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Abstract:

 In the present paper we study subsolutions of the Dirac and Duffin–Kemmer–Petiau equations in the interacting case. It is shown that the Dirac equation in longitudinal external fields can be split into two covariant subequations (Dirac equations with built-in projection operators). Moreover, it is demonstrated that the Duffin–Kemmer–Petiau equations in crossed fields can be split into two 3 × 3 subequations. We show that all the subequations can be obtained via minimal coupling from the same 3 × 3 subequations which are thus a supersymmetric link between fermionic and bosonic degrees of freedom.
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1. Introduction

Recently, several supersymmetric systems, concerned mainly with anyons in 2 + 1 dimensions [1,2,3,4,5] as well as with the 3 + 1 dimensional Majorana–Dirac–Staunton theory [6], uniting fermionic and bosonic fields, have been described. Furthermore, bosonic symmetries of the Dirac equation have been found in the massless [7] as well as in the massive case [8]. Our results derived lately fit into this broader picture. We have demonstrated that certain subsolutions of the free Duffin–Kemmer–Petiau (DKP) and the Dirac equations obey the same Dirac equation with some built-in projection operators [9]. We shall refer to this equation as supersymmetric since it has bosonic (spin 0 and 1) as well as fermionic  [image: Symmetry 04 00427 i001] degrees of freedom. In the present paper we extend our results to the case of interacting fields.

The paper is organized as follows. In Section 2 relativistic wave equations as well as conventions and definitions used in the paper are described. In particular, several classical and not-so-classical subsolutions of the free Dirac equation are reviewed in Subsection 2.2. The notion of supersymmetry is invoked since some subequations arising in the context of the Dirac equation appear also in the Duffin–Kemmer–Petiau theory of massive bosons. In Section 3 the Dirac equation in longitudinal fields is split into two 3 × 3 subequations which can be written as two Dirac equations with built-in projection operators. In the next Section variables are separated in the subequations to yield 2D Dirac equations in  [image: Symmetry 04 00427 i002] subspace and 2D Pauli equations in  [image: Symmetry 04 00427 i003] subspace. In Section 5 the Duffin–Kemmer–Petiau equation for spin 0 in crossed fields is split into two 3 × 3 subequations—these equations have the same structure as subequations arising in the Dirac theory. It follows that the free 3 × 3 equations provide a supersymmetric link between the Dirac and DKP theories—this is described in Section 6. In the last Section we discuss our results in a broader context of supersymmetry and Lorentz covariance.



2. Relativistic Wave Equations

In what follows tensor indices are denoted with Greek letters: μ = 0,1,2,3. We shall use the following convention for the Minkowski space-time metric tensor: gμv = diag (1,−1,−1,−1) and we shall always sum over repeated indices. For example,  [image: Symmetry 04 00427 i004]. Four-momentum operators are defined as  [image: Symmetry 04 00427 i005] where natural units have been used: c = 1,  [image: Symmetry 04 00427 i006]. The interaction will be introduced via minimal coupling,



 [image: Symmetry 04 00427 i007]



(1)




with a four-potential Aμ and a charge q. In what follows we shall work with external fields of special configuration, so-called crossed and longitudinal fields, non-standard but Lorentz covariant, see [10]. We shall also need elements of spinor calculus. Four-vectors  [image: Symmetry 04 00427 i008] and spinors  [image: Symmetry 04 00427 i009] are related by the formula  [image: Symmetry 04 00427 i010]:



 [image: Symmetry 04 00427 i011]



(2)




where  [image: Symmetry 04 00427 i012] number rows and columns, respectively,  [image: Symmetry 04 00427 i013] denotes vector built of the Pauli matrices and σ0 is the 2 × 2 unit matrix. Spinor with lowered indices  [image: Symmetry 04 00427 i014] reads:



 [image: Symmetry 04 00427 i015]



(3)




For details of the spinor calculus reader should consult [11,12,13].


2.1. The Dirac Equation

The Dirac equation is a relativistic quantum mechanical wave equation formulated by Paul Dirac in 1928 providing a description of elementary spin  [image: Symmetry 04 00427 i016] particles, such as electrons and quarks, consistent with both the principles of quantum mechanics and the theory of special relativity [14,15]. The Dirac Equation is [11,16,17]:



 [image: Symmetry 04 00427 i017]



(4)




where m is the rest mass of the elementary particle. The γ’s are 4 × 4 anticommuting Dirac matrices:  [image: Symmetry 04 00427 i018] where I is the 4 × 4 unit matrix. In the spinor representation of the Dirac matrices we have:



 [image: Symmetry 04 00427 i019]



(5)




where σj are the Pauli matrices and σ0 is again the 2 × 2 unit matrix. The wave function is a bispinor, i.e., consists of 2 two-component spinors ξ, η:  [image: Symmetry 04 00427 i020] where T denotes transposition of a matrix. Sometimes it is more convenient to use the standard representation:



 [image: Symmetry 04 00427 i021]



(6)






2.2. Subsolutions of the Dirac Equation and Supersymmetry

In the m = 0 case it is possible to obtain two independent equations for spinors ξ, η by application of projection operators  [image: Symmetry 04 00427 i022] to Equation (4) since γ5 = −iγ0γ1γ2γ3 anticommutes with γμpμ:



 [image: Symmetry 04 00427 i023]



(7)




In the spinor representation of the Dirac matrices [11] we have γ5 = diag (−1,−1,1, 1) and thus  [image: Symmetry 04 00427 i024],  [image: Symmetry 04 00427 i025] and separate equations for ξ, η follow:



 [image: Symmetry 04 00427 i026]



(8)






 [image: Symmetry 04 00427 i027]



(9)




Equations (8) and (9) are known as the Weyl equations and are used to describe massless left-handed and right-handed neutrinos. However, since the experimentally established phenomenon of neutrino oscillations requires non-zero neutrino masses, theory of massive neutrinos, which can be based on the Dirac equation, is necessary [18,19,20,21]. Alternatively, a modification of the Dirac or Weyl equation, called the Majorana equation, is thought to apply to neutrinos. According to Majorana theory, neutrino and antineutrino are identical and neutral [22].

Although the Majorana equations can be introduced without any reference to the Dirac theory, they are subsolutions of the Dirac Equation [18]. Indeed, demanding in Equation (4) that  [image: Symmetry 04 00427 i028] where C is the charge conjugation operator,  [image: Symmetry 04 00427 i029], we obtain in the spinor representation  [image: Symmetry 04 00427 i030],  [image: Symmetry 04 00427 i031] and the Dirac Equation (4) reduces to two separate Majorana equations for two-component spinors:



 [image: Symmetry 04 00427 i032]



(10)






 [image: Symmetry 04 00427 i033]



(11)




It follows from the condition  [image: Symmetry 04 00427 i028] that Majorana particle has zero charge built-in condition. The problem whether neutrinos are described by the Dirac equation or the Majorana equations is still open [18,19,20,21].

Let us note that the Dirac Equation (4) in the spinor representation of the γμ matrices can be also separated in form of second-order Equations:



 [image: Symmetry 04 00427 i034]



(12)






 [image: Symmetry 04 00427 i035]



(13)




Such equations, valid also in the interacting case, were used by Feynman and Gell-Mann to describe weak decays in terms of two-component spinors [23].

More exotic subsolutions of the Dirac equation, related to supersymmetry, are also possible. In the massless case Simulik and Krivsky demonstrated that the following substitution,



 [image: Symmetry 04 00427 i036]



(14)




when introduced into the Dirac Equation (4), converts it for m = 0 and standard representation of the Dirac matrices Equation (6) into the set of Maxwell equations [7]. In the massive case the Dirac Equation (4) can be written as a set of two Equations:



 [image: Symmetry 04 00427 i037]



(15)






 [image: Symmetry 04 00427 i038]



(16)




with P4 = diag (1,1,1,0), P3 = diag (1,1,0,1) and spinor representation of the γμ matrices Equation (5). Equations analogous to (15,16) appear also in the Duffin–Kemmer–Petiau theory of massive bosons [9].

Let us note finally that as shown in [24] the square of the Dirac operator is indeed supersymmetric, and this can be used for a convenient description of fluctuations around a self-dual monopole. Similar behavior has also been observed in the Taub-NUT case, see [25].



2.3. The Duffin–Kemmer–Petiau Equations

The DKP equations for spin 0 and 1 are written as:



 [image: Symmetry 04 00427 i039]



(17)




with 5 × 5 and 10 × 10 matrices βμ, respectively, which fulfill the following commutation relations [26,27,28,29]:



 [image: Symmetry 04 00427 i040]



(18)




In the case of 5 × 5 (spin 0) representation of βμmatrices Equation (17) is equivalent to the following set of equations:



 [image: Symmetry 04 00427 i041]



(19)




if we define Ψ in Equation (17) as:



 [image: Symmetry 04 00427 i042]



(20)




Let us note that Equation (19) can be obtained by factorizing second-order derivatives in the Klein–Gordon equation  [image: Symmetry 04 00427 i043].

In the case of 10 × 10 (spin 1) representation of matrices βμ Equation (17) reduces to:



 [image: Symmetry 04 00427 i044]



(21)




with Ψ in Equation (17) defined as  [image: Symmetry 04 00427 i045]:



 [image: Symmetry 04 00427 i046]



(22)




Where Ψλ are real and Ψμν are purely imaginary (in alternative formulation we have  [image: Symmetry 04 00427 i047],  [image: Symmetry 04 00427 i048], where Ψλ, Ψμνare real). Because of antisymmetry of Ψμν we have pνΨν = 0what implies spin 1 condition. The set of Equation (21) was first written by Proca [30,31] and in a different context by Lanczos, see [32] and references therein. More on the history of the formalism of Duffin, Kemmer and Petiau can be found in [33].




3. Splitting the Dirac Equation in Longitudinal External Fields

The interaction is introduced into the Dirac Equation (4) via minimal coupling Equation (1). We consider a special class of four-potentials obeying the condition:



 [image: Symmetry 04 00427 i049]



(23)




where  [image: Symmetry 04 00427 i050] is a commutator. The condition Equation (23) is fulfilled in the Abelian case for



 [image: Symmetry 04 00427 i051]



(24)




This is the case of longitudinal potentials for which several exact solutions of the Dirac equation were found [10].

The Dirac Equation (4) can be written in spinor notation as [11]:



 [image: Symmetry 04 00427 i052]



(25)




where  [image: Symmetry 04 00427 i053],  [image: Symmetry 04 00427 i054] are given by Equations (2) and (3) (note that  [image: Symmetry 04 00427 i055],  [image: Symmetry 04 00427 i056],  [image: Symmetry 04 00427 i057],  [image: Symmetry 04 00427 i058]). Obviously, due to relations between components of  [image: Symmetry 04 00427 i053] and  [image: Symmetry 04 00427 i059] the Equation (25) can be rewritten in terms of components of  [image: Symmetry 04 00427 i053] only. Equation (25) corresponds to Equation (4) in the spinor representation of γ matrices and  [image: Symmetry 04 00427 i060]. We assume here that we deal with four-potentials fulfilling condition Equation (23).

In this Section we shall investigate a possibility of finding subsolutions of the Dirac equation in longitudinal external field, analogous to subsolutions found for the free Dirac equation in ([9]). For m ≠ 0 we can define new quantities:



 [image: Symmetry 04 00427 i061]



(26)






 [image: Symmetry 04 00427 i062]



(27)




where we have:



 [image: Symmetry 04 00427 i063]



(28)






 [image: Symmetry 04 00427 i064]



(29)




In spinor notation  [image: Symmetry 04 00427 i065],  [image: Symmetry 04 00427 i066],  [image: Symmetry 04 00427 i067],  [image: Symmetry 04 00427 i068].

The Dirac Equation (25) can be now written with help of Equations (26) and (27) as (we are now using components  [image: Symmetry 04 00427 i053] throughout):



 [image: Symmetry 04 00427 i069]



(30)




It follows from Equations (26) and (27) and Equation (23) that the following identities hold:



 [image: Symmetry 04 00427 i070]



(31)






 [image: Symmetry 04 00427 i071]



(32)




Taking into account the identities Equations (31) and (32) we can decouple Equation (30) and write it as a system of the following two Equations:



 [image: Symmetry 04 00427 i072]



(33)






 [image: Symmetry 04 00427 i073]



(34)




System of Equations (33) and (34) is equivalent to the Dirac Equation (25) if the definitions Equations (28) and (29) are invoked.

Due to the identities, Equations (31–34) can be cast into form:



 [image: Symmetry 04 00427 i074]



(35)






 [image: Symmetry 04 00427 i075]



(36)




Let us consider Equation (35). It can be written as:



 [image: Symmetry 04 00427 i076]



(37)




where P4 is the projection operator, P4 = diag (1,1,1,0) in the spinor representation of the Dirac matrices and  [image: Symmetry 04 00427 i077]. There are also other projection operators which lead to analogous three component equations, P1= diag (0,1,1,1), P2= diag (1,0,1,1), P3= diag (1,1,0,1). Acting from the left on Equation (37) with P4 and (1−P4)we obtain two Equations:



 [image: Symmetry 04 00427 i078]



(38)






 [image: Symmetry 04 00427 i079]



(39)




In the spinor representation of γμ matrices, Equation (38) is equivalent to Equation (33) while Equation (39) is equivalent to the identity Equation (31), respectively. The operator P4 can be written as  [image: Symmetry 04 00427 i080] where γ5 = iγ0γ1γ2γ3 (similar formulae can be given for other projection operators P1, P2, P3, see [13] where another convention for γμ matrices was however used). It thus follows that Equation (37) is given representation independent form and is Lorentz covariant (in [9] subsolutions of form Equation (37) were obtained for the free Dirac equation).

Let us note finally that Equation (36) can be alternatively written as



 [image: Symmetry 04 00427 i081]



(40)




where  [image: Symmetry 04 00427 i082],  [image: Symmetry 04 00427 i083], note that  [image: Symmetry 04 00427 i084].



4. Separation of Variables in Subequations

It is possible to separate variables in Equations (33) and (34) following procedures described in [10]. Substituting  [image: Symmetry 04 00427 i085] and  [image: Symmetry 04 00427 i086] from the first two equations into the third in Equation (33) we get:



 [image: Symmetry 04 00427 i087]



(41)




Taking into account definition of  [image: Symmetry 04 00427 i053] and property Equation (24) we obtain:



 [image: Symmetry 04 00427 i088]



(42)




where  [image: Symmetry 04 00427 i089],  [image: Symmetry 04 00427 i090].

To achieve separation of variables we put:



 [image: Symmetry 04 00427 i091]



(43)






 [image: Symmetry 04 00427 i092]



(44)






 [image: Symmetry 04 00427 i093]



(45)




We now substitute Equation (43) into Equation (42) to get:



 [image: Symmetry 04 00427 i094]



(46a)






 [image: Symmetry 04 00427 i095]



(46b)




where  [image: Symmetry 04 00427 i096] is the separation constant and we note that Equations (46a) and (46b) are analogous to Equations (12.15) and (12.19) in [10].

Combining now Equation (46a) with the first of Equation (33) and rescaling,  [image: Symmetry 04 00427 i097], we obtain 2D Dirac Equation:



 [image: Symmetry 04 00427 i098]



(47a)






 [image: Symmetry 04 00427 i099]



(47b)




with effective mass  [image: Symmetry 04 00427 i100].

On the other hand, combining Equation (46b) with the second of Equation (33) we get equations:



 [image: Symmetry 04 00427 i101]



(48a)






 [image: Symmetry 04 00427 i102]



(48b)




which can be written as the Pauli Equation:



 [image: Symmetry 04 00427 i103]



(49)




The same procedure applied to Equation (34) yields the equation for  [image: Symmetry 04 00427 i104]:



 [image: Symmetry 04 00427 i105]



(50)




Carrying out separation of variables we get 2D Dirac Equation:



 [image: Symmetry 04 00427 i106]



(51a)






 [image: Symmetry 04 00427 i107]



(51b)




with effective mass  [image: Symmetry 04 00427 i108] and  [image: Symmetry 04 00427 i109] and equation:



 [image: Symmetry 04 00427 i110]



(52a)






 [image: Symmetry 04 00427 i111]



(52b)




which is written as the Pauli Equation



 [image: Symmetry 04 00427 i112]



(53)




where the following definitions were used:



 [image: Symmetry 04 00427 i113]



(54)






 [image: Symmetry 04 00427 i114]



(55)






 [image: Symmetry 04 00427 i115]



(56)






5. Splitting the Spin 0 Duffin–Kemmer–Petiau Equations in Crossed Fields

We introduce interaction into DKP Equation (19) via minimal coupling Equation (1). We consider four-potentials obeying the condition:



 [image: Symmetry 04 00427 i116]



(57)




The condition Equation (57) means that  [image: Symmetry 04 00427 i117] and is fulfilled by crossed fields [10]:



 [image: Symmetry 04 00427 i118]



(58)




with  [image: Symmetry 04 00427 i119].

Equation (19) in the interacting case can be written within spinor formalism (cf. Equations (2) and (3)) as:



 [image: Symmetry 04 00427 i120]



(59)




Indeed, it follows from Equation (59) that  [image: Symmetry 04 00427 i121] and  [image: Symmetry 04 00427 i122]. We have  [image: Symmetry 04 00427 i123] and the Klein–Gordon Equation  [image: Symmetry 04 00427 i124] follows.

Let us note now that for fields obeying Equation (57), the following spinor identities hold:



 [image: Symmetry 04 00427 i125]



(60)




Due to identities Equation (60) we can split the last of Equation (59) and write Equation (59) as a set of two equations:



 [image: Symmetry 04 00427 i126]



(61)






 [image: Symmetry 04 00427 i127]



(62)




each of which describes particle with mass m (we check this by substituting e.g.  [image: Symmetry 04 00427 i128],  [image: Symmetry 04 00427 i129] or  [image: Symmetry 04 00427 i130],  [image: Symmetry 04 00427 i131] into the third equations). Equation (59) and the set of two Equations (61) and (62) are equivalent. We described Equations (61) and (62) in non-interacting case in [34,35]. Equations (61) and (62) and Equations (33) and (34) have the same structure (recall that  [image: Symmetry 04 00427 i055],  [image: Symmetry 04 00427 i056],  [image: Symmetry 04 00427 i057],  [image: Symmetry 04 00427 i058]). However these equations cannot be written in the form of the Dirac Equations (35) and (36) because identities analogous to Equations (31) and (32) do not hold, i.e.,  [image: Symmetry 04 00427 i132],  [image: Symmetry 04 00427 i133].

Substituting first two equations into the third one in Equation (61), we get the Klein–Gordon equation  [image: Symmetry 04 00427 i124], which can be solved via separation of variables for the case of crossed fields, see Chapter 3 in [10] (the same can be done in Equation (62)).



6. A Supersymmetric Link between Dirac and DKP Theories

We have shown that subsolutions of the Dirac equation as well as of the DKP equations for spin 0 obey analogous pairs of 3 × 3 Equations (33–62), respectively.

More exactly, Equations (33) and (34) can be written as:



 [image: Symmetry 04 00427 i134]



(63)






 [image: Symmetry 04 00427 i135]



(64)




with



 [image: Symmetry 04 00427 i136]



(65)






 [image: Symmetry 04 00427 i137]



(66)




and πμ = pμ − qAμ, Aμ obeying condition of longitudinality Equation (23).

On the other hand, Equations (61) and (62) can be written in analogous form:



 [image: Symmetry 04 00427 i138]



(67)






 [image: Symmetry 04 00427 i139]



(68)




with the same matrices ρμ,  [image: Symmetry 04 00427 i140], cf. Equations (65) and (66), and πμ = pμ − qAμ, Aμ obeying condition Equation (57)—fulfilled by crossed fields.

It thus follows that the 3 × 3 free equations described in [34,35]:



 [image: Symmetry 04 00427 i141]



(69)






 [image: Symmetry 04 00427 i142]



(70)




provide a link between solutions of the Dirac and DKP equations. Namely, Equations (69) and (70) in the interacting case, pμ → πμ = pμ − qAμ, lead to subsolutions of the Dirac Equations (63) and (64) in the case of longitudinal fields Equation (23), while for crossed fields Equation (57) yield DKP subsolutions Equations (67) and (68).



7. Discussion

We have shown that the Dirac equation in longitudinal external fields is equivalent to a pair of 3 × 3 subequations (33) and (34) which can be further written as Dirac equations with built-in projection operators, Equations (37) and (40). Furthermore, we have demonstrated that the Duffin–Kemmer–Petiau equations for spin 0 in crossed fields can be split into two 3 × 3 subequations (61) and (62) (subequations of the DKP equations for spin 1 were discussed in [36]). It was also shown that all the subequations can be obtained via minimal coupling from the same 3 × 3 subequations (69) and (70), which are thus a supersymmetric link between fermionic and bosonic degrees of freedom. It can be expected that for a combination of crossed and longitudinal potentials these subequations should describe interaction of fermionic and bosonic degrees of freedom. We shall investigate this problem in our future work.

Finally, we shall address problem of Lorentz covariance of the subequations. Let us have a closer look at a single subequation of spin 0 DKP equation, say Equation (67). Although both equations, Equation (67) and (68), are covariant as a whole, this subequation alone is not Lorentz covariant. Moreover, it cannot be written as manifestly covariant Dirac equation, cf. the end of Section 5. There is however another possibility of introducing full covariance. Let us consider left and right eigenvectors of the operator ρμπμ:



 [image: Symmetry 04 00427 i143]



(71a)






 [image: Symmetry 04 00427 i144]



(71b)




where symbols  [image: Symmetry 04 00427 i145],  [image: Symmetry 04 00427 i146] mean action of  [image: Symmetry 04 00427 i147] to the right or to the left, respectively (left solutions are actually used in the Dirac theory, where they are denoted as  [image: Symmetry 04 00427 i148], they are however related to the right solutions by the formula  [image: Symmetry 04 00427 i149] (symbol † denotes Hermitian conjugation) [11]).

It turns out that Equation (71), with  [image: Symmetry 04 00427 i150] and  [image: Symmetry 04 00427 i151], are equivalent to Equations (61) and (62) respectively  [image: Symmetry 04 00427 i152] and involve components of the whole spinor  [image: Symmetry 04 00427 i153] since  [image: Symmetry 04 00427 i154]. The same analysis applies to Equation (68), i.e.,  [image: Symmetry 04 00427 i155],  [image: Symmetry 04 00427 i156] and  [image: Symmetry 04 00427 i157],  [image: Symmetry 04 00427 i158] (note that  [image: Symmetry 04 00427 i159] and  [image: Symmetry 04 00427 i160], as well as  [image: Symmetry 04 00427 i161] and  [image: Symmetry 04 00427 i162] are algebraically related).

We shall now discuss problem of Lorentz covariance of subequations of the Dirac equation, Equations (63) and (64). Let first note that Equations (69) and (70), as well as Equations (63) and (64), can be written in covariant form as the Dirac equation with one zero component as Equations (15,16,37,40), respectively. However, solutions of Equations (63) and (64) do not involve the whole spinor  [image: Symmetry 04 00427 i163]. We might consider left eigensolutions of the operator  [image: Symmetry 04 00427 i164] again but this does not change the picture—Equations (63) and (64) involve components  [image: Symmetry 04 00427 i165],  [image: Symmetry 04 00427 i166],  [image: Symmetry 04 00427 i167],  [image: Symmetry 04 00427 i168] only as well as the whole spinor  [image: Symmetry 04 00427 i169]. It follows that in Equations (63) and (64) we deal with Lorentz symmetry breaking—a hypothetical phenomenon considered in some extensions of the Standard Model [37,38,39].
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