
Academic Editors: Zhixun Su and

Theodore E. Simos

Received: 15 December 2024

Revised: 20 January 2025

Accepted: 31 January 2025

Published: 3 February 2025

Citation: Shen, Y.; Xie, Y.; Chen, Q.

Dual-Performance Multi-

Subpopulation Adaptive Restart

Differential Evolutionary Algorithm.

Symmetry 2025, 17, 223. https://

doi.org/10.3390/sym17020223

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Dual-Performance Multi-Subpopulation Adaptive Restart
Differential Evolutionary Algorithm
Yong Shen , Yunlu Xie and Qingyi Chen *

School of Software, Yunnan University, Kunming 650000, China; sheny@ynu.edu.cn (Y.S.);
xieyunlu@stu.ynu.edu.cn (Y.X.)
* Correspondence: devas9@ynu.edu.cn

Abstract: To cope with common local optimum traps and balance exploration and de-
velopment in complex multi-peak optimisation problems, this paper puts forth a Dual-
Performance Multi-subpopulation Adaptive Restart Differential Evolutionary Algorithm
(DPR-MGDE) as a potential solution. The algorithm employs a novel approach by utilis-
ing the fitness and historical update frequency as dual-performance metrics to categorise
the population into three distinct sub-populations: PM (the promising individual set),
MM (the medium individual set) and UM (the un-promising individual set). The multi-
subpopulation division mechanism enables the algorithm to achieve a balance between
global exploration, local exploitation and diversity maintenance, thereby enhancing its
overall optimisation capability. Furthermore, the DPR-MGDE incorporates an adaptive
cross-variation strategy, which enables the dynamic adjustment of the variation factor and
crossover probability in accordance with the performance of the individuals. This enhances
the flexibility of the algorithm, allowing for the prioritisation of local exploitation among
the more excellent individuals and the exploration of new search space among the less
excellent individuals. Furthermore, the algorithm employs a collision-based Gaussian
wandering restart strategy, wherein the collision frequency serves as the criterion for trig-
gering a restart. Upon detecting population stagnation, the updated population is subjected
to optimal solution-guided Gaussian wandering, effectively preventing the descent into
local optima. Through experiments on the CEC2017 benchmark functions, we verified
that DPR-MGDE has higher solution accuracy compared to newer differential evolution
algorithms, and proved its significant advantages in complex optimisation tasks with the
Wilcoxon test. In addition to this, we also conducted experiments on real engineering
problems to demonstrate the effectiveness and superiority of DPR-MGDE in dealing with
real engineering problems.

Keywords: differential evolution; dual performance; sub-population; restart strategy

1. Introduction
Since its proposal, the DE algorithm has shown significant advantages in terms of

global search capability, parameter setting, convergence speed, robustness, implementation
difficulty and applicability, which makes the DE algorithm stand out among many meta-
heuristic optimisation algorithms and has been widely employed in high-dimensional and
complex optimisation problems [1]. In a multitude of application scenarios, including
engineering design [2,3], hyper-parameter optimisation in machine learning [4,5] and pat-
tern recognition in data analysis [6,7], DE algorithms have demonstrated effective solution
results due to their robust search capability and adaptability. However, conventional DE
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algorithms frequently encounter obstacles [8] during the optimisation procedure, particu-
larly when confronted with multi-peaks and high-dimensional complex functions. They
are prone to being constrained by local optima and slow to converge, which ultimately
impacts the final optimisation outcome.

One of the primary challenges associated with high-dimensional multi-peak prob-
lems is the need to achieve an optimal balance between global exploration [9] and local
exploitation. It is common for traditional DE algorithms to be susceptible to what is known
as the “local optimality trap” in such circumstances. This refers to a situation in which
the algorithm converges in a local region but fails to identify the global optimal solution.
Furthermore, the algorithm’s global search capability is further diminished due to the
gradual decline in population diversity over the course of iterations, which renders it
challenging to surpass the current solution limit. Furthermore, the convergence speed of
the differential evolutionary algorithm frequently proves inadequate when confronted with
high-dimensional complex problems, particularly in the latter stages of convergence. This
is due to the absence of a meticulous adaptive mechanism, which makes it challenging to
strike a balance between the precision and velocity of the solution. The existence of these
issues has led to the prioritisation of enhancing the global search capability of differential
evolutionary algorithms [10] and accelerating their convergence speed [11] as key objectives
in optimisation algorithm research in recent years.

In order to address these challenges, numerous researchers have put forth a multitude
of proposed enhancements to differential evolutionary algorithms. The first strategy is
adaptive parameter tuning [12], which is a common approach to enhancing the flexibility
of the search process by dynamically adjusting the parameters of the algorithm at dif-
ferent optimisation stages. To illustrate, the adaptive differential evolutionary algorithm
(JADE) [13] enhances the convergence velocity to a certain degree by means of adaptively
modifying the variance factor and crossover probability. The literature [14] proposes a
new method, Joint Adaptation of Parameters in DE (JADE), which is based on the core
idea of dynamically updating the selection probabilities of parameter generating function
pairs in accordance with the feedback obtained from the search process. The algorithm
introduces the Rank-based Adaptation (RAM) method, which learns multiple probabil-
ity distributions through the interval of fitness ranking. This is coupled with JADE to
form RAM-JADE, which simultaneously adapts the selection probabilities of the control
parameter pairs and the variation strategies. APDDE [15] generates the population of
progeny by introducing the detected values in the iteration and integrating them into the
two variation strategies, thus retaining the performance of the optimal parameter values.
Fan [16] proposed an Adaptive DE Algorithm with Discrete Mutation Control Parameters
(DMPSADE). In DMPSADE, each variable of each individual is associated with a distinct
variation control parameter, and each individual is linked to a unique crossover control
parameter and variation strategy. Nevertheless, although adaptive parameter adjustment
enhances flexibility, it is typically accompanied by an increased computational overhead,
and its performance is more sensitive to the initial parameters. Furthermore, the effect is
not stable across different tasks.

The multiple subpopulation structure [17] provides another way of thinking about
the search–exploitation balance. This strategy increases the effectiveness of the search by
dividing the population into subpopulations, each of which performs different optimi-
sation tasks. For example, Wu [18] studied and proposed a Multi-population Integrated
Differential Evolutionary Algorithm (MPEDE) that integrates three mutation strategies.
The algorithm divides the population into three small indicator subpopulations and a
larger reward subpopulation, each using a different mutation strategy. The performance
of each mutation strategy is periodically evaluated and the reward subpopulation is dy-
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namically assigned to the best performing strategy, while the control parameters of each
mutation strategy are independently adjusted. The study [19] proposes a Self-adaptive
Multi-population Differential Evolution Algorithm called SAMDE, wherein the population
is randomly divided into three subpopulations of equal size, each with a different mutation
strategy. At the end of each generation, all subpopulations are independently updated
and recombined. The algorithm [20] proposes a co-evolutionary mutation strategy for the
elite population with three mutation strategies, adopts a reverse learning mechanism to
generate the initial few subpopulations, and uses a new multi-population parallel con-
trol strategy to maintain the search efficiency of the subpopulations. MMDE [21] is an
Adaptive Multi-population-based Differential Evolutionary Population Algorithm that
designs a population division strategy using fitness and Euclidean distance as the basis
for judging individual potential, introduces an appropriate mutation strategy along the
parameter control strategy and assigns it to each subpopulation for evolution to achieve
balanced evolution. Sun [22] proposed a Two-stage Differential Evolutionary Algorithm
with Mutation Strategy Combinations (TS-MSCDE). The algorithm divides the whole pop-
ulation into two symmetric sub-populations in the order of fitness from smallest to largest,
and assigns four mutation strategies with different search behaviours to the superior and
inferior sub-populations in two phases according to the mechanism of heterogeneous
two-stage bipartite sub-population. However, the introduction of a multiple subpopulation
structure also introduces some complexity, especially in high-dimensional problems, where
cooperation and proper partitioning between subpopulations is difficult to control, leading
to possible instability in the algorithm’s performance.

In addition, restart mechanisms are widely used to avoid local optimisation. By reini-
tialising the population distribution when the algorithm becomes stagnant, the restart
strategy can improve the ability of the algorithm to jump out of the local optimum,
e.g., ADE-DMRM [23] (Adaptative Differential Evolution with Enhanced Diversity and
Restart Mechanism) proposes a novel restart mechanism that identifies currently stagnant
individuals by combining a stagnation tracker and a diversity evaluation metric, and then
regenerates them using a dimensionality learning-based approach. The study [24] proposed
an adaptive differential evolutionary algorithm (ADEDMR) based on a depth-informed
mutation strategy and a restart mechanism, which uses a novel population restart mecha-
nism to further enhance the population diversity by adaptively improving the search ability
of the hopeless individuals and randomly replacing some poorer individuals with wavelet
walks. Tian [25] et al. proposed a new restart mechanism that identifies the current stagnant
individuals by using the superior individuals to search the hyper-rectangle and replacing
the inferior individuals with randomly generated probabilities from the search space to
improve the population diversity and use the useful information of the superior individuals.
DPMADE [26] proposed a new restart strategy to improve the search performance of the
algorithm by replacing the individuals with randomly generated individuals by Gaussian
walks that are meaningless in terms of both fitness value and historical updates.

In summary, existing methods have made many advances in optimising differential
evolution algorithms, but they still have deficiencies in adaptive balancing, maintaining
population diversity and global jumping out of local optimums. Therefore, this paper pro-
poses a dual-performance multi-subpopulation adaptive restart differential evolution algo-
rithm (DPR-MGDE) to overcome the shortcomings of traditional DE algorithms. The main
works and innovations are clearly divided into the following points:

1. Proposing a population division mechanism based on dual-performance indicators:
Based on the adaptability and renewal frequency of individuals, a dual-performance
indicator division method is proposed to divide the population into three subgroups:
PM, MM, and UM, and to make different groups perform different duties according
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to their development potential, so as to achieve the purpose of balanced exploration
and development.

2. Use of adaptive cross-variation mechanism: The variation factor and crossover proba-
bility are dynamically adjusted according to the performance of individuals to achieve
a more flexible search strategy. Individuals with excellent performance are given
smaller variance factors and larger crossover probabilities to focus on local exploita-
tion, while individuals with poor performance are given larger variances to enhance
global exploration.

3. Introduction of a collision-based Gaussian wandering restart strategy: a collision-
based Gaussian wandering restart mechanism is triggered when the actual collision
rate exceeds a dynamically adjusted threshold. This mechanism restarts only the UM
sub-population (un-promising individuals) to reduce the extra overhead of restarting
the entire population. The spread of Gaussian wandering is dynamically adjusted,
which helps to enhance the exploration capability at the beginning of the algorithm
and the exploitation capability at a later stage, being able to improve the possibility
of jumping out of the local optimum at a later stage by increasing the diversity of
the population.

4. Validation of the algorithm: The performance of DPR-MGDE in the CEC2017 bench-
mark and the real engineering problems are experimentally tested, which shows that
the algorithm outperforms newer variants of differential evolution algorithms in terms
of both solution and accuracy. The effectiveness of DPR-MGDE in complex optimi-
sation tasks is also verified, especially in terms of global exploration, optimisation
accuracy and maintaining population diversity, where it shows significant advantages.

The following is the organisational structure of this paper:

1. Section 1, Introduction. It mainly describes the background, significance, motivation
and content of this paper, and also outlines the research progress of differential
evolutionary algorithms.

2. Section 2, Related Work. It mainly introduces the research on traditional DE algorithms,
multi-subpopulation differential evolutionary algorithms and restart mechanisms.

3. Section 3, our proposed DPR-MGDE. mainly details the contents of DPR-MGDE,
and gives the related pseudo-code and flowchart.

4. Section 4, Experiments. The data of parameter setting experiments of DPR-MGDE,
comparison experiments with newer improved differential evolution algorithms
and experiments on real engineering problems are mainly given.

5. Section 5, Summary. An overview summary of DPR-MGDE is given, and an outlook
for future work on DPR-MGDE is given.

2. Related Works
In this section, we begin with an overview of traditional differential evolution (DE)

algorithms, followed by a discussion of research related to subpopulation delineation,
and an introduction to the restart mechanism immediately thereafter.

2.1. Classical DE Algorithm

The main goal of DE is to find the optimal solution that minimises (or maximises) the
objective function under the given constraints by means of continuous evolution. DE is
commonly used to solve global optimisation problems, especially when the search space is
complex and contains multiple local optimal solutions. An optimisation problem in general
form can be expressed as follows:

arg min
X⃗∈Ω

f (X⃗) (1)
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where f (X⃗) is the objective function, X⃗ is the solution vector and Ω is the search space.
The core idea is based on the concept of “differential variation”, i.e., the difference vector
between two solutions is used to generate new solutions that provide direction for the
search. The difference between two solutions is used to generate new solutions, giving
direction to the search. The difference between solutions in the population is used to
gradually approach the global optimal solution so that the optimisation process can be
completed with low computational complexity. The execution of the DE algorithm consists
of the following steps: initialisation, mutation, crossover and selection. Each step is
described in detail below.

2.1.1. Population Initialisation

In differential evolutionary algorithms, the population must first be initialised and
generated by a uniform distribution [27]. The population size is usually denoted by NP.
Each individual is a dimension vector, where is the dimension of the problem. Each dimen-
sion of an individual has a specified upper and lower bound, where D is the dimension
of the problem. The purpose of initialisation is to randomly distribute the individuals
throughout the search space to ensure the diversity of the population.

xij = Lj + rand(1, 0) ·
(
Uj − Lj

)
(2)

where xij is the value of the jth dimension of the ith individual and denotes a uniform
random number in the range. In this way, each individual in the population is initially
randomly generated in the search space.

2.1.2. Mutation Operations

The variation operation is a central step in differential evolution and is used to generate
a variation vector for each individual, helping the population to maintain diversity and
avoid falling into local optima. Mutation generates new individuals by combining the
difference vectors between solutions in the population and other solutions. There are
various common variation strategies, and the following are a few classical ones:

DE/rand/1
v⃗i = x⃗r1 + F · (x⃗r2 − x⃗r3)

(3)

DE/best/1
v⃗i = x⃗best + F · (x⃗r1 − x⃗r2)

(4)

DE/current-to-best/1
v⃗i = x⃗i + F · (x⃗best − x⃗i) + F · (x⃗r1 − x⃗r2)

(5)

DE/rand/2
v⃗i = x⃗r1 + F · (x⃗r2 − x⃗r3) + F · (x⃗r4 − x⃗r5)

(6)

DE/best/2
v⃗i = x⃗best + F · (x⃗r1 − x⃗r2) + F · (x⃗r3 − x⃗r4)

(7)

2.1.3. Crossover Operation

The crossover operation combines the variation vector generated by the mutation with
the current individual to generate a “test vector”. This process controls the proportion of
new individuals that inherit the variant vector and the components of the current individual
to increase population diversity.
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Binary crossover is the most commonly used crossover method in DE, by randomly
selecting each component of an individual and deciding whether it is to be inherited from
the current individual or from the variation vector. The rule for generating the test vector
uij is as follows:

uij =

vij if rand(0, 1) ≤ CR or j = jrand

xij otherwise
(8)

where CR is the crossover probability, which controls the probability that a component in
the variant vector enters the test vector, and jrand is a dimension chosen randomly to ensure
that at least one component comes from the variant vector.

2.1.4. Select Operation

The purpose of the selection operation is to ensure that the population gradually
evolves to a more optimal solution, i.e., individuals with higher fitness are retained into
the next generation. The selection mechanism compares the trial vector u⃗i with the fitness
value of the current individual x⃗i:

x⃗(g+1)
i =

u⃗i if f (u⃗i) < f (x⃗i)

x⃗i otherwise
(9)

For the minimisation problem, if the fitness of the test vector is better than that of
the current individual, the current individual is replaced with the test vector; otherwise,
the current individual is kept unchanged.

In traditional DE algorithms, the choice of variation strategy is a key factor affecting
the performance of the algorithm. Different variation strategies help to find an appropriate
balance between exploration and exploitation and to adapt to the needs of different opti-
misation problems. In addition, the crossover probability CRC and the variation factor F
are also key parameters that together determine the convergence speed and global search
capability of the DE algorithm.

The interaction of these steps makes the DE algorithm robust and adaptable, which
is widely used in real-world complex optimisation problems. By adjusting the variation
strategy and parameter settings, the DE algorithm can flexibly switch between global
search and local exploitation, showing significant advantages in multi-peak and non-
linear problems.

2.2. Differential Evolutionary Algorithms for Multinomial Populations

In order to balance the ability to explore and exploit, many scholars have proposed
to divide the population into multiple sub-populations and to carry out their respective
mutation strategies independently, and this approach is now widely used by everyone.

In paper [18], the population is divided into three equal-sized indicator sub-
populations and one larger reward sub-population. Each indicator sub-population corre-
sponds to one mutation strategy, namely “current-to-pbest/1”, “current-to-rand/1” and
“rand/1”. During each generation of evolution, the current best-performing mutation
strategy is identified based on the ratio of fitness improvement to depletion function evalu-
ation, where depletion function evaluation is the function evaluations consumed by the
jth mutation strategy during the former ng generations, and the rewarding subpopula-
tion is dynamically assigned to this strategy. This design allows for better-performing
mutation strategies to receive more computational resources, thus adaptively optimising
the algorithm performance. Li et al. [28] proposed a new differential evolutionary algo-
rithm that combines multiple sub-populations and an elite regeneration mechanism. Each
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sub-population may use different mutation strategies or parameter settings to improve
the algorithm’s search ability and adaptability. LMOMMDE [29] proposed a differential
evolutionary algorithm based on multiple sub-populations and multiple strategies for
large-scale multi-objective optimisation problems. The population is divided into three
sub-populations of different ranks based on individual characteristics, and the advantage
of multi-population strategy is utilised to maintain population diversity. Multiple mutation
strategies are introduced into the subpopulations of different ranks to balance the diversity
and convergence of the subpopulation individuals. In addition, the timing of re-population
is determined according to the evolutionary state of the subpopulation to ensure that
individuals are fully evolved within their own population, while information is exchanged
under certain conditions. The differential evolutionary algorithm for multi-subpopulations
shows significant advantages and potentials in solving various optimisation problems
through its flexible strategy selection, effective diversity maintenance mechanism and
intelligent resource allocation.

2.3. Differential Evolutionary Algorithms with Restart Mechanisms

In the process of the DE algorithm, it is easy to fall into local optimum. To solve this
problem, the restart mechanism [27] is proposed as an effective solution strategy. The
study [30] increases the population size and restarts when search stagnation is detected.
A restart will be triggered when the difference between the maximum and minimum of the
population individuals is less than, or the difference between the maximum and minimum
fitness of an individual is small. Poláková [31] and others proposed a strategy to trigger a
restart by iterating the stagnator and the Euclidean distances of the population individuals,
which they attributed to the smaller diversity of the population and/or the convergence to
the local minima in which the population is trapped.

In summary, the restart mechanism is designed to solve the local optimum problem,
which is caused by the lack of population diversity. However, restarting too early may
prevent reaching a good local optimum, while restarting too late means that the search
effort is wasted when the population is already stuck.

At the Evolutionary Computation Conference in 2022, Kitamura et al. [32] argued that
collision frequency can be successfully used as an indicator of search stagnation, and pro-
posed that the diversity of a population is correlated with the collision rate, and that the
more homogeneous a population is, the greater the likelihood that very similar individ-
uals will be selected during reproduction, leading to collisions. This approach sets up
the population as a hash table, stores the generated individuals as keys and fitness as a
value and detects whether a collision has occurred by checking whether a newly generated
individual is already in the hash table.

3. The Proposed DPR-MGDE
In this section, the proposed Dual-Performance Multi-Group Adaptive Restart Dif-

ferential Evolution (DPR-MGDE) is presented in detail. The algorithm integrates dual-
performance metrics, multiple subgroup partitioning, adaptive mutation strategy and
collision-based Gaussian wandering restart mechanism to address the limitations of tra-
ditional DE algorithms. The following subsections describe each component of the pro-
posed algorithm.

3.1. Dual-Performance Indicator

Most of the differential evolutionary algorithms are judged by the fitness, which
directly reflects the optimisation goal of the objective function, facilitates the comparison
of the strengths and weaknesses of individuals and is simpler to compute and implement.
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However, the fitness only reflects the value of the objective function of an individual in the
current generation, ignoring the dynamic performance of the individual, and may mislead
the algorithm to focus on the local optimal region in multi-peak problems. Therefore,
additional mechanisms (e.g., update frequency or dual-performance metrics) may be
needed to assist. DPR-MGDE differs from the judging metrics used by the MMDE algorithm
in the article [21] in that MMDE uses fitness with Euclidean distance as a dual-performance
metric, with Euclidean distance placing more emphasis on the relative positions of the
individuals, which makes it suitable for fast convergence scenarios. We use the fitness
(function value) and the number of individual history updates (the number of times a
mutant individual replaces the original individual) as dual-performance metrics, according
to which the size of individual development potential is judged, which is more suitable
for dynamically changing optimisation problems or multi-peak optimisation problems.
By focusing on the frequency of updates, the population can be effectively prevented from
falling into a local optimum, especially for the retention of dynamically active individuals
with low fitness. The dual-performance index is calculated as follows:

Pmetric,i = 0.5 · mean( f )
fi + ϵ

+ 0.5 · Ui
mean(U) + ϵ

(10)

where fi is the fitness value of the ith individual, which indicates its performance on the
optimisation objective, Ui is the historical update frequency of the ith individual, which
indicates the number of times an individual has been replaced or improved during the
evolution process, mean( f ) is the mean of the fitness values in the current population,
mean( f ) is the mean of the update frequency in the current population and the inclusion of
minima is used to prevent the denominator from being zero.

3.2. Subpopulation Delineation Based on Dual-Performance Metrics

Based on the above dual-performance indicators, we propose a sub-population di-
vision strategy based on dual-performance indicators, aiming at a reasonable division of
the population based on the static adaptive performance and dynamic update frequency
of individuals. Firstly, we need to calculate mean( f ) and mean(U); next, the population
is divided into the potential subpopulation PM = {i | fi < mean( f ) ∧ Ui > mean(U)},
which contains individuals with good adaptation and dynamic activity, the medium
subpopulation MM = {i | fi < mean( f ) ∨ Ui > mean(U)} \ PM, which contains in-
dividuals with good adaptation or dynamic activity and the inferior subpopulation
UM = {i | fi > mean( f ) ∧ Ui < mean(U)}, which contains individuals with poor adap-
tation and dynamic inactivity. Different sub-populations undertake different optimisation
tasks, with the PM population focusing on exploring new solutions, the MM population on
intensive exploitation and the UM population on maintaining diversity. According to this
approach, the population division can flexibly adjust the composition of sub-populations
with the changes in the optimisation stage, reasonably allocate resources during the optimi-
sation process and realise the co-evolution of the populations, so as to improve the overall
performance of the algorithm.

However, when the algorithm just enters the evolutionary stage, the update times
of individuals Ui are all 0; then, the above sub-population division strategy cannot be
implemented. Therefore, in order to avoid this problem, before the number of iterations
of the algorithm is less than 10% of the maximum number of iterations, we use the sub-
population division strategy in MMDE [21] for the population, which is based on the fitness
and the Euclidean distance between the individual and the optimal individual, which
avoids the above problem.
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3.3. Adaptive Mutation Crossover Strategies

In DPR-MGDE, we will adopt three different mutation strategies for the
three sub-populations.

The PM sub-population contains the individuals with the highest potential in the cur-
rent population, and its main task is to explore new solutions and expand the search space;
therefore, we improve the DE/rand/1 strategy with the following individual generation
of mutations:

v⃗i = x⃗i + Fi ·
(

x⃗guider − x⃗i

)
(11)

where x⃗guider is the most promising individual in the current population, the one with the
highest score on the dual performance indicator Pmetric,guider, called the guider, and the
strategy emphasises on the offset of individuals towards the guider so as to explore further
regions of the search space with the help of the guider’s excellent performance.

The MM sub-population consists of individuals whose fitness or update frequency
is higher than the mean, but their potential and performance are not as good as the PM
population, and their main task is to develop the current optimal solution in depth and
find a better solution, so the strategy used by the MM population is an improved strategy
based on DE/current-to-best/1, and its individuals generate the amount of mutation in the
following way:

v⃗i = x⃗i + Fi ·
(

x⃗guider − x⃗i

)
+ Fi · (x⃗r1 − x⃗r2) (12)

where x⃗r1, x⃗r2 is a randomly selected individual from NP, the strategy replaces the current
population optimal individual x⃗best in DE/current-to-best/1 with the guider x⃗guider, which
increases the guidance of the two random individual difference vectors while moving closer
to the guider, improving the exploitation efficiency and reducing the possibility of falling
into the local optimum through the combination of moderate guidance and randomness.

UM sub-populations consist of individuals whose fitness and update frequency are
below the mean. Their task is to maintain the diversity of the population and to avoid
the population falling into a single optimisation direction, and their individuals generate
mutations in the following way:

v⃗i = x⃗i + Fi · (x⃗r1 − x⃗r2) + Fi · (x⃗r3 − x⃗r4) (13)

where x⃗r1, x⃗r2, x⃗r3, x⃗r4 is a randomly selected individual from the NP, and this strategy no
longer uses x⃗guider and adds more random difference vectors to further increase popula-
tion diversity.

We implement a different variation strategy for each sub-population so that it focuses
on different aspects, which helps to balance the ability between DPR-MGDE development
and exploration, ensuring that an optimal solution can be obtained in the search space
while taking into account the diversity of the population. With the variance factor Fi and
the crossover factor CRi in the above variance strategy, we employ adaptive tuning of
dynamic parameters based on Pmetric as follows:

Fi = Fmin + (Fmax − Fmin) ·
(

1 − Pmetric,i

max(Pmetric)

)
(14)

CRi = CRmin + (CRmax − CRmin) ·
Pmetric,i

max(Pmetric)
(15)

where Fmin and Fmax are the minimum and maximum values of the variance factor. When
Pmetric,i tends to the maximum value of the current population, Fi is close to Fmin, which
emphasises local exploitation, and when Pmetric,i is small, Fi is close to Fmax, which enhances
the global search capability. CRmin and CRmax are the maximum and minimum values of the
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crossover factor. When Pmetric,i tends to the maximum value of the current population, CRi is
close to CRmax, it emphasises variable exchange with high probability and is suitable for local
search, and when Pmetric,i is small, CRi is close to CRmin, which is suitable for global search.

In the early stage of optimisation, when the population needs to search extensively
for the global optimum, the larger Fi and smaller CRi help to enhance the exploration
ability, and in the late stage of optimisation, when the population is close to convergence,
the smaller Fi and larger CRi help to accelerate the convergence speed. Through adaptive
parameter tuning based on dual-performance metrics, DPR-MGDE achieves responsiveness
to the demands of different optimisation stages. This dynamic adjustment strategy not only
enhances the flexibility of the algorithm, but also significantly improves the exploration
and exploitation balance of the population, ensuring the efficiency and robustness of the
algorithm in complex optimisation problems.

3.4. Collision-Based Gaussian Wandering Restart Mechanism

In this paper, we propose a collision-based Gaussian wandering restart strategy. In this
strategy, we use the collision frequency mentioned in Section 2.3 as the condition to trigger
the restart: in the process of evolution, individuals will tend to evolve in the direction of
the optimal individual, which will lead to the homogenisation of the population; at this
time, the similarity of the individuals in the population becomes higher and higher and
the diversity of the population becomes lower and lower, and when two individuals are
the same, we define this phenomenon as collision. When the collision frequency between
individuals becomes higher and higher, the evolution of the population will be problematic,
and when the collision frequency reaches a threshold, a restart will be triggered, and the
individuals in the UM will undergo a Gaussian wandering to produce new individuals to
replace the original ones, thus increasing the diversity of the population and helping the
algorithm to jump out of the local optimum.

We will use the collision frequency [32] as a judgement of whether to trigger the restart
mechanism. In optimisation algorithms, maintaining population diversity is crucial to
avoid premature convergence. Dynamically adjusting the collision rate threshold allows
the algorithm to balance global search and local exploitation by keeping diversity high
at the beginning while focusing on searching near the optimal solution at a later stage.
Therefore, the collision rate threshold is calculated as follows:

C = Cinitial + (C f inal − Cinitial) ·
Iter

MaxIter
(16)

where C is the collision frequency threshold, which is jointly influenced by the initial
collision frequency threshold and the final collision frequency threshold, and the value
increases gradually with the number of iterations, transitioning from lower thresholds
to maintain diversity to higher thresholds to facilitate local search, balancing exploration
and exploitation.

When the individuals in the population are too concentrated and the collision frequency
exceeds the threshold, a restart mechanism will be performed to restore the diversity of the
population and avoid local optimality. We will perform a Gaussian wandering [33] restart for
the UP sub-population (inferior individuals in the population) to generate new individuals
guided by the global optimal solution. The Gaussian wandering formula is as follows:

y′i = Gaussian(ybest, σ) + (rand · ybest − rand · yi) (17)

σ =

∣∣∣∣ log(Iter + 1)
Iter + 1

· (yi − ybest)

∣∣∣∣ (18)
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where y′i is the generated new individual, ybest is the optimal solution of the current pop-
ulation and σ is the diffusion range of dynamic adjustment. As the number of iterations
increases, σ will decrease, thus reducing the scope of search and focusing on local devel-
opment, and if the difference between the individual and the optimal solution is large,
the value of σ will increase accordingly to increase the scope of search. Different from
other ways of generating new individuals, this method provides reasonable updates for
individuals with unsatisfactory results, which can effectively eliminate useless individuals
in the population, thus improving the search ability of the algorithm. The pseudo-code for
this mechanism is as follows Algorithm 1:

Algorithm 1 Collision-based Gaussian Walk Restart Mechanism

Input: population, f itness, hash_table, UM, C_initial, C_ f inal
Output: updated population

1: Calculate collision rate threshold C by Equation (16)
2: Calculate current collision_rate
3: while g ≤ G do
4: if collision_rate > C then
5: for i = 1 : UM do
6: Perform Gaussian walk restart on UM subpopulation by Equation (17)
7: Assess the fitness of new individuals new_fitness
8: if new_ f itness < f itness then
9: Update individual

10: end if
11: end for
12: end if
13: g++
14: end while

3.5. DPR-MGDE

Based on the above points, this paper proposes the dual-performance multi-
subpopulation adaptive differential evolutionary algorithm, which divides the subpopu-
lations by dual performance and improves the traditional mutation strategy by using a
dual-performance bootstrap, in addition to introducing a collision-based Gaussian wan-
dering restart strategy, whose pseudo-code and flowchart are as follows Algorithm 2 and
Figure 1:

Figure 1. DPR-MGDE flowchart.
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Algorithm 2 DPR-MGDE

Input: NP, Gmax, Fmin, Fmax, CRmin, CRmax, c, C, P
1: Set the current generation g = 0, initialise the population P and evaluate their fitness
2: while g ≤ Gmax do
3: Evaluate Pmetri by Equation (10) and select the xguider
4: if g ≤ Gmax ∗ 10% then
5: Subpopulation division by MMDE [21]
6: else
7: Subpopulation division by DPR
8: end if
9: for each individual xi in PM do

10: Evaluate Fi and CRi by Equations (14) and (15)
11: Generate a mutation vector vi of xi by Equation (11)
12: Perform cross selection operation
13: Check for collisions and update collision frequency
14: end for
15: for each individual xi in MM do
16: Evaluate Fi and CRi by Equations (14) and (15) and randomly choose x1, x2

from population
17: Generate a mutation vector vi of xi by Equation (12)
18: Perform cross selection operation
19: Check for collisions and update collision frequency
20: end for
21: for each individual xi in UM do
22: Evaluate Fi and CRi by Equations (14) and (15) and randomly choose x1, x2, x3, x4

from population
23: Generate a mutation vector vi of xi by Equation (13)
24: Perform cross selection operation
25: Check for collisions and update collision frequency
26: end for
27: Evaluate c by Equation (16)
28: while c > C do
29: for each individual xi in UM do
30: Gaussian walk generates new individuals by Equation (17)
31: end for
32: end while
33: Update current optimal solution
34: Set g = g + 1
35: end while
Output: The best individual and its fitness value.

In order to illustrate the feasibility of DPR-MGDE, we perform complexity analysis on
it. The time complexity of the DPR-MGDE algorithm mainly consists of the following parts:

1. Population initialisation: The time complexity of initialising the population is
O(NP × D), where NP is the population size and D is the problem dimension.

2. Subpopulation division: The time complexity of subpopulation division mainly de-
pends on the population size NP and the problem dimension D. Specifically, the algo-
rithm needs to calculate the fitness and historical update frequency of each individual,
and then divide the population into three subpopulations (PM, MM, UM) based on
these indicators. The time complexity of this process is O(NP × D). In each iteration,
the subpopulation division operation needs to be repeated, so the time complexity of
subpopulation division in the entire iteration process is O(NP × D × G).
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3. Iteration process: In each iteration, the algorithm needs to perform mutation, crossover
and selection operations on each individual. The time complexity of these operations is
O(NP × D). Since the number of iterations of the algorithm is G, the time complexity
of the entire iteration process is O(NP × D × G).

In summary, the overall time complexity of the DPR-MGDE algorithm is O(NP ×
D × G). This shows that the algorithm has a linear time complexity when dealing with
large-scale optimisation problems and is suitable for large-scale optimisation tasks. The
space complexity of the DPR-MGDE algorithm mainly consists of the following parts:

1. Population storage: The space complexity of storing the positions and fitness values
of individuals in the population is O(NP × D).

2. Historical information storage: The space complexity of storing historical update
frequency and other information is O(NP).

In summary, the overall space complexity of the DPR-MGDE algorithm is O(NP × D).
This shows that the algorithm has a linear space complexity when dealing with large-scale
optimisation problems and is suitable for large-scale optimisation tasks.

4. Experiments
In this study, we conduct an in-depth experimental analysis of the effectiveness

of the DPR-MGDE algorithm and its key components, which include the mutation
policy, the collision rate threshold and the restart mechanism. To ensure a high level of
confidence in our statistical conclusions, we used the IEEE CEC 2017 test suite, which
consists of 30 different benchmark test functions [34] that cover optimisation problems
of different dimensions (specifically dimensions 10, 30, 50 and 100). In the experiments,
each algorithm was repeated 51 times for each test function to ensure the reliability of
the results. We quantified the performance of each algorithm by calculating the Mean
Error (Mean Error) and Standard Deviation (Std. Dev). To further verify the significance
of the performance differences between algorithms, we applied the Wilcoxon rank sum
test [35] statistical test method to evaluate and compare the performance differences
between algorithms.

In the experiments, we set the upper limit of the number of function evaluations for
each algorithm to 10,000 times multiplied by the problem dimension to ensure that the
algorithms have enough chances to converge. In addition, all experiments were conducted
on computers configured with MATLAB R2023a to ensure consistency of the experimental
environment and reproducibility of the results. Through this series of experimental designs
and analyses, we aim to comprehensively evaluate the performance of the DPR-MGDE
algorithm and its components and compare it with existing algorithms.

4.1. Experimental Comparison of Variation Strategies

In Table 1, comparing the DE/rand/1 variant using the bootstrap with DE/rand/1,
DP-DE/rand/1 outperforms DE/rand/1 on 22 benchmark functions, of which, it clearly
outperforms DE/rand/1 on all the hybrid functions (F11–F20), and performs well on the
combined functions (F21–F30) and better or flat performance relative to DE/rand/1 on the
eight benchmark functions, which shows that the introduction of the bootstrap into the
DE/rand/1 mutation strategy is able to improve the algorithm effectiveness.
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Table 1. Experimental comparison of improved DP-DE/rand/1 on CEC2017 (D = 30).

DE/rand/1 DP-DE/rand/1

Mean Std. Dev Mean Std. Dev

F1 4.89 × 10−1 2.97 × 10−1 4.51 × 10−1 1.76 × 10−1 +
F2 - - - - =
F3 3.49 × 104 6.15 × 103 2.38 × 104 3.96 × 103 +
F4 5.57 × 101 8.55 × 100 6.73 × 101 1.06 × 101 −
F5 1.63 × 102 9.15 × 100 1.72 × 102 1.30 × 101 −
F6 1.00 × 10−5 2.00 × 10−5 1.00 × 10−5 0.00 × 100 =
F7 2.19 × 102 1.09 × 101 2.11 × 102 8.67 × 100 +
F8 1.83 × 102 9.08 × 100 1.79 × 102 7.58 × 100 +
F9 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 =
F10 6.92 × 103 2.57 × 102 6.71 × 103 2.67 × 102 +
F11 7.71 × 101 1.81 × 101 7.60 × 101 2.77 × 101 +
F12 1.82 × 106 1.33 × 106 1.29 × 105 1.65 × 105 +
F13 6.75 × 102 1.40 × 102 4.89 × 102 8.61 × 101 +
F14 7.89 × 101 6.75 × 100 7.27 × 101 6.16 × 100 +
F15 7.16 × 101 6.10 × 100 6.12 × 101 7.73 × 100 +
F16 1.11 × 103 1.93 × 102 9.81 × 102 1.67 × 102 +
F17 2.81 × 102 6.07 × 101 8.47 × 101 7.86 × 100 +
F18 1.08 × 104 4.21 × 103 6.92 × 103 2.21 × 103 +
F19 2.66 × 101 3.46 × 100 2.62 × 101 2.09 × 100 +
F20 1.84 × 102 1.41 × 102 3.27 × 101 6.71 × 100 +
F21 3.59 × 102 9.30 × 100 3.32 × 102 1.03 × 101 +
F22 1.00 × 102 0.00 × 100 1.00 × 102 0.00 × 100 =
F23 5.24 × 102 9.23 × 100 5.19 × 102 8.40 × 100 +
F24 5.88 × 102 1.23 × 101 5.86 × 102 8.00 × 100 +
F25 3.87 × 102 2.57 × 10−2 3.87 × 102 1.19 × 10−2 =
F26 2.65 × 103 9.46 × 101 2.53 × 103 1.10 × 102 +
F27 4.92 × 102 1.05 × 101 5.04 × 102 8.07 × 100 −
F28 3.28 × 102 4.68 × 101 3.15 × 102 3.59 × 101 +
F29 9.08 × 102 9.68 × 101 8.25 × 102 7.37 × 101 +
F30 1.59 × 104 3.19 × 103 2.33 × 104 1.47 × 103 −

Total number of (+/=/−): 21/5/4
Bold data indicates the best results experimentally obtained on a certain test function.

In Table 2, DP-DE/current-to-best/1 performs better than or equal to DE/current-to-
best/1 on 20 functions, and on F3, F6, F7, F8, F9, F10, F11, F14, F15, F16, F17, F18, F19, F22,
F23, F24, F26, F28 and F30, the mean error of DP-DE/current-to-best/1 is significantly lower
than that of DE, indicating that DP-DE is better optimised on these functions. Overall, DP-
DE/current-to-best/ is an effective and improved algorithm despite its poor performance
on some specific functions.

Table 2. Experimental comparison of improved DP-DE/current-to-best/1 on CEC2017 (D = 30).

DE/current_to_best/1 DP-DE/current_to_best/1

Mean Std. Dev Mean Std. Dev

F1 4.62 × 103 1.32 × 104 2.61 × 103 4.85 × 103 +
F2 - - - - =
F3 1.57 × 102 1.76 × 102 1.38 × 100 2.05 × 100 +
F4 1.00 × 102 1.39 × 101 1.05 × 102 1.84 × 101 −
F5 1.94 × 101 1.21 × 101 2.72 × 101 5.30 × 100 −
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Table 2. Cont.

DE/current_to_best/1 DP-DE/current_to_best/1

Mean Std. Dev Mean Std. Dev

F6 5.26 × 10−3 4.42 × 10−2 2.10 × 10−3 1.15 × 10−2 +
F7 1.46 × 102 1.18 × 101 4.55 × 101 3.93 × 101 +
F8 1.72 × 102 1.23 × 101 2.36 × 101 3.01 × 101 +
F9 3.85 × 10−1 4.79 × 10−1 2.97 × 10−1 3.54 × 10−1 +
F10 5.84 × 103 4.80 × 102 4.16 × 103 1.82 × 103 +
F11 6.30 × 101 3.11 × 101 4.26 × 101 2.94 × 101 +
F12 2.43 × 104 1.35 × 104 2.98 × 104 1.39 × 104 −
F13 6.56 × 103 3.54 × 103 7.04 × 103 7.31 × 103 −
F14 1.44 × 102 2.39 × 101 5.74 × 101 2.52 × 101 +
F15 2.20 × 102 8.37 × 101 1.86 × 102 8.90 × 101 +
F16 7.41 × 102 2.38 × 102 4.65 × 102 2.52 × 102 +
F17 1.84 × 102 5.30 × 101 9.33 × 101 5.64 × 101 +
F18 5.83 × 104 2.69 × 104 5.71 × 104 3.72 × 104 +
F19 7.06 × 101 2.97 × 101 1.15 × 102 5.14 × 101 −
F20 2.28 × 102 8.02 × 101 2.98 × 102 8.02 × 101 −
F21 3.32 × 102 1.03 × 101 3.61 × 102 1.88 × 101 −
F22 2.97 × 102 1.08 × 103 1.03 × 102 1.11 × 100 +
F23 4.61 × 102 2.18 × 101 3.82 × 102 1.42 × 101 +
F24 5.50 × 102 1.67 × 101 4.58 × 102 1.60 × 101 +
F25 3.05 × 102 1.72 × 101 3.05 × 102 1.72 × 101 =
F26 1.93 × 103 5.07 × 102 1.09 × 103 2.67 × 102 +
F27 5.11 × 102 1.17 × 101 5.26 × 102 1.49 × 101 −
F28 4.71 × 102 3.44 × 101 4.24 × 102 3.01 × 101 +
F29 7.08 × 102 1.07 × 102 5.25 × 102 8.37 × 101 +
F30 9.84 × 103 7.43 × 103 7.23 × 103 3.62 × 103 +

Total number of (+/=/−): 20/2/8
Bold data indicates the best results experimentally obtained on a certain test function.

4.2. Collision Frequency Threshold Parameter Tuning

Since this paper uses the collision frequency (determined by the initial/final value
according to the formula) as a condition for triggering the restart strategy, we will further
calculate the impact of different thresholds on the performance of the algorithm. In this
paper, we select four representative benchmark functions in the CEC2017 test set for
experiments, single-objective function F7, multi-peak function F16, combined function F20
and F24 and set six groups of different collision frequency threshold parameters 0.1/0.3,
0.1/0.4, 0.1/0.5, 0.2/0.3, 0.2/0.4 and 0.2/0.5. Figure 2 shows the six groups of convergence
plots for different parameters for the above four benchmark functions (D = 30). In Figure 2a,
the optimal solution obtained by the 0.1/0.5 parameter is the smallest, while the six groups
of parameters perform roughly the same in terms of function convergence; in Figure 2b,
the 0.2/0.5 parameter has the fastest convergence, the 0.1/0.5 parameter jumps out of
the local optimum the most and the 0.1/0.3 and 0.1/0.4 parameters jump out of the local
optimum in a good way; in Figure 2c, the initial value of the of 0.2 parameter has the
fastest convergence, but the change of fitness is less obvious in the later stage, and the
three sets of parameters with initial value of 0.1 have the most obvious effect of jumping
out of the local optimum, especially 0.1/0.5; in Figure 2d, the three sets of parameters
with initial value of 0.2 basically fail to jump out of the local optimum in the later stage
in the fast convergence, and the change of fitness in the first and middle stages of the
0.1/0.5 parameters is most significant.
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(a) F7 convergence plot
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(b) F16 convergence plot
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(c) F20 convergence plot
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(d) F24 convergence plot

Figure 2. Convergence plots for six sets of parameter values on four functions.

In summary, in this paper, the initial and final values of collision frequency are set to
0.1 and 0.5, respectively, and the performance of the 0.1/0.5 parameter group is the best
in the above four benchmark functions in a comprehensive way, whether considering the
convergence speed or the ability to jump out of the local optimum. This is because, in the
early iteration of the differential evolution algorithm, we need the population to maintain
good diversity to explore a larger space, so a smaller frequency threshold can trigger restart
earlier to achieve the purpose of maintaining the diversity of the population and avoid
premature convergence, while in the late iteration, we need the algorithm to have a better
ability to develop locally, so a larger frequency threshold can enable the algorithm to focus
more on the development. By adjusting the threshold adaptively, the algorithm can better
balance the ability of exploration and development.

4.3. Comparison of DPR-MGDE with Current Better Methods

In order to convincingly validate the merits of DPR-MGDE, seven typical DE variants
were chosen as opponents with D = 10, D = 30, D = 50 and D = 100. These comparison
algorithms are NPADE [36], IDE-EDA [37], FADE [38], MPEDE [39], ADE-DMRM [23],
MMDE [21] and DPMADE [5], and their parameter settings are given in detail in Table 3.
The numerical and statistical results based on the Wilcoxon rank sum test are shown in
Table 2.

Based on the data presented in Table 4, it is evident that the DPR-MGDE algorithm
exhibits exceptional performance on the CEC2017 benchmark suite D set to 10. Notably,
DPR-MGDE achieves an average ranking of 2.28 across all test functions, which places it at
the top among the eight algorithms under comparison, thereby underscoring its superior
efficacy. In the domain of single-objective test functions ranging from F1 to F10, IDE-EDA
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demonstrates the best performance on eight functions, whereas DPR-MGDE secures the
highest ranking on three functions. The distribution of rankings for the remaining functions
is as follows: F4 (fifth), F5 (fourth), F6 (fourth), F7 (fourth), F8 (fourth) and F10 (second).
Regarding the mixed functions from F11 to F20, IDE-EDA attains the best results on F11,
F14 and F19; NPADE achieves the best outcomes on F16; FADE is the top performer on F15;
and DPR-MGDE ranks first on F18. It is worth highlighting that DPR-MGDE maintains
a ranking within the top four for the remaining eight hybrid functions: F11 (third), F14
(fourth), F15 (third), F16 (second), F17 (second), F18 (fourth), F19 (third) and F20 (fourth).
Furthermore, in the category of composite functions from F21 to F30, DPR-MGDE ranks
first on eight functions, trailing only behind FADE on F22, and is outperformed only by
NPADE and itself on F24. When considering the entire spectrum of test problems, DPR-
MGDE not only excels in single-objective and hybrid functions, but also demonstrates
robust performance in tackling more complex challenges such as composite functions.
This comprehensive assessment further substantiates the efficiency and reliability of the
DPR-MGDE algorithm in addressing intricate optimisation problems.

Table 3. Parameter settings.

Methods Parameter Setting

NPADE [36] NPini = 8D, NPmin = 4, NUP−limit = 20, F0
m = Cr0

m = 0.5, c = 0.1

IDE-EDA [37] NPini = 75· D(2/3), k = 3, H = 5, NPmin = 4, r_arc = 1, s = 0.9

DADE [38] NPini = 75, NPmax = PSini, NPmin = NPini/3, ss = 3,
ns = 25 or 40, MaxGimp = MaxGstag = 2

MPEDE [39] NPini = 18D, NPmin = 4, p = 0.11, H = 5, m = 2, C = 30

ADE-DMRM [23]
µF = µCR = 0.5, F∼L(µF, 0.2), CR∼L(µCR, 0.1),
ps = 18 · D∼10, n = 40, ξ = 0.001, H = 5, p = 0.2∼0.05,
rrac = 0.6, rrac,B = 1.6

MMDE [21] Minit
F = 0.5, NP = 18 · D∼4, p = 0.11, H = 0.5, rarc = 1.4

DPMADE [26] NPini = 15D, NPmin = 4, LS = 10, p ∈ (0.1, 0.2), NEP = 10

DPR-MGDE Cinitial = 0.1, C f inal = 0.5, Fmin = 0.4, Fmax = 1.0,
CRmin = 0.2, Rmax = 0.9

Table 4. Experimental results of DPR-MGDE and 10 famous or up-to-date DE variants on CEC2017
test suite when D = 10.

Func Statistic NPADE IDE-EDA FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f1
Mean
Error

0.00 × 100

(1)
0.00 × 100

(1)
1.37 × 10−8

(8)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
Std Dev 0.00 × 100 0.00 × 100 1.22 × 10−7 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

f2
Mean
Error - - - - - - - -

Std Dev - - - - - - - -

f3
Mean
Error

0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
1.71 × 10−8

(7)
2.09 × 10−15

(8)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
Std Dev 0.00 × 100 0.00 × 100 0.00 × 100 4.62 × 10−8 1.04 × 10−14 0.00 × 100 0.00 × 100 0.00 × 100

f4
Mean
Error

0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
2.43 × 101

(6)
7.81 × 100

(4)
2.88 × 101

(8)
2.54 × 101

(7)
2.40 × 101

(5)
Std Dev 0.00 × 100 0.00 × 100 0.00 × 100 1.13 × 101 2.65 × 100 1.28 × 101 4.62 × 100 3.09 × 101

f5
Mean
Error

1.62 × 100

(3)
1.18 × 100

(1)
4.27 × 100

(7)
2.25 × 100

(5)
6.14 × 100

(8)
1.31 × 100

(2)
2.46 × 100

(6)
2.11 × 100

(4)
Std Dev 9.53 × 10−1 8.44 × 10−1 1.54 × 100 1.04 × 100 2.40 × 100 8.09 × 10−1 9.62 × 10−1 5.39 × 100
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Table 4. Cont.

Func Statistic NPADE IDE-EDA FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f6
Mean
Error

1.30 × 10−14

(5)
0.00 × 100

(1)
2.23 × 10−15

(2)
1.34 × 10−14

(6)
4.25 × 10−7

(8)
2.33 × 10−15

(3)
3.12 × 10−14

(7)
1.28 × 10−14

(4)
Std Dev 3.90 × 10−14 0.00 × 100 1.59 × 10−14 3.70 × 10−14 2.08 × 10−6 1.39 × 10−14 5.12 × 10−14 2.06 × 10−14

f7
Mean
Error

1.19 × 101

(3)
1.17 × 101

(2)
1.55 × 101

(7)
1.39 × 101

(6)
1.64 × 101

(8)
1.16 × 101

(1)
1.20 × 101

(4)
1.20 × 101

(4)
Std Dev 7.42 × 10−1 5.82 × 10−1 2.28 × 100 1.62 × 100 2.58 × 100 5.14 × 10−1 6.81 × 10−1 5.53 × 10−1

f8
Mean
Error

1.70 × 100

(3)
1.27 × 100

(1)
3.98 × 100

(7)
2.71 × 100

(6)
6.53 × 100

(8)
1.29 × 100

(2)
2.63 × 100

(5)
2.11 × 100

(4)
Std Dev 1.10 × 100 7.98 × 10−1 1.63 × 100 1.35 × 100 2.40 × 100 6.98 × 10−1 1.40 × 100 1.17 × 100

f9
Mean
Error

0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
2.98 × 10−3

(8)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
Std Dev 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.63 × 10−2 0.00 × 100 0.00 × 100 0.00 × 100

f10
Mean
Error

3.59 × 101

(5)
2.49 × 101

(4)
1.81 × 102

(7)
1.04 × 102

(6)
3.61 × 102

(8)
1.04 × 101

(1)
1.68 × 101

(3)
1.27 × 101

(2)
Std Dev 4.99 × 101 5.37 × 101 1.11 × 102 9.23 × 101 2.56 × 102 6.23 × 100 1.14 × 101 9.94 × 100

f11
Mean
Error

1.20 × 10−1

(5)
0.00 × 100

(1)
4.30 × 10−1

(7)
3.31 × 10−5

(2)
5.64 × 10−1

(8)
9.64 × 10−4

(4)
4.24 × 10−1

(6)
4.52 × 10−5

(3)
Std Dev 3.34 × 10−1 0.00 × 100 6.37 × 10−1 8.91 × 10−5 8.13 × 10−1 5.48 × 10−3 7.09 × 10−1 6.36 × 10−5

f12
Mean
Error

2.24 × 101

(2)
2.73 × 100

(3)
3.38 × 102

(8)
4.90 × 101

(6)
1.52 × 102

(7)
3.34 × 100

(4)
7.61 × 100

(5)
1.56 × 100

(1)
Std Dev 4.55 × 101 1.67 × 101 1.77 × 102 1.17 × 102 1.40 × 102 1.69 × 101 3.70 × 101 1.27 × 101

f13
Mean
Error

3.51 × 100

(3)
2.43 × 100

(2)
4.84 × 100

(7)
6.23 × 100

(8)
4.08 × 100

(4)
4.18 × 100

(5)
4.37 × 100

(6)
2.08 × 100

(1)
Std Dev 2.67 × 100 2.45 × 100 2.12 × 100 1.08 × 100 1.23 × 100 4.70 × 10−1 3.59 × 10−1 1.63 × 100

f14
Mean
Error

1.32 × 100

(8)
1.95 × 10−2

(1)
1.48 × 10−1

(3)
4.65 × 100

(6)
3.53 × 100

(5)
9.75 × 10−2

(2)
4.72 × 10−1

(7)
3.75 × 10−1

(4)
Std Dev 1.23 × 100 1.39 × 10−1 3.58 × 10−1 3.06 × 100 6.12 × 100 2.99 × 10−1 7.33 × 10−1 4.11 × 10−1

f15
Mean
Error

1.92 × 10−1

(2)
2.28 × 10−1

(4)
1.68 × 10−1

(1)
6.09 × 10−1

(8)
5.19 × 10−1

(7)
3.71 × 10−1

(6)
2.45 × 10−1

(5)
2.03 × 10−1

(3)
Std Dev 2.06 × 10−1 2.15 × 10−1 1.67 × 10−1 7.43 × 10−1 7.42 × 10−1 1.91 × 10−1 2.12 × 10−1 1.89 × 10−1

f16
Mean
Error

1.91 × 10−1

(1)
6.61 × 10−1

(6)
4.28 × 10−1

(3)
1.03 × 100

(7)
9.54 × 100

(8)
6.25 × 10−1

(5)
4.64 × 10−1

(4)
3.84 × 10−1

(2)
Std Dev 1.66 × 10−1 2.53 × 10−1 2.54 × 10−1 2.82 × 10−1 2.99 × 101 5.00 × 10−1 2.40 × 10−1 1.96 × 10−1

f17
Mean
Error

1.57 × 10−1

(3)
7.40 × 10−1

(5)
1.19 × 100

(1)
2.00 × 101

(6)
2.07 × 101

(8)
2.06 × 101

(7)
1.61 × 101

(4)
1.42 × 101

(2)
Std Dev 2.65 × 10−1 4.72 × 10−1 7.79 × 10−1 7.15 × 100 8.34 × 100 4.30 × 100 7.56 × 100 6.81 × 100

f18
Mean
Error

2.85 × 10−1

(3)
2.80 × 10−1

(2)
3.84 × 10−1

(7)
2.12 × 100

(6)
9.22 × 100

(8)
3.64 × 10−1

(5)
2.77 × 10−1

(1)
2.89 × 10−1

(4)
Std Dev 2.96 × 10−1 2.12 × 10−1 2.43 × 10−1 5.08 × 100 1.01 × 101 1.87 × 10−1 2.01 × 10−1 2.54 × 10−1

f19
Mean
Error

2.26 × 10−2

(4)
7.70 × 10−3

(1)
2.63 × 10−2

(5)
3.34 × 10−1

(8)
2.98 × 10−1

(7)
1.72 × 10−2

(2)
3.66 × 10−2

(6)
1.93 × 10−2

(3)
Std Dev 2.72 × 10−2 1.10 × 10−2 2.11 × 10−2 1.91 × 10−1 4.20 × 10−1 1.15 × 10−2 1.45 × 10−1 1.22 × 10−2

f20
Mean
Error

0.00 × 100

(1)
5.10 × 10−1

(3)
4.61 × 10−1

(2)
6.80 × 100

(7)
6.00 × 100

(6)
7.38 × 100

(8)
3.17 × 100

(5)
1.58 × 100

(4)
Std Dev 0.00 × 100 2.65 × 10−1 5.02 × 10−1 2.58 × 100 8.19 × 100 8.66 × 100 2.92 × 100 1.13 × 100

f21
Mean
Error

1.22 × 102

(7)
1.48 × 102

(8)
1.13 × 102

(6)
1.00 × 102

(1)
1.00 × 102

(1)
1.00 × 102

(1)
1.00 × 102

(1)
1.00 × 102

(1)
Std Dev 4.28 × 101 5.18 × 101 3.46 × 101 0.00 × 100 1.57 × 10−13 0.00 × 100 2.05 × 10−13 0.00 × 100

f22
Mean
Error

1.00 × 102

(6)
1.00 × 102

(6)
6.86 × 101

(1)
9.61 × 101

(5)
1.00 × 102

(6)
9.44 × 101

(4)
9.43 × 101

(3)
7.25 × 101

(2)
Std Dev 2.26 × 10−13 5.67 × 10−2 4.65 × 101 1.96 × 101 1.39 × 10−13 2.25 × 101 2.31 × 101 3.81 × 101

f23
Mean
Error

3.02 × 102

(4)
3.00 × 102

(3)
3.04 × 102

(5)
3.45 × 102

(6)
3.53 × 102

(8)
3.45 × 102

(6)
2.00 × 102

(1)
2.00 × 102

(1)
Std Dev 1.90 × 100 8.56 × 10−1 2.24 × 100 2.24 × 100 3.81 × 100 2.94 × 100 0.00 × 100 0.00 × 100
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Table 4. Cont.

Func Statistic NPADE IDE-DAE FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f24
Mean
Error

1.75 × 102

(1)
2.82 × 102

(5)
2.55 × 102

(4)
2.98 × 102

(6)
3.00 × 102

(7)
3.72 × 102

(8)
2.00 × 102

(2)
2.33 × 102

(3)

Std Dev 1.08 × 102 9.69 × 101 1.11 × 102 5.46 × 101 1.09 × 102 7.52 × 101 0.00 × 100 1.64 × 100

f25
Mean
Error

4.03 × 102

(4)
4.14 × 102

(6)
4.01 × 102

(2)
4.17 × 102

(7)
4.24 × 102

(8)
4.01 × 102

(2)
4.12 × 102

(5)
2.00 × 102

(1)

Std Dev 1.48 × 101 2.19 × 101 1.10 × 101 2.34 × 101 2.31 × 101 1.70 × 101 2.57 × 101 0.00 × 100

f26
Mean
Error

3.00 × 102

(4)
3.00 × 102

(4)
3.00 × 102

(4)
2.98 × 102

(3)
3.85 × 102

(8)
3.00 × 102

(4)
2.30 × 102

(2)
1.97 × 102

(1)

Std Dev 0.00 × 100 0.00 × 100 0.00 × 100 1.40 × 101 1.65 × 102 1.11 × 10−13 2.06 × 100 1.18 × 101

f27
Mean
Error

3.89 × 102

(3)
3.89 × 102

(3)
3.89 × 102

(3)
4.05 × 102

(6)
4.29 × 102

(8)
4.21 × 102

(7)
2.09 × 102

(2)
2.00 × 102

(1)

Std Dev 9.13 × 10−1 1.54 × 10−1 1.73 × 100 1.03 × 101 1.29 × 101 1.16 × 101 4.27 × 101 0.00 × 100

f28
Mean
Error

3.22 × 102

(6)
3.06 × 102

(4)
3.00 × 102

(2)
3.16 × 102

(5)
3.31 × 102

(7)
3.03 × 102

(3)
3.43 × 102

(8)
2.02 × 102

(1)

Std Dev 7.70 × 101 3.97 × 101 0.00 × 100 2.33 × 101 2.40 × 101 1.16 × 101 1.77 × 101 1.28 × 101

f29
Mean
Error

2.35 × 102

(4)
2.35 × 102

(4)
2.44 × 102

(8)
2.42 × 102

(7)
2.39 × 102

(6)
2.31 × 102

(3)
2.16 × 102

(2)
2.00 × 102

(1)

Std Dev 4.92 × 100 3.68 × 100 5.14 × 100 6.46 × 100 8.03 × 100 3.21 × 100 1.82 × 101 0.00 × 100

f30
Mean
Error

4.30 × 102

(6)
1.64 × 104

(8)
4.42 × 102

(7)
2.88 × 102

(5)
2.28 × 102

(3)
2.86 × 102

(4)
2.17 × 102

(2)
2.00 × 102

(1)

Std Dev 1.70 × 102 1.14 × 105 1.90 × 101 1.54 × 102 1.04 × 101 3.72 × 101 1.88 × 100 0.00 × 100

Rank 3.38 3.17 4.38 5.49 6.59 3.79 3.86 2.28

Bold data indicates the best results experimentally obtained on a certain test function.

Based on the data presented in Table 5, it is evident that the DPR-MGDE algorithm
achieves the best results among all comparison functions when D is set to 30, with an
average ranking of 2.24. This ranking underscores the algorithm’s superior performance
across a diverse set of test functions. In the category of single-objective functions (F1–F10),
DPR-MGDE attains the optimal solutions in F1, F7 and F9, outperforming all other com-
parison functions. The rankings for the remaining benchmark functions are as follows:
F3 (fourth), F4–F6 (second), F8 (second) and F10 (sixth). These results highlight DPR-
MGDE’s consistent performance in single-objective optimisation problems. In the hybrid
functions (F11–F20), DPR-MGDE demonstrates robust performance, achieving the best
result on one benchmark function (F14). Moreover, it outperforms more than half of the
comparison functions on all other functions, except for F11. The detailed rankings are
as follows: F11 (fifth), F12 (fourth), F13 (fourth), F14 (first), F15 (third), F16 (second), F17
(third), F18 (third), F19 (fourth) and F20 (fourth). This distribution of rankings indicates
DPR-MGDE’s ability to handle complex hybrid functions effectively. In the combined
functions (F21–F30), DPR-MGDE exhibits exceptionally superior performance, ranking
as the best performer on nine benchmark functions. The only exception is F29, where it
trails behind ADE-DMRM. This performance highlights DPR-MGDE’s capability to tackle
highly complex optimisation problems, further validating its efficiency and reliability in a
wide range of applications. Overall, the comprehensive evaluation of DPR-MGDE across
different types of functions and dimensions confirms its robustness and effectiveness in
solving challenging optimisation problems, making it a valuable addition to the field of
optimisation algorithms.
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Table 5. Experimental results of DPR-MGDE and 10 famous or up-to-date DE variants on CEC2017
test suite when D = 30.

Func Statistic NPADE IDE-EDA FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f1
Mean
Error

2.09 × 10−16

(5)
0.00 × 100

(1)
1.66 × 100

(8)
3.47 × 10−14

(7)
0.00 × 100

(1)
2.19 × 10−16

(6)
0.00 × 100

(1)
0.00 × 100

(1)

Std Dev 1.99 × 10−15 0.00 × 100 8.12 × 100 1.74 × 10−14 0.00 × 100 1.99 × 10−15 0.00 × 100 0.00 × 100

f2
Mean
Error - - - - - - - -

Std Dev - - - - - - - -

f3
Mean
Error

6.67 × 102

(8)
1.51 × 10−15

(3)
2.33 × 10−14

(6)
4.06 × 10−13

(7)
0.00 × 100

(1)
2.01 × 10−14

(5)
0.00 × 100

(1)
5.20 × 10−15

(4)

Std Dev 1.23 × 103 7.96 × 10−15 2.45 × 10−14 2.22 × 10−13 0.00 × 100 2.74 × 10−14 0.00 × 100 1.98 × 10−14

f4
Mean
Error

4.03 × 101

(7)
5.77 × 101

(8)
2.70 × 101

(6)
8.80 × 10−12

(5)
3.57 × 10−14

(1)
5.33 × 10−14

(3)
5.86 × 10−14

(4)
4.91 × 10−14

(2)

Std Dev 8.44 × 100 7.78 × 10−1 3.34 × 101 1.69 × 10−11 2.78 × 10−14 1.35 × 10−14 1.39 × 10−14 2.85 × 10−14

f5
Mean
Error

2.31 × 101

(6)
7.40 × 100

(4)
3.25 × 101

(7)
3.41 × 101

(8)
6.22 × 100

(1)
7.01 × 100

(3)
2.21 × 101

(5)
6.71 × 100

(2)

Std Dev 6.44 × 100 2.09 × 100 9.02 × 100 1.10 × 101 1.50 × 100 1.59 × 100 5.11 × 100 1.33 × 100

f6
Mean
Error

3.67 × 10−8

(6)
4.03 × 10−9

(4)
1.63 × 10−3

(7)
1.76 × 10−1

(8)
8.83 × 10−9

(5)
3.44 × 10−9

(3)
2.01 × 10−14

(1)
2.68 × 10−9

(2)

Std Dev 1.94 × 10−7 2.01 × 10−8 6.91 × 10−3 1.40 × 10−1 3.29 × 10−8 1.97 × 10−8 4.38 × 10−14 1.92 × 10−8

f7
Mean
Error

4.06 × 101

(6)
3.22 × 101

(2)
5.94 × 101

(8)
5.81 × 101

(7)
3.77 × 101

(4)
3.75 × 101

(3)
3.88 × 101

(5)
2.74 × 101

(1)

Std Dev 5.92 × 100 1.56 × 100 6.50 × 100 1.04 × 101 1.10 × 100 1.51 × 100 8.03 × 10−1 1.49 × 100

f8
Mean
Error

2.18 × 101

(6)
7.60 × 100

(5)
3.32 × 101

(8)
3.02 × 101

(7)
7.00 × 100

(3)
7.04 × 100

(4)
3.15 × 100

(1)
6.92 × 100

(2)

Std Dev 3.59 × 100 2.07 × 100 1.04 × 101 1.07 × 101 1.47 × 100 1.78 × 100 1.53 × 100 1.19 × 100

f9
Mean
Error

2.98 × 10−12

(6)
0.00 × 100

(1)
3.18 × 10−1

(7)
7.66 × 101

(8)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)
0.00 × 100

(1)

Std Dev 4.98 × 10−11 0.00 × 100 5.28 × 10−1 6.70 × 101 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

f10
Mean
Error

3.32 × 102

(1)
1.53 × 103

(5)
2.44 × 103

(7)
2.82 × 103

(8)
1.16 × 103

(3)
1.27 × 103

(4)
1.09 × 103

(2)
1.58 × 103

(6)

Std Dev 4.30 × 102 2.92 × 102 6.44 × 102 6.63 × 102 1.63 × 102 1.82 × 102 1.91 × 102 1.84 × 102

f11
Mean
Error

1.51 × 101

(4)
3.77 × 100

(1)
1.97 × 101

(7)
1.13 × 102

(8)
9.12 × 100

(2)
9.01 × 100

(3)
1.78 × 101

(6)
1.72 × 101

(5)

Std Dev 5.63 × 100 1.16 × 101 1.73 × 101 4.63 × 101 3.87 × 100 1.88 × 100 2.47 × 101 3.52 × 100

f12
Mean
Error

7.98 × 102

(5)
1.46 × 102

(1)
5.12 × 103

(8)
1.57 × 103

(7)
1.22 × 103

(6)
2.16 × 102

(2)
5.28 × 102

(3)
6.17 × 102

(4)

Std Dev 3.30 × 102 9.87 × 101 6.73 × 103 4.49 × 102 3.62 × 102 1.58 × 102 2.94 × 102 3.60 × 102

f13
Mean
Error

1.53 × 101

(3)
1.29 × 101

(1)
1.34 × 102

(8)
7.46 × 101

(7)
1.79 × 101

(5)
2.02 × 101

(6)
1.49 × 101

(2)
1.68 × 101

(4)

Std Dev 6.98 × 100 7.11 × 100 6.93 × 101 5.60 × 101 4.52 × 100 7.16 × 10−1 4.23 × 100 3.02 × 100

f14
Mean
Error

2.60 × 101

(7)
2.12 × 101

(3)
2.30 × 101

(5)
5.83 × 101

(8)
2.24 × 101

(4)
2.11 × 101

(2)
2.32 × 101

(6)
2.05 × 101

(1)

Std Dev 4.94 × 100 9.03 × 10−1 1.00 × 101 1.95 × 101 1.42 × 100 9.53 × 10−1 1.57 × 100 6.97 × 100

f15
Mean
Error

7.83 × 100

(6)
6.05 × 10−1

(1)
1.66 × 101

(7)
5.10 × 101

(8)
4.79 × 100

(4)
8.10 × 10−1

(2)
5.19 × 100

(5)
3.04 × 100

(3)

Std Dev 4.73 × 100 5.66 × 10−1 9.36 × 100 2.85 × 101 2.67 × 100 5.82 × 10−1 2.74 × 100 1.88 × 100

f16
Mean
Error

1.49 × 102

(7)
2.11 × 101

(1)
4.98 × 102

(8)
4.41 × 102

(5)
4.23 × 101

(4)
4.66 × 101

(6)
4.05 × 101

(3)
2.94 × 101

(2)

Std Dev 1.31 × 102 3.39 × 101 2.30 × 102 2.29 × 102 4.31 × 101 4.78 × 101 5.72 × 101 3.85 × 101

f17
Mean
Error

2.93 × 101

(1)
3.54 × 101

(2)
7.62 × 101

(7)
1.17 × 102

(8)
4.98 × 101

(4)
5.46 × 101

(6)
4.98 × 101

(4)
4.89 × 101

(3)

Std Dev 1.11 × 101 5.99 × 100 7.73 × 101 5.40 × 101 9.20 × 100 9.27 × 100 7.88 × 100 8.51 × 100
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Table 5. Cont.

Func Statistic NPADE IDE-EDA FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f18
Mean
Error

2.29 × 101

(4)
2.08 × 101

(2)
3.68 × 101

(7)
1.59 × 102

(8)
2.61 × 101

(6)
1.93 × 101

(1)
2.31 × 101

(5)
2.23 × 101

(3)

Std Dev 1.60 × 100 3.36 × 10−1 1.35 × 101 7.35 × 101 5.62 × 100 6.13 × 100 1.62 × 100 1.37 × 100

f19
Mean
Error

8.49 × 100

(6)
3.17 × 100

(1)
3.44 × 101

(7)
5.85 × 101

(8)
7.50 × 100

(5)
4.00 × 100

(2)
4.03 × 100

(3)
6.09 × 100

(4)

Std Dev 1.95 × 100 7.94 × 10−1 2.77 × 101 3.74 × 101 2.00 × 100 1.19 × 100 2.12 × 100 1.65 × 100

f20
Mean
Error

5.11 × 101

(1)
3.05 × 101

(2)
9.80 × 101

(3)
1.72 × 102

(8)
7.80 × 101

(7)
7.18 × 101

(5)
7.30 × 101

(6)
7.05 × 101

(4)

Std Dev 5.41 × 101 7.02 × 100 7.70 × 101 1.27 × 102 1.10 × 101 1.28 × 101 4.59 × 101 1.13 × 101

f21
Mean
Error

2.43 × 102

(8)
2.18 × 102

(6)
2.30 × 102

(7)
8.69 × 100

(2)
1.50 × 102

(4)
1.50 × 102

(4)
1.08 × 102

(3)
3.30 × 101

(1)

Std Dev 6.72 × 100 2.22 × 100 9.68 × 100 2.66 × 101 2.01 × 10−13 2.01 × 10−13 4.12 × 100 2.05 × 101

f22
Mean
Error

1.00 × 102

(6)
1.00 × 102

(6)
1.01 × 102

(8)
3.46 × 101

(5)
1.50 × 101

(3)
1.50 × 101

(3)
1.09 × 101

(2)
3.49 × 100

(1)

Std Dev 6.39 × 10−14 1.00× 10−13 1.75 × 100 8.89 × 100 2.01 × 10−13 1.84× 10−13 1.82 × 10−13 1.26 × 100

f23
Mean
Error

3.69 × 102

(4)
3.97 × 102

(7)
3.92 × 102

(6)
5.30 × 102

(8)
3.82 × 102

(5)
2.92 × 102

(3)
2.55 × 102

(2)
2.00 × 102

(1)

Std Dev 8.81 × 100 3.30 × 100 1.29 × 101 3.01 × 101 5.12 × 100 7.83 × 100 2.72 × 100 0.00 × 100

f24
Mean
Error

4.42 × 102

(6)
4.26 × 102

(4)
4.58 × 102

(7)
3.15 × 102

(2)
9.46 × 102

(8)
3.62 × 102

(3)
4.29 × 102

(5)
2.97 × 102

(1)

Std Dev 7.64 × 100 2.22 × 100 1.36 × 101 1.66 × 102 1.45 × 101 1.90 × 102 3.40 × 100 4.08 × 101

f25
Mean
Error

4.07 × 102

(6)
3.87 × 102

(2)
3.87 × 102

(2)
4.22 × 102

(8)
4.09 × 102

(7)
4.00 × 102

(5)
3.87 × 102

(2)
2.00 × 102

(1)

Std Dev 5.43 × 10−2 6.46 × 10−3 1.07 × 100 3.01 × 101 6.78 × 100 9.66 × 10−2 1.09 × 10−2 1.60 × 10−2

f26
Mean
Error

1.08 × 103

(4)
8.96 × 102

(2)
1.32 × 103

(6)
1.22 × 103

(5)
1.88 × 103

(8)
1.83 × 103

(7)
9.59 × 102

(3)
2.10 × 102

(1)

Std Dev 9.74 × 101 3.28 × 101 2.23 × 102 7.22 × 102 2.93 × 101 8.41 × 101 5.18 × 101 4.63 × 101

f27
Mean
Error

5.00 × 102

(4)
4.94 × 102

(2)
4.99 × 102

(3)
5.26 × 102

(6)
7.32 × 102

(7)
7.37 × 102

(8)
5.06 × 102

(5)
2.63 × 102

(1)

Std Dev 5.62 × 100 7.95 × 100 1.07 × 101 1.00 × 102 8.70 × 100 3.35 × 101 4.99 × 100 1.74 × 102

f28
Mean
Error

3.17 × 102

(5)
3.11 × 102

(2)
3.16 × 102

(4)
4.67 × 102

(8)
3.96 × 102

(7)
3.87 × 102

(6)
3.12 × 102

(3)
2.09 × 102

(1)

Std Dev 4.00 × 101 3.36 × 101 4.11 × 101 2.84 × 101 2.87 × 101 3.30 × 101 5.09 × 101 1.82 × 101

f29
Mean
Error

4.19 × 102

(5)
4.47 × 102

(7)
4.36 × 102

(6)
3.77 × 102

(4)
3.16 × 102

(1)
3.19 × 102

(2)
4.46 × 102

(8)
3.19 × 102

(2)

Std Dev 1.01 × 101 1.84 × 101 2.66 × 101 8.50 × 101 9.56 × 100 8.64 × 100 1.60 × 101 2.05 × 101

f30
Mean
Error

1.99 × 103

(7)
1.97 × 103

(6)
2.03 × 103

(8)
4.03 × 102

(3)
9.24 × 102

(5)
9.17 × 102

(4)
3.07 × 102

(2)
2.94 × 102

(1)

Std Dev 3.67 × 101 1.26 × 101 8.91 × 101 3.32 × 102 5.07 × 101 6.27 × 101 6.85 × 101 2.11 × 101

b/w/s 25/5/0 17/11/2 29/1/0 30/0/0 23/5/2 23/6/1 21/7/2 -

Rank 5.17 3.24 6.48 6.24 4.17 3.86 3.41 2.24

Bold data indicates the best results experimentally obtained on a certain test function.

Based on the data presented in Table 6, it is observed that the DPR-MGDE algorithm
achieves the highest average ranking of 2.66 when D is set to 50, with DPMADE closely
following at an average ranking of 2.80. This indicates a highly competitive performance
between these two algorithms in high-dimensional optimisation problems. In the category
of single-objective functions (F1–F10), the optimal solutions obtained by DPR-MGDE are
generally outperformed by other comparison algorithms, suggesting that DPR-MGDE may
face challenges in this specific domain of optimisation problems. However, in the hybrid
functions (F11–F20), DPR-MGDE demonstrates a significant improvement. It outperforms
all other compared algorithms on F13, and surpasses half of the compared algorithms on the
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remaining functions. The detailed rankings are as follows: F11 (fourth), F12 (fourth), F13
(first), F14 (third), F15 (third), F16 (second), F17 (fourth), F18 (second), F19 (third) and F20
(fifth). These results highlight DPR-MGDE’s ability to effectively handle the complexity and
multimodality of hybrid functions. In the combined functions (F21–F30), DPR-MGDE shows a
remarkable performance, achieving the best optimal solutions on F22, F23, F24, F25, F26, F28,
F29 and F30. However, it is noted that DPR-MGDE is less effective compared to ADE-DMRM
and DPMADE on F21, and to DPMADE on F27. This suggests that, while DPR-MGDE excels
in many complex optimisation scenarios, there are specific instances wherein other algorithms
may offer superior performance. Overall, the results from Table 6 provide a nuanced view
of DPR-MGDE’s performance. While it may not dominate in single-objective functions, its
strong performance in hybrid and combined functions, particularly in high-dimensional spaces,
confirms its robustness and adaptability in tackling a wide range of optimisation challenges.
This comprehensive evaluation further underscores the algorithm’s potential as a valuable
tool in the optimisation toolkit, especially for problems characterised by high dimensionality
and complexity.

Table 6. Experimental results of DPR-MGDE and 10 famous or up-to-date DE variants on CEC2017
test suite when D = 50.

Func Statistic NPADE IDE-DAE FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f1
Mean
Error

1.44 × 10−12

(3)
1.25 × 10−14

(2)
2.11 × 102

(8)
1.50 × 10−14

(6)
2.40 × 10−14

(7)
0.00 × 100

(1)
1.45 × 10−14

(4)
1.48 × 10−14

(5)

Std Dev 1.43 × 10−12 4.62 × 10−15 2.33 × 102 3.38 × 10−15 6.66 × 10−15 0.00 × 100 4.49 × 10−15 1.07 × 10−15

f2
Mean
Error - - - - - - - -

Std Dev - - - - - - - -

f3
Mean
Error

1.29 × 104

(8)
8.36 × 10−14

(3)
5.82 × 10−3

(7)
1.07 × 10−13

(5)
1.72 × 10−13

(6)
0.00 × 100

(1)
1.06 × 10−13

(4)
4.26 × 10−14

(2)

Std Dev 1.24 × 104 2.87 × 10−14 1.51 × 10−2 3.14 × 10−14 4.89 × 10−14 0.00 × 100 3.77 × 10−14 2.01 × 10−14

f4
Mean
Error

6.09 × 101

(7)
4.42 × 101

(4)
4.90 × 101

(6)
4.84 × 101

(5)
6.37 × 101

(8)
3.65 × 101

(2)
3.50 × 101

(1)
3.87 × 101

(3)

Std Dev 4.16 × 101 3.52 × 101 4.39 × 101 4.92 × 101 4.71 × 101 3.94 × 101 4.71 × 101 3.94 × 101

f5
Mean
Error

5.18 × 101

(6)
1.56 × 101

(4)
7.13 × 101

(8)
1.42 × 101

(2)
1.56 × 101

(4)
5.99 × 100

(7)
1.35 × 101

(1)
1.49 × 101

(3)

Std Dev 1.04 × 101 3.20 × 100 1.99 × 101 2.46 × 100 2.97 × 100 1.81 × 100 2.00 × 100 2.77 × 100

f6
Mean
Error

6.46 × 10−5

(8)
2.07 × 10−7

(4)
6.83 × 10−7

(6)
1.13 × 10−7

(2)
7.47 × 10−7

(7)
1.14 × 10−13

(1)
2.06 × 10−7

(3)
2.10 × 10−7

(5)

Std Dev 2.58 × 10−4 3.47 × 10−7 1.26 × 10−6 1.93 × 10−7 1.16 × 10−6 0.00 × 100 4.64 × 10−7 3.84 × 10−7

f7
Mean
Error

9.28 × 101

(7)
7.05 × 101

(6)
1.62 × 102

(8)
6.39 × 101

(4)
6.53 × 101

(5)
5.67 × 101

(1)
6.32 × 101

(3)
6.02 × 101

(2)

Std Dev 1.08 × 101 3.57 × 100 5.67 × 101 2.31 × 100 2.19 × 100 1.21 × 100 1.79 × 100 2.44 × 100

f8
Mean
Error

5.21 × 101

(7)
1.56 × 101

(5)
7.29 × 101

(8)
1.32 × 101

(2)
1.43 × 101

(4)
5.17 × 100

(6)
1.30 × 101

(1)
1.41 × 101

(3)

Std Dev 1.12 × 101 3.95 × 100 2.34 × 101 1.88 × 100 2.54 × 100 2.40 × 100 2.03 × 100 1.03 × 101

f9
Mean
Error

1.05 × 10−2

(5)
0.00 × 100

(1)
3.34 × 100

(8)
2.90 × 10−14

(3)
9.14 × 10−14

(4)
0.00 × 100

(1)
2.31 × 10−2

(7)
1.83 × 10−2

(6)

Std Dev 2.91 × 10−2 0.00 × 100 1.44 × 101 5.00 × 10−14 4.56 × 10−14 0.00 × 100 9.05 × 10−2 5.11 × 10−2

f10
Mean
Error

3.34 × 103

(5)
3.96 × 103

(7)
8.49 × 103

(8)
3.15 × 103

(2)
3.20 × 103

(3)
3.58 × 103

(6)
3.03 × 103

(1)
3.27 × 103

(4)

Std Dev 7.31 × 102 3.24 × 102 5.92 × 102 2.81 × 102 2.90 × 102 6.37 × 102 3.59 × 102 2.09 × 102

f11
Mean
Error

4.98 × 101

(7)
2.41 × 101

(1)
4.89 × 101

(6)
5.19 × 101

(8)
3.02 × 101

(2)
3.18 × 101

(3)
4.63 × 101

(5)
3.55 × 101

(4)

Std Dev 1.00 × 101 3.08 × 100 9.97 × 100 1.08 × 101 9.12 × 100 5.04 × 100 1.17 × 101 1.14 × 101
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Table 6. Cont.

Func Statistic NPADE IDE-DAE FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f12
Mean
Error

2.40 × 103

(7)
1.48 × 103

(1)
3.64 × 104

(8)
2.33 × 103

(6)
2.00 × 103

(3)
1.63 × 103

(2)
2.28 × 103

(5)
2.21 × 103

(4)

Std Dev 4.98 × 102 4.75 × 102 3.01 × 104 4.61 × 102 4.43 × 102 4.72 × 102 5.15 × 102 4.63 × 102

f13
Mean
Error

7.23 × 101

(7)
3.24 × 101

(2)
5.87 × 102

(8)
6.92 × 101

(6)
5.00 × 101

(4)
3.76 × 101

(3)
6.39 × 101

(5)
3.07 × 101

(1)

Std Dev 3.09 × 101 2.01 × 101 5.58 × 102 3.11 × 101 2.84 × 101 1.86 × 101 3.33 × 101 1.82 × 101

f14
Mean
Error

3.88 × 101

(7)
2.34 × 101

(2)
4.33 × 101

(8)
3.26 × 101

(6)
2.21 × 101

(1)
2.89 × 101

(5)
2.64 × 101

(4)
2.45 × 101

(3)

Std Dev 7.22 × 100 1.79 × 100 1.16 × 101 4.42 × 100 1.37 × 100 3.28 × 100 2.18 × 100 2.03 × 100

f15
Mean
Error

5.42 × 101

(6)
2.14 × 101

(2)
8.34 × 101

(8)
6.67 × 101

(7)
1.64 × 101

(1)
2.99 × 101

(5)
2.81 × 101

(4)
2.69 × 101

(3)

Std Dev 2.12 × 101 2.13 × 100 6.17 × 101 1.99 × 101 3.01 × 100 5.61 × 100 9.68 × 100 7.37 × 100

f16
Mean
Error

5.41 × 102

(6)
3.39 × 102

(4)
8.15 × 102

(7)
3.28 × 102

(3)
3.53 × 102

(5)
3.53 × 102

(5)
2.25 × 102

(1)
2.61 × 102

(2)

Std Dev 2.18 × 102 1.43 × 102 2.38 × 102 1.16 × 102 1.36 × 102 2.04 × 102 8.71 × 101 1.29 × 102

f17
Mean
Error

4.44 × 102

(7)
2.73 × 102

(5)
4.55 × 102

(8)
2.11 × 102

(3)
2.09 × 102

(2)
2.93 × 102

(6)
1.58 × 102

(1)
2.56 × 102

(4)

Std Dev 1.74 × 102 8.98 × 101 1.96 × 102 5.06 × 101 5.79 × 101 1.13 × 102 3.30 × 101 2.10 × 102

f18
Mean
Error

1.19 × 102

(8)
2.35 × 101

(1)
1.04 × 102

(7)
9.43 × 101

(6)
3.19 × 101

(4)
3.14 × 101

(3)
7.35 × 101

(5)
3.05 × 101

(2)

Std Dev 7.45 × 101 1.51 × 100 6.67 × 101 2.55 × 101 5.73 × 100 5.90 × 100 2.11 × 101 1.79 × 101

f19
Mean
Error

2.85 × 101

(7)
1.10 × 101

(1)
1.15 × 102

(8)
2.80 × 101

(6)
1.45 × 101

(2)
2.13 × 101

(5)
1.90 × 101

(4)
1.63 × 101

(3)

Std Dev 5.38 × 100 2.17 × 100 4.09 × 101 5.76 × 100 3.17 × 100 3.89 × 100 2.58 × 100 2.71 × 100

f20
Mean
Error

3.14 × 102

(7)
1.39 × 102

(1)
3.22 × 102

(8)
2.00 × 102

(6)
1.68 × 102

(2)
1.76 × 102

(3)
1.80 × 102

(4)
1.88 × 102

(5)

Std Dev 1.36 × 102 7.23 × 101 1.44 × 102 3.91 × 101 2.44 × 101 1.10 × 102 2.66 × 101 2.05 × 101

f21
Mean
Error

2.52 × 102

(7)
2.16 × 102

(6)
2.73 × 102

(8)
1.00 × 102

(4)
3.05 × 101

(1)
2.14 × 102

(5)
3.73 × 101

(2)
3.94 × 101

(3)

Std Dev 1.19 × 101 4.78 × 100 2.64 × 101 9.20 × 10−14 2.95 × 101 9.77 × 100 3.51 × 101 1.66 × 101

f22
Mean
Error

3.40 × 102

(5)
1.02 × 103

(6)
7.84 × 103

(8)
1.00 × 102

(4)
1.44 × 101

(3)
1.67 × 103

(7)
1.25 × 101

(2)
1.10 × 101

(1)

Std Dev 9.71 × 102 1.78 × 103 3.34 × 103 9.20 × 10−14 2.74 × 100 2.08 × 103 2.19 × 100 1.00 × 100

f23
Mean
Error

4.71 × 102

(5)
4.31 × 102

(3)
4.89 × 102

(6)
7.19 × 102

(7)
7.20 × 102

(8)
4.40 × 102

(4)
2.00 × 102

(1)
2.00 × 102

(1)

Std Dev 1.35 × 101 5.90 × 100 1.54 × 101 2.18 × 101 1.91 × 101 6.19 × 100 3.83 × 10−13 1.79 × 10−11

f24
Mean
Error

5.35 × 102

(6)
5.07 × 102

(4)
5.68 × 102

(8)
5.47 × 102

(7)
3.00 × 102

(3)
5.11 × 102

(5)
2.33 × 102

(2)
2.18 × 102

(1)

Std Dev 1.18 × 101 3.78 × 100 1.75 × 101 3.73 × 102 3.78 × 10−13 5.74 × 100 2.40 × 101 1.59 × 101

f25
Mean
Error

5.29 × 102

(8)
4.81 × 102

(3)
5.11 × 102

(7)
5.02 × 102

(6)
4.86 × 102

(5)
4.81 × 102

(3)
2.00 × 102

(1)
2.00 × 102

(1)

Std Dev 2.14 × 101 2.80 × 100 3.19 × 101 2.83 × 101 2.72 × 101 2.75 × 100 0.00 × 100 0.00 × 100

f26
Mean
Error

1.48 × 103

(6)
1.08 × 103

(4)
1.82 × 103

(7)
2.97 × 103

(8)
2.51 × 102

(2)
1.15 × 103

(5)
4.91 × 102

(3)
2.00 × 102

(1)

Std Dev 1.23 × 102 5.29 × 101 2.16 × 102 7.07 × 102 5.05 × 101 5.79 × 101 2.58 × 102 0.00 × 100

f27
Mean
Error

5.16 × 102

(4)
5.08 × 102

(3)
5.17 × 102

(5)
8.77 × 102

(7)
8.80 × 102

(8)
5.31 × 102

(6)
2.13 × 102

(1)
2.64 × 102

(2)

Std Dev 8.35 × 100 8.70 × 100 1.12 × 101 3.60 × 101 4.12 × 101 1.26 × 101 9.17 × 101 1.09 × 102

f28
Mean
Error

4.91 × 102

(7)
4.59 × 102

(4)
4.75 × 102

(6)
5.30 × 102

(8)
4.46 × 102

(3)
4.60 × 102

(5)
4.33 × 102

(2)
2.85 × 102

(1)

Std Dev 2.33 × 101 1.82 × 10−13 2.30 × 101 4.25 × 101 3.30 × 101 6.84 × 100 2.55 × 101 2.04 × 101



Symmetry 2025, 17, 223 24 of 30

Table 6. Cont.

Func Statistic NPADE IDE-DAE FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f29
Mean
Error

3.44 × 102

(3)
3.81 × 102

(4)
4.04 × 102

(6)
5.67 × 102

(7)
5.85 × 102

(8)
3.81 × 102

(4)
2.62 × 102

(2)
2.00 × 102

(1)

Std Dev 1.98 × 101 1.89 × 101 7.83 × 101 3.41 × 101 3.00 × 101 4.75 × 101 1.90 × 102 0.00 × 100

f30
Mean
Error

6.19 × 105

(7)
5.94 × 105

(6)
5.93 × 105

(5)
5.70 × 103

(4)
5.56 × 103

(3)
6.57 × 105

(8)
4.73 × 103

(2)
2.00 × 103

(1)

Std Dev 3.98 × 104 2.82 × 104 2.29 × 104 3.03 × 102 2.12 × 102 8.39 × 104 3.83 × 103 2.67 × 102

28/2/0 20/10/0 30/0/0 24/6/0 20/10/0 2010/0 18/10/2

Rank 7.60 3.41 7.21 5.17 4.37 4.07 2.80 2.66

Bold data indicates the best results experimentally obtained on a certain test function.

Based on the data presented in Table 7, it is evident that the DPR-MGDE algorithm
achieves the best average ranking across all benchmark functions, highlighting its over-
all superior performance in the optimisation tasks under consideration. In the category
of single-objective functions (F1–F10), DPR-MGDE generally does not outperform the
other comparison algorithms, with the exception of F10, where it demonstrates a notable
improvement. This suggests that, while DPR-MGDE may face challenges in certain single-
objective optimisation scenarios, it can still achieve competitive results in specific instances.
In the hybrid functions (F11–F20), DPR-MGDE shows a marked improvement, achiev-
ing the best performance on F16 and F17. Additionally, it remains competitive for the
other benchmark functions within this category, outperforming most of the comparison
algorithms. This indicates DPR-MGDE’s ability to effectively handle the complexity and
multimodality inherent in hybrid functions, making it a robust choice for such optimisation
problems. In the combined functions (F21–F30), DPR-MGDE consistently outperforms
all other comparison algorithms, with the notable exceptions of F21 and F26. In these
two instances, DPR-MGDE ranks second, trailing only behind ADE-DMRM and MMDE,
respectively. This performance further underscores DPR-MGDE’s strength in tackling
complex, combined optimisation problems, where it can effectively navigate the intricacies
of multiple interacting objectives. Overall, the results from Table 7 provide a comprehensive
evaluation of DPR-MGDE’s performance across a diverse set of optimisation functions.
While it may not dominate in every single-objective function, its strong performance in
hybrid and combined functions, particularly in achieving the best average ranking across
all benchmark functions, confirms its robustness and adaptability. This makes DPR-MGDE
a valuable algorithm for addressing a wide range of optimisation challenges, especially
those involving high-complexity and multiple objectives.

Table 7. Experimental results of DPR-MGDE and 10 famous or up-to-date DE variants on CEC2017
test suite when D = 100.

Func Statistic NPADE IDE-EDA FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f1
Mean
Error

8.12 × 10−3

(7)
7.04 × 10−11

(6)
6.23 × 103

(8)
3.13 × 10−12

(5)
1.00 × 10−13

(2)
1.52 × 10−13

(3)
8.08 × 10−15

(1)
2.80 × 10−12

(4)

Std Dev 3.42 × 10−3 2.10 × 10−10 4.75 × 103 6.71 × 10−12 3.52 × 10−14 1.15 × 10−13 7.11 × 10−15 2.43 × 10−12

f2
Mean
Error - - - - - - - -

Std Dev - - - - - - - -

f3
Mean
Error

8.96 × 104

(8)
3.72 × 10−6

(5)
2.21 × 102

(7)
4.12 × 10−5

(4)
2.23 × 10−8

(3)
2.85 × 10−9

(2)
2.23 × 10−15

(1)
4.54 × 10−6

(6)

Std Dev 9.34 × 104 3.88 × 10−6 1.25 × 102 9.46 × 10−5 4.83 × 10−8 2.38 × 10−9 1.11 × 10−14 4.28 × 10−6
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Table 7. Cont.

Func Statistic NPADE IDE-EDA FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f4
Mean
Error

1.12 × 102

(2)
1.95 × 102

(7)
1.43 × 102

(4)
4.39 × 101

(1)
1.55 × 102

(5)
1.65 × 102

(6)
2.06 × 102

(8)
1.21 × 102

(3)

Std Dev 4.30 × 101 2.57 × 101 5.55 × 101 4.46 × 101 3.19 × 101 3.06 × 101 9.34 × 100 3.80 × 101

f5
Mean
Error

1.17 × 102

(6)
5.40 × 101

(5)
1.94 × 102

(8)
1.17 × 102

(6)
4.62 × 101

(4)
4.30 × 101

(3)
1.15 × 101

(1)
4.26 × 101

(2)

Std Dev 2.24 × 101 9.84 × 100 2.00 × 101 1.73 × 101 5.40 × 100 5.41 × 100 3.34 × 100 5.18 × 100

f6
Mean
Error

2.76 × 10−5

(2)
1.97 × 10−4

(4)
3.03 × 10−3

(5)
1.68 × 100

(8)
6.62 × 10−3

(6)
1.19 × 10−4

(3)
1.14 × 10−13

(1)
9.03 × 10−3

(7)

Std Dev 2.33 × 10−5 6.91 × 10−4 9.00 × 10−3 6.18 × 10−1 5.32 × 10−3 3.16 × 10−4 0.00 × 100 6.88 × 10−3

f7
Mean
Error

2.00 × 102

(6)
1.65 × 102

(5)
3.09 × 102

(8)
2.65 × 102

(7)
1.50 × 102

(4)
1.45 × 102

(2)
1.12 × 102

(1)
1.46 × 102

(3)

Std Dev 2.14 × 101 8.95 × 100 2.97 × 101 2.66 × 101 5.65 × 100 5.59 × 100 1.65 × 100 5.61 × 100

f8
Mean
Error

1.24 × 102

(6)
4.75 × 101

(4)
1.83 × 102

(8)
1.31 × 102

(7)
4.89 × 101

(5)
4.44 × 101

(2)
1.12 × 101

(1)
4.62 × 101

(3)

Std Dev 2.48 × 101 1.20 × 101 2.58 × 101 1.75 × 101 6.04 × 100 4.97 × 100 2.93 × 100 4.85 × 100

f9
Mean
Error

2.21 × 100

(6)
5.12 × 10−2

(3)
1.31 × 102

(7)
5.02 × 102

(8)
3.67 × 10−1

(4)
1.05 × 10−2

(2)
0.00 × 100

(1)
5.46 × 10−1

(5)

Std Dev 1.66 × 100 1.13 × 10−1 8.80 × 101 2.19 × 102 3.86 × 10−1 3.42 × 10−2 0.00 × 100 5.78 × 10−1

f10
Mean
Error

1.24 × 104

(8)
1.16 × 104

(5)
1.19 × 104

(6)
1.22 × 104

(7)
1.06 × 104

(4)
9.91 × 103

(3)
9.89 × 103

(2)
9.47 × 103

(1)

Std Dev 1.44 × 103 6.48 × 102 1.32 × 103 1.13 × 103 5.25 × 102 6.28 × 102 9.80 × 102 5.05 × 102

f11
Mean
Error

2.45 × 103

(8)
9.06 × 101

(2)
2.00 × 102

(4)
5.48 × 102

(7)
3.36 × 102

(6)
1.45 × 102

(3)
5.05 × 101

(1)
3.18 × 102

(5)

Std Dev 1.68 × 103 2.81 × 101 7.23 × 101 1.20 × 102 4.91 × 101 2.04 × 101 2.32 × 101 5.69 × 101

f12
Mean
Error

3.37 × 104

(7)
1.48 × 104

(6)
1.49 × 105

(8)
6.18 × 103

(5)
5.40 × 103

(4)
4.73 × 103

(1)
4.91 × 103

(2)
5.38 × 103

(3)

Std Dev 1.42 × 104 7.33 × 103 4.54 × 104 1.63 × 103 9.33 × 102 9.14 × 102 8.30 × 102 9.68 × 102

f13
Mean
Error

3.34 × 102

(5)
1.36 × 102

(2)
2.94 × 103

(8)
1.40 × 103

(7)
3.52 × 102

(6)
1.92 × 102

(4)
1.35 × 102

(1)
1.82 × 102

(3)

Std Dev 8.85 × 101 3.70 × 101 2.38 × 103 8.12 × 102 9.01 × 101 5.29 × 101 3.59 × 101 5.78 × 101

f14
Mean
Error

2.57 × 102

(6)
8.01 × 101

(4)
1.93 × 102

(5)
5.31 × 102

(8)
5.03 × 102

(7)
4.03 × 101

(1)
7.70 × 101

(3)
5.14 × 101

(2)

Std Dev 4.64 × 101 6.73 × 100 4.79 × 101 9.43 × 101 4.46 × 101 5.35 × 100 1.37 × 101 5.58 × 101

f15
Mean
Error

3.40 × 102

(6)
1.28 × 102

(2)
1.75 × 103

(8)
3.13 × 102

(5)
3.57 × 102

(7)
7.20 × 101

(1)
2.13 × 102

(4)
1.73 × 102

(3)

Std Dev 7.06 × 101 3.28 × 101 2.02 × 103 1.32 × 102 6.08 × 101 1.51 × 101 3.06 × 101 6.26 × 101

f16
Mean
Error

2.51 × 103

(8)
1.60 × 103

(2)
2.29 × 103

(5)
2.41 × 103

(6)
1.94 × 103

(4)
1.88 × 103

(3)
2.42 × 103

(7)
1.30 × 103

(1)

Std Dev 3.97 × 102 3.47 × 102 5.86 × 102 6.76 × 102 2.71 × 102 2.88 × 102 4.47 × 102 2.13 × 102

f17
Mean
Error

1.77 × 103

(8)
1.24 × 103

(6)
1.54 × 103

(7)
1.04 × 103

(4)
6.36 × 102

(2)
7.26 × 102

(3)
1.14 × 103

(5)
5.53 × 102

(1)

Std Dev 3.90 × 102 2.31 × 102 2.70 × 102 3.64 × 102 1.30 × 102 1.68 × 102 3.32 × 102 1.05 × 102

f18
Mean
Error

2.67 × 102

(6)
1.36 × 102

(2)
8.09 × 103

(8)
2.60 × 103

(5)
2.76 × 102

(7)
2.31 × 102

(3)
1.24 × 102

(1)
2.48 × 102

(4)

Std Dev 6.50 × 101 3.09 × 101 4.84 × 103 2.46 × 103 5.87 × 101 3.85 × 101 3.56 × 101 7.49 × 101

f19
Mean
Error

4.12 × 102

(5)
8.35 × 101

(7)
8.46 × 102

(8)
4.43 × 102

(6)
4.01 × 102

(4)
7.40 × 101

(1)
7.40 × 101

(1)
8.09 × 101

(3)

Std Dev 7.94 × 101 1.42 × 101 5.79 × 102 1.23 × 102 5.71 × 101 1.14 × 101 1.06 × 101 5.53 × 101

f20
Mean
Error

2.01 × 103

(8)
1.55 × 103

(5)
1.63 × 103

(7)
1.58 × 103

(6)
1.07 × 103

(3)
9.15 × 102

(1)
1.37 × 103

(4)
9.79 × 102

(2)

Std Dev 4.36 × 102 2.54 × 102 1.84 × 102 3.51 × 102 1.40 × 102 1.63 × 102 3.90 × 102 2.02 × 102

f21
Mean
Error

3.38 × 102

(7)
2.57 × 102

(6)
4.10 × 102

(8)
1.50 × 102

(2)
1.40 × 102

(1)
1.50 × 102

(2)
2.42 × 102

(5)
1.50 × 102

(2)

Std Dev 2.16 × 101 1.30 × 101 2.88 × 101 1.04 × 10−12 5.06 × 101 2.17 × 10−13 9.14 × 100 6.89 × 101
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Table 7. Cont.

Func Statistic NPADE IDE-EDA FADE MPEDE ADE-DMRM MMDE DPMADE DPR-MGDE

f22
Mean
Error

9.12 × 103

(5)
1.24 × 104

(8)
1.20 × 104

(7)
1.58 × 102

(4)
6.37 × 101

(2)
1.41 × 102

(3)
9.96 × 103

(6)
4.31 × 101

(1)

Std Dev 5.95 × 103 6.64 × 102 1.08 × 103 7.30 × 10−13 2.63 × 101 1.75 × 10−13 8.84 × 102 3.84 × 100

f23
Mean
Error

6.58 × 102

(4)
5.65 × 102

(2)
6.95 × 102

(5)
1.29 × 103

(8)
1.15 × 103

(7)
1.13 × 103

(6)
5.81 × 102

(3)
2.00 × 102

(1)

Std Dev 2.47 × 101 1.11 × 101 3.66 × 101 5.79 × 101 3.26 × 101 3.88 × 101 7.09 × 100 8.67 × 10−14

f24
Mean
Error

9.95 × 102

(7)
8.97 × 102

(5)
1.07 × 103

(8)
5.17 × 102

(4)
2.08 × 102

(2)
3.06 × 102

(3)
9.14 × 102

(6)
2.56 × 102

(1)

Std Dev 2.74 × 101 6.87 × 100 3.94 × 101 5.61 × 10−13 2.72 × 101 2.16 × 10−13 2.11 × 101 1.92 × 102

f25
Mean
Error

7.73 × 102

(6)
7.19 × 102

(4)
7.89 × 102

(7)
8.16 × 102

(8)
7.70 × 102

(5)
6.99 × 102

(3)
6.92 × 102

(2)
3.59 × 102

(1)

Std Dev 3.46 × 101 4.23 × 101 4.83 × 101 5.68 × 101 5.81 × 101 4.76 × 101 4.60 × 101 3.11 × 101

f26
Mean
Error

4.10 × 103

(6)
3.09 × 103

(4)
5.12 × 103

(7)
2.65 × 103

(3)
7.97 × 103

(8)
2.88 × 102

(1)
3.13 × 103

(5)
2.00 × 103

(2)

Std Dev 2.78 × 102 7.88 × 101 4.39 × 102 4.46 × 103 1.75 × 102 3.25 × 101 5.92 × 101 2.57 × 101

f27
Mean
Error

5.98 × 102

(3)
5.78 × 102

(2)
6.15 × 102

(5)
1.51 × 103

(6)
1.66 × 103

(8)
1.62 × 103

(7)
6.01 × 102

(4)
2.54 × 102

(1)

Std Dev 1.83 × 101 1.97 × 101 2.13 × 101 8.56 × 102 1.15 × 102 1.84 × 102 1.66 × 101 2.93 × 102

f28
Mean
Error

5.65 × 102

(8)
5.27 × 102

(6)
5.55 × 102

(7)
4.95 × 102

(2)
5.03 × 102

(3)
5.06 × 102

(4)
5.17 × 102

(5)
2.00 × 102

(1)

Std Dev 2.21 × 101 3.07 × 101 2.09 × 101 9.73 × 100 1.50 × 101 1.37 × 101 1.91 × 101 0.00 × 100

f29
Mean
Error

1.34 × 103

(6)
1.15 × 103

(4)
1.90 × 103

(8)
1.21 × 103

(5)
9.39 × 102

(2)
9.86 × 102

(3)
1.50 × 103

(7)
2.00 × 102

(1)

Std Dev 3.03 × 102 1.83 × 102 3.49 × 102 3.71 × 102 8.41 × 101 1.06 × 102 3.35 × 102 0.00 × 100

f30
Mean
Error

2.33 × 103

(4)
2.18 × 103

(3)
3.57 × 103

(7)
6.13 × 102

(2)
3.59 × 103

(8)
3.46 × 103

(6)
2.42 × 103

(5)
2.00 × 102

(1)

Std Dev 1.28 × 102 7.58 × 101 1.16 × 103 7.95 × 101 1.32 × 102 1.33 × 102 1.71 × 102 0.00 × 100

b/w/s 28/2/0 23/7/0 28/2/0 27/1/2 26/4/0 16/13/1 18/12/0 -

Rank 6.00 4.69 6.82 5.37 4.59 2.93 3.24 2.52

Bold data indicates the best results experimentally obtained on a certain test function.

Moreover, by applying the multi-problem Wilcoxon signed rank test, we further
validate the superiority of the DPR-MGDE algorithm over other optimisation algorithms.
Table 8 details the statistical comparison results between DPR-MGDE and other algorithms
under different dimension settings. When the problem dimension D = 10, DPR-MGDE
exhibits a significant performance difference with all the compared algorithms at the
0.05 significance level. This indicates that the performance improvement of the DPR-MGDE
algorithm is statistically significant in lower-dimensional optimisation problems. When the
dimensionality is raised to D = 30, DPR-MGDE shows the same significant difference with
all other rivals except for IDE-EDA. When dimension D = 50, DPR-MGDE maintains its
competitiveness and performs better in most cases, except when compared to ADE-DMRM
and DPMADE. In the case of higher dimension (D = 100), DPR-MGDE has a p-value of less
than 0.05 when compared to all other algorithms except MMDE, which further confirms
the significant improvement and efficacy of DPR-MGDE in dealing with high-dimensional
optimisation problems.
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Table 8. Comparison results of DPR-MGDE with 10 famous or up-to-date DE variants based on the
multiproblem Wilcoxon signed-rank test on CEC2017 test suite.

DPR-MGDE
VS

D = 10 D = 30 D = 50 D = 100

ρ-Value α = 0.05 ρ-Value α = 0.05 ρ-Value α = 0.05 ρ-Value α = 0.05

NPADE 0.0490 YES 0.0011 YES 3.5104 × 10−6 YES 4.8009 × 10−6 YES
IDE-EDA 0.0299 YES 0.1023 NO 0.0121 YES 6.0967 × 10−4 YES
FADE 0.0039 YES 2.5614 × 10−6 YES 2.5631 × 10−6 YES 3.9017 × 10−6 YES
MPEDE 1.1805 × 10−5 YES 5.3218 × 10−6 YES 3.9067 × 10−4 YES 6.5213 × 10−6 YES
ADE-DMRM 1.2320 × 10−5 YES 0.0013 YES 0.0856 NO 6.0436 × 10−5 YES
MMDE 0.0027 YES 0.0186 YES 0.0118 YES 0.2319 NO
DPMADE 0.4286 × 10−5 YES 0.0071 YES 0.2297 NO 0.0118 YES

Taken together, these results show that the DPR-MGDE algorithm proposed in this
paper achieves significant performance gains over a wide range of dimensions, compared
to a variety of existing optimisation algorithms. This finding demonstrates the effectiveness
and reliability of DPR-MGDE in solving complex optimisation problems, especially its
robust performance in the face of high-dimensionality challenges. This may be due to
the fact that the multiple sub-populations divided by the dual performance evaluation
metrics of DPR-MGDE are able to distinguish the potentials of individuals, use different
variation strategies for them and adaptively update the variation factors and crossover
factors according to the changes of the individuals, so as to obtain better optimal solutions.
And due to the inclusion of a restarting strategy, which helps the algorithm to jump out of
the local optimum and maintain the diversity of the populations, DPR-MGDE can achieve
significant performance improvements in solving complex optimisation problems, espe-
cially when facing high-dimensional challenges. On this basis, DPR-MGDE can show better
performance when dealing with optimisation problems with high latitude complexity.

4.4. Real Application

In this part of the study, we aim to demonstrate the broad utility of the DPR-MGDE
algorithm by applying it to problems in five different engineering domains presented in the
literature [40]. These problems include the multi-product intermittent plant problem (P01)
in the mechanical design domain, the chemical engineering problem (P02), the process
design and synthesis problem (P03), the power electronics problem (P04) and the power
system problem (P05). Specifically, P01 deals with the optimisation of a multi-product
intermittent plant, P02 deals with reactor network design, P03 is the optimisation of a
two-reactor problem, P04 is the synchronous optimal pulse width modulation of a three-
level inverter and P05 is the problem of optimal allocation of reactive power support for a
single-phase distribution network based on minimising active and reactive losses. A de-
tailed description of these problems can be found in reference [40]. In order to validate the
performance of the DPR-MGDE algorithm, we have selected the comparison algorithms
discussed in Section 4.3 as competing algorithms and performed a comprehensive compari-
son. According to the results shown in Table 9, DPR-MGDE achieves the best performance
on three real engineering problems, P01, P04 and P05. On problem P02, DPR-MGDE out-
performs DPMADE, IDE-EDA, FADE and NPADE, while on problem P03, it outperforms
NPADE, FADE and IDE-EDA. In addition, the data show that DPR-MGDE outperforms at
least half of the compared algorithms on all five problems, and on some of them it received
the highest rankings. These results fully demonstrate the effectiveness and superiority of
DPR-MGDE in solving these real-world engineering problems.
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Table 9. Numerical and comparison results of DPMADE and up-to-date DE variants on real-
world problems.

Problem Statistic NPADE IDE-EDA FADE MPEDE ADE-
DMRM MMDE DPMADE DPR-

MGDE

P01 Mean Error 2.30 × 104

(7)
1.76 × 104

(6)
2.57 × 104

(8)
7.03 × 103

(3)
6.92 × 103

(2)
9.24 × 103

(5)
7.19 × 103

(4)
6.79 × 103

(1)
Std Dev 3.17 × 102 1.28 × 102 1.91 × 102 4.64 × 102 2.83 × 101 5.57 × 102 3.21 × 102 4.45 × 102

P02 Mean Error 6.67 × 100

(8)
5.19 × 100

(6)
5.63 × 100

(7)
3.51 × 10−1

(3)
−5.47 × 10−4

(1)
6.43 × 10−3

(2)
4.98 × 100

(5)
4.02 × 100

(4)
Std Dev 2.96 × 100 3.06 × 100 4.73 × 100 7.07 × 10−1 2.72 × 100 2.94 × 10−1 3.08 × 100 2.05 × 100

P03 Mean Error 3.35 × 101

(6)
4.00 × 101

(8)
3.72 × 101

(7)
2.30 × 101

(4)
2.08 × 101

(3)
1.97 × 101

(2)
1.58 × 101

(1)
2.39 × 101

(5)
Std Dev 2.18 × 101 2.55 × 101 2.03 × 100 1.94 × 100 1.56 × 100 1.02 × 101 1.75 × 100 1.98 × 101

P04 Mean Error 4.42 × 100

(7)
3.75 × 100

(6)
2.46 × 100

(4)
6.83 × 100

(8)
2.95 × 100

(5)
3.88 × 10−1

(2)
1.16 × 100

(3)
1.26 × 10−1

(1)
Std Dev 7.84 × 10−1 2.11 × 100 1.90 × 100 5.05 × 100 2.07 × 10−1 1.59 × 100 2.04 × 10−1 3.47 × 10−1

P05 Mean Error 1.93 × 10−1

(6)
4.06 × 10−1

(7)
6.08 × 10−1

(8)
7.88 × 10−2

(4)
3.49 × 10−2

(2)
3.91 × 10−2

(3)
9.04 × 10−2

(5)
4.01 × 10−3

(1)
Std Dev 2.33 × 10−1 3.17 × 10−1 4.42 × 10−1 5.61 × 10−2 3.02 × 10−2 1.08 × 10−1 1.39 × 10−1 3.86 × 10−2

b/w/s 5/0/0 5/0/0 5/0/0 3/2/0 3/2/0 3/2/0 4/1/0 -

Rank 6.6 6.6 6.6 4.4 2.6 2.8 3.6 2.4

Bold data indicates the best results experimentally obtained on engineering issues.

5. Conclusions
In this paper, a novel dual-performance multiple sub-population adaptive restart

differential evolutionary algorithm (DPR-MGDE) is proposed to solve the local voptimum
trap and balance global exploration and local exploitation in high-dimensional complex
multi-peak optimisation problems. The DPR-MGDE algorithm divides the population
into three different sub-populations (PM, MM, and UM). The three subpopulations play
different roles due to the different variation strategies used by them: the PM subpopulation
focuses on the exploration of new scenarios, the MM subpopulation focuses on population
development and the UM subpopulation is responsible for maintaining the diversity of
the population by adding new individuals when searching is stagnant, thus balancing
exploration and development. In addition, the adaptive cross-covariance strategy and
collision-based Gaussian wandering restart strategy in the algorithm further improve the
flexibility of the algorithm and the ability to jump out of local optima. Experimental
validation on the CEC2017 benchmark functions shows that the DPR-MGDE algorithm
outperforms other state-of-the-art variants of differential evolution algorithms in terms of
solution accuracy. This is most likely due to the fact that we are better able to jump out
of the local optimum in the multi-peak problem, while the adaptive parameter settings
enable the algorithm to better adapt to different dimensions of the test function and have
better flexibility, in addition to the fact that the multi-subpopulation approach allows
the algorithm to maintain a good search capability on different dimensions of the test
function. Therefore, the algorithm has significant advantages in terms of global exploration,
optimisation accuracy and maintaining population diversity, especially when dealing
with high-latitude complex optimisation problems. Compared to several existing variants
of differential evolutionary algorithms, DPR-MGDE exhibits superior performance on
test functions of different dimensions. Statistical analysis using Wilcoxon’s rank sum test
further confirms that the improved performance of the DPR-MGDE algorithm is statistically
significant when solving complex high-dimensional optimisation problems. In addition,
experiments on real-world problems show that DPR-MGDE is effective and superior for
solving problems in five different engineering domains.

In conclusion, the DPR-MGDE algorithm effectively overcomes the limitations of
traditional differential evolution algorithms, can effectively jump out of the local optimum
and at the same time has a good search ability in high-dimensional complex problems,
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in addition to balancing the exploration and exploitation and maintaining the diversity of
the population. It demonstrates its strengths in solving multiple aspects of complex optimi-
sation problems and practical problems. Future work focuses on further optimising the
algorithm parameters to make it more adaptable and able to be applied to more scenarios.
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