RSA

PSO

BOA

DE

GWO

(f) F29

Figure 8. Convergence curve of the BCA and its comparative algorithms with 30D.
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Figure 9. Convergence curve of the BCA and its comparative algorithms with 50D.
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Figure 10. Convergence curve of the BCA and its comparative algorithms with 100D.

5.6. Qualitative Analysis

Figures 11–13 show the different qualitative indicators of BCA convergence. In addi-
tion, the first columns in Figures 11–13 show the search history graph in different dimen-
sions (30D, 50D, 100D), which can explain the behavior and interaction among soldiers,
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population, and armies. It can be observed that the soldiers tend to extensively search
promising regions of the search spaces and exploit the best ones. It can be seen from the
experimental results that the BCA has strong diversity in the optimization process and can
fully explore the search space to avoid losing the best solution.
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Figure 11. Qualitative results for the studied problems with 30D.

The second columns of Figures 11–13 show the trajectory of the first particle, in which
changes of the first search agent in its first dimension can be observed. It can be seen from
the trajectory curve that the BCA is not able to easily jump into local optimal in the search
process, and soldier and army positions can be effectively updated.

The third columns of Figures 11–13 show the convergence curve. According to the con-
vergence curve, it can be seen that the BCA can quickly converge to avoid local stagnation,
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and it can be seen from Figures 8–10 that the BCA converges faster than other algorithms
and is able to easily find the global optimal solution.

In conclusion, according to the experimental results, it can be proven that the BCA is
superior to other comparative algorithms in all aspects. The besiege mechanism promotes
the effective position update of soldiers, the cover mechanism ensures the avoidance of local
stagnation, and the feedback mechanism effectively balances the capabilities of exploration
and exploration.
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Figure 12. Qualitative results for the studied problems with 50D.
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Figure 13. Qualitative results for the studied problems with 100D.

5.7. Quantitative Analysis

This section quantitatively analyzes the optimizing performance of the BCA. Tables 9–11
show the optimal values obtained by the algorithm in different dimensions (i.e., 30D,
50D, and 100D). According to the experimental results, the BCA has certain advantages
in obtaining the optimal solution. In terms of Friedman ranking, the average and final
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rankings can obtain first place in 30D and 50D. At 100D, it can get the same ranking as
INFO. INFO uses three operators to update the position of vectors in each generation.
The effective collaboration of the three operators gives the INFO algorithm an advantage
in high-dimensional search spaces. However, according to the statistical test results of
Table 12, when the p-value is less than α, the BCA is obviously better than the comparative
algorithm. This is sufficient to prove that the BCA can effectively obtain the optimal values
of different types of function in the benchmark functions.

Tables 13–15 show the influence of the different population numbers (N = 30, 60, 90)
on obtaining the optimal solution in different dimensions (D = 30, 50, 100). According to
the experimental results in Tables 13–15, the BCA can obtain different optimal solutions
when there are different populations. The higher the population, the more the number
of each army will increase, which will affect the accuracy of finding the optimal solution.
However, an excessive population will cause local stagnation.

5.8. Limitation Analysis

Although the BCA has global search capabilities in theory, it can easily fall into local
stagnation. In addition, the BCA is sensitive to parameter settings and may require a
significant amount of experimental adjustments to achieve optimal performance. The
detailed analysis is as follows.

(1) The key parameters in the BCA (e.g., BCB, α, k1, k2, etc.) play a vital role in the BCA’s
performance, and the settings of these parameters significantly affect the convergence speed
and global search capability. Improper parameter adjustment may lead to local optimum
and reduce search efficiency.

(2) The BCA requires global exploration in the besiege phase and local exploitation
in the conquer phase. Since the strategies in these phases rely on predefined parameters
and rules, it may lead to an imbalance between exploration and exploitation. Too much
emphasis on exploration in the early phase leads to slow convergence. Too much focus on
exploitation in the later phase may miss better solutions.

The above discussion on parameter sensitivity and mechanism deficiencies leads to
the following problems encountered by the BCA when dealing with low-dimensional
problems. In Figure 14, the area marked by the yellow box shows that the convergence
speed of the BCA slows down significantly in some iteration intervals, or even almost
stops decreasing. This may indicate that the BCA has entered the local optimal solution
region while exploring the global optimal solution and lacks an effective mechanism to
jump out of this region. The area marked by the red box shows that the objective function
value decreases rapidly in the early iteration stage, but then the change tends to be flat or
stagnant, indicating that the BCA may converge to a suboptimal solution too early.

F2: The curve decreases rapidly overall, but is obviously in the local stagnation stage
(yellow box), which may be due to the dimension or complexity of the problem causing the
search to get stuck in the local area.

F21: It shows a rapid decline in the initial stage (red box), but then converges prema-
turely. The algorithm may not fully explore the solution space.

F26: Overall, there is both premature convergence (red box) and local stagnation
(yellow box), which indicates that the algorithm has weak adaptability to complex functions.
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Table 9. Comparison of the BCA with other algorithms on IEEE CEC 2017 benchmark functions with D = 30.

Function BCA INFO RSA SOMA_T3A GWO BOA DE PSO GA

Unimodal Functions
F1

Mean 7.3880 × 103 1.4797 × 106 4.8720 × 1010 4.9633 × 103 4.1568 × 109 5.9652 × 103 6.0843 × 106 3.9834 × 106 2.6017 × 103

Std. 6.7454 × 106 8.0437 × 106 6.5562 × 109 3.4129 × 109 1.8381 × 109 6.4292 × 109 3.7530 × 106 3.9821 × 106 3.3396 × 109

F2
Mean 8.3146 × 104 1.5641 × 104 8.2286 × 104 8.3233 × 104 7.6636 × 104 8.1579 × 104 1.8618 × 105 1.0133 × 105 6.9717 × 104

Std. 1.7206 × 104 6.5204 × 103 4.6242 × 103 5.5701 × 103 1.4066 × 104 3.6184 × 103 2.6071 × 104 2.6407 × 104 7.6528 × 103

Multimodal Functions

F3
Mean 4.9649 × 102 5.0578 × 102 1.0047 × 104 1.2526 × 104 7.3329 × 102 2.1430 × 104 4.9515 × 102 6.0999 × 102 6.8051 × 103

Std. 3.0714 × 101 2.4421 × 101 3.1019 × 103 1.2582 × 103 2.6180 × 102 3.4920 × 103 1.1336 × 101 5.0173 × 101 1.0775 × 103

F4
Mean 6.2601 × 102 6.5256 × 102 9.3392 × 102 9.1887 × 102 6.4466 × 102 9.3711 × 102 7.2164 × 102 6.2390 × 102 8.3551 × 102

Std. 6.4823 × 101 2.9596 × 101 2.7766 × 101 1.4446 × 101 4.1253 × 101 1.9692 × 101 1.5936 × 101 5.1134 × 101 2.7043 × 101

F5
Mean 6.0272 × 102 6.2577 × 102 6.9182 × 102 6.9286 × 102 6.1685 × 102 6.9796 × 102 6.0317 × 102 6.0440 × 102 6.7563 × 102

Std. 2.7117 1.0257 × 101 5.1185 3.0113 4.7764 5.4640 1.0001 1.8947 5.9692

F6
Mean 8.9593 × 102 9.9630 × 102 1.3910 × 103 1.4453 × 103 9.1927 × 102 1.4259 × 103 9.8754 × 102 9.0824 × 102 1.2033 × 103

Std. 6.9389 × 101 7.8008 × 101 3.4784 × 101 3.3319 × 101 5.1047 × 101 3.1782 × 101 1.4285 × 101 4.5985 × 101 4.9971 × 101

F7
Mean 9.3177 × 102 9.2555 × 102 1.1447 × 103 1.1491 × 103 9.1408 × 102 1.1366 × 103 1.0281 × 103 9.3753 × 102 1.0674 × 103

Std. 7.0344 × 101 3.3423 × 101 1.8699 × 101 1.3349 × 101 2.7180 × 101 1.3730 × 101 1.1465 × 101 4.9395 × 101 2.5073 × 101

F8
Mean 1.3907 × 103 3.0992 × 103 1.1193 × 104 1.2359 × 104 3.1211 × 103 9.8685 × 103 1.2164 × 103 2.0726 × 103 7.7142 × 103

Std. 5.7378 × 102 7.1942 × 102 9.0623 × 102 8.5897 × 102 1.3575 × 103 9.1532 × 102 1.0076 × 102 1.3533 × 103 1.1240 × 103

F9
Mean 8.1898 × 103 5.2763 × 103 8.4987 × 103 8.6665 × 103 5.7265 × 103 9.1584 × 103 8.7828 × 103 7.1740 × 103 8.1345 × 103

Std. 1.1729 × 103 6.3960 × 102 5.6988 × 102 3.1658 × 102 1.6905 × 103 3.5099 × 102 3.1398 × 102 1.2008 × 103 6.0967 × 102

Hybrid Functions

F10
Mean 1.1835 × 103 1.2740 × 103 9.7759 × 103 7.4048 × 103 2.2520 × 103 6.5269 × 103 1.2146 × 103 1.3422 × 103 3.7805 × 103

Std. 5.8982 × 101 5.6408 × 101 4.1619 × 103 7.2237 × 102 9.6268 × 102 1.6504 × 103 3.0307 × 101 7.1024 × 101 5.4228 × 102

F11
Mean 9.5317 × 105 1.1902 × 106 1.4036 × 1010 8.1473 × 109 1.1483 × 108 1.5110 × 1010 5.3128 × 107 5.3493 × 106 5.2030 × 109

Std. 1.0400 × 106 1.4872 × 106 3.2013 × 109 1.1724 × 109 1.1814 × 108 3.8408 × 109 1.3264 × 107 7.0306 × 106 1.0609 × 109

F12
Mean 2.0148 × 104 2.3429 × 104 1.1569 × 1010 2.0260 × 109 1.9977 × 107 1.5656 × 1010 1.0655 × 105 1.2126 × 105 3.0901 × 109

Std. 1.8459 × 104 2.3964 × 104 5.0479 × 109 3.4694 × 108 4.2831 × 107 6.9907 × 109 5.1243 × 104 5.9190 × 105 1.0280 × 109

F13
Mean 8.1822 × 104 8.9611 × 103 7.1491 × 106 2.6733 × 106 5.1371 × 105 1.2091 × 106 1.5327 × 103 6.4990 × 104 7.8694 × 105

Std. 9.6417 × 104 8.3701 × 103 6.2921 × 106 7.9807 × 105 7.3396 × 105 3.2678 × 106 3.0669 × 101 4.7071 × 104 3.5142 × 105

F14
Mean 1.0747 × 104 8.7682 × 103 6.2763 × 108 3.2771 × 108 1.2451 × 106 9.1247 × 108 2.0125 × 103 3.8490 × 104 4.2598 × 106

Std. 9.7030 × 103 8.2320 × 103 3.5718 × 108 8.4128 × 107 2.0567 × 106 3.2735 × 108 3.1098 × 102 9.4447 × 104 4.8209 × 106

F15
Mean 2.9198 × 103 2.7770 × 103 5.4631 × 103 5.6578 × 103 2.9158 × 103 9.8574 × 103 3.2026 × 103 2.8450 × 103 4.6878 × 103

Std. 5.0390 × 102 3.3337 × 102 6.3234 × 102 4.8396 × 102 4.2457 × 102 1.9100 × 103 1.5115 × 102 3.5540 × 102 4.6143 × 102

F16
Mean 2.0399 × 103 2.3911 × 103 6.6210 × 103 3.4163 × 103 2.1926 × 103 5.1271 × 103 2.6787 × 103 2.0744 × 103 2.9505 × 103

Std. 1.1135 × 102 2.9662 × 102 4.7490 × 103 1.7524 × 102 2.7291 × 102 1.9614 × 104 2.1667 × 102 2.1001 × 102 3.2960 × 102

F17
Mean 7.7814 × 105 1.3282 × 105 4.5941 × 107 3.8286 × 107 3.4731 × 106 2.8351 × 107 5.4324 × 105 2.0066 × 106 7.3208 × 106

Std. 1.0304 × 106 9.0093 × 104 3.7883 × 107 2.0043 × 107 3.2317 × 106 7.6202 × 107 1.4745 × 105 1.7028 × 106 4.5066 × 106

F18
Mean 1.2889 × 104 1.0950 × 104 7.4788 × 108 6.4076 × 108 3.7638 × 106 8.5804 × 108 2.1355 × 103 1.9417 × 104 1.2621 × 107

Std. 1.1564 × 104 1.1168 × 104 6.2283 × 108 2.5103 × 108 8.3869 × 106 4.7651 × 108 1.7647 × 103 1.7074 × 104 9.9661 × 106

F19
Mean 2.4143 × 103 2.6088 × 103 3.0591 × 103 2.9896 × 103 2.5280 × 103 3.0625 × 103 2.2733 × 103 2.4472 × 103 2.7151 × 103

Std. 2.122 × 102 1.9812 × 102 1.5895 × 102 9.5183 × 101 1.4077 × 102 1.3445 × 102 1.6974 × 102 2.3705 × 102 1.4118 × 102
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Table 9. Cont.

Function BCA INFO RSA SOMA_T3A GWO BOA DE PSO GA

Composition Functions

F20
Mean 2.4371 × 103 2.4318 × 103 2.7361 × 103 2.7216 × 103 2.4191 × 103 2.5979 × 103 2.5109 × 103 2.4451 × 103 2.6487 × 103

Std. 6.9269 × 101 3.3990 × 101 5.4538 × 101 3.0677 × 101 2.7440 × 101 4.8889 × 101 1.3871 × 101 4.3882 × 101 4.1045 × 101

F21
Mean 5.6464 × 103 4.6169 × 103 8.8274 × 103 8.8268 × 103 6.6580 × 103 6.5895 × 103 9.9666 × 103 5.6468 × 103 6.5363 × 103

Std. 3.5173 × 103 2.2771 × 103 1.2110 × 103 3.1078 × 102 2.3309 × 103 9.0012 × 102 3.1172 × 103 3.2973 × 103 6.1926 × 102

F22
Mean 2.7655 × 103 2.8282 × 103 3.3377 × 103 3.5206 × 103 2.8358 × 103 3.6649 × 1033 2.8781 × 103 2.7909 × 103 3.3941 × 103

Std. 5.7598 × 101 4.6297 × 101 7.9028 × 101 6.2823 × 101 5.2785 × 101 1.9079 × 102 1.4794 × 101 4.4467 × 101 1.0907 × 102

F23
Mean 2.9328 × 103 2.9853 × 103 3.4752 × 103 3.8190 × 103 3.0511 × 103 4.0122 × 103 3.0386 × 103 3.0085 × 103 3.6716 × 103

Std. 6.7951 × 101 5.7706 × 101 1.8902 × 102 7.1766 × 101 7.3606 × 101 2.9513 × 102 1.2820 × 101 3.9095 × 101 7.1213 × 101

F24
Mean 2.9019 × 103 2.9172 × 103 4.9411 × 103 4.5437 × 103 3.0264 × 103 5.4129 × 103 2.8896 × 103 2.9377 × 103 3.6190 × 103

Std. 1.9859 × 101 2.3514 × 101 6.4920 × 102 1.9325 × 102 8.3053 × 101 4.6183 × 102 2.6780 2.6898 × 101 9.7065 × 101

F25
Mean 4.5451 × 103 5.6475 × 103 1.0502 × 104 1.0450 × 104 5.0378 × 103 1.0610 × 104 5.7637 × 103 5.1020 × 103 8.9843 × 103

Std. 8.7765 × 102 1.0821 × 103 8.5372 × 102 4.5798 × 102 7.4092 × 102 8.3320 × 102 1.2686 × 102 5.0098 × 102 4.7159 × 102

F26
Mean 3.2483 × 103 3.2820 × 103 3.9878 × 103 4.3977 × 103 3.2000 × 103 4.7381 × 103 3.2120 × 103 3.2753 × 103 4.1949 × 103

Std. 1.9161 × 101 5.4519 × 101 4.219 × 102 1.7630 × 102 2.4229 × 10−4 3.1335 × 102 7.6240 2.8524 × 101 1.9942 × 102

F27
Mean 3.2433 × 103 3.2468 × 103 6.5226 × 103 6.8475 × 103 3.3544 × 103 7.6036 × 103 3.2720 × 103 3.3028 × 103 5.1823 × 103

Std. 2.8094 × 101 2.5404 × 101 7.9387 × 102 3.0725 × 102 1.3707 × 102 4.9561 × 102 2.7703 × 101 4.4193 × 101 2.3464 × 102

F28
Mean 3.7791 × 103 4.2619 × 103 6.6501 × 103 6.9804 × 103 3.6817 × 103 7.4031 × 103 4.5047 × 103 3.9346 × 103 5.8452 × 103

Std. 2.2075 × 102 2.9220 × 102 1.0196 × 103 4.8584 × 102 3.0165 × 102 9.1913 × 103 2.3321 × 102 2.3988 × 102 3.9740 × 102

F29
Mean 1.0876 × 104 1.9525 × 104 2.9254 × 109 1.2403 × 109 2.1538 × 106 3.3004 × 108 7.1202 × 104 3.7456 × 104 2.3894 × 108

Std. 3.8180 × 103 1.3548 × 104 1.1521 × 109 3.6092 × 108 5.8043 × 106 1.2809 × 109 4.1259 × 104 3.7595 × 104 1.3164 × 108

Average Ranking 2.13 2.70 7.60 7.63 3.87 8.13 3.73 3.33 5.90
Total Ranking 1 2 7 8 5 9 4 3 6
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Table 10. Comparison of the BCA with other algorithms on IEEE CEC 2017 benchmark functions with D = 50.

Function BCA INFO RSA SOMA_T3A GWO BOA DE PSO GA

Unimodal Functions
F1

Mean 8.0698 × 106 1.2081 × 108 1.0054 × 1011 1.0541 × 1011 1.9953 × 1010 9.9579 × 1010 4.2853 × 108 4.7099 × 108 6.7499 × 1010

Std. 2.5848 × 107 3.3163 × 108 8.7185 × 109 4.1479 × 109 6.6208 × 109 7.6477 × 109 1.0631 × 108 4.3556 × 108 3.6694 × 109

F2
Mean 2.1874 × 105 1.0352 × 105 1.7072 × 105 1.7426 × 105 2.9008 × 105 3.0258 × 105 4.0362 × 105 2.4174 × 105 1.6088 × 105

Std. 4.4722 × 104 3.3469 × 104 1.4597 × 104 1.4382 × 104 9.6064 × 104 1.2568 × 105 6.6267 × 104 5.1004 × 104 1.4334 × 104

Multimodal Functions

F3
Mean 5.8938 × 102 6.4763 × 102 2.7104 × 104 2.9864 × 104 3.0583 × 103 4.1718 × 104 6.6851 × 102 8.8720 × 102 1.7406 × 104

Std. 7.0100 × 101 8.8827 × 101 4.5861 × 103 2.4337 × 103 1.0917 × 103 3.6393 × 103 4.1228 × 101 1.1478 × 102 2.6666 × 103

F4
Mean 7.8413 × 102 8.0011 × 102 1.1750 × 103 1.2143 × 103 7.9093 × 102 1.2140 × 103 9.6133 × 102 8.0109 × 102 1.0797 × 103

Std. 1.2354 × 102 5.3138 × 101 2.5710 × 101 1.3604 × 101 3.4174 × 101 2.5134 × 101 2.1992 × 101 7.7571 × 101 4.2529 × 101

F5
Mean 6.0651 × 102 6.4537 × 102 7.0573 × 102 6.9849 × 102 6.3233 × 102 7.0448 × 102 6.1448 × 102 6.1507 × 102 6.8897 × 102

Std. 3.0238 6.7509 4.3169 2.0565 6.6989 4.4172 2.0835 3.4453 5.222

F6
Mean 1.2372 × 103 1.3888 × 103 1.9726 × 103 2.0541 × 103 1.1988 × 103 2.0184 × 103 1.2313 × 103 1.2571 × 103 1.7464 × 103

Std. 1.7023 × 102 1.0297 × 102 3.3972 × 101 3.3665 × 101 9.2951 × 101 3.4824 × 101 2.5992 × 101 8.0061 × 101 8.6661 × 101

F7
Mean 1.0984 × 103 1.0977 × 103 1.5119 × 103 1.4972 × 103 1.1061 × 103 1.5184 × 103 1.2211 × 103 1.1243 × 103 1.4017 × 103

Std. 1.3220 × 102 5.3863 × 101 2.1038 × 101 1.5377 × 101 6.7371 × 101 2.8109 × 101 1.8749 × 101 8.4016 × 101 4.1217 × 101

F8
Mean 5.5744 × 103 9.2101 × 103 3.8790 × 104 4.0799 × 104 1.6457 × 104 3.7342 × 104 3.0368 × 103 6.7222 × 103 3.0784 × 104

Std. 3.6592 × 103 2.3518 × 103 2.3156 × 103 2.4841 × 103 4.4410 × 103 2.6924 × 103 7.5760 × 102 5.4127 × 103 3.8685 × 103

F9
Mean 1.4690 × 104 8.1527 × 103 1.5335 × 104 1.4691 × 104 1.0845 × 104 1.5445 × 104 1.5134 × 104 1.4055 × 104 1.3846 × 104

Std. 1.3087 × 103 9.1292 × 102 4.0800 × 102 3.2265 × 102 3.3112 × 103 4.7646 × 102 5.7015 × 102 1.1317 × 103 7.4803 × 102

Hybrid Functions

F10
Mean 1.5325 × 103 1.4936 × 103 2.1183 × 104 1.9607 × 104 7.3545 × 103 2.7563 × 104 1.8245 × 103 2.1715 × 103 1.5010 × 104

Std. 4.1856 × 102 3.2047 × 102 2.6847 × 103 1.5181 × 103 2.5495 × 103 1.9258 × 103 1.7100 × 102 4.2295 × 102 2.3156 × 103

F11
Mean 6.0038 × 106 1.5783 × 107 7.4291 × 1010 7.2731 × 1010 5.0761 × 109 1.0244 × 1011 1.7041 × 108 4.7613 × 107 4.1717 × 1010

Std. 3.9285 × 106 1.1161 × 107 1.9085 × 1010 5.4454 × 109 4.0055 × 109 1.2312 × 1010 8.4455 × 107 2.8385 × 107 5.6714 × 109

F12
Mean 8.8823 × 103 3.3263 × 104 4.5817 × 1010 3.9844 × 1010 7.8005 × 108 7.6975 × 1010 1.2000 × 105 2.9367 × 106 1.7893 × 1010

Std. 8.3569 × 103 4.2739 × 104 1.4543 × 1010 5.9399 × 109 1.5196 × 109 1.0671 × 1010 4.0879 × 106 1.5111 × 107 3.9607 × 109

F13
Mean 7.1093 × 105 9.3353 × 104 5.9906 × 107 2.5106 × 107 3.1367 × 106 1.6226 × 108 5.8469 × 104 8.3739 × 105 2.7865 × 107

Std. 7.0911 × 105 9.7111 × 104 3.9631 × 107 8.9211 × 106 4.5229 × 106 9.3788 × 107 2.8929 × 104 1.0091 × 106 1.4505 × 107

F14
Mean 9.5976 × 103 1.0522 × 104 6.6059 × 109 5.9406 × 109 4.1580 × 107 1.3721 × 1010 1.2541 × 105 8.4425 × 103 1.5639 × 109

Std. 7.5456 × 103 6.5294 × 103 2.9172 × 109 4.6824 × 108 6.0041 × 107 3.2457 × 109 1.2170 × 105 7.5388 × 103 4.9284 × 108

F15
Mean 4.1961 × 103 3.7242 × 103 8.4170 × 103 8.9178 × 103 3.6754 × 103 1.5434 × 104 5.6286 × 103 4.0180 × 103 7.2506 × 103

Std. 1.1946 × 103 4.4344 × 102 1.4172 × 103 5.6007 × 102 5.3702 × 102 1.7538 × 103 2.9782 × 102 7.1457 × 102 6.0709 × 102

F16
Mean 3.6761 × 103 3.2831 × 103 1.1912 × 104 1.1882 × 1044 3.2836 × 103 9.4433 × 103 3.8683 × 103 3.4948 × 103 4.4646 × 103

Std. 5.0328 × 102 3.3696 × 102 4.0412 × 103 1.8850 × 103 4.3853 × 102 1.2499 × 104 2.4086 × 102 5.1286 × 102 4.6452 × 102

F17
Mean 3.7145 × 106 6.5369 × 105 2.2561 × 108 5.3734 × 107 1.8814 × 107 2.3829 × 108 7.2114 × 106 9.1979 × 106 5.1911 × 107

Std. 3.4216 × 106 5.7179 × 105 8.4785 × 107 1.0627 × 107 2.4697 × 107 1.1768 × 108 3.5520 × 106 7.7993 × 106 1.1650 × 107

F18
Mean 1.7769 × 104 2.0862 × 104 4.2811 × 109 3.2215 × 109 2.1014 × 107 7.5964 × 109 2.4024 × 104 7.7060 × 104 5.6002 × 108

Std. 1.4976 × 104 1.2405 × 104 1.2925 × 109 6.7984 × 108 5.2307 × 107 1.5056 × 109 4.6330 × 104 3.3516 × 105 1.9099 × 108

F19
Mean 3.9894 × 103 3.3028 × 103 4.2539 × 103 4.0362 × 103 3.2912 × 103 4.4428 × 103 4.3908 × 103 3.7272 × 103 3.6308 × 103

Std. 3.1532 × 102 3.7555 × 102 2.2889 × 102 1.5749 × 102 5.1545 × 102 1.7880 × 102 1.8545 × 102 3.8193 × 102 2.6442 × 102
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Table 10. Cont.

Function BCA INFO RSA SOMA_T3A GWO BOA DE PSO GA

Composition Functions

F20
Mean 2.6289 × 103 2.6137 × 103 3.1229 × 103 3.1833 × 103 2.6297 × 103 3.1620 × 103 2.7704 × 103 2.6479 × 103 3.0632 × 103

Std. 1.4251 × 102 5.9255 × 101 8.5638 × 101 3.2547 × 101 7.3004 × 101 7.3181 × 101 2.5858 × 101 7.9332 × 101 4.3429 × 101

F21
Mean 1.6405 × 104 1.0111 × 104 1.7409 × 104 1.6761 × 104 1.3105 × 104 1.6839 × 104 1.6646 × 104 1.4385 × 104 1.5936 × 104

Std. 9.7241 × 102 6.4693 × 102 3.9289 × 102 3.2032 × 102 3.0878 × 103 7.4231 × 102 4.0475 × 102 2.9685 × 103 7.9201 × 102

F22
Mean 2.9959 × 103 3.1934 × 103 4.0747 × 103 4.2654 × 103 3.0818 × 103 4.8310 × 103 3.2146 × 103 3.0819 × 103 4.3706 × 103

Std. 1.2535 × 102 1.2322 × 102 1.9257 × 102 7.5957 × 101 9.1497 × 101 1.9073 × 102 1.8505 × 101 7.3836 × 101 1.0892 × 102

F23
Mean 3.2918 × 103 3.2877 × 103 4.4812 × 103 5.0063 × 103 3.3843 × 103 6.0799 × 103 3.3377 × 103 3.3251 × 103 4.7415 × 103

Std. 1.1679 × 102 9.0870 × 101 6.6486 × 102 9.4557 × 101 1.1332 × 102 3.4054 × 102 2.0458 × 101 4.8423 × 101 1.2742 × 102

F24
Mean 3.0860 × 103 3.1876 × 103 1.3539 × 104 1.4018 × 104 4.3759 × 103 1.5817 × 104 3.1449 × 103 3.2742 × 103 9.3090 × 103

Std. 3.2256 × 101 4.9994 × 101 1.6051 × 103 7.1673 × 102 7.1319 × 102 8.6365 × 102 3.2658 × 101 7.0189 × 101 4.8423 × 102

F25
Mean 6.5998 × 103 1.0058 × 104 1.6336 × 104 1.6454 × 104 7.2661 × 103 1.8529 × 104 8.4696 × 103 7.3589 × 103 1.4126 × 104

Std. 1.1763 × 103 1.7772 × 103 8.1251 × 102 4.5176 × 102 1.0119 × 103 4.6464 × 102 3.5477 × 102 8.7881 × 102 7.1047 × 102

F26
Mean 3.4756 × 103 3.7370 × 103 5.9281 × 103 6.9078 × 103 3.2000 × 103 6.6606 × 103 3.3844 × 103 3.6645 × 103 6.4421 × 103

Std. 9.5517 × 101 1.8797 × 102 1.0353 × 103 3.6858 × 102 2.1386 × 10−4 5.6742 × 102 7.7249 × 101 1.0106 × 102 4.2455 × 102

F27
Mean 3.3779 × 103 3.5239 × 103 1.1726 × 104 1.2045 × 104 3.3962 × 103 1.1800 × 104 3.5984 × 103 3.5421 × 103 8.9990 × 103

Std. 5.7735 × 101 1.0620 × 102 1.5292 × 103 5.8127 × 102 3.8952 × 102 1.1263 × 103 9.5782 × 102 1.1275 × 102 4.9551 × 102

F28
Mean 4.3124 × 103 5.1213 × 103 5.7134 × 104 3.3590 × 104 4.6454 × 103 1.4499 × 105 5.6166 × 103 4.7325 × 103 1.4915 × 104

Std. 4.0225 × 102 5.0900 × 102 8.1925 × 104 8.3978 × 103 6.2813 × 102 3.2654 × 105 2.6784 × 102 5.0232 × 102 2.9872 × 103

F29
Mean 1.2805 × 106 1.7690 × 106 7.3830 × 109 5.8149 × 109 5.1098 × 107 1.0356 × 1010 2.1101 × 107 8.5554 × 106 1.8142 × 109

Std. 3.1411 × 105 9.3920 × 105 2.5616 × 109 8.3036 × 108 2.0667 × 107 2.3883 × 109 1.0839 × 107 5.0240 × 106 4.4706 × 108

Average Ranking 2.20 2.40 7.43 7.47 3.53 8.53 4.10 3.57 5.77
Total Ranking 1 2 7 8 3 9 5 4 6
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Table 11. Comparison of the BCA with other algorithms on IEEE CEC 2017 benchmark functions with D = 100.

Function BCA INFO RSA SOMA_T3A GWO BOA DE PSO GA

Unimodal Functions
F1

Mean 2.4262 × 109 1.5827 × 1010 2.5051 × 1011 2.6181 × 1011 8.1909 × 1010 2.8481 × 1011 1.2168 × 1010 1.0303 × 1010 1.9283 × 1011

Std. 2.1697 × 109 5.9449 × 109 6.8445 × 109 4.6747 × 109 1.1466 × 1010 9.0918 × 109 2.3400 × 109 2.0291 × 109 8.5353 × 109

F2
Mean 6.5836 × 105 3.7586 × 105 3.4850 × 105 3.5384 × 105 1.3649 × 106 9.5001 × 105 9.2191 × 105 7.3736 × 105 3.5431 × 105

Std. 8.5490 × 104 6.1650 × 104 1.1314 × 104 1.0242 × 104 5.1518 × 105 1.1966 × 105 1.0117 × 105 9.8121 × 104 2.4768 × 104

Multimodal Functions

F3
Mean 1.1402 × 103 2.1230 × 103 8.6240 × 104 8.5233 × 104 1.1234 × 104 1.0456 × 105 1.9129 × 103 2.2175 × 103 5.5811 × 104

Std. 1.6994 × 102 4.5247 × 102 1.1066 × 104 7.1279 × 103 2.9543 × 103 9.9881 × 103 3.6458 × 102 3.5647 × 102 4.8785 × 103

F4
Mean 1.4523 × 103 1.3003 × 103 2.0685 × 103 2.1246 × 103 1.3395 × 103 2.1023 × 103 1.4984 × 103 1.4913 × 103 1.9419 × 103

Std. 3.0949 × 102 6.0707 × 101 4.5174 × 101 3.3107 × 101 5.4478 × 101 2.7335 × 101 4.1121 × 101 1.3418 × 102 6.3060 × 101

F5
Mean 6.2673 × 102 6.5983 × 102 7.1255 × 102 7.1278 × 102 6.5269 × 102 7.1582 × 102 6.3221 × 102 6.4121 × 102 7.0139 × 102

Std. 7.8883 6.0012 3.7904 1.4522 4.5112 3.3421 3.8317 7.7823 3.7522

F6
Mean 2.4105 × 103 2.8567 × 103 3.9083 × 103 4.0947 × 103 2.3550 × 103 3.9955 × 103 2.2631 × 103 2.6027 × 103 3.5544 × 103

Std. 3.2586 × 102 2.4278 × 102 9.0787 × 101 5.3391 × 101 1.3874 × 102 7.1554 × 101 8.6077 × 101 1.7078 × 102 1.5662 × 102

F7
Mean 1.7870 × 103 1.7241 × 103 2.5308 × 103 2.5713 × 103 1.6996 × 103 2.5950 × 103 1.9096 × 103 1.7887 × 103 2.3853 × 103

Std. 2.8372 × 102 1.0907 × 102 5.9205 × 101 3.0255 × 101 8.2933 × 101 4.5855 × 101 3.500 × 101 1.5337 × 102 6.1557 × 101

F8
Mean 3.3261 × 104 2.6853 × 104 8.2162 × 104 8.2940 × 104 5.4341 × 104 8.5244 × 104 2.1295 × 104 4.5034 × 104 7.2344 × 104

Std. 1.0941 × 104 3.0790 × 103 3.6701 × 103 3.2867 × 103 1.4229 × 104 3.5794 × 103 5.6631 × 103 2.4891 × 104 4.7622 × 103

F9
Mean 3.2281 × 104 1.7869 × 104 3.2081 × 104 3.1765 × 104 2.5030 × 104 3.3361 × 104 3.3478 × 104 3.1371 × 104 3.0695 × 104

Std. 1.4270 × 103 1.7704 × 103 9.0578 × 102 5.3961 × 102 6.1326 × 103 5.5069 × 102 5.9817 × 102 1.1393 × 103 1.0018 × 103

Hybrid Functions

F10
Mean 1.2551 × 105 3.2673 × 104 2.1884 × 105 1.8807 × 105 1.2569 × 105 1.1115 × 106 3.4259 × 105 1.2228 × 105 1.5227 × 105

Std. 3.0498 × 104 7.6137 × 103 2.8094 × 104 1.7728 × 104 2.8048 × 104 2.5365 × 105 4.5553 × 104 3.0212 × 104 2.0980 × 104

F11
Mean 1.0159 × 108 8.2837 × 108 1.7894 × 1011 1.8373 × 1011 2.6146 × 1010 2.2615 × 1011 1.2339 × 109 1.4037 × 109 1.2383 × 1011

Std. 5.6502 × 107 8.3954 × 108 2.2378 × 1010 7.2630 × 109 8.4709 × 109 1.2059 × 1010 5.5010 × 108 6.2157 × 108 1.0713 × 1010

F12
Mean 1.1851 × 104 3.5256 × 105 4.6528 × 1010 4.3217 × 1010 3.7958 × 109 5.0376 × 1010 1.9034 × 106 1.6131 × 107 2.5314 × 1010

Std. 8.1518 × 103 1.0772 × 106 5.4012 × 109 2.4149 × 109 2.6778 × 109 3.5562 × 109 1.9179 × 106 4.6544 × 107 2.4457 × 109

F13
Mean 2.9782 × 106 1.5074 × 106 9.3691 × 107 4.3262 × 107 9.8780 × 106 1.7488 × 108 2.3123 × 107 1.1788 × 107 1.8978 × 107

Std. 2.0700 × 106 7.3534 × 105 4.2511 × 107 9.3987 × 106 4.7507 × 106 5.3129 × 107 8.3497 × 106 7.3408 × 106 4.1156 × 106

F14
Mean 6.1051 × 103 1.8254 × 104 2.3222 × 1010 2.1381 × 1010 8.4784 × 108 2.8782 × 1010 1.3875 × 106 8.3210 × 106 1.0750 × 1010

Std. 4.3314 × 103 2.3018 × 104 3.7678 × 109 1.9326 × 109 1.1504 × 109 3.5521 × 109 2.3709 × 106 2.6313 × 107 1.1435 × 109

F15
Mean 9.8380 × 103 6.3684 × 103 2.0929 × 104 2.0376 × 104 9.1569 × 103 2.5379 × 104 1.1466 × 104 9.3651 × 103 1.8110 × 104

Std. 2.2106 × 103 7.4683 × 102 3.1865 × 103 1.1518 × 103 1.7239 × 103 1.8175 × 103 4.0190 × 102 1.6248 × 103 1.6440 × 103

F16
Mean 7.3028 × 103 6.2763 × 103 1.2741 × 107 2.2644 × 106 9.0987 × 103 3.0086 × 106 8.1420 × 103 6.7173 × 103 5.6565 × 105

Std. 1.2345 × 103 9.5553 × 102 1.1567 × 107 7.8162 × 105 4.6655 × 103 1.6597 × 107 3.0139 × 102 9.0206 × 102 3.2081 × 105

F17
Mean 9.2284 × 106 2.1110 × 106 1.5856 × 108 1.0757 × 108 1.5438 × 107 2.2938 × 108 5.3408 × 107 1.8286 × 107 3.6796 × 107

Std. 7.9516 × 106 1.2088 × 106 8.5792 × 107 2.4989 × 107 8.9871 × 106 1.3454 × 108 1.9901 × 107 1.1332 × 107 9.9945 × 106

F18
Mean 1.6481 × 104 1.0110 × 105 2.3574 × 1010 1.8007 × 1010 1.0655 × 109 2.9969 × 1010 4.9848 × 106 3.6414 × 105 1.0713 × 1010

Std. 4.0296 × 104 2.0092 × 105 4.9719 × 109 1.5611 × 109 1.5996 × 109 3.5853 × 109 1.5144 × 107 1.2319 × 106 1.8233 × 109

F19
Mean 7.6005 × 103 5.5823 × 103 7.7664 × 103 7.4699 × 103 6.1301 × 103 8.2367 × 103 7.1889 × 103 7.4633 × 103 7.1668 × 103

Std. 3.2761 × 102 5.2891 × 102 2.6622 × 102 2.3863 × 102 1.4393 × 103 3.1704 × 102 2.8736 × 102 5.2791 × 102 3.2952 × 102
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Table 11. Cont.

Function BCA INFO RSA SOMA_T3A GWO BOA DE PSO GA

Composition Functions

F20
Mean 3.2061 × 103 3.3173 × 103 4.6039 × 103 4.7637 × 103 3.3123 × 103 4.9988 × 103 3.4553 × 103 3.3432 × 103 4.7138 × 103

Std. 3.0861 × 102 1.5987 × 102 2.1284 × 102 5.8958 × 101 9.0393 × 101 1.8975 × 102 3.8367 × 101 1.3888 × 102 1.5033 × 102

F21
Mean 3.4888 × 104 2.1203 × 104 3.4798 × 104 3.4291 × 104 2.9534 × 104 3.4654 × 104 3.3976 × 104 3.3656 × 104 3.3430 × 104

Std. 6.8231 × 102 2.0965 × 103 5.9158 × 102 5.0831 × 102 5.5320 × 103 5.0334 × 102 5.0728 × 102 1.4131 × 103 1.0478 × 103

F22
Mean 3.4270 × 103 3.9970 × 103 5.7098 × 103 6.7390 × 103 3.9791 × 103 6.8537 × 103 3.9121 × 103 3.7042 × 103 6.7026 × 103

Std. 1.0831 × 102 1.8032 × 102 2.2234 × 102 1.3785 × 102 1.1420 × 102 3.2125 × 102 4.3860 × 101 1.0324 × 102 3.0047 × 102

F23
Mean 4.1427 × 103 4.8633 × 103 9.0247 × 103 1.0304 × 104 4.9121 × 103 1.4845 × 104 4.4334 × 103 4.3668 × 103 1.1008 × 104

Std. 2.2216 × 102 3.0941 × 102 2.2474 × 103 4.1372 × 102 1.4091 × 102 1.1676 × 103 5.7606 × 101 1.1141 × 102 5.3080 × 102

F24
Mean 3.9451 × 103 4.4219 × 103 2.5541 × 104 2.6442 × 104 9.0625 × 103 2.8948 × 104 5.2123 × 103 5.3468 × 103 1.8131 × 104

Std. 2.4271 × 102 2.7817 × 102 1.6708 × 103 1.2230 × 103 1.6244 × 103 2.0025 × 103 4.7429 × 102 6.0285 × 102 6.0790 × 102

F25
Mean 1.4253 × 104 2.4819 × 104 5.0168 × 104 4.7764 × 104 2.2388 × 104 5.7504 × 104 1.6418 × 104 1.6479 × 104 4.3008 × 104

Std. 2.2698 × 103 3.6772 × 103 3.5322 × 103 1.7066 × 103 1.8713 × 103 2.1206 × 103 5.2302 × 102 1.1404 × 103 2.0140 × 103

F26
Mean 3.6732 × 103 4.1662 × 103 1.2084 × 104 1.3883 × 104 3.2000 × 103 1.6125 × 104 3.7738 × 103 4.1689 × 103 1.2293 × 104

Std. 1.1192 × 102 2.4580 × 102 2.7715 × 103 5.0937 × 102 2.7202 × 10−4 1.1549 × 103 1.9439 × 102 1.6458 × 102 8.7161 × 102

F27
Mean 4.4414 × 103 5.6510 × 103 2.9822 × 104 2.7928 × 104 3.5548 × 103 3.9325 × 104 1.0193 × 104 7.2703 × 103 2.5580 × 104

Std. 7.1057 × 102 1.0350 × 103 2.0328 × 103 6.0543 × 102 1.3957 × 103 1.9787 × 103 2.4050 × 103 2.0799 × 103 9.1464 × 102

F28
Mean 7.8602 × 103 8.4401 × 103 7.6068 × 105 3.4879 × 105 7.9197 × 103 1.3111 × 106 1.0405 × 104 9.1411 × 103 5.5861 × 104

Std. 1.3546 × 103 9.1056 × 102 5.7523 × 105 9.2666 × 104 1.6097 × 103 4.3956 × 105 4.9541 × 102 9.8512 × 102 1.6627 × 104

F29
Mean 1.0003 × 105 3.0133 × 106 4.1761 × 1010 3.9200 × 1010 2.8882 × 109 4.7457 × 1010 8.3342 × 106 1.2042 × 107 2.2226 × 1010

Std. 6.6358 × 104 2.0704 × 106 4.4631 × 109 1.7074 × 109 2.3192 × 109 4.5899 × 109 4.2568 × 106 1.9619 × 107 3.6108 × 109

Average Ranking 2.47 2.47 7.17 7.10 3.67 8.80 4.07 3.63 5.67
Total Ranking 1 1 8 7 4 9 5 3 6

Table 12. Results of the Wilcoxon signed-rank test for the BCA and other algorithms on IEEE CEC 2017 benchmark functions.

30D

BCA
vs. SCO vs. INFO vs. GA vs. SOMA_T3A vs. RSA vs. PSO vs. BOA vs. DE vs. GWO

1.7344 × 10−6 2.5364 × 10−1 1.4936 × 10−5 1.7344 × 10−6 5.2165 × 10−6 3.3173 × 10−4 5.7517 × 10−6 3.8723 × 10−2 5.7064 × 10−4

Yes NO Yes Yes Yes Yes Yes Yes Yes
Yes NO Yes Yes Yes Yes Yes Yes Yes

50D

BCA
vs. SCO vs. INFO vs. GA vs. SOMA_T3A vs. RSA vs. PSO vs. BOA vs. DE vs. GWO

1.7344 × 10−6 5.5774 × 10−1 7.5137 × 10−5 1.3601 × 10−5 1.2381 × 10−5 3.1618 × 10−3 1.7344 × 10−6 2.0515 × 10−4 2.7653 × 10−3

Yes NO Yes Yes Yes Yes Yes Yes Yes
Yes NO Yes Yes Yes Yes Yes Yes Yes

100D

BCA
vs. SCO vs. INFO vs. GA vs. SOMA_T3A vs. RSA vs. PSO vs. BOA vs. DE vs. GWO

1.7344 × 10−6 9.4261 × 10−1 5.3070 × 10−5 2.5967 × 10−5 1.9729 × 10−5 8.3071 × 10−4 2.1266 × 10−6 1.0570 × 10−4 2.9575 × 10−3

Yes NO Yes Yes Yes Yes Yes Yes Yes
Yes NO Yes Yes Yes Yes Yes Yes Yes
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Table 13. Results of different populations with 30D.

Function
N = 30 N = 60 N = 90

Mean Std. Median Mean Std. Median Mean Std. Median

Unimodal Functions F1 7.3880 × 103 6.7454 × 103 3.8861 × 103 5.4449 × 103 5.6765 × 103 3.5046 × 103 4.6746 × 103 1.4123 × 103 5.7977 × 103

F2 8.3146 × 104 1.7206 × 104 8.1638 × 104 7.7592 × 104 1.1306 × 104 7.5372 × 104 6.6083 × 104 6.2693 × 104 1.4721 × 104

Multimodal Functions

F3 4.9649 × 102 3.0714 × 101 4.9252 × 102 4.9179 × 102 2.2574 × 101 4.8842 × 102 4.8495 × 102 4.8633 × 102 2.7164 × 101

F4 6.2601 × 102 6.4823 × 101 6.0346 × 102 6.7939 × 102 5.7299 × 101 7.0420 × 102 6.9770 × 102 7.0603 × 102 3.7821 × 101

F5 6.0272 × 102 2.7117 6.0198 × 102 6.0004 × 102 9.8761 × 10−2 6.0001 × 102 6.0004 × 102 6.0003 × 102 2.9621 × 10−2

F6 8.9593 × 102 6.9389 × 101 8.9541 × 102 9.5491 × 102 2.8263 × 101 9.6248 × 102 9.5526 × 102 9.5864 × 102 1.6341 × 101

F7 9.3177 × 102 7.0344 × 101 9.0080 × 102 9.9036 × 102 5.1629 × 101 1.0037 × 103 1.0078 × 103 1.0112 × 103 3.0123 × 101

F8 1.3907 × 103 5.7378 × 102 1.1280 × 103 9.0601 × 102 7.9865 9.0440 × 102 9.0141 × 102 9.0101 × 102 1.4670
F9 8.1898 × 103 1.1729 × 103 8.4436 × 103 8.4277 × 103 3.4190 × 102 8.4837 × 103 8.2718 × 103 8.2482 × 103 3.6665 × 102

Hybrid Functions

F10 1.1835 × 103 5.8982 × 101 1.1776 × 103 1.2044 × 103 5.0040 × 101 1.1950 × 103 1.2334 × 103 1.2427 × 103 3.2662 × 101

F11 9.5317 × 105 1.0400 × 106 6.3189 × 105 2.6591 × 105 2.8870 × 105 1.5407 × 105 2.4397 × 105 1.6314 × 105 2.1469 × 105

F12 2.0148 × 104 1.8459 × 104 1.4413 × 104 1.3349 × 104 1.3905 × 104 8.0189 × 103 1.6795 × 104 1.1447 × 104 1.6274 × 104

F13 8.1822 × 104 9.6417 × 104 4.7288 × 104 3.847 × 104 3.3347 × 104 3.6679 × 104 2.5751 × 104 1.4199 × 104 2.4443 × 104

F14 1.0747 × 104 9.7030 × 103 7.1497 × 103 1.1307 × 104 1.0356 × 104 7.4763 × 103 1.4489 × 104 1.2136 × 104 1.1371 × 104

F15 2.9198 × 103 5.0390 × 102 3.0275 × 103 3.1022 × 103 4.1633 × 102 3.2082 × 103 3.1699 × 103 3.2143 × 103 2.012 × 102

F16 2.0399 × 103 1.1135 × 102 2.0585 × 103 1.9230 × 103 1.4829 × 102 1.9132 × 103 1.9150 × 103 1.8817 × 103 1.2865 × 102

F17 7.7814 × 105 1.0304 × 106 4.2460 × 105 1.1602 × 106 8.7514 × 105 9.2794 × 105 1.8026 × 106 1.3069 × 106 1.6463 × 106

F18 1.2889 × 104 1.1564 × 104 8.2227 × 103 1.4547 × 104 1.5462 × 104 8.2788 × 103 1.1386 × 104 8.5105 × 103 9.7387 × 103

F19 2.4143 × 103 2.1220 × 102 2.4204 × 103 2.2592 × 103 1.7011 × 102 2.2061 × 103 2.2178 × 103 2.1996 × 103 2.0358 × 102

Composition Functions

F20 2.4371 × 103 6.9269 × 101 2.4561 × 103 2.4795 × 103 5.1795 × 101 2.4966 × 103 2.4993 × 103 2.5033 × 103 1.7737 × 101

F21 5.6464 × 103 3.5173 × 103 4.3274 × 103 3.4979 × 103 2.7257 × 103 2.3000 × 103 2.5517 × 103 2.3000 × 103 1.3769 × 103

F22 2.7655 × 103 5.7598 × 101 2.7475 × 103 2.7889 × 103 7.8776 × 101 2.8320 × 103 2.8359 × 103 2.8518 × 103 5.4288 × 101

F23 2.9328 × 103 6.7951 × 101 2.9132 × 103 3.0039 × 103 5.7480 × 101 3.0292 × 103 3.0291 × 103 3.0306 × 103 1.4249 × 101

F24 2.9019 × 103 1.9859 × 101 2.8905 × 103 2.8867 × 103 1.8345 2.8871 × 103 2.8878 × 103 2.8871 × 103 4.8380
F25 4.5451 × 103 8.7765 × 102 4.6629 × 103 4.6645 × 103 9.0179 × 102 4.5846 × 103 4.9001 × 103 5.2268 × 103 8.6492 × 102

F26 3.2483 × 103 1.9161 × 101 3.2453 × 103 3.2207 × 103 1.5836 × 101 3.2194 × 103 3.2151 × 103 3.2136 × 103 1.0483 × 101

F27 3.2433 × 103 2.8094 × 101 3.2344 × 103 3.2195 × 103 3.8101 × 101 3.2183 × 103 3.2019 × 103 3.2045 × 103 3.5352 × 101

F28 3.7791 × 103 2.2075 × 102 3.7431 × 103 3.6631 × 103 2.0532 × 102 3.5980 × 103 3.6891 × 103 3.6264 × 103 2.0704 × 102

F29 1.0876 × 104 3.8180 × 103 1.0020 × 104 1.1098 × 104 5.8710 × 103 8.8924 × 103 1.3314 × 104 1.101 × 104 7.2877 × 103
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Table 14. Results of different populations with 50D.

Function
N = 30 N = 60 N = 90

Mean Std. Median Mean Std. Median Mean Std. Median

Unimodal Functions F1 8.0698 × 106 2.5848 × 107 8.5769 × 104 5.6533 × 104 5.4529 × 104 3.8752 × 104 1.6929 × 106 2.5291 × 106 7.7395 × 105

F2 2.1874 × 105 4.4722 × 104 2.1759 × 105 2.086 × 105 2.5998 × 104 2.0824 × 105 1.9983 × 105 2.4721 × 104 1.9739 × 105

Multimodal Functions

F3 5.8938 × 102 7.0100 × 101 5.9366 × 102 5.4685 × 102 4.6212 × 101 5.4588 × 102 5.8317 × 102 4.8414 × 101 5.7983 × 102

F4 7.8413 × 102 1.2354 × 102 7.7960 × 102 9.5733 × 102 2.7532 × 101 9.6231 × 102 9.4155 × 102 4.0125 × 101 9.5446 × 102

F5 6.0651 × 102 3.0238 6.0599 × 102 6.0357 × 102 1.7040 6.0326 × 102 6.0443 × 102 1.9290 6.0391 × 102

F6 1.2372 × 103 1.7023 × 102 1.2142 × 103 1.2462 × 103 2.7839 × 101 1.2492 × 103 1.2554 × 103 3.1171 × 101 1.2627 × 103

F7 1.0984 × 103 1.3220 × 102 1.0452 × 103 1.2465 × 103 5.9646 × 101 1.2548 × 103 1.2486 × 103 2.7830 × 101 1.2516 × 103

F8 5.5744 × 103 3.6592 × 103 5.0946 × 103 2.1500 × 103 9.4137 × 102 1.821 × 103 2.2068 × 103 7.1179 × 102 1.9962 × 103

F9 1.4690 × 104 1.3087 × 103 1.5137 × 104 1.4969 × 104 4.2448 × 102 1.5050 × 104 1.4696 × 104 5.2522 × 102 1.4790 × 104

Hybrid Functions

F10 1.5325 × 103 4.1856 × 102 1.4082 × 103 1.4942 × 103 1.2734 × 102 1.4626 × 103 1.5806 × 103 1.4222 × 102 1.5572 × 103

F11 6.0038 × 106 3.9285 × 106 5.2296 × 106 4.6185 × 106 2.6767 × 106 4.4667 × 106 6.7136 × 106 3.4054 × 106 6.9069 × 106

F12 8.8823 × 103 8.3569 × 103 5.8793 × 103 8.9058 × 103 1.0131 × 104 3.3792 × 103 6.8728 × 103 5.1488 × 103 5.4100 × 103

F13 7.1093 × 105 7.0911 × 105 4.7577 × 105 1.764 × 105 1.5576 × 105 1.4294 × 105 1.8604 × 105 1.5231 × 105 1.2970 × 105

F14 9.5976 × 103 7.5456 × 103 9.4456 × 103 6.2588 × 103 4.800 × 103 4.5249 × 103 9.6673 × 103 5.6008 × 103 8.5047 × 103

F15 4.1961 × 103 1.1946 × 103 4.6432 × 103 4.9000 × 103 5.0821 × 102 5.0144 × 103 5.0119 × 103 4.0126 × 102 5.0726 × 103

F16 3.6761 × 103 5.0328 × 102 3.8736 × 103 3.7952 × 103 4.5891 × 102 3.9097 × 103 3.917 × 103 1.8772 × 102 3.9074 × 103

F17 3.7145 × 106 3.4216 × 106 2.1930 × 106 6.1150 × 106 5.1799 × 106 5.0918 × 106 6.2919 × 106 3.6692 × 106 6.0346 × 106

F18 1.7769 × 104 1.4976 × 104 1.6746 × 104 1.2614 × 104 1.0910 × 104 1.0209 × 104 1.7584 × 104 1.2659 × 104 1.5127 × 104

F19 3.9894 × 103 3.1532 × 102 4.0624 × 103 4.0121 × 103 1.7131 × 102 4.0342 × 103 3.9080 × 103 1.6453 × 102 3.9554 × 103

Composition Functions

F20 2.6289 × 103 1.4251 × 102 2.6798 × 103 2.7164 × 103 7.8921 × 101 2.7452 × 103 2.7498 × 103 2.2452 × 101 2.7450 × 103

F21 1.6405 × 104 9.7241 × 102 1.6771 × 104 1.5945 × 104 2.6014 × 103 1.6382 × 104 1.5775 × 104 2.5859 × 103 1.6241 × 104

F22 2.9959 × 103 1.2535 × 102 2.9727 × 103 3.1145 × 103 1.0888 × 102 3.1561 × 103 3.1700 × 103 4.3416 × 101 3.1780 × 103

F23 3.2918 × 103 1.1679 × 102 3.3428 × 103 3.3416 × 103 2.6905 × 101 3.3404 × 103 3.3468 × 103 1.7065 × 101 3.3473 × 103

F24 3.0860 × 103 3.2256 × 101 3.0836 × 103 3.0413 × 103 3.4239 × 101 3.0383 × 103 3.0566 × 103 3.3287 × 101 3.0536 × 103

F25 6.5998 × 103 1.1763 × 103 6.0904 × 103 7.6085 × 103 1.0757 × 103 7.9554 × 103 7.7630 × 103 1.2142 × 103 8.2386 × 103

F26 3.4756 × 103 9.5517 × 101 3.4703 × 103 3.3717 × 103 7.7598 × 101 3.3570 × 103 3.3469 × 103 4.9444 × 101 3.3398 × 103

F27 3.3779 × 103 5.7735 × 101 3.3638 × 103 3.3182 × 103 2.8599 × 101 3.3120 × 103 3.3166 × 103 2.8689 × 101 3.3176 × 103

F28 4.3124 × 103 4.0225 × 102 4.3761 × 103 4.7976 × 103 7.7415 × 102 4.6373 × 103 4.9083 × 103 6.1360 × 102 5.1620 × 103

F29 1.2805 × 106 3.1411 × 105 1.2535 × 106 1.1792 × 106 4.2818 × 105 1.1050 × 106 1.0317 × 106 2.3300 × 105 9.6863 × 105
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Table 15. Results of different populations with 100D.

Function
N = 30 N = 60 N = 90

Mean Std. Median Mean Std. Median Mean Std. Median

Unimodal Functions F1 2.4262 × 109 2.1697 × 109 1.4349 × 109 2.1735 × 109 1.6368 × 109 1.9405 × 109 4.8626 × 109 2.2534 × 109 4.5258 × 109

F2 6.5836 × 105 8.5490 × 104 6.5079 × 105 6.0051 × 105 4.8053 × 104 5.9572 × 105 5.6070 × 105 5.0478 × 104 5.6712 × 105

Multimodal Functions

F3 1.1402 × 103 1.6994 × 102 1.1296 × 103 1.0799 × 103 1.7728 × 102 1.0504 × 103 1.5534 × 103 6.5074 × 102 1.409 × 103

F4 1.4523 × 103 3.0949 × 102 1.5810 × 103 1.5998 × 103 1.3127 × 102 1.6277 × 103 1.6358 × 103 6.5052 × 101 1.6395 × 103

F5 6.2673 × 102 7.8883 6.2470 × 102 6.2634 × 102 6.3532 6.2555 × 102 6.3272 × 102 6.1965 6.3235 × 102

F6 2.4105 × 103 3.2586 × 102 2.3947 × 103 2.2629 × 103 1.4796 × 102 2.2637 × 103 2.3654 × 103 1.2481 × 102 2.3764 × 103

F7 1.7870 × 103 2.8372 × 102 1.9033 × 103 1.9130 × 103 1.4320 × 102 1.9451 × 103 1.9346 × 103 6.5322 × 101 1.9489 × 103

F8 3.3261 × 104 1.0941 × 104 3.0414 × 104 2.4906 × 104 6.5603 × 103 2.4154 × 104 2.8735 × 104 8.0231 × 103 2.9131 × 104

F9 3.2281 × 104 1.4270 × 103 3.2546 × 104 3.2493 × 104 4.6601 × 102 3.2445 × 104 3.2077 × 104 5.5939 × 102 3.2266 × 104

Hybrid Functions

F10 1.2551 × 105 3.0498 × 104 1.2013 × 105 1.2502 × 105 2.2621 × 104 1.2619 × 105 1.2094 × 105 1.9187 × 104 1.1893 × 105

F11 1.0159 × 108 5.6502 × 107 9.3947 × 107 1.0162 × 108 4.2322 × 107 1.0274 × 108 3.5831 × 108 1.9544 × 108 3.1847 × 108

F12 1.1851 × 104 8.1518 × 103 9.4589 × 103 9.3345 × 103 8.3468 × 103 5.5971 × 103 9.3405 × 103 7.8067 × 103 5.2999 × 103

F13 2.9782 × 106 2.0700 × 106 2.4561 × 106 2.8133 × 106 1.3232 × 106 2.6904 × 106 7.9611 × 106 6.1426 × 106 5.2904 × 106

F14 6.1051 × 103 4.3314 × 103 4.9656 × 103 7.0866 × 103 5.5325 × 103 5.6302 × 103 4.8590 × 103 3.1298 × 103 3.8430 × 103

F15 9.8380 × 103 2.2106 × 103 1.0919 × 104 1.0982 × 104 9.0023 × 102 1.1099 × 104 1.1047 × 104 3.8279 × 102 1.1076 × 104

F16 7.3028 × 103 1.2345 × 103 7.7119 × 103 7.5733 × 103 7.8489 × 102 7.7642 × 103 7.5426 × 103 3.3576 × 102 7.6183 × 103

F17 9.2284 × 106 7.9516 × 106 6.2699 × 106 1.5234 × 107 8.0396 × 106 1.2651 × 107 2.1013 × 107 1.3007 × 107 1.9431 × 107

F18 1.6481 × 104 4.0296 × 104 4.9390 × 103 8.7120 × 103 9.0183 × 103 3.5736 × 103 9.2523 × 103 7.0218 × 103 6.9492 × 103

F19 7.6005 × 103 3.2761 × 102 7.6956 × 103 7.5911 × 103 2.1343 × 102 7.5550 × 103 7.5043 × 103 1.9804 × 102 7.5278 × 103

Composition Functions

F20 3.2061 × 103 3.0861 × 102 3.1123 × 103 3.451 × 103 8.7610 × 101 3.4666 × 103 3.4806 × 103 6.2116 × 101 3.4850 × 103

F21 3.4888 × 104 6.8231 × 102 3.4930 × 104 3.4561 × 104 6.0301 × 102 3.4606 × 104 3.4332 × 104 7.2741 × 102 3.4458 × 104

F22 3.4270 × 103 1.0831 × 102 3.409 × 103 3.7837 × 103 2.2633 × 102 3.7978 × 103 3.906 × 103 1.5031 × 102 3.9565 × 103

F23 4.1427 × 103 2.2216 × 102 4.1747 × 103 4.3501 × 103 2.5350 × 102 4.4379 × 103 4.4577 × 103 1.1226 × 102 4.4796 × 103

F24 3.9451 × 103 2.4271 × 102 3.8940 × 103 3.8960 × 1033 2.6916 × 102 3.8134 × 103 4.2877 × 103 2.7775 × 102 4.2707 × 103

F25 1.4253 × 104 2.2698 × 103 1.4234 × 104 1.6057 × 104 2.3513 × 103 1.7050 × 104 1.7742 × 104 9.7393 × 102 1.7790 × 104

F26 3.6732 × 103 1.119 × 102 3.6588 × 103 3.6297 × 103 9.8681 × 101 3.6233 × 103 3.8026 × 103 1.3702 × 102 3.7729 × 103

F27 4.4414 × 103 7.1057 × 102 4.1383 × 103 4.0945 × 103 3.5898 × 102 3.9512 × 103 4.6269 × 103 6.2025 × 102 4.4988 × 103

F28 7.8602 × 103 1.3546 × 103 7.4896 × 103 1.0043 × 104 1.179 × 103 1.0306 × 104 1.0371 × 104 5.4174 × 103 1.0520 × 104

F29 1.0003 × 105 6.6358 × 104 7.9011 × 104 2.0147 × 105 2.0424 × 105 1.1431 × 105 6.3088 × 105 5.7825 × 105 4.1689 × 105
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Premature ConvergenceLocal stagnation

Figure 14. Convergence curve of the BCA for solving simple unimodal functions.

6. Real-World Engineering Problems
6.1. Optimization Process

In addressing engineering design problems, the BCA leverages its optimization mecha-
nisms to identify optimal design parameter combinations, effectively satisfying the multiple
objectives and constraints inherent in engineering design scenarios. The specific solution
process can be summarized as follows.

(1) According to the specific engineering problem, the objective function and constraint
conditions are defined to develop the mathematical modeling.

(2) An optimization algorithm is used to find the optimal feasible solution (i.e., a set of
design parameters) step by step in each iteration.

(3) Evaluate the effect of the final design solution and check that it satisfies all con-
straints.

6.2. Tension/Compression Spring Design Problem

The Tension/Compression Spring Design problem (T/CSD) is introduced in Ref. [27],
as shown in Figure 15. The problem variables used to design the problem are mean coil
diameter (D), wire diameter (d), and several active coils (N). This problem can be expressed
as follows:

Consider: x = [x1,x2,x3] = [d, D, N]
Minimize: f (x) = (N + 2)Dd2

Subject to:

g1(x) = 1 − D3N
71785D4 ≤ 0

g2(x) =
4D2 − dD

12566(Dd3 − d4)
+

1
5108d2 − 1 ≤ 0

g3(x) = 1 − 140.45d
D2N

≤ 0

g4(x) =
D + d

1.5
− 1 ≤ 0

P

P

d

D

Figure 15. The Tension/Compression Spring Design problem (T/CSD).
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Table 16 displays the experimental results for comparing the BCA with other algo-
rithms. Although the BCA did not achieve the best results when compared with traditional
algorithms, such as PSO, it can still outperform some methods in terms of parameter
settings, such as the RSA.

Table 16. Results of Tension/Compression Spring Design (T/CSD) problem for comparative algo-
rithms.

Variables g fcost
d D N g1 g2 g3 g4 Mean Std. Best Worst

BCA 0.058 0.589 4.682 −0.008 −0.032 −4.692 −0.568 0.013 0.001 0.01 0.015
GWO 0.05 0.3744 8.5615 −0.0013 −1.32 × 10−4 −4.8521 −0.717 0.0099 6.77 × 10−6 0.0099 0.0099
PSO 0.0539 0.4120 8.6554 −2.22 × 10−16 −0.1220 −4.1508 −0.6894 0.0135 0.0010 0.0127 0.0175
RSA 0.050 0.336 13.077 −0.085 −0.100 −3.851 −0.742 0.013 0.001 0.011 0.013
GA 0.0506 0.3862 14.5477 −0.7745 −0.0082 −2.2784 −0.7088 0.0185 0.0037 0.012 0.0285
DE 0.0517 0.3567 11.2913 −4.43 × 10−9 −0.1343 −4.0537 −0.7278 0.0127 2.03 × 10−5 0.0127 0.0128

INFO 0.0533 0.4567 6.0900 −9.52 × 10−9 −4.25 × 10−10 −4.8952 −0.6600 0.0101 0.0003 0.0099 0.0108
BOA 0.0503 0.3740 10.7850 −0.2279 −0.0185 −3.6833 −0.7172 0.0118 0.0010 0.0010 0.0151

6.3. Gear Train Design Problem

The gear train design problem has four integer variables as a discrete problem [28].
Figure 16 shows details of the gear train design problem, which can be defined by
Equation (14).

GearRatio =
TdTb
TaTf

(14)

where Ti denotes the number of teeth of the gearwheel i, and they are all integers varying
in the range 12–60. The mathematical formulation is defined as follows:

f (Td, Tb, Ta, Tf ) = (
1

6.931
− TdTb

TaTf
) (15)

A
B

F

D

Driver Follower

Ta
Td

Tb

Tf

Figure 16. The gear train design problem.

The experimental results are shown in Table 17 to better verify the applicability of the
proposed BCA and show that the BCA can obtain the best experimental results and has a
relatively stable optimal result. Meanwhile, these experimental results demonstrate that
the BCA has certain advantages in solving engineering design problems.

The advantages of the BCA can be seen from the tension/compression spring design
(T/CSD) and gear train design problems. The experimental results show that the BCA
not only has certain advantages in solving engineering case design problems but can also
quickly find the optimal solution in solving unconstrained and constrained problems. To
summarize the above experimental results, compared with other algorithms, the BCA can
obtain the global optimal solution, and its mechanisms can help to avoid local stagnation
and achieve fast convergence with lowest design cost for engineering design problems.
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Table 17. Results of Tension/Compression Gear Train Design problem for comparative algorithms.

Variables fcost

Td Tb Ta Tf Mean Std. Best Worst

BCA 49 19 18 49 2.86 × 10−12 9.63 × 10−12 1.43 × 10−24 3.85 × 10−11

GWO 38 20 16 59 6.56 × 10−12 8.69 × 10−12 1.02 × 10−15 3.20 × 10−11

PSO 57 27 14 47 4.79 × 10−24 2.07 × 10−23 0 1.09 × 10−22

RSA 37 14 16 42 6.69 × 10−8 1.53 × 10−7 1.72 × 10−12 6.08 × 10−7

GA 47 17 18 47 5.66 × 10−9 2.65 × 10−8 1.29 × 10−20 1.45 × 10−7

DE 42 18 20 60 6.64 × 10−3 8.82 × 10−3 1.13 × 10−7 2.86 × 10−2

INFO 44 25 15 58 1.35 × 10−26 7.42 × 10−26 0 4.06 × 10−25

BOA 56 17 24 55 4.97 × 10−3 8.10 × 10−3 2.54 × 10−8 3.75 × 10−2

7. BCA for Training MLPs
To improve its capability of solving classification problems, the proposed BCA is used

to optimize the weights and biases term of MLP to avoid local stagnation in the classification
process, and it will improve the classification rate and minimize the error rate. This section
selects three standard datasets from the University of California Irvine (UCI) machine-
learning repository (https://archive.ics.uci.edu/, accessed on 1 January 2024), including
XOR [29], Ballon [30], and Tic-Tac-Toe Endgame [31]. The BCA algorithm optimizes the
weights and biases of Multi-Layer Perceptron (MLP) to construct the classification model.

7.1. Optimization Process

The BCA can be effectively utilized to optimize the training process of MLPs by
fine-tuning weights and biases to achieve enhanced model performance. Through its
robust global search capabilities, the BCA avoids premature convergence to local optima,
ensuring better exploration of the solution space. Its adaptive balance between exploration
and exploitation enables the identification of optimal parameter configurations, which
improves the accuracy and generalization of the MLP. The main process can be summarized
as follows.

Problem Formulation. The goal is to optimize the weights and biases of an MLP
to minimize a predefined loss function (Mean Squared Error, MSE) over a given dataset.
MSE [92,93], as the criteria to evaluate the performance, is computed by Equation (16).

MSE =
m

∑
i=1

(ok
i − dk

i )
2 (16)

where m is the number of outputs, dk
i and ok

i are the desired output and actual output of the
ith input using the kth training sample, and the MSE is average MSE computed by Equation
(17) to enhance fairness.

MSE =
s

∑
k=1

∑m
i=1(o

k
i − dk

i )
2

s
(17)

where s is the number of training samples. The training of an MLP consists of multiple
variables and functions, where MSE for the BCA is achieved by Equation (18).

minimize : F(
−→
V ) = MSE (18)

In addition to MSE, the test error is employed for the approximation problem, and the
classification accuracy rate is computed by Equation (19).

Accuracy rate =
Number o f correctly classi f ied objects

Number o f objects in the dataset
(19)

https://archive.ics.uci.edu/
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Initialization. The initial population is randomly generated within a predefined range,
ensuring diverse starting points across the parameter space. Each candidate solution in the
BCA’s population represents a set of MLP weights and biases.

Fitness Evaluation. Each candidate solution is decoded into the MLP’s weight and
bias, followed by forward propagation of a training data batch using these parameters. The
loss is then calculated by comparing the MLP’s output to the truth labels, and this loss
serves as the fitness value, where lower values indicate better performance.

Iterative Process. The iterative process involves repeating the besiege and conquer
phases until the maximum number of iterations is reached, ensuring the optimization
criteria are met.

Result Extraction. After the optimization process concludes, the best solution is
mapped back to the MLP’s parameters, and the optimized model is validated on a test
dataset to evaluate its generalization capability.

7.2. Experimental Results on Three Datasets
7.2.1. Xor Dataset

The XOR dataset [29] has three different characters as input and one output. The
results of this dataset are illustrated in Table 18. The best classification rate, average MSE,
and deviation belong to the BCA-MLP model. These results demonstrate that the BCA-MLP
model has the strongest capability to avoid local stagnation. The BCA-based trainer is very
competitive when compared with the other algorithms.

Table 18. Comparative results on XOR dataset.

BCA-MLP BOA-MLP SMA-MLP RSA-MLP PSO-MLP SCA-MLP

Classification accuracy 96.6667% 20.4167% 22.9167% 24.1667% 40.4167% 51.6667%
MSE 0.0004 0.1301 0.2007 0.1605 0.1333 0.0414
Std. 0.0008 0.0437 0.0271 0.0389 0.0685 0.0324

7.2.2. Ballon Dataset

The Balloon dataset [30] has four features as input and two outputs. According to
Table 19, the accuracy of the BCA-MLP model reaches 100%, and obtains the best MSE and
standard deviation. The experimental results illustrate that the BCA-MLP model performs
better than the other methods in training the MLP and can find the global optimal solution
in a more stable manner.

Table 19. Comparative results on Ballon dataset.

BCA-MLP BOA-MLP SMA-MLP RSA-MLP PSO-MLP SCA-MLP

Classification accuracy 100% 85.1667% 98% 51.1667% 70.5% 100%
MSE 5.4761 × 10−10 4.7226 × 10−3 3.1037 × 10−4 1.5287 × 10−2 6.1734 × 10−2 2.8029 × 10−6

Std. 2.8897 × 10−9 9.1955 × 10−3 8.5071 × 10−4 1.7109 × 10−2 6.8740 × 10−2 3.9437 × 10−6

7.2.3. Tic-Tac-Toe Endgame Dataset

The Tic-Tac-Toe Endgame dataset [31] encodes a complete set of possible board con-
figurations at the end of a tic-tac-toe game, where x is assumed to play first. The goal is
to win x (i.e., this is true when there are eight possible ways for x to make three times in a
row). Table 20 shows that the BCA-MLP model can obtain the highest classification rate
and also demonstrates that the BCA-MLP model has the stronger exploration to find the
best solution.
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Table 20. Comparative results on Tic-Tac-Toe Endgame dataset.

BCA-MLP BOA-MLP SMA-MLP RSA-MLP PSO-MLP SCA-MLP

Classification accuracy 97.2690% 64.4444% 81.6822% 73.4268% 93.8837% 96.2098%
MSE 1.2609 × 10−2 1.4308 × 10−2 1.0694 × 10−2 1.2134 × 10−2 1.4620 × 10−2 1.3243 × 10−2

Std. 2.3301 × 10−3 8.5751 × 10−4 2.3023 × 10−3 1.4956 × 10−3 1.5816 × 10−3 1.4103 × 10−3

In summary, according to the results of the above three classification experiments, it
can be seen that the BCA can train MLP well and optimize the weights and biases terms
to obtain a classification model with high accuracy. The BCA, with all mechanisms, can
promote MLP optimization to achieve local stagnation avoidance, fast convergence, and
high accuracy.

8. Conclusions and Future Work
This paper proposes a novel BCA optimization algorithm, including besiege, conquer,

balance, and feedback strategies, inspired by the soldiers and armies motivation strategy.
The BCA’s design incorporates promising exploration and exploitation regions in its besiege
and conquer mechanisms to update the positions of the soldiers. To highlight the capability
of the proposed BCA, some classical, popular meta-heuristics, such as INFO, RSA, SOMA
T3AM, GWO, BOA, DE, PSO, and GA, are employed for comparison. These algorithms are
tested on IEEE CEC 2017 benchmark functions to verify their performance. Four metrics
(i.e., search history, average fitness function, the trajectory of the first dimension, and
convergence curve) are implemented to qualitatively investigate the proposed BCA. In
addition, the Friedman ranking and Wilcoxon signed-rank tests are used to quantitatively
verify the efficiency of the algorithms. The comparative experimental results demonstrate
that the BCA can determine the global optima for the majority of unimodal, multimodal,
hybrid, and composite functions.

Furthermore, to demonstrate the excellent efficiency of the BCA in the benchmark
functions, complex engineering design problems are considered in order to display its
practicability in tackling real-world problems in practice, including Tension/Compression
Spring Design and Gear Train Design problems. Then, the BCA trains the MLP model to
handle classification problem, such as XOR, Ballon, and Tic-Tac-Toe datasets, to improve
the classification accuracy. The experimental results show that the BCA classification model
(BCA-MLP) is better than the comparative methods. To sum up, the above superior results
are attributed to the following several aspects.

• The besiege strategy can increase population diversity to enhance the exploration
capability.

• The conquer strategy facilitates exploitation and delegates to the local search.
• The balance and feedback strategies not only enhance the balance between exploitation

and exploration but also help to find the best solutions.
• The introduction of parameter BCB assists in gradually shifting its focus from exploita-

tion to exploration, and avoiding local stagnation.

The practical applications of the BCA extend well beyond neural networks and engi-
neering design. Leveraging its robust exploration and exploitation capabilities, the BCA
excels in identifying precise segmentation boundaries and cluster centers, particularly in
scenarios involving high-dimensional and complex data distributions, such as medical
image segmentation and customer segmentation. Additionally, the BCA’s powerful global
optimization capabilities, adaptability, and resilience make it highly suitable for addressing
challenges in diverse domains, including data clustering, segmentation, and financial in-
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vestment optimization. These attributes underscore its significant potential as a versatile
tool in solving complex real-world optimization problems.

For future work, we will do the following. The BCA will also be applied to solve
multi-objective optimization problems. Apart from this, the proposal of binary or many
objective versions of the BCA could also be significant contributions.
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58. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100.
59. Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111.
60. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248.
61. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184.
62. Shareef, H.; Ibrahim, A.A.; Mutlag, A.H. Lightning search algorithm. Appl. Soft Comput. 2015, 36, 315–333.
63. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513.
64. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110,

69–84.
65. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based

Syst. 2020, 191, 105190.
66. Jiang, J.; Meng, X.; Chen, Y.; Qiu, C.; Liu, Y.; Li, K. Enhancing tree-seed algorithm via feed-back mechanism for optimizing

continuous problems. Appl. Soft Comput. 2020, 92, 106314.
67. Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms and applications.

Swarm Evol. Comput. 2017, 33, 1–17.
68. Jiang, J.; Liu, Y.; Zhao, Z. TriTSA: Triple tree-seed algorithm for dimensional continuous optimization and constrained engineering

problems. Eng. Appl. Artif. Intell. 2021, 104, 104303.
69. Jiang, J.; Meng, X.; Qian, L.; Wang, H. Enhance tree-seed algorithm using hierarchy mechanism for constrained optimization

problems. Expert Syst. Appl. 2022, 209, 118311.
70. Jiang, J.; Zhao, Z.; Liu, Y.; Li, W.; Wang, H. DSGWO: An improved grey wolf optimizer with diversity enhanced strategy based on

group-stage competition and balance mechanisms. Knowl.-Based Syst. 2022, 250, 109100.
71. Yang, X.-S. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 169–178.
72. Pan, W.-T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26,

69–74.
73. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98.
74. Kiran, M.S. TSA: Tree-seed algorithm for continuous optimization. Expert Syst. Appl. 2015, 42, 6686–6698.
75. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073.
76. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67.
77. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.
78. Mirjalili, S.; G.; omi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191.
79. Alsattar, H.A.; Zaidan, A.; Zaidan, B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020, 53,

2237–2264.
80. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250.
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